1
|
Dai X, Li X, Yin D, Chen X, Wang L, Pang L, Fu Y. Identification and characterization of TOR in Macrobrachium rosenbergii and its role in muscle protein and lipid production. Sci Rep 2024; 14:2082. [PMID: 38267514 PMCID: PMC10810085 DOI: 10.1038/s41598-023-50300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
The recent scarcity of fishmeal and other resources means that studies on the intrinsic mechanisms of nutrients in the growth and development of aquatic animals at the molecular level have received widespread attention. The target of rapamycin (TOR) pathway has been reported to receive signals from nutrients and environmental stresses, and regulates cellular anabolism and catabolism to achieve precise regulation of cell growth and physiological activities. In this study, we cloned and characterized the full-length cDNA sequence of the TOR gene of Macrobrachium rosenbergii (MrTOR). MrTOR was expressed in all tissues, with higher expression in heart and muscle tissues. In situ hybridization also indicated that MrTOR was expressed in muscle, mainly around the nucleus. RNA interference decreased the expression levels of MrTOR and downstream protein synthesis-related genes (S6K, eIF4E, and eIF4B) (P < 0.05) and the expression and enzyme activity of the lipid synthesis-related enzyme, fatty acid synthase (FAS), and increased enzyme activity of the lipolysis-related enzyme, lipase (LPS). In addition, amino acid injection significantly increased the transcript levels of MrTOR and downstream related genes (S6K, eIF4E, eIF4B, and FAS), as well as triglyceride and total cholesterol tissue levels and FAS activity. Starvation significantly increased transcript levels and enzyme activities of adenylate-activated protein kinase and LPS and decreased transcript levels and enzyme activities of FAS, as well as transcript levels of MrTOR and its downstream genes (P < 0.05), whereas amino acid injection alleviated the starvation-induced decreases in transcript levels of these genes. These results suggested that arginine and leucine activated the TOR signaling pathway, promoted protein and lipid syntheses, and alleviated the pathway changes induced by starvation.
Collapse
Affiliation(s)
- Xilin Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Danhui Yin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Xin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Linwei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Luyao Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
2
|
Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation. Animals (Basel) 2022; 12:ani12151925. [PMID: 35953914 PMCID: PMC9367577 DOI: 10.3390/ani12151925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 12/17/2022] Open
Abstract
We evaluated the effects of vitamin and mineral supplementation (from pre-breeding to day 83 of gestation) and two rates of gain (from breeding to day 83 of gestation) on trace mineral concentrations in maternal and fetal liver, fetal muscle, and allantoic (ALF) and amniotic (AMF) fluids. Crossbred Angus heifers (n = 35; BW = 359.5 ± 7.1 kg) were randomly assigned to one of two vitamin and mineral supplementation treatments (VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)). The VMSUP factor was initiated 71 to 148 d before artificial insemination (AI), allowing time for the mineral status of heifers to be altered in advance of breeding. The VTM supplement (113 g·heifer−1·d−1) provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM, and the NoVTM supplement was a pelleted product fed at a 0.45 kg·heifer−1·day−1 with no added vitamin and mineral supplement. At AI, heifers were assigned to one of two rates of gain treatments (GAIN; low gain (LG) 0.28 kg/d or moderate gain (MG) 0.79 kg/d) within their respective VMSUP groups. On d 83 of gestation fetal liver, fetal muscle, ALF, and AMF were collected. Liver biopsies were performed prior to VMSUP factor initiation, at the time of AI, and at the time of ovariohysterectomy. Samples were analyzed for concentrations of Se, Cu, Zn, Mo, Mn, and Co. A VMSUP × GAIN × day interaction was present for Se and Cu (p < 0.01 and p = 0.02, respectively), with concentrations for heifers receiving VTM being greater at AI and tissue collection compared with heifers not receiving VTM (p < 0.01). A VMSUP × day interaction (p = 0.01) was present for Co, with greater (p < 0.01) concentrations for VTM than NoVTM at the time of breeding. VTM-MG heifers had greater concentrations of Mn than all other treatments (VMSUP × GAIN, p < 0.01). Mo was greater (p = 0.04) for MG than LG, while Zn concentrations decreased throughout the experiment (p < 0.01). Concentrations of Se (p < 0.01), Cu (p = 0.01), Mn (p = 0.04), and Co (p = 0.01) were greater in fetal liver from VTM than NoVTM. Mo (p ≤ 0.04) and Co (p < 0.01) were affected by GAIN, with greater concentrations in fetal liver from LG than MG. In fetal muscle, Se (p = 0.02) and Zn (p < 0.01) were greater for VTM than NoVTM. Additionally, Zn in fetal muscle was affected by GAIN (p < 0.01), with greater concentrations in LG than MG. The ALF in VTM heifers (p < 0.01) had greater Se and Co than NoVTM. In AMF, trace mineral concentrations were not affected (p ≥ 0.13) by VMSUP, GAIN, or their interaction. Collectively, these data suggest that maternal nutrition pre-breeding and in the first trimester of gestation affects fetal reserves of some trace minerals, which may have long-lasting impacts on offspring performance and health.
