1
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
2
|
Liu J, Xia H, Gao Y, Pan D, Sun J, Liu M, Tang Z, Li Z. Potassium deficiency causes more nitrate nitrogen to be stored in leaves for low-K sensitive sweet potato genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1069181. [PMID: 36561445 PMCID: PMC9764221 DOI: 10.3389/fpls.2022.1069181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In order to explore the effect of potassium (K) deficiency on nitrogen (N) metabolism in sweet potato (Ipomoea batatas L.), a hydroponic experiment was conducted with two genotypes (Xushu 32, low-K-tolerant; Ningzishu 1, low-K-sensitive) under two K treatments (-K, <0.03 mM of K+; +K, 5 mM of K+) in the greenhouse of Jiangsu Normal University. The results showed that K deficiency decreased root, stem, and leaf biomass by 13%-58% and reduced whole plant biomass by 24%-35%. Compared to +K, the amount of K and K accumulation in sweet potato leaves and roots was significantly decreased by increasing root K+ efflux in K-deficiency-treated plants. In addition, leaf K, N, ammonium nitrogen (NH4 +-N), or nitrate nitrogen (NO3 --N) in leaves and roots significantly reduced under K deficiency, and leaf K content had a significant quadratic relationship with soluble protein, NO3 --N, or NH4 +-N in leaves and roots. Under K deficiency, higher glutamate synthase (GOGAT) activity did not increase amino acid synthesis in roots; however, the range of variation in leaves was larger than that in roots with increased amino acid in roots, indicating that the transformation of amino acids into proteins in roots and the amino acid export from roots to leaves were not inhibited. K deficiency decreased the activity of nitrate reductase (NR) and nitrite reductase (NiR), even if the transcription level of NR and NiR increased, decreased, or remained unchanged. The NO3 -/NH4 + ratio in leaves and roots under K deficiency decreased, except in Ningzishu 1 leaves. These results indicated that for Ningzishu 1, more NO3 - was stored under K deficiency in leaves, and the NR and NiR determined the response to K deficiency in leaves. Therefore, the resistance of NR and NiR activities to K deficiency may be a dominant factor that ameliorates the growth between Xushu 32 and Ningzishu 1 with different low-K sensitivities.
Collapse
Affiliation(s)
- Jingran Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Houqiang Xia
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yang Gao
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Dongyu Pan
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ming Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
3
|
Kumari S, Chhillar H, Chopra P, Khanna RR, Khan MIR. Potassium: A track to develop salinity tolerant plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1011-1023. [PMID: 34598021 DOI: 10.1016/j.plaphy.2021.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
Salinity is one of the major constraints to plant growth and development across the globe that leads to the huge crop productivity loss. Salinity stress causes impairment in plant's metabolic and cellular processes including disruption in ionic homeostasis due to excess of sodium (Na+) ion influx and potassium (K+) efflux. This condition subsequently results in a significant reduction of the cytosolic K+ levels, eventually inhibiting plant growth attributes. K+ plays a crucial role in alleviating salinity stress by recasting key processes of plants. In addition, K+ acquisition and retention also serve as the perquisite trait to establish salt tolerant mechanism. In addition, an intricate network of genes and their regulatory elements are involved in coordinating salinity stress responses. Furthermore, plant growth regulators (PGRs) and other signalling molecules influence K+-mediated salinity tolerance in plants. Recently, nanoparticles (NPs) have also been found several implications in plants with respect to their roles in mediating K+ homoeostasis during salinity stress in plants. The present review describes salinity-induced adversities in plants and role of K+ in mitigating salinity-induced damages. The review also highlights the efficacy of PGRs and other signalling molecules in regulating K+ mediated salinity tolerance along with nano-technological perspective for improving K+ mediated salinity tolerance in plants.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - Priyanka Chopra
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
4
|
Zhao Y, Gao J, Su S, Shan X, Li S, Liu H, Yuan Y, Li H. Regulation of the activity of maize glutamate dehydrogenase by ammonium and potassium. Biosci Biotechnol Biochem 2021; 85:262-271. [PMID: 33604622 DOI: 10.1093/bbb/zbaa020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 11/14/2022]
Abstract
Glutamate dehydrogenase (GDH) is an important enzyme in ammonium metabolism, the activity of which is regulated by multiple factors. In this study, we investigate the effects of ammonium and potassium on the activity of maize GDH. Our results show that both ammonium and potassium play multiple roles in regulating the activity of maize GDH, with the specific roles depending on the concentration of potassium. Together with the structural information of GDH, we propose models for the substrate inhibition of ammonium, and the elimination of substrate inhibition by potassium. These models are supported by the analysis of statistic thermodynamics. We also analyze the binding sites of ammonium and potassium on maize GDH, and the conformational changes of maize GDH. The findings provide insight into the regulation of maize GDH activity by ammonium and potassium and reveal the importance of the dose and ratio of nitrogen and potassium in crop cultivation.
