1
|
Tang X, Xiong K, Zeng Y, Fang R. The Mechanism of Zinc Oxide in Alleviating Diarrhea in Piglets after Weaning: A Review from the Perspective of Intestinal Barrier Function. Int J Mol Sci 2024; 25:10040. [PMID: 39337525 PMCID: PMC11432186 DOI: 10.3390/ijms251810040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is one of the most challenging phases for piglets, and it is also the time when piglets are the most susceptible to diarrhea, which may result in significant economic losses for pig production. One of the dietary strategies for reducing post-weaning diarrhea (PWD) in piglets is to provide them with a pharmacological dose of zinc oxide (ZnO). However, excessive or long-term usage of high-dose ZnO has significant impacts on pig health and the ecological environment. Therefore, caution should be exercised when considering the use of high-dose ZnO for the prevention or treatment of PWD in piglets. In this paper, the significant role of zinc in animal health, the potential mode of action of ZnO in alleviating diarrhea, and the impact of innovative, highly efficient ZnO alternatives on the regulation of piglet diarrhea were reviewed to offer insights into the application of novel ZnO in pig production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China;
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Jenkins TP, Ács N, Arendrup EW, Swift A, Duzs Á, Chatzigiannidou I, Pichler M, Kittilä T, Peachey L, Gram L, Canibe N, Laustsen AH, Brix S, Thrane SW. Protecting the piglet gut microbiota against ETEC-mediated post-weaning diarrhoea using specific binding proteins. NPJ Biofilms Microbiomes 2024; 10:42. [PMID: 38697985 PMCID: PMC11066037 DOI: 10.1038/s41522-024-00514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.
Collapse
Affiliation(s)
- Timothy Patrick Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Norbert Ács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Abbie Swift
- Veterinary Sciences, University of Bristol, Bristol, UK
| | - Ágnes Duzs
- Bactolife A/S, Rønnegade 8, Copenhagen, Denmark
| | - Ioanna Chatzigiannidou
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael Pichler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tiia Kittilä
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Peachey
- Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nuria Canibe
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
- Bactolife A/S, Rønnegade 8, Copenhagen, Denmark.
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | |
Collapse
|
3
|
Suwanphoerung W, Klinmalai C, Rattanasiri S, Pakakasama S, Anurathapan U, Hongeng S, Chongviriyaphan N, Apiwattanakul N. Association of zinc deficiency with infectious complications in pediatric hematopoietic stem cell transplantation patients. PLoS One 2022; 17:e0279439. [PMID: 36574381 PMCID: PMC9794056 DOI: 10.1371/journal.pone.0279439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Zinc plays essential roles in immune function and epithelial integrity. Patients undergoing hematopoietic stem cell transplantation (HSCT) often have low plasma zinc levels because of poor intake and diarrhea. We hypothesized that patients with zinc deficiency before HSCT had worse infectious complications after HSCT compared with patients with normal zinc levels. Citrulline, a marker of intestinal integrity, was also hypothesized to be lower in patients with zinc deficiency. PATIENTS AND METHODS Thirty patients undergoing HSCT at Ramathibodi Hospital during March 2020-September 2021 were enrolled. Blood samples for plasma zinc and citrulline were collected during the HSCT period. The 14- and 90-day outcomes after HSCT were prospectively recorded. RESULTS Twelve of 30 (40%) patients had zinc deficiency before HSCT. Zinc-deficient patients were younger (median (interquartile range): 6 (8.8) vs 13 (5.8) years old; p = 0.017). Zinc levels tended to increase after admission in both groups. Patients with zinc deficiency had lower citrulline levels than those with normal zinc levels. Citrulline levels decreased in both groups after stem cell infusion, and the level was not significantly different between the two groups. Zinc-deficient patients had a higher rate of bacterial infection within 90 days after HSCT than those with normal zinc levels (6 in 12 patients (50.0%) vs 1 in 18 patients (5.6%); odds ratio [OR]: 17.0; 95% confidence interval [CI]: 1.68-171.70; p = 0.016). This remained significant after adjustments for age (adjusted OR: 12.31; 95% CI: 1.084-139.92; p = 0.043). CONCLUSION The prevalence of zinc deficiency in pediatric patients undergoing HSCT was high. Zinc-deficient patients had lower citrulline levels and higher incidence of bacterial infection after HSCT. However, citrulline level was not different between patients with and without bacterial infections. It is worth to investigate whether zinc supplementation before HSCT can reduce bacterial infection after HSCT.