Collapse
|
3
|
Xie J, Li LF, Dai TY, Qi X, Wang Y, Zheng TZ, Gao XY, Zhang YJ, Ai Y, Ma L, Chang SL, Luo FX, Tian Y, Sheng J. Short-Chain Fatty Acids Produced by Ruminococcaceae Mediate α-Linolenic Acid Promote Intestinal Stem Cells Proliferation. Mol Nutr Food Res 2021; 66:e2100408. [PMID: 34708542 DOI: 10.1002/mnfr.202100408] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Indexed: 12/18/2022]
Abstract
SCOPE The proliferation and differentiation of intestinal stem cells (ISCs) are the basis of intestinal renewal and regeneration, and gut microbiota plays an important role in it. Dietary nutrition has the effect of regulating the activity of ISCs; however, the regulation effect of α-linolenic acid (ALA) has seldom been reported. METHODS AND RESULTS After intervening mice with different doses of ALA for 30 days, it is found that ALA (0.5 g kg-1 ) promotes small intestinal and villus growth by activating the Wnt/β-catenin signaling pathway to stimulate the proliferation of ISCs. Furthermore, ALA administration increases the abundance of the Ruminococcaceae and Prevotellaceae, and promotes the production of short-chain fatty acids (SCFAs). Subsequent fecal transplantation and antibiotic experiments demonstrate that ALA on the proliferation of ISCs are gut microbiota dependent, among them, the functional microorganism may be derived from Ruminococcaceae. Administration of isobutyrate shows a similar effect to ALA in terms of promoting ISCs proliferation. Furthermore, ALA mitigates 5-fluorouracil-induced intestinal mucosal damage by promoting ISCs proliferation. CONCLUSION These results indicate that SCFAs produced by Ruminococcaceae mediate ALA promote ISCs proliferation by activating the Wnt/β-catenin signaling pathway, and suggest the possibility of ALA as a prebiotic agent for the prevention and treatment of intestinal mucositis.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ling-Fei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tian-Yi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xin Qi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yan Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Tiao-Zhen Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Xiao-Yu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yun-Juan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yu Ai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Song-Lin Chang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Feng-Xian Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, P. R. China
| |
Collapse
|
4
|
The Effect of Whole Egg Intake on Muscle Mass: Are the Yolk and Its Nutrients Important? Int J Sport Nutr Exerc Metab 2021; 31:514-521. [PMID: 34504041 DOI: 10.1123/ijsnem.2021-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Whole egg may have potential benefits for enhancing muscle mass, independent of its protein content. The yolk comprises ∼40% of the total protein in an egg, as well as containing several nonprotein nutrients that could possess anabolic properties (e.g., microRNAs, vitamins, minerals, lipids, phosphatidic acid and other phospholipids). Therefore, the purpose of this narrative review is to discuss the current evidence as to the possible effects of egg yolk compounds on skeletal muscle accretion beyond those of egg whites alone. The intake of whole egg seems to promote greater myofibrillar protein synthesis than egg white intake in young men. However, limited evidence shows no difference in muscle hypertrophy when comparing the consumption of whole egg versus an isonitrogenous quantity of egg white in young men performing resistance training. Although egg yolk intake seems to promote additional acute increases on myofibrillar protein synthesis, it does not seem to further enhance muscle mass when compared to egg whites when consumed as part of a high-protein dietary patterns, at least in young men. This conclusion is based on very limited evidence and more studies are needed to evaluate the effects of egg yolk (or whole eggs) intake on muscle mass not only in young men, but also in other populations such as women, older adults, and individuals with muscle wasting diseases.
Collapse
|
5
|
Huang X, Huang D, Zhu T, Yu X, Xu K, Li H, Qu H, Zhou Z, Cheng K, Wen W, Ye Z. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. J Nanobiotechnology 2021; 19:207. [PMID: 34247649 PMCID: PMC8274038 DOI: 10.1186/s12951-021-00956-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metal ions have been identified as important bone metabolism regulators and widely used in the field of bone tissue engineering, however their exact role during bone regeneration remains unclear. Herein, the aim of study was to comprehensively explore the interactions between osteoinductive and osteo-immunomodulatory properties of these metal ions. In particular, the osteoinductive role of zinc ions (Zn2+), as well as its interactions with local immune microenvironment during bone healing process, was investigated in this study using a sustained Zn2+ delivery system incorporating Zn2+ into β-tricalcium phosphate/poly(L-lactic acid) (TCP/PLLA) scaffolds. The presence of Zn2+ largely enhanced osteogenic differentiation of periosteum-derived progenitor cells (PDPCs), which was coincident with increased transition from M1 to M2 macrophages (M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi $$\end{document}φs). We further confirmed that induction of M2 polarization by Zn2+ was realized via PI3K/Akt/mTOR pathway, whereas marker molecules on this pathway were strictly regulated by the addition of Zn2+. Synergically, this favorable immunomodulatory effect of Zn2+ further improved the osteogenic differentiation of PDPCs induced by Zn2+ in vitro. Consistently, the spontaneous osteogenesis and pro-healing osteoimmunomodulation of the scaffolds were thoroughly identified in vivo using a rat air pouch model and a calvarial critical-size defect model. Taken together, Zn2+-releasing bioactive ceramics could be ideal scaffolds in bone tissue engineering due to their reciprocal interactions between osteoinductive and immunomodulatory characteristics. Clarification of this synergic role of Zn2+ during osteogenesis could pave the way to develop more sophisticated metal-ion based orthopedic therapeutic strategies.![]()
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Donghua Huang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, No. 568 Zhongxing North Road, Yuecheng District, Shaoxing, 312000, China
| | - Xiaohua Yu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Kaicheng Xu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Wen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88# Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Ahmed Mustafa Z, Hamed Ali R, Rostum Ali D, Abdulkarimi R, Abdulkareem NK, Akbari A. The combination of ginger powder and zinc supplement improves the fructose-induced metabolic syndrome in rats by modulating the hepatic expression of NF-κB, mTORC1, PPAR-α SREBP-1c, and Nrf2. J Food Biochem 2021; 45:e13546. [PMID: 33145794 DOI: 10.1111/jfbc.13546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/02/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