Collapse
Affiliation(s)
- Yanjie Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Jie Gao
- College of Plant Science, Jilin University, Changchun, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, China
| | - He Li
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
5
|
Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
Collapse
|
6
|
Liu W, Ke M, Zhang Z, Lu T, Zhu Y, Li Y, Pan X, Qian H. Effects of imazethapyr spraying on plant growth and leaf surface microbial communities in Arabidopsis thaliana. J Environ Sci (China) 2019; 85:35-45. [PMID: 31471029 DOI: 10.1016/j.jes.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
Imazethapyr (IM) is an acetolactate synthase (ALS)-inhibiting herbicide that has been widely used in recent years. However, IM spraying can lead to the accumulation of herbicide residues in leaves. Here, we determined the effects of IM spraying on the plant growth and leaf surface microbial communities of Arabidopsis thaliana after 7 and 14 days of exposure. The results suggested that IM spraying inhibited plant growth. Fresh weight decreased to 48% and 26% of the control value after 7 and 14 days, respectively, of 0.035 kg/ha IM exposure. In addition, anthocyanin content increased 9.2-fold and 37.2-fold relative to the control content after 7 and 14 days of treatment, respectively. Furthermore, IM spraying destroyed the cell structures of the leaves, as evidenced by increases in the number of starch granules and the stomatal closure rate. Reductions in photosynthetic efficiency and antioxidant enzyme activity were observed after IM spraying, especially after 14 days of exposure. The diversity and evenness of the leaf microbiota were not affected by IM treatment, but the composition of community structure at the genus level was altered by IM spraying. Imazethapyr application increased the abundance of Pseudomonas, a genus that includes species pathogenic to plants and humans, indicating that IM potentially increased the abundance of pathogenic bacteria on leaves. Our findings increase our understanding of the relationships between herbicide application and the microbial community structures on plant leaves, and they provide a new perspective for studying the ecological safety of herbicide usage.
Collapse
Affiliation(s)
- Wanyue Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Youchao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiangliang Pan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
7
|
Li X, Ke M, Zhang M, Peijnenburg WJGM, Fan X, Xu J, Zhang Z, Lu T, Fu Z, Qian H. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:212-219. [PMID: 28931464 DOI: 10.1016/j.envpol.2017.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/31/2017] [Accepted: 09/11/2017] [Indexed: 05/15/2023]
Abstract
Diclofop-methyl (DM), a common post-emergence herbicide, is frequently used in agricultural production. Silver nanoparticles (AgNPs) are one of the most widely used nanoparticles, and as such, have been detected and monitored in several environmental systems. Here we investigated the interactive effects of DM and AgNPs on the physiological morphology, photosynthesis and antioxidant system of Arabidopsis thaliana. Our results demonstrated that a 1.0 mg/L DM treatment had no significant effect on the fresh weight of plant shoots and the content of total chlorophyll and anthocyanin. However, a 0.5 mg/L AgNPs treatment was found to significantly inhibit plant growth and chlorophyll synthesis, and was found to cause more severe oxidative damage in plants compared to the effects observed in a hydroponic suspension in which DM and AgNPs were jointly present. Meanwhile, the relative transcript levels of photosynthesis related genes (psbA, rbcL, pgrl1A and pgrl1B) in the combined group were found to be slightly increased compared to transcript levels in the AgNPs group, in order to maintain ATP generation at relatively normal levels in order to repair light damage. One explanation for these observed antagonistic effects was that the existence of DM affects the stability of AgNPs and reduced Ag+ release from AgNPs in the mixed solution. Thereupon, the Ag+-content was found to decrease in shoots and roots in the combined group by 15.2% and 9.4% respectively, compared to the AgNPs group. The coexistence of herbicides and nanomaterials in aquatic environments or soil systems will continue to exist due to their wide usages. Our current study highlights that the antagonistic effects between DM and AgNPs exerted a positive impact on A. thaliana growth.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, The Netherlands
| | - Xiaoji Fan