Collapse
Affiliation(s)
- Warangkhana Suwanphoerung
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chompunuch Klinmalai
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sasivimol Rattanasiri
- Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Samart Pakakasama
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nalinee Chongviriyaphan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
4
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|
5
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
6
|
Yu L, Liu J, Mao J, Peng Z, Zhong Z, Wang H, Dong L. Dietary Palygorskite Clay-Adsorbed Nano-ZnO Supplementation Improves the Intestinal Barrier Function of Weanling Pigs. Front Nutr 2022; 9:857898. [PMID: 35634385 PMCID: PMC9133891 DOI: 10.3389/fnut.2022.857898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of PNZ on intestinal mucosal barrier function in weaning piglets. A total of 210, 21-day-old piglets with similar body weights (6.30 ± 0.51 kg) were randomly allocated into seven groups: control group (CON), antibiotic group (ANT), ZnO group (ZO), nano-ZnO group (NZO) and low, middle, and high PNZ groups (LPNZ, MPNZ, and HPNZ). The seven groups were, respectively, fed control diets or control diets supplemented with antibiotics; 3,000 mg/kg ZnO; 800 mg/kg nano-ZnO; 700, 1,000, or 1,300 mg/kg PNZ. More integrated intestinal villi were observed in the LPNZ group. In the jejunum of LPNZ group, the crypt depth significantly decreased (P < 0.05), and the ratio of villus height to crypt depth (V/C) significantly increased (P < 0.05). In addition, the villus width and surface area of the ileum were significantly increased in the LPNZ group (P < 0.05). Dietary supplementation with PNZ can significantly increase the number of goblet cells in the mucosa of the jejunum and ileum (P < 0.05), decrease the contents of TNF-α and IL-1β (P < 0.05), and increase the contents of sIgA and IL-4 in the jejunal and ileal mucosa (P < 0.05). Meanwhile, the mRNA expression of MCU2 and ZO1 in PNZ group were significantly increased (P < 0.05), the mRNA expression of TLR4 and MyD88 was downregulated (P < 0.05). With increasing levels of PNZ, decreased proinflammatory cytokines and increased intestinal mucosal barrier function in weaned pigs was observed. In conclusion, supplementation with PNZ could effectively improve the intestinal barrier function of weanling piglets and potentially could replace the use of high doses of ZnO and antibiotics. The appropriate dose of PNZ for supplementation was 700 mg/kg.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Long-term diosmectite use does not alter the gut microbiota in adults with chronic diarrhea. BMC Microbiol 2022; 22:54. [PMID: 35151268 PMCID: PMC8840705 DOI: 10.1186/s12866-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background Diosmectite, a natural colloidal clay, has been used worldwide for a number of approved indications, including the treatment of chronic functional diarrhea. Here, we used high-resolution whole metagenome shotgun sequencing to assess the impact of a 5 weeks administration of diosmectite (3 g/sachet, 3 sachets/day) on the fecal microbiota of 35 adults with functional chronic diarrhea. Results Gut microbiota was not impacted by diosmectite administration. In particular, richness remained stable and no microbial species displayed a significant evolution. Segregating patients either by diosmectite response (non responder, early responder, late responder) or by nationality (Great-Britain or Netherlands) yielded the same results. Conclusion We concluded that no microbiota-related physiological alterations are expected upon long-term treatment with diosmectite. Trial registration Clinicaltrials.gov NCT03045926 Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02464-7.
Collapse
|
8
|
Lei XJ, Liu ZZ, Park JH, Kim IH. Novel zinc sources as antimicrobial growth promoters for monogastric
animals: A review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:187-196. [PMID: 35530400 PMCID: PMC9039952 DOI: 10.5187/jast.2022.e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
The essentiality of zinc for animals has been recognized over 80 years. Zinc is
an essential trace element that is a component of many enzymes and is associated
with the various hormones. Apart from the nutritional function, zinc has
antimicrobial property and often be supplemented in diets in the quantities
greater than which is required to meet the nutritional requirement, especially
for weaning pigs. This review will focus on the application of pharmacological
zinc and its mechanisms which may be responsible for the effects of zinc on
performance and health of monogastric animals. Various novel sources of zinc in
non-ruminant animal production will also be discussed. These should assist in
more precisely formulating feed to maximize the production performance and to
maintain the health condition of monogastric animals.
Collapse
Affiliation(s)
- Xin Jian Lei
- College of Animal Science and Technology,
Northwest A&F University, Shaanxi 712100, China
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Zhang Zhuang Liu
- College of Veterinary Medicine, Northwest
A&F University, Shaanxi 712100, China
| | - Jae Hong Park
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: Jae Hong Park, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3659, E-mail:
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: In Ho Kim, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3652, E-mail:
| |
Collapse
|
9
|
Guan X, Santos RR, Kettunen H, Vuorenmaa J, Molist F. Effect of Resin Acid and Zinc Oxide on Immune Status of Weaned Piglets Challenged With E. coli Lipopolysaccharide. Front Vet Sci 2022; 8:761742. [PMID: 35004922 PMCID: PMC8733644 DOI: 10.3389/fvets.2021.761742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
With the ban of zinc oxide (ZnO) at high dosages in piglet diets in Europe by 2022, alternative nutritional solutions are being tested to support piglet immune defence during their weaning, the most critical and stressful moment of pig production. The present study evaluated the effect of zinc oxide (ZnO; 2,500 mg/kg diet) and resin acid concentrate (RAC; 200 mg/kg diet) on the immune defence of weaned piglets challenged with lipopolysaccharide (LPS). Piglets were challenged at days 7 and 21 post-weaning, and blood was sampled 1.5 and 3.0 h after each challenge to determine serum levels of pro- and anti-inflammatory cytokines. The levels of serum tumour necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) increased at days 7 and 21, and those of IL-6 at day 21 when challenged piglets were fed a diet supplemented with ZnO. In challenged piglets fed with RAC, the serum levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α were increased at days 7 and 21, except for that of IL-1β, which was not affected at day 21. The increased levels of these cytokines indicate the successful immune-modulatory effect of ZnO and RAC, which appears as a candidate to replace ZnO in weaned piglets' diets.