Although studies have shown that ginger, as an herbal remedy and zinc are able to improve inflammation, oxidative stress, autophagy, and metabolism of lipid and glucose, their molecular mechanisms are unknown. Therefore, this study was aimed to examine the therapeutic effects of ginger with zinc supplement for eight weeks on fructose-induced metabolic syndrome (MS). Ninety-six adult male Sprague Dawley rats (220 g ± 20) were randomly assigned to twelve controlled and treated groups. After the last treatment session, the level of lipid profiles, glucose, insulin, and leptin as metabolic factors and liver enzymes as biomarkers to evaluate liver function in serum were measured. The level of antioxidant enzymes and lipid peroxidation to evaluate the oxidative status and the TNF-α level as a biomarker to assess the state of inflammation in liver were also measured. The level of zinc along with the expression of NF-κB, mTORC1, PPAR-α, SREBP-1c, and Nrf2 in liver was also evaluated. The level of metabolic factors and liver enzymes in serum along with lipid peroxidation and TNF-α in liver increased; zinc and antioxidant enzymes levels decreased in rats with MS compared to control rats (p < .05). The hepatic expression of SREBP-1c, NF-κB and mTORC1 were upregulated and the expression of PPAR-α and Nrf2 were downregulated in rats with MS compared to control rats (p < .05). Treatment with different doses of ginger, zinc, and the combination of them could improve metabolic, inflammatory oxidative stress factors, and expression of the above genes in rats with MS compared to the MS group (p < .05). It can be concluded that ginger, zinc, and the combination of them could improve oxidative damage, inflammation, and autophagy induced by fructose and could adjust the glucose and lipid metabolism and the homeostasis of zinc in rats with MS. PRACTICAL APPLICATIONS: Due to the increasing prevalence of metabolic diseases, the use of plant compounds such as ginger has attracted widespread attention. Ginger as an herbal remedy with predominant pharmacological properties due to its availability, cheapness, and lack of side effects is also very popular for the treatment of metabolic disorders in folk medicine. Moreover, enhancing its medicinal properties with supplements such as zinc can be widely welcomed. This study was actually performed with the aim of investigating the effects of ginger + zinc supplement on MS. The results showed that the ginger + zinc supplement could improve oxidative damage, inflammation, and autophagy caused by fructose and adjust the glucose and lipid metabolism and the homeostasis of zinc in rats with MS. The results of this study support the hypothesis that ginger can be used as a very suitable option for the production of medicinal supplements to maintain human health.
Collapse
Affiliation(s)
- Zana Ahmed Mustafa
- Department of Pharmacy, Medical Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | - Rojgar Hamed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Dler Rostum Ali
- Basic Science Department, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Rahim Abdulkarimi
- Independent Scholar, Department of Environment, Boukan, Iran
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Nashwan K Abdulkareem
- Biophysics Unit, Department of Basic Science, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Shen X, Min X, Zhang S, Song C, Xiong K. Effect of Heavy Metal Contamination in the Environment on Antioxidant Function in Wumeng Semi-fine Wool Sheep in Southwest China. Biol Trace Elem Res 2020; 198:505-514. [PMID: 32076954 DOI: 10.1007/s12011-020-02081-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Many environmental accidents have led to worldwide heavy metal pollution, raising concern about heavy metal toxicity in Southwest China. To study the effects of Cd and Pb in the environment on antioxidant function in Wumeng semi-fine wool sheep, contents of Cu, Zn, Mn, Mo, Fe, Se, Cd, and Pb were measured in irrigation water, soil, herbage, and animal tissues. Hematological and biochemical parameters were also determined. The concentrations of Cu, Zn, Cd, and Pb in affected samples of irrigation water, soil, herbage, and tissues were significantly higher than those in the control (P < 0.01). There was no significant difference in other element contents between affected pastures and control areas. The occurrence of anemia affected Wumeng semi-fine wool sheep. The activities of SOD, CAT, and GSH-Px in affected animals were significantly decreased than those in the control (P < 0.01). Content of MDA in serum in affected animals was significantly increased than that in control (P < 0.01). Serum T-AOC in affected animal was significantly lower than that in control (P < 0.01). Consequently, it is suggested that heavy metal contamination in natural habitat caused serious harm to antioxidant function in Wumeng semi-fine wool sheep.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China
| | - Xiaoying Min
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Shihao Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| |
Collapse
|
8
|
Song C, Shen X. Effects of Environmental Zinc Deficiency on Antioxidant System Function in Wumeng Semi-fine Wool Sheep. Biol Trace Elem Res 2020; 195:110-116. [PMID: 31392543 DOI: 10.1007/s12011-019-01840-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to explore the effect of zinc deficiency on the antioxidant system function in Wumeng semi-fine wool sheep. The content of mineral elements in soil, forage, and animal tissues were analyzed by inductively coupled plasma atomic emission spectrometry. The blood parameters were analyzed by automatic blood cell analyzer, and the serum biochemical indexes were analyzed by automatic biochemical analyzer. The results showed that the concentrations of zinc in soil and herbage were significantly lower (P < 0.01) in affected than control pasture, and calcium content was also significantly higher (P < 0.01). The concentrations of zinc in blood and liver from the affected animals were significantly lower (P < 0.01) than those in healthy animals, and calcium content was also significantly higher (P < 0.01). The content of hemoglobin, erythrocyte number, packed cell volume, lactate dehydrogenase, and alkaline phosphatase activity in the blood from affected areas were significantly lower (P < 0.01) than those in healthy animals. The activities of aspartate aminotransferase and alanine transaminase were also higher (P < 0.01). Serum superoxide dismutase, serum glutathione peroxidase, total antioxidant capacity, and catalase from affected areas were significantly lower (P < 0.01) than those in healthy animals. Malondialdehyde content was also higher (P < 0.01). There were no differences in other blood mineral element concentrations, blood indexes, and serum biochemical values. It was concluded that zinc deficiency in the Wumeng semi-fine wool sheep is mainly caused by the low content of zinc in soil and forage, and the zinc deficiency seriously affected the antioxidant system function.