- College of Biotechnological and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jiahui Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhengwei Fu
- College of Biotechnological and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
8
|
Hong F, Qu C, Wang L. Cerium Improves Growth of Maize Seedlings via Alleviating Morphological Structure and Oxidative Damages of Leaf under Different Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9022-9030. [PMID: 28980812 DOI: 10.1021/acs.jafc.7b03398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It had been indicated that cerium (Ce) could promote maize growth involving photosynthetic improvement under potassium (K) deficiency, salt stress, and combined stress of K+ deficiency and salt stress. However, whether the improved growth is related to leaf morphological structure, oxidative stress in maize leaves is not well understood. The present study showed that K+ deficiency, salt stress, and their combined stress inhibited growth of maize seedlings, affecting the formation of appendages of leaf epidermal cells, and stomatal opening, which may be due to increases in H2O2 and malondialdehyde levels, and reductions in Ca2+ content, ratios of glutathione/oxidized glutathione, ascorbic acid/dehydroascorbic acid, and the activities of superoxide dismutase, catalase, ascorbic acid peroxidase, guaiacol peroxidase, and glutathione reductase in leaves under different stresses. The adverse effects caused by combined stress were higher than those of single stress. Furthermore, our findings demonstrated that adding Ce3+ could significantly promote seedling growth, and alleviate morphological and structural damage of leaf, decrease oxidative stress and increase antioxidative capacity in maize leaves caused by different stresses.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University , Huaian 223300, China
- Jiangsu University Key Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University , Huaian 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University , Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University , Huaian 223300, China
| | - Chunxiang Qu
- Medical College of Soochow University , Suzhou 215123, China
| | - Ling Wang
- Library of Soochow University , Suzhou 215123, China
| |
Collapse
|
9
|
Hu W, Zhao W, Yang J, Oosterhuis DM, Loka DA, Zhou Z. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:113-123. [PMID: 26874296 DOI: 10.1016/j.plaphy.2016.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 05/21/2023]
Abstract
The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China; Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Wenqing Zhao
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Jiashuo Yang
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Derrick M Oosterhuis
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Dimitra A Loka
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Zhiguo Zhou
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| |
Collapse
|
10
|
Wang S, Wang L, Zhou Q, Huang X. Combined effect and mechanism of acidity and lead ion on soybean biomass. Biol Trace Elem Res 2013; 156:298-307. [PMID: 24065299 DOI: 10.1007/s12011-013-9814-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/02/2013] [Indexed: 01/02/2023]
Abstract
Heavy metal pollution and soil acidification are serious global environmental issues. The combined pollution from acidification and heavy metal has become a new environmental issue in regions where the two issues simultaneously occur. However, studies on combined pollution are still limited. In the current study, we investigated the combined effect and mechanism of acidity and heavy metal [lead ion (Pb(2+))] on soybean biomass as well as on growth, nitrogen nutrition, and antioxidant system in soybean roots. Results showed that the combined treatment with acidity and Pb(2+) decreased the soybean biomass. At pH 4.5, the soybean biomass in the combined treatment with acidity and 0.9 mmol L(-1) Pb(2+) was lower than that in the combined treatment with acidity and Pb(2+) at 0.3 or 1.5 mmol L(-1). This result was also observed at pH 3.5 and 3.0. The combined treatment with acidity and Pb(2+) also resulted in the following consequences: root growth inhibition; decrease in nitrate, ammonium, and malondialdehyde contents; increase in nitrite reductase activity; and decrease in peroxidase activity. The extent at which the test indexes decreased/increased in the combined treatment was higher than that in the single acidity treatment. The correlation analysis results indicated that the decrease in the soybean biomass in the combined treatment with acidity and Pb(2+) resulted from the decrease in the root growth, nitrate-nitrogen assimilation, and peroxidase activity.