Collapse
|
10
|
Zha P, Chen Y, Wang S, Wang A, Zhou Y. Dietary palygorskite-based antibacterial agent supplementation as an alternative to antibiotic improves growth performance, intestinal mucosal barrier function, and immunity in broiler chickens. Poult Sci 2021; 101:101640. [PMID: 35378350 PMCID: PMC8980492 DOI: 10.1016/j.psj.2021.101640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate effects of palygorskite-based antibacterial agent (PAA) as an alternative to antibiotic on growth performance, intestinal barrier function, and immunity in broilers. Three hundred and eighty-four mixed-sex 1-day-old Ross 308 broiler chicks were allocated into 6 groups of 8 replicates with 8 birds each. Birds were given a basal diet, an antibiotic diet (50 mg/kg chlortetracycline), and the basal diet supplemented with 250, 500, 1,000, and 2,000 mg/kg PAA for 42 d, respectively. Compared with control group, supplementing 1,000 mg/kg PAA reduced overall feed conversion ratio (P < 0.05), with its value being similar to that of antibiotic group (P > 0.05). However, a higher level of PAA (2,000 mg/kg) increased feed conversion ratio during the late period (P < 0.05). The 1,000 and 2,000 mg/kg PAA decreased plasma endotoxin and D-lactate levels at 42 d (P < 0.05) to comparable values (P > 0.05). The 1,000 mg/kg PAA decreased jejunal crypt depth, while 500 and 1,000 mg/kg PAA increased the ratio between jejunal villus height and crypt depth at 42 d (P < 0.05), with their values being similar to antibiotic group (P > 0.05). The highest level of PAA increased 42-d jejunal mucosal secretory immunoglobulin A and immunoglobulin M concentrations (P < 0.05). The 1,000 and 2,000 mg/kg PAA reduced 21-d interleukin-1β and tumor necrosis factor-α (TNF-α) levels in serum and ileal mucosa and 42-d interferon-γ level in serum and jejunal mucosa (P < 0.05), which did not differ from antibiotic group (P > 0.05). Moreover, PAA administration, regardless of its dosage, reduced 42-d serum TNF-α concentration, and 500 to 2,000 mg/kg PAA decreased 21-d and 42-d jejunal and 42-d ileal mucosal TNF-α levels (P < 0.05), with their values being comparable with antibiotic group (P > 0.05). The results suggested that PAA as an alternative to antibiotic could improve growth performance, intestinal barrier function, and immunity of broilers, and its optimal dosage was 1,000 mg/kg.
Collapse
Affiliation(s)
- Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shiqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
11
|
Li Y, Sun T, Hong Y, Qiao T, Wang Y, Li W, Tang S, Yang X, Li J, Li X, Zhou Z, Xiao Y. Mixture of Five Fermented Herbs ( Zhihuasi Tk) Alters the Intestinal Microbiota and Promotes the Growth Performance in Piglets. Front Microbiol 2021; 12:725196. [PMID: 34764942 PMCID: PMC8576326 DOI: 10.3389/fmicb.2021.725196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
To explore the feasibility of using fermented Chinese herbal mixture Zhihuasi Tk (Z. Tk) supplementation to increase the swine production, the protective effect of dietary supplementation with Z. Tk on the intestinal oxidative stress model and the regulation of both growth performance and intestinal microbiota of weaned piglets were investigated in vitro. Our results showed that the addition of Z. Tk increased the cell viability, prevented the decrease of glutathione peroxidase, and significantly increased the total antioxidant capacity and reduced the damage caused by H2O2 to the tight junction proteins of the porcine small intestinal epithelial cell line (IPEC-J2). Furthermore, weaned piglets supplemented with either 2 kg/ton zinc oxide (ZnO) or 4 kg/ton of Z. Tk in the diet increased body weight as well as average daily feed intake and daily gain, while the feed conversion rate and diarrhea rate decreased within 0–35 days. Results of the taxonomic structure of the intestinal microbiota showed that, in 21 days after weaning, the Firmicutes/Bacteroidetes ratio in experimental group was increased, while the abundance of beneficial bacteria such, as Lactobacillus, was increased by Z. Tk, showing inhibitory effect on pathogenic bacteria such as members of Proteobacteria. In summary, dietary supplementation with Z. Tk maintained the intestinal microbiota in a favorable state for the host to effectively reduce the abnormal changes in the intestinal microbial structure and improved growth performance of weaned piglets. Therefore, Z. Tk may potentially function as a substitute for ZnO in feed additives for weaned piglets in modern husbandry.