Collapse
Affiliation(s)
- Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Kast Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
9
|
Naito Y, Yamamoto H, Yoshikawa Y, Yasui H. In Vivo Effect of Bis(Maltolato)Zinc(II) Complex on Akt Phosphorylation in Adipose Tissues of Mice. Biol Trace Elem Res 2019; 192:206-213. [PMID: 30706355 DOI: 10.1007/s12011-019-1648-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
The risk of serious complication gradually increases as diabetes mellitus (DM) progresses. Thus, strategies for the prevention and delay of symptom progression are urgently needed. Previously, we synthesized zinc (Zn) complexes estimated to have a high bioavailability and evaluated their insulin-like anti-DM effects. However, in vivo studies of the effects of Zn compounds on the insulin signaling pathway and the molecular mechanisms underlying the anti-diabetic activities of Zn complexes were unresolved. In this study, we evaluated the effect of bis(maltolato)zinc(II) complex [Zn(mal)2] on male ICR mice (6-week-old) that received intraperitoneal (i.p.) injection of [Zn(mal)2]. The liver, skeletal muscle, and adipose tissues were collected from mice under anesthesia with isoflurane 40 or 90 min after i.p. injection. The [Zn(mal)2]-treatment did not affect Akt phosphorylation in the liver or skeletal muscle. In contrast, in adipose tissues, [Zn(mal)2]-treatment showed increased Akt phosphorylation at 40 min and 90 min after injection (p < 0.01 vs. control). The Zn distribution in the organs was evaluated using inductively coupled plasma mass spectrometry. Notably, high Zn accumulation was observed in the adipose tissue (4.5 ± 2.7 μg Zn/g wet weight), and this value was about six times higher than in the control mice (p < 0.01). Based on the observed organ-specific distribution of [Zn(mal)2], we suggest that it does not directly promote glycogen synthesis in the liver but may impact the insulin signaling pathway in adipose tissues. Our results may contribute to the clinical use of zinc compounds for the treatment of diabetes.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Hiroaki Yamamoto
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yutaka Yoshikawa
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima-Nakamachi, Chuo-ku, Kobe, 650-0046, Japan
| | - Hiroyuki Yasui
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
10
|
Wen M, Wu B, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Effects of Dietary Zinc on Carcass Traits, Meat Quality, Antioxidant Status, and Tissue Zinc Accumulation of Pekin Ducks. Biol Trace Elem Res 2019; 190:187-196. [PMID: 30343482 DOI: 10.1007/s12011-018-1534-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
This study investigated the effects of dietary zinc on carcass traits, meat quality, antioxidant capacity, and tissue zinc accumulation of Pekin ducks. A total of 768 1-day-old Pekin ducks were randomly allocated to six dietary treatments and penned in groups of 16 with 8 pens per treatment. Ducks were fed a basal corn-soybean meal diet supplemented with graded levels of zinc sulfate (0, 15, 30, 60, 120, 240 mg zinc/kg) for 35 days. The slaughter weight, carcass weight, eviscerated weight, and breast and leg muscle weight of Pekin ducks were increased with increasing dietary zinc levels (P < 0.05). Zinc supplementation increased the pH value at 24-h postmortem and the intramuscular fat (IMF) (P < 0.05), but decreased the lightness value, drip loss, and shear force in breast meat of ducks (P < 0.05). Increasing dietary zinc increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), catalase (CAT), and the content of glutathione (GSH), as well as decreased the malondialdehyde (MDA) level in breast muscle (P < 0.05). RT-qPCR analysis demonstrated that supplemental zinc notably enhanced the transcription of SOD, GPX, GR, CAT, and nuclear factor erythroid 2-related factor 2 (Nrf2) (P < 0.05). Meanwhile, zinc accumulation in plasma, breast muscle, liver, and tibia were linearly increased with increasing zinc supplementation (P < 0.05). These results indicated that zinc supplementation could improve carcass traits and meat quality and increase the activities and mRNA levels of antioxidant enzymes in breast muscle of Pekin duck. Base on broken-line regression analysis that 91.32 mg/kg of dietary zinc was suggested for optimal carcass traits, meat quality, antioxidant capacity, and zinc deposition of Pekin duck.
Collapse
Affiliation(s)
- Min Wen
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
- Tibet Vocational Technical College, Lasa, 850000, China
| | - Bing Wu
- Chelota Group, Guanghan, 618300, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Gao J, Nie W, Xing K, Guo Y. Comparative Study of Different Maternal Zinc Resource Supplementation on Performance and Breast Muscle Development of their Offspring. Biol Trace Elem Res 2019; 190:197-207. [PMID: 30269197 DOI: 10.1007/s12011-018-1513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Maternal zinc supplementation has a pivotal role in enhancing breast muscle development of the offspring. What is poorly defined is the impact of supplemental zinc from different sources on the offspring. Broiler breeders at 24-week-old were randomly divided into three treatments with six replicates of 40 hens each and respectively fed for 8 weeks with supplemental 0-(group Zn/C), 100 mg/kg organic-(group Zn/O), and 100 mg/kg inorganic-(group Zn/I) zinc. The male offspring from each nutritional treatment were allocated into eight cages of 14 birds each, and a commercial diet supplemented with zinc from ZnSO4 at 20 mg/kg was fed to the offsprings. Results showed that eggs from Zn/O group had the highest zinc deposition (P < 0.05). Furthermore, maternal zinc supplementation promoted breast muscle yield; increased serum insulin and IGF-I concentration; upregulated AKT, mTOR, and P70S6K mRNA levels; and improved the phosphorylation of AKT at Serine 473 residue, mTOR at Serine 2448 residue, and FOXO at Serine 256 residue in the breast muscles of the offspring. In contrast, hens' diet supplemented with zinc could result in downregulation of atrogin-1 and MuRF1 mRNA levels in the breast muscle of the offspring. Additionally, no significant effect on breast muscle development post-hatch was observed between organic and inorganic zinc supplementation. In conclusion, maternal organic zinc supplementation improved zinc deposition in egg; however, no significant difference was detected in breast muscle development of the offspring of broiler breeder between organic and inorganic zinc supplementation.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China.