Collapse
Affiliation(s)
- Shengman Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | | | | | | |
Collapse
|
11
|
Qu C, Liu C, Guo F, Hu C, Ze Y, Li C, Zhou Q, Hong F. Improvement of cerium on photosynthesis of maize seedlings under a combination of potassium deficiency and salt stress. Biol Trace Elem Res 2013; 155:104-13. [PMID: 23892731 DOI: 10.1007/s12011-013-9767-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
Abstract
Added Ce(3+) can partly substitute for Ca(2+) or Mg(2+) and improve photosynthesis under the deficiency of these elements, but very few studies focused on photosynthetic improvement in maize seedlings caused by K(+) deficiency, salt stress, especially a combination of K(+) deficiency and salt stress. In the present study, the effects of Ce(3+) on the photosynthesis of maize seedlings under the three different stresses were investigated. The results showed that added Ce(3+) under various stresses increased the ratios of free water/bound water and of K(+)/Na(+), the pigment contents, the values of Fv/Fm, Y(II), ETR(II), Y(NPQ), Qp, qL, NPQ, and qN of photosystem II (PSII), the values of Y(I) and ETR(I) of photosystem I (PSI) and the expression levels of LhcII cab1 and rbcL, and decreased the values of Y(NO) and Y(NA). This implied that added Ce(3+) depressed ion toxicity, photodamage of PSII, and acceptor side constraints of PSI, and enhanced adjustable energy dissipation, the responses of photochemistry, and carbon assimilation caused by K(+) deficiency, salt stress, and the combination of K(+) deficiency and salt stress. However, Ce(3+) mitigation of photosynthetic inhibition in maize seedlings caused by the combined stresses was greater than that of salt stress, and Ce(3+) mitigation under salt stress was greater than that under K(+) deficiency. In addition, the results also showed that Ce(3+) cannot improve photosynthesis and growth of maize seedlings under K(+) deficiency by substituting for K(+).
Collapse
Affiliation(s)
- Chunxiang Qu
- Medical College, Soochow University, Suzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang M, Zheng Q, Shen Q, Guo S. The critical role of potassium in plant stress response. Int J Mol Sci 2013; 14:7370-90. [PMID: 23549270 PMCID: PMC3645691 DOI: 10.3390/ijms14047370] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/23/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.
Collapse
Affiliation(s)
- Min Wang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qingsong Zheng
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qirong Shen
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Shiwei Guo
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| |
Collapse
|
13
|
Qian H, Han X, Zhang Q, Sun Z, Sun L, Fu Z. Imazethapyr enantioselectively affects chlorophyll synthesis and photosynthesis in Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1172-1178. [PMID: 23343119 DOI: 10.1021/jf305198g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Imazethapyr (IM) is a chiral herbicide with reported enantioselective biological activities between its enantiomers. This report investigated the effect of enantioselectivity between R- and S-IM in Arabidopsis thaliana on chlorophyll synthesis and photosynthesis. The results suggest that R-IM inhibited the transcription of chlM to a greater extent than S-IM, which reduced chlorophyll synthesis. R-IM also showed a stronger inhibitory effect than S-IM on the transcription of photosynthesis-related genes, affecting linear electron transport and CO(2) fixation. IM stress enantioselectively induced transcriptional upregulation of the ndhH gene, a representative of the NDH complex. In contrast, the expression of pgr5 was downregulated, which demonstrated that IM stress enhanced adenosine 5'-triphosphate (ATP) synthesis by stimulating an NDH-dependent and not ferredoxin (FD)-independent route. This study suggested that R-IM has a greater toxic effect on photosynthesis than S-IM, affecting plant growth through chlorophyll synthesis.
Collapse
Affiliation(s)
- Haifeng Qian
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | | | | | | | | | | |
Collapse
|