Collapse
Affiliation(s)
- Yong Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Tiehu Sun
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yuxuan Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tong Qiao
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Yongsheng Wang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Wei Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Shi Tang
- COFCO Feed Co., Ltd., Beijing, China
| | - Xin Yang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jie Li
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaowen Li
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Bearson SMD. Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. Annu Rev Anim Biosci 2021; 10:373-393. [PMID: 34699256 DOI: 10.1146/annurev-animal-013120-043304] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An estimated 1.3 million Salmonella infections and 420 deaths occur annually in the United States, with an estimated economic burden of $3.7 billion. More than 50% of US swine operations test positive for Salmonella according to the National Animal Health Monitoring System, and 20% of Salmonella from swine are multidrug resistant (resistant to ≥3 antimicrobial classes) as reported by the National Antimicrobial Resistance Monitoring System. This review on Salmonella in swine addresses the current status of these topics by discussing antimicrobial resistance and metal tolerance in Salmonella and the contribution of horizontal gene transfer. A major challenge in controlling Salmonella is that Salmonella is a foodborne pathogen in humans but is often a commensal in food animals and thereby establishes an asymptomatic reservoir state in such animals, including swine. As food animal production systems continue to expand and antimicrobial usage becomes more limited, the need for Salmonella interventions has intensified. A promising mitigation strategy is vaccination against Salmonella in swine to limit animal, environmental, and food contamination. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shawn M D Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Center, US Department of Agriculture, Ames, Iowa, USA;
| |
Collapse
|
13
|
Dynamics of the fecal microbiome and antimicrobial resistome in commercial piglets during the weaning period. Sci Rep 2021; 11:18091. [PMID: 34508122 PMCID: PMC8433359 DOI: 10.1038/s41598-021-97586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
This study aimed to characterize the alteration of the fecal microbiome and antimicrobial resistance (AMR) determinants in 24 piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8), using whole-genome shotgun sequencing. Distinct clusters of microbiomes and AMR determinants were observed at D.8 when Prevotella (20.9%) was the major genus, whereas at D. − 3–D.3, Alistipes (6.9–12.7%) and Bacteroides (5.2–8.5%) were the major genera. Lactobacillus and Escherichia were notably observed at D. − 3 (1.2%) and D. − 3–D.3 (0.2–0.4%), respectively. For AMR, a distinct cluster of AMR determinants was observed at D.8, mainly conferring resistance to macrolide–lincosamide–streptogramin (mefA), β-lactam (cfxA6 and aci1) and phenicol (rlmN). In contrast, at D. − 3–D.3, a high abundance of determinants with aminoglycoside (AMG) (sat, aac(6')-aph(2''), aadA and acrF), β-lactam (fus-1, cepA and mrdA), multidrug resistance (MDR) (gadW, mdtE, emrA, evgS, tolC and mdtB), phenicol (catB4 and cmlA4), and sulfonamide patterns (sul3) was observed. Canonical correlation analysis (CCA) plot associated Escherichia coli with aac(6')-aph(2''), emrA, mdtB, catB4 and cmlA4 at D. − 3, D.0 and/or D.3 whereas at D.8 associations between Prevotella and mefA, cfxA6 and aci1 were identified. The weaning age and diet factor played an important role in the microbial community composition.
Collapse
|
14
|
Chitosan-chelated zinc modulates ileal microbiota, ileal microbial metabolites, and intestinal function in weaned piglets challenged with Escherichia coli K88. Appl Microbiol Biotechnol 2021; 105:7529-7544. [PMID: 34491402 DOI: 10.1007/s00253-021-11496-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023]
Abstract
This study was to investigate the effects of chitosan-chelated zinc on ileal microbiota, inflammatory response, and barrier function in weaned piglets challenged with Escherichia coli K88. Piglets of the chitosan-chelated zinc treatment (Cs-Zn; 100 mg zinc + 766 mg chitosan/kg basal diet, from chitosan-chelated zinc) and the chitosan treatment (CS, 766 mg chitosan/kg basal diet) had significantly increased ileal villus height and the ratio of villi height to crypt depth. CS-Zn group piglets had a higher abundance of Lactobacillus in the ileal digesta, while the abundance of Streptococcus, Escherichia shigella, Actinobacillus, and Clostridium sensu stricto 6 was significantly decreased. The concentrations of propionate, butyrate, and lactate in the CS-Zn group piglets were significantly increased, while the pH value was significantly decreased. Furthermore, the concentrations of IL-1β, TNF-α, MPO, and INF-γ in the ileal mucosa of the CS-Zn and the H-ZnO group (pharmacological dose of 1600 mg Zn/kg basal diet, from ZnO) were significantly lower than those of the control group fed with basal diet, and the mRNA expression of TLR4, MyD88, and NF-κB of the CS-Zn group was also reduced. In addition, the mRNA expression of IGF-1 was increased, the protein expression of occludin and claudin-1 was enhanced, while the mRNA expression of caspase 3 and caspase 8 was decreased in the CS-Zn group. These results suggest CS-Zn treatment could help modulate the composition of ileal microbiota, attenuate inflammatory response, and maintain the intestinal function in weaned piglets challenged with Escherichia coli K88. KEY POINTS: • Chitosan-chelated zinc significantly modulated ileal microbiota. • Chitosan-chelated zinc can improve ileal health. • The ileal microbiota plays an important role in host health.