| | - Kun Xing
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193, Beijing, China
| |
Collapse
|
12
|
Andéol Y, Bonneau J, M Gagné L, Jacquet K, Rivest V, Huot MÉ, Séguin C. The phosphoinositide 3-kinase pathway and glycogen synthase kinase-3 positively regulate the activity of metal-responsive transcription factor-1 in response to zinc ions. Biochem Cell Biol 2018; 96:1-8. [PMID: 29707960 DOI: 10.1139/bcb-2018-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a metal-regulatory transcription factor essential for induction of the genes encoding metallothioneins (MTs) in response to transition metal ions. Activation of MTF-1 is dependent on the interaction of zinc with the zinc fingers of the protein. In addition, phosphorylation is essential for MTF-1 transactivation. We previously showed that inhibition of phosphoinositide 3-kinase (PI3K) abrogated Mt expression and metal-induced MTF-1 activation in human hepatocellular carcinoma (HCC) HepG2 and mouse L cells, thus showing that the PI3K signaling pathway positively regulates MTF-1 activity and Mt gene expression. However, it has also been reported that inhibition of PI3K has no significant effects on Mt expression in immortalized epithelial cells and increases Mt expression in HCC cells. To further characterize the role of the PI3K pathway on the activity of MTF-1, transfection experiments were performed in HEK293 and HepG2 cells in presence of glycogen synthase kinase-3 (GSK-3), mTOR-C1, and mTOR-C2 inhibitors, as well as of siRNAs targeting Phosphatase and TENsin homolog (PTEN). We showed that inhibition of the mTOR-C2 complex inhibits the activity of MTF-1 in HepG2 and HEK293 cells, while inhibition of the mTOR-C1 complex or of PTEN stimulates MTF-1 activity in HEK293 cells. These results confirm that the PI3K pathway positively regulates MTF-1 activity. Finally, we showed that GSK-3 is required for MTF-1 activation in response to zinc ions.
Collapse
Affiliation(s)
- Yannick Andéol
- a Équipe Enzymologie de l'ARN, ER6, 9 quai St Bernard, Faculté des Sciences et Technologies, Sorbonne-Université, 75252 Paris, Cedex 05, France
| | - Jessica Bonneau
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Laurence M Gagné
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Kevin Jacquet
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Véronique Rivest
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Marc-Étienne Huot
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Carl Séguin
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| |
Collapse
|
13
|
van Vliet S, Shy EL, Abou Sawan S, Beals JW, West DW, Skinner SK, Ulanov AV, Li Z, Paluska SA, Parsons CM, Moore DR, Burd NA. Consumption of whole eggs promotes greater stimulation of postexercise muscle protein synthesis than consumption of isonitrogenous amounts of egg whites in young men. Am J Clin Nutr 2017; 106:1401-1412. [PMID: 28978542 DOI: 10.3945/ajcn.117.159855] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Protein in the diet is commonly ingested from whole foods that contain various macro- and micronutrients. However, the effect of consuming protein within its natural whole-food matrix on postprandial protein metabolism remains understudied in humans.Objective: We aimed to compare the whole-body and muscle protein metabolic responses after the consumption of whole eggs with egg whites during exercise recovery in young men.Design: In crossover trials, 10 resistance-trained men [aged 21 ± 1 y; 88 ± 3 kg; body fat: 16% ± 1% (means ± SEMs)] received primed continuous l-[ring-2H5]phenylalanine and l-[1-13C]leucine infusions and performed a single bout of resistance exercise. After exercise, participants consumed intrinsically l-[5,5,5-2H3]leucine-labeled whole eggs (18 g protein, 17 g fat) or egg whites (18 g protein, 0 g fat). Repeated blood and muscle biopsy samples were collected to assess whole-body leucine kinetics, intramuscular signaling, and myofibrillar protein synthesis.Results: Plasma appearance rates of protein-derived leucine were more rapid after the consumption of egg whites than after whole eggs (P = 0.01). Total plasma availability of leucine over the 300-min postprandial period was similar (P= 0.75) between the ingestion of whole eggs (68% ± 1%) and egg whites (66% ± 2%), with no difference in whole-body net leucine balance (P = 0.27). Both whole-egg and egg white conditions increased the phosphorylation of mammalian target of rapamycin complex 1, ribosomal protein S6 kinase 1, and eukaryotic translation initiation factor 4E-binding protein 1 during postexercise recovery (all P < 0.05). However, whole-egg ingestion increased the postexercise myofibrillar protein synthetic response to a greater extent than did the ingestion of egg whites (P= 0.04).Conclusions: We show that the ingestion of whole eggs immediately after resistance exercise resulted in greater stimulation of myofibrillar protein synthesis than did the ingestion of egg whites, despite being matched for protein content in young men. Our data indicate that the ingestion of nutrient- and protein-dense foods differentially stimulates muscle anabolism compared with protein-dense foods. This trial was registered at clinicaltrials.gov as NCT03117127.