Collapse
|
15
|
Jia M, Zhang H, Xu J, Su Y, Zhu W. Feeding frequency affects the growth performance, nutrient digestion and absorption of growing pigs with the same daily feed intake. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Szuba-Trznadel A, Rząsa A, Hikawczuk T, Fuchs B. Effect of Zinc Source and Level on Growth Performance and Zinc Status of Weaned Piglets. Animals (Basel) 2021; 11:2030. [PMID: 34359158 PMCID: PMC8300116 DOI: 10.3390/ani11072030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to evaluate the effect of zinc (Zn) supplementation in different commercial forms on the growth performance, health status, and Zn balance of weaners in field conditions. The animals were fed pre-starter (from the 28th to 47th day of life) and starter (from the 48th to 74th day of life) mixtures differing in Zn form and concentration. Group I was given ZnSO4 at 150 mg kg-1; Group II received pre-starter zinc oxide (ZnO) at 3000 mg kg-1 and starter at 150 mg kg-1; and Group III was given 150 mg kg-1 of zinc oxide nanoparticles (nZnO). We found that the average daily gain in Group I was significantly lower, compared to Groups II and III. A commonly accepted level of Zn (150 mg kg-1) as nZnO can be recommended, instead of therapeutic doses of Zn preparations with the same efficiency. Moreover, a lower level of Zn in the diet can prevent the excessive accumulation of this element in waste and, thus, reduce environmental damage.
Collapse
Affiliation(s)
- Anna Szuba-Trznadel
- Department of Animal Nutrition and Feed Management, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 38D, 51-630 Wrocław, Poland; (T.H.); (B.F.)
| | - Anna Rząsa
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Tomasz Hikawczuk
- Department of Animal Nutrition and Feed Management, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 38D, 51-630 Wrocław, Poland; (T.H.); (B.F.)
| | - Bogusław Fuchs
- Department of Animal Nutrition and Feed Management, Wrocław University of Environmental and Life Sciences, J. Chełmońskiego 38D, 51-630 Wrocław, Poland; (T.H.); (B.F.)
| |
Collapse
|
17
|
Wei X, Tsai T, Howe S, Zhao J. Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals (Basel) 2021; 11:1279. [PMID: 33946901 PMCID: PMC8146462 DOI: 10.3390/ani11051279] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
Weaning is one of the most stressful events in the life of a pig. Unsuccessful weaning often leads to intestinal and immune system dysfunctions, resulting in poor growth performance as well as increased morbidity and mortality. The gut microbiota community is a complex ecosystem and is considered an "organ," producing various metabolites with many beneficial functions. In this review, we briefly introduce weaning-associated gut microbiota dysbiosis. Then, we explain the importance of maintaining a balanced gut microbiota. Finally, we discuss dietary supplements and their abilities to restore intestinal balance and improve the growth performance of weaning pigs.
Collapse
Affiliation(s)
| | | | | | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (S.H.)
| |
Collapse
|
18
|
Metagenomics of antimicrobial and heavy metal resistance in the cecal microbiome of fattening pigs raised without antibiotics. Appl Environ Microbiol 2021; 87:AEM.02684-20. [PMID: 33547058 PMCID: PMC8091117 DOI: 10.1128/aem.02684-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to detect the cecal microbiome, antimicrobial resistance (AMR) and heavy metal resistance genes (MRGs) in fattening pigs raised under antibiotic-free (ABF) conditions compared with ordinary industrial pigs (control, C) using whole-genome shotgun sequencing. ABF pigs showed the enrichment of Prevotella (33%) and Lactobacillus (13%), whereas Escherichia coli (40%), Fusobacterium and Bacteroides (each at 4%) were notably observed in the C group. Distinct clusters of cecal microbiota of ABF and C pigs were revealed; however, microbiota of some C pigs (C1) appeared in the same cluster as ABF and were totally separated from the remaining C pigs (C2). For AMR genes, the highest abundance tet(Q) (35.7%) and mef(A) (12.7%) were markedly observed in the ABF group whereas tet(Q) (26.2%) and tet(W) (10.4%) were shown in the C group. tet(Q) was positively correlated to Prevotella in ABF and C1 samples. In the C2 group, the prominent tet(W) was positively correlated to Fusobacterium and Bacteroides Pigs have never received tetracycline but pregnant sows used chlortetracycline once 7 d before parturition. Chromosomal Cu and Zn resistance genes were also shown in both groups regardless the received Cu and Zn feed additives. A higher abundance of multi-metal resistance genes was observed in the C group (44%) compared with the ABF group (41%). In conclusion, the microbiome clusters in some C pigs were similar to that in ABF pigs. High abundant tetracycline resistance genes interrelated to major bacteria were observed in both ABF and C pigs. MRGs were also observed.IMPORTANCE: Owing to the increased problem of AMR in farm animals, raising farm animals without antibiotics is one method that could solve this problem. Our study showed that only some tetracycline and macrolide resistance genes, tet(Q), tet(W) and mef(A), were markedly abundant in ABF and C groups. The tet(Q) and tet(W) genes interrelated to different predominant bacteria in each group, showing the potential role of major bacteria as reservoirs of AMR genes. In addition, chromosomal Cu and Zn resistance genes were also observed in both pig groups, not depending on the use of Cu and Zn additives in both farms. The association of MRGs and AMR genotypes and phenotypes together with the method to re-sensitize bacteria to antibiotics should be studied further to unveil the cause of high resistance genes and solve the problems.
Collapse
|
19
|
Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals (Basel) 2021; 11:ani11030642. [PMID: 33670980 PMCID: PMC7997240 DOI: 10.3390/ani11030642] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Zinc oxide (ZnO) supplementation at pharmacological doses in post-weaning piglets is a consolidated practice that allows efficient control of post-weaning diarrhea (PWD), a condition exacerbated by Escherichia coli F4 (K88) infections. Far from being completely elucidated, the multifactorial ZnO mechanism of action is in all likelihood exerted at the gastrointestinal level. However, increasing environmental concerns are arising from prolonged ZnO use. This article reviews the utilization of ZnO in piglets, the biological rationale behind its powerful activity, and the emerging threats that are leading towards a significant reduction in its use. Finally, a wide analysis of the strengths and weaknesses of innovative alternative strategies to manage PWD at the nutritional level is given. Abstract Zinc oxide (ZnO) at pharmacological doses is extensively employed in the pig industry as an effective tool to manage post-weaning diarrhea (PWD), a condition that causes huge economic losses because of its impact on the most pivotal phase of a piglet’s production cycle. In a multifactorial way, ZnO exerts a variety of positive effects along the entire gastrointestinal tract by targeting intestinal architecture, digestive secretions, antioxidant systems, and immune cells. ZnO also has a moderate antibacterial effect against Escherichia coli F4 (K88), the main causative agent of PWD. However, the environmental impact of ZnO and new emerging threats are posing serious questions to the sustainability of its extensive utilization. To work towards a future free from pharmacological ZnO, novel nutritional approaches are necessary, and many strategies have been investigated. This review article provides a comprehensive framework for ZnO utilization and its broad mode of action. Moreover, all the risks related to pharmacological ZnO levels are presented; we focus on European institutions’ decisions subsequently. The identification of a novel, complete solution against PWD should be accompanied by the adoption of holistic strategies, thereby combining good management practices to feeding approaches capable of mitigating Escherichia coli F4 (K88) infections and/or lowering ZnO utilization. Promising results can be obtained by adjusting diet composition or employing organic acids, natural identical compounds, polyphenol-rich extracts, prebiotics, and probiotics.
Collapse
|
20
|
Antidiarrheal Effect of Sechang-Zhixie-San on Acute Diarrhea Mice and Network Pharmacology Deciphering Its Characteristics and Potential Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8880298. [PMID: 33381214 PMCID: PMC7749774 DOI: 10.1155/2020/8880298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Sechang-Zhixie-San (SCZX) is an ancient prescription used for pediatric diarrhea by the Yi people in China, which consists of Rodgersia sambucifolia Hemsley (known as Yantuo and abbreviated as YT) and Bentonite (BN). Now, it is also a Chinese patent medicine used in the clinic to treat infantile diarrhea. Besides evaluating the antidiarrheal effect of SCZX on diarrhea mice induced by Folium Sennae, the purpose of this study is to outline the characteristics of the antidiarrheal effect and reveal the potential mechanisms of SCZX through the analysis of the mechanism and active components of YT via network pharmacology and molecular docking, combined with the research progress of BN obtained from the literature. SCZX (3.12 and 12.48 g/kg) effectively inhibited diarrhea in mice, significantly lowering the loose stool rate (LSR), loose stool level (LSL), and loose stool index (LSI). Using network pharmacology, the "herb-compound-target-pathway-pharmacological action" network was mapped to indicate the antidiarrheal mechanism of YT. And the docking results revealed that 4 components of YT including quercetin, geranyl-1-O-α-L-arabinopyranosyl-(1 ⟶ 6)-β-D-glucopyranoside, 3α-O-(E)-p-hydroxy-cinnamoyl-olean-12-en-27-oic acid, and daucosterol showed significant docking activities with STAT3, EGFR, and SLC10A2, involving 11 pathways such as Th17 cell differentiation, Jak-STAT signaling pathway, ErbB signaling pathway, and HIF-1 signaling pathway. According to our research results and literature reports, the antidiarrheal could be summarized into five aspects: inhibiting intestinal inflammation, acting as a barrier to the intestinal mucosal, regulating water and ion transport, involving the purification of intestinal microorganisms, and intestinal transmission, which might be dependent on multiple proteins and intervention in multiple pathways.