Collapse
Affiliation(s)
| | - Evan L Shy
- Departments of Kinesiology and Community Health
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel Wd West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Alexander V Ulanov
- Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Zhong Li
- Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | | | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas A Burd
- Departments of Kinesiology and Community Health, .,Division of Nutritional Sciences; and
| |
Collapse
|
14
|
Crowell KT, Kelleher SL, Soybel DI, Lang CH. Marginal dietary zinc deprivation augments sepsis-induced alterations in skeletal muscle TNF-α but not protein synthesis. Physiol Rep 2017; 4:4/21/e13017. [PMID: 27811170 PMCID: PMC5112495 DOI: 10.14814/phy2.13017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Severe zinc deficiency is associated with an increased systemic inflammatory response and mortality after sepsis. However, the impact of mild zinc deficiency, which is more common in populations with chronic illnesses and sepsis, is unknown. In this study, we hypothesized that marginal dietary Zn deprivation (ZM) would amplify tissue inflammation and exacerbate the sepsis-induced decrease in muscle protein synthesis. Adult male C57BL/6 mice were fed a zinc-adequate (ZA) or ZM diet (30 or 10 mg Zn/kg, respectively) over 4 weeks, peritonitis was induced by cecal ligation and puncture (CLP), and mice were examined at either 24 h (acute) or 5 days (chronic) post-CLP Acute sepsis decreased the in vivo rate of skeletal muscle protein synthesis and the phosphorylation of the mTOR substrate 4E-BP1. Acutely, sepsis increased TNF-α and IL-6 mRNA in muscle, and the increase in TNF-α was significantly greater in ZM mice. However, muscle protein synthesis and 4E-BP1 phosphorylation returned to baseline 5 days post-CLP in both ZA and ZM mice. Protein degradation via markers of the ubiquitin proteasome pathway was increased in acute sepsis, yet only MuRF1 mRNA was increased in chronic sepsis and ZM amplified this elevation. Our data suggest that mild zinc deficiency increases TNF-α in muscle acutely after sepsis but does not significantly modulate the rate of muscle protein synthesis.
Collapse
Affiliation(s)
- Kristen T Crowell
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Shannon L Kelleher
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - David I Soybel
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Charles H Lang
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania .,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
15
|
Nakajima S, Hira T, Iwaya H, Hara H. Zinc directly stimulates cholecystokinin secretion from enteroendocrine cells and reduces gastric emptying in rats. Mol Cell Endocrinol 2016; 430:108-14. [PMID: 27107934 DOI: 10.1016/j.mce.2016.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 12/27/2022]
Abstract
Zinc, an essential mineral element, regulates various physiological functions such as immune responses and hormone secretion. Cholecystokinin (CCK), a gut hormone, has a role in protective immunity through the regulation of gastrointestinal motility, appetite, and inflammatory response. Here, we examined the effect of zinc on CCK secretion in STC-1 cells, an enteroendocrine cell line derived from murine duodenum, and in rats. Extracellular zinc triggered CCK secretion accompanied with increased intracellular Ca(2+) and Zn(2+) mobilization in STC-1 cells. Zinc-induced CCK secretion was abolished in the absence of intracellular Zn(2+) or extracellular calcium. Upon inhibition of transient receptor potential ankyrin 1 (TRPA1), extracellular zinc failed to increase intracellular Ca(2+) and subsequent CCK secretion. In rats, oral zinc administration decreased gastric emptying through the activation of CCK signaling. These results suggest that zinc is a novel stimulant for CCK secretion through the activation of TRPA1 related to intracellular Zn(2+) and Ca(2+) mobilization.
Collapse
Affiliation(s)
- Shingo Nakajima
- Research Faculty of Health Science, Hokkaido University, Japan; Research Faculty of Agriculture, Hokkaido University, Japan
| | - Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Japan.
| | - Hitoshi Iwaya
- Research Faculty of Agriculture, Hokkaido University, Japan; La Jolla Institute for Allergy & Immunology, USA
| | - Hiroshi Hara
- Research Faculty of Agriculture, Hokkaido University, Japan
| |
Collapse
|
16
|
Szewczyk B, Pochwat B, Rafało A, Palucha-Poniewiera A, Domin H, Nowak G. Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc. Neuropharmacology 2015; 99:517-26. [PMID: 26297535 DOI: 10.1016/j.neuropharm.2015.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/23/2015] [Accepted: 08/16/2015] [Indexed: 12/13/2022]
Abstract
The rapid antidepressant response to the N-methyl-D-aspartate (NMDA) receptor antagonists is mediated by activation of the mammalian target of the rapamycin (mTOR) signaling pathway, an increase in the synthesis of synaptic proteins and formation of new synapses in the prefrontal cortex (PFC) of rats. Zinc (Zn), which is a potent NMDA receptor antagonist, exerts antidepressant-like effects in screening tests and models of depression. We focused these studies in investigating whether activation of the mTOR signaling pathway is also a necessary mechanism of the antidepressant-like activity of Zn. We observed that a single injection of Zn (5 mg/kg) induced an increase in the phosphorylation of mTOR and p70S6K 30 min and 3 h after Zn treatment at time points when Zn produced also an antidepressant-like effect in the forced swim test (FST). Furthermore, Zn administered 3 h before the decapitation increased the level of brain derived neurotrophic factor (BDNF), GluA1 and synapsin I. An elevated level of GluA1 and synapsin I was still observed 24 h after the Zn treatment, although Zn did not produce any effects in the FST at that time point. We also observed that pretreatment with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), H-89 (PKA inhibitor) and GF109203X (PKC inhibitor) blocked the antidepressant-like effect of Zn in FST in rats and blocks Zn-induced activation of mTOR signaling proteins (analyzed 30 min after Zn administration). These studies indicated that the antidepressant-like activity of Zn depends on the activation of mTOR signaling and other signaling pathways related to neuroplasticity, which can indirectly modulate mTOR function.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Bartłomiej Pochwat
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna Rafało
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agnieszka Palucha-Poniewiera
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
17
|
Zinc, future mono/adjunctive therapy for depression: Mechanisms of antidepressant action. Pharmacol Rep 2015; 67:659-62. [DOI: 10.1016/j.pharep.2015.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 11/23/2022]
|
18
|
Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 2015; 333:228-237. [PMID: 25773777 DOI: 10.1016/j.yexcr.2015.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade.