Collapse
|
21
|
Liu H, Wang C, Gu X, Zhao J, Nie C, Zhang W, Ma X. Dietary Montmorillonite Improves the Intestinal Mucosal Barrier and Optimizes the Intestinal Microbial Community of Weaned Piglets. Front Microbiol 2020; 11:593056. [PMID: 33324372 PMCID: PMC7723851 DOI: 10.3389/fmicb.2020.593056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
The study investigated the impact of dietary montmorillonite on the growth performance, intestinal mucosal barrier, and microbial community in weaned piglets with control group (CON) and dietary supplementation of 0.2% montmorillonite (0.2% M). Compared with the CON group, 0.2% M feed in the diet increased the average daily gain (ADG) on days 15-35 and day 1-35 and the average daily feed intake on days 1-35 (ADFI) (0.05 < P < 0.1). Besides, higher villus height of the duodenum and jejunum and lower crypt depth of duodenum and colon were revealed in the 0.2% M group than in the CON group (P < 0.05). Moreover, the V/C (ratio of the villus height and crypt depth) in the 0.2% M group was increased compared to that in the CON group both from the duodenum and ileum (P < 0.05). The relative mRNA expression of mucin-1, ITGB1 (β1-integrins), and PKC (protein kinase C) of ileum in the 0.2% M group were upregulated (P < 0.05) compared to that in the CON group. The digesta sample of ileum from piglets in the 0.2% M group contained greater (P < 0.05) intestinal bacterial diversity and abundances of probiotics, such as Streptococcus, Eubacterium_rectale_group, and Lactobacillus, which could promote the synthesis of carbon-containing biomolecules. Overall, dietary supplementation of 0.2% M was shown to have a tendency to improve the growth performance of weaned piglets and may enhance their intestinal mucosal barrier function via altering the gut microbiota.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Congmin Wang
- Department of Dermatology, Seventh Medical Center of Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Xueling Gu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
22
|
Bearson BL, Trachsel JM, Shippy DC, Sivasankaran SK, Kerr BJ, Loving CL, Brunelle BW, Curry SM, Gabler NK, Bearson SMD. The Role of Salmonella Genomic Island 4 in Metal Tolerance of Salmonella enterica Serovar I 4,[5],12:i:- Pork Outbreak Isolate USDA15WA-1. Genes (Basel) 2020; 11:genes11111291. [PMID: 33142960 PMCID: PMC7716197 DOI: 10.3390/genes11111291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of at least 38 metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for four weeks prior to and three weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.
Collapse
Affiliation(s)
- Bradley L. Bearson
- USDA, ARS, National Laboratory for Agriculture and the Environment, Agroecosystems Management Research Unit, Ames, IA 50011, USA; (B.J.K.); (S.M.C.)
- Correspondence: ; Tel.: +1-515-294-0209
| | - Julian M. Trachsel
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Daniel C. Shippy
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Sathesh K. Sivasankaran
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | - Brian J. Kerr
- USDA, ARS, National Laboratory for Agriculture and the Environment, Agroecosystems Management Research Unit, Ames, IA 50011, USA; (B.J.K.); (S.M.C.)
| | - Crystal L. Loving
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Brian W. Brunelle
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Shelby M. Curry
- USDA, ARS, National Laboratory for Agriculture and the Environment, Agroecosystems Management Research Unit, Ames, IA 50011, USA; (B.J.K.); (S.M.C.)
| | | | - Shawn M. D. Bearson
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| |
Collapse
|
23
|
Chen F, Li Y, Shen Y, Guo Y, Zhao X, Li Q, Cao Y, Zhang X, Li Y, Wang Z, Gao Y, Li J. Effects of prepartum zinc-methionine supplementation on feed digestibility, rumen fermentation patterns, immunity status, and passive transfer of immunity in dairy cows. J Dairy Sci 2020; 103:8976-8985. [PMID: 32713690 DOI: 10.3168/jds.2019-17991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/15/2020] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the effects of prepartum supplementation of zinc-methionine (Zn-Met) on feed digestibility, rumen fermentation patterns, and immunity status in dams and passive immunity transfer in their calves. A randomized complete design was used in this study. Forty multiparous Holstein dairy cows in late pregnancy (60 d before the expected calving date) were blocked by parity (2.1 ± 0.3), body weight (651 ± 52 kg), and expected calving date, and randomly assigned to 1 of 4 treatments. Cows were supplemented with Zn as Zn-Met at 0, 20, 40, or 60 mg/kg of dry matter (DM) from 60 d before expected calving date to the calving day. Though the nutrient digestibility was not affected by Zn supplementation, DM intake, Zn digestibility, and Zn deposition increased linearly with increasing Zn-Met supplementation. Ruminal pH and molar proportion of individual volatile fatty acids were similar, whereas a linear decrease and increase were observed in ruminal ammonia and microbial crude protein concentration, respectively, with increasing Zn-Met supplementation. Maternal serum concentration of alkaline phosphatase, carboxypeptidase, Cu and Zn superoxide dismutase, and total antioxidant capacity were greater in cows supplemented with >40 mg of Zn/kg of DM compared with the control group. With increasing Zn-Met supplementation, maternal blood concentration of IL-1 decreased linearly, whereas IL-2 and IL-6 increased linearly, and no differences were observed in IL-4. Concentration of nonesterified fatty acids and β-hydroxybutyric acids in maternal blood was similar between treatments. No difference was observed in colostrum composition with increasing Zn-Met supplementation. Concentration of Zn and immunoglobulins (including IgA, IgG, and IgM) in maternal blood did not differ among treatments. However, Zn concentration in colostrum and blood of calves increased linearly. The concentration of IgA and IgM in colostrum increased linearly with increasing Zn-Met supplementation, whereas no differences in immunoglobulins were observed in calf blood. In conclusion, Zn supplementation as Zn-Met at 40 of mg/kg of DM may improve antioxidant activity of dam and potentially increase passive immunity transfer in calves.
Collapse
Affiliation(s)
- Fengting Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.
| | - Yanfei Guo
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Xiaojing Zhao
- Baoding Vocational and Technical College, Baoding 071000, Hebei, P.R. China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China
| | - Xiujiang Zhang
- Baoding Husbandry Work Station, Baoding 071001, Hebei, P.R. China
| | - Yunqi Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Zhonghua Wang
- Shandong Agricultural University, Taian 271000, Shandong, P.R. China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China.
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Hebei Cattle and Sheep Embryo Engineering Technology Research Center, Baoding 071001, Hebei, P.R. China
| |
Collapse
|
24
|
Kociova S, Dolezelikova K, Horky P, Skalickova S, Baholet D, Bozdechova L, Vaclavkova E, Belkova J, Nevrkla P, Skladanka J, Do T, Zitka O, Haddad Y, Kopel P, Zurek L, Adam V, Smerkova K. Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned piglets. J Anim Sci Biotechnol 2020; 11:59. [PMID: 32528676 PMCID: PMC7282173 DOI: 10.1186/s40104-020-00458-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The high doses of zinc oxide (ZnO) administered orally to piglets for the prevention of diarrhea and increase of growth rate can contaminate pig farms and the surrounding environment. Therefore, there is a need to find a replacement of high doses of dietary ZnO with an equally effective alternative. In the present study, the effect of two formulations of zinc phosphate-based nanoparticles (ZnA and ZnC NPs) on growth performance, intestinal microbiota, antioxidant status, and intestinal and liver morphology was evaluated. A total of 100 weaned piglets were randomly divided into 10 equal groups with the base diet (control) or the base diet supplemented with ZnA, ZnC, or ZnO at concentrations 500, 1000, and 2000 mg Zn per kilogram of diet. Supplements were given to animals for 10 days. Fecal samples were collected on day 0, 5, 10 and 20. At the end of the treatment (day 10), three piglets from each group were sacrificed and analyzed. RESULTS Comparing to that of control, the significantly higher piglet weight gain was observed in all piglet groups fed with ZnA (P < 0.05). Differences in the total aerobic bacteria and coliform counts in piglet feces after NPs supplementation compared to that of control and ZnO groups were also found (P < 0.05). The majority of aerobic culturable bacteria from the feces represented Escherichia (28.57-47.62%), Enterococcus (3.85-35.71%), and Streptococcus (3.70-42.31%) spp. A total of 542 Escherichia coli isolates were screened for the virulence genes STa, STb, Stx2, F4, and F18. The substantial occurrence of E. coli virulence factors was found on day 5, mainly in fimbrillary antigen and thermostable toxins, except for piglets fed by ZnC. Zn treatment decreased Zn blood levels in piglets fed with ZnO and ZnA (500 mg/kg) and increased in ZnC (2000 mg/kg) compared to that of control (P < 0.05). The antioxidant status of piglets was affected only by ZnA. While some changes in the liver and the intestinal morphology of piglets with NPs were observed, none were serious as reflected by the normal health status and increased weigh gain performance. CONCLUSIONS Our results indicate that ZnA NPs have a positive effect on the piglet growth performance even at the lowest concentration. The prevalence of E. coli virulence factors was lowest in pigs supplemented with ZnC. Zinc phosphate-based nanoparticles may be an effective alternative to ZnO.
Collapse
Affiliation(s)
- Silvia Kociova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Eva Vaclavkova
- Institute of Animal Science, Pratelstvi 815, CZ-104 00 Praha Uhrineves, Czech Republic
| | - Jaroslava Belkova
- Institute of Animal Science, Pratelstvi 815, CZ-104 00 Praha Uhrineves, Czech Republic
| | - Pavel Nevrkla
- Department of Animal Breeding, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Tomas Do
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Palackeho 1946/1, CZ-612 42 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
25
|
Holanda DM, Kim SW. Efficacy of Mycotoxin Detoxifiers on Health and Growth of Newly-Weaned Pigs under Chronic Dietary Challenge of Deoxynivalenol. Toxins (Basel) 2020; 12:E311. [PMID: 32397551 PMCID: PMC7290511 DOI: 10.3390/toxins12050311] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The efficacy of yeast-based mycotoxin detoxifiers on health and growth performance of newly-weaned pigs (27-d-old) fed diets naturally contaminated with deoxynivalenol was investigated. Sixty pigs were individually assigned to five treatments for 34 d: NC (negative control, 1.2 mg/kg of deoxynivalenol); PC (positive control, 3.2 mg/kg of deoxynivalenol); CYC (