Collapse
|
19
|
Gao J, Lv Z, Li C, Yue Y, Zhao X, Wang F, Guo Y. Maternal zinc supplementation enhanced skeletal muscle development through increasing protein synthesis and inhibiting protein degradation of their offspring. Biol Trace Elem Res 2014; 162:309-16. [PMID: 25231347 DOI: 10.1007/s12011-014-0122-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Previous studies proved that maternal zinc supplementation had no significant effect on body weight (BW) of the offspring, but the effects of maternal zinc supplementation on skeletal muscle development of the offspring are poorly defined. Here, broiler breeders at 46 weeks old were allocated into three treatments with six replicates of 40 hens each and fed with diets supplemented with zinc from ZnSO4 at 0 (group Zn/C), 50 mg/kg (group Zn/L), and 300 mg/kg (group Zn/H) respectively for 6 weeks. The male offspring from each dietary treatment were divided into seven cages of ten birds each and fed with a commercial diet with supplemental zinc from ZnSO4 at 20 mg/kg. Results indicated that with the increase of zinc supplementation in hen's diet, the zinc levels were significantly elevated (P < 0.05) in the egg yolk. Compared with the control group, the breast muscle yield and muscle fiber width were significantly (P < 0.05) higher and larger in the broilers from group Zn/H at 2 and 5 weeks post-hatch, the phosphorylation of AKT at serine 473 residue (Ser 473), mammalian target of rapamycin (mTOR) at serine 2448 residue (Ser 2448), and FOXO at serine 256 residue (Ser 256) in skeletal muscles of the birds from various dietary treatments at two different age post-hatch were significantly (P < 0.05) increased. The phosphorylation of mTOR and FOXO was usually related to protein synthesis and degradation. In conclusion, supplemental zinc into the breeders' diet could increase protein synthesis and decrease protein degradation, which, in turn, enhance breast muscle development of the offspring.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Cohen L, Sekler I, Hershfinkel M. The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis 2014; 5:e1307. [PMID: 24967969 PMCID: PMC4611734 DOI: 10.1038/cddis.2014.262] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium is a renewable tissue that requires precise balance between proliferation and differentiation, an essential process for the formation of a tightly sealed barrier. Zinc deficiency impairs the integrity of the intestinal epithelial barrier and is associated with ulcerative and diarrheal pathologies, but the mechanisms underlying the role of Zn2+ are not well understood. Here, we determined a role of the colonocytic Zn2+ sensing receptor, ZnR/GPR39, in mediating Zn2+-dependent signaling and regulating the proliferation and differentiation of colonocytes. Silencing of ZnR/GPR39 expression attenuated Zn2+-dependent activation of ERK1/2 and AKT as well as downstream activation of mTOR/p70S6K, pathways that are linked with proliferation. Consistently, ZnR/GPR39 silencing inhibited HT29 and Caco-2 colonocyte proliferation, while not inducing caspase-3 cleavage. Remarkably, in differentiating HT29 colonocytes, silencing of ZnR/GPR39 expression inhibited alkaline phosphatase activity, a marker of differentiation. Furthermore, Caco-2 colonocytes showed elevated expression of ZnR/GPR39 during differentiation, whereas silencing of ZnR/GPR39 decreased monolayer transepithelial electrical resistance, suggesting compromised barrier formation. Indeed, silencing of ZnR/GPR39 or chelation of Zn2+ by the cell impermeable chelator CaEDTA was followed by impaired expression of the junctional proteins, that is, occludin, zonula-1 (ZO-1) and E-cadherin. Importantly, colon tissues of GPR39 knockout mice also showed a decrease in expression levels of ZO-1 and occludin compared with wildtype mice. Altogether, our results indicate that ZnR/GPR39 has a dual role in promoting proliferation of colonocytes and in controlling their differentiation. The latter is followed by ZnR/GPR39-dependent expression of tight junctional proteins, thereby leading to formation of a sealed intestinal epithelial barrier. Thus, ZnR/GPR39 may be a therapeutic target for promoting epithelial function and tight junction barrier integrity during ulcerative colon diseases.
Collapse
Affiliation(s)
- L Cohen
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - I Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - M Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
21
|
Jiang J, Feng L, Liu Y, Jiang WD, Hu K, Li SH, Zhou XQ. Mechanistic target of rapamycin in common carp: cDNA cloning, characterization, and tissue expression. Gene 2013; 512:566-72. [DOI: 10.1016/j.gene.2012.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/04/2012] [Accepted: 08/02/2012] [Indexed: 01/13/2023]
|
22
|
Liang D, Yang M, Guo B, Cao J, Yang L, Guo X, Li Y, Gao Z. Zinc inhibits H(2)O(2)-induced MC3T3-E1 cells apoptosis via MAPK and PI3K/AKT pathways. Biol Trace Elem Res 2012; 148:420-9. [PMID: 22434380 DOI: 10.1007/s12011-012-9387-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Zinc has been shown to increase bone mass and promote bone cell proliferation and differentiation. We, therefore, hypothesized that zinc might be cytoprotective for bone cells during oxidative stress. The cells were divided into H(2)O(2), zinc and zinc+H(2)O(2) groups. In the present study, zinc was found to inhibit H(2)O(2)-induced apoptosis in MC3T3-E1 cells, as shown by analysis of Annexin V/PI double staining. Western blot data showed that in zinc+H(2)O(2)-treated cells, zinc decreased the levels of AIF, Bax and active caspase-9 and -3, which are pro-apoptotic factors. And zinc inhibited release of cytochrome c from mitochondria to cytosol in zinc+H(2)O(2)-treated cells. Further investigation shows that protection is via activation of PI3K/Akt/mTor and MAPK /ERK pathways and inhibition of MAPK/P38 and MAPK/JNK pathways. Protecting osteoblast cells from oxidative damage presents a potential application in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dan Liang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Geiser J, Venken KJT, De Lisle RC, Andrews GK. A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet 2012; 8:e1002766. [PMID: 22737083 PMCID: PMC3380849 DOI: 10.1371/journal.pgen.1002766] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human Zip4 gene cause acrodermatitis enteropathica, a rare, pseudo-dominant, lethal genetic disorder. We created a tamoxifen-inducible, enterocyte-specific knockout of this gene in mice which mimics this human disorder. We found that the enterocyte Zip4 gene in mice is essential throughout life, and loss-of-function of this gene rapidly leads to wasting and death unless mice are nursed or provided excess dietary zinc. An initial effect of the knockout was the reprogramming of Paneth cells, which contribute to the intestinal stem cell niche in the crypts. Labile zinc in Paneth cells was lost, followed by diminished Sox9 (sex determining region Y-box 9) and lysozyme expression, and accumulation of mucin, which is normally found in goblet cells. This was accompanied by dysplasia of the intestinal crypts and significantly diminished small intestine cell division, and attenuated mTOR1 activity in villus enterocytes, indicative of increased catabolic metabolism, and diminished protein synthesis. This was followed by disorganization of the absorptive epithelium. Elemental analyses of small intestine, liver, and pancreas from Zip4-intestine knockout mice revealed that total zinc was dramatically and rapidly decreased in these organs whereas iron, manganese, and copper slowly accumulated to high levels in the liver as the disease progressed. These studies strongly suggest that wasting and lethality in acrodermatitis enteropathica patients reflects the loss-of-function of the intestine zinc transporter ZIP4, which leads to abnormal Paneth cell gene expression, disruption of the intestinal stem cell niche, and diminished function of the intestinal mucosa. These changes, in turn, cause a switch from anabolic to catabolic metabolism and altered homeostasis of several essential metals, which, if untreated by excess dietary zinc, leads to dramatic weight loss and death. Loss-of-function of the zinc transporter ZIP4 in the mouse intestine mimics the lethal human disease acrodermatitis enteropathica. This is a rare disease in humans that is not well understood. Our studies demonstrate the paramount importance of ZIP4 in the intestine in this disease and reveal that a root cause of lethality is disruption of the intestine stem cell niche and impaired function of the small intestine. This, in turn, leads to dramatic weight loss and death unless treated with exogenous zinc.
Collapse
Affiliation(s)
- Jim Geiser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Koen J. T. Venken
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Robert C. De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Glen K. Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Jou MY, Philipps AF, Lönnerdal B. Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 2010; 140:1621-7. [PMID: 20660286 DOI: 10.3945/jn.109.119677] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interactions among zinc (Zn), insulin, and glucose metabolism are complex. Maternal Zn deficiency affects maternal carbohydrate metabolism, but the mechanisms underlying changes in glucose homeostasis of offspring are not well understood. Rats consumed Zn-deficient (ZnD; 7 microg/g) or control (ZnC; 25 microg/g) diets ad libitum from 3 wk preconception to 21 d postparturition. Litters were culled to 7 pups/dam postnatally and pups were allowed to nurse their original mothers; after weaning, pups were fed nonpurified diet. Insulin and glucose tolerance tests were performed on the pups at wk 5 and 10. Although there was no difference in birth weight between groups, ZnD pups weighed significantly more than controls by d 10 (+5%) and 20 (+10%). Both blood glucose and serum insulin-like growth factor (IGF-1) concentrations at wk 3 were significantly higher in ZnD pups than in controls. Both male and female ZnD rats were less sensitive to insulin and glucose stimulation than controls at wk 5 and 10. At wk 15, serum leptin concentrations were higher in male ZnD rats than in controls. Phosphorylation of muscle Akt protein, an insulin receptor (IR) signaling intermediate, was lower in female ZnD rats than in controls at wk 15, but they did not differ in phosphorylation of IR. Maternal Zn deficiency resulted in greater serum IGF-1 concentrations and the excessive postnatal weight gain in their offspring as well as impaired subsequent glucose sensitivity. It was associated with gender-specific alterations in the serum leptin concentration and the insulin signaling pathway. These findings suggest that suboptimal maternal Zn status induces long-term changes in the offspring related to abnormal glucose tolerance.
Collapse
Affiliation(s)
- Ming-Yu Jou
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
25
|
Marzani B, Balage M, Vénien A, Astruc T, Papet I, Dardevet D, Mosoni L. Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats. J Nutr 2008; 138:2205-11. [PMID: 18936220 DOI: 10.3945/jn.108.094029] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aging is characterized by a progressive loss of muscle mass that could be partly explained by a defect in the anabolic effect of food intake. We previously reported that this defect resulted from a decrease in the protein synthesis response to leucine in muscles from old rats. Because aging is associated with changes in oxidative status, we hypothesized that reactive oxygen species-induced oxidative damage may be involved in the impairment of the anabolic effect of leucine with age. The present study assessed the effect of antioxidant supplementation on leucine-regulated protein metabolism in muscles from adult and old rats. Four groups of 8- and 20-mo-old male rats were supplemented or not for 7 wk with an antioxidant mixture containing rutin, vitamin E, vitamin A, zinc, and selenium. At the end of supplementation, muscle protein metabolism was examined in vitro using epitrochlearis muscles incubated with increasing leucine concentrations. In old rats, the ability of leucine to stimulate muscle protein synthesis was significantly decreased compared with adults. This defect was reversed when old rats were supplemented with antioxidants. It was not related to increased oxidative damage to 70-kDa ribosomal protein S6 kinase that is involved in amino acid signaling. These effects could be mediated through a reduction in the inflammatory state, which decreased with antioxidant supplementation. Antioxidant supplementation could benefit muscle protein metabolism during aging, but further studies are needed to determine the mechanism involved and to establish if it could be a useful nutritional tool to slow down sarcopenia with longer supplementation.
Collapse
Affiliation(s)
- Barbara Marzani
- INRA, Centre de Clermont-Ferrand-Theix, UMR 1019, Unité Nutrition Humaine, Saint Genès Champanelle, F-63122 France
| | | | | | | | | | | | | |
Collapse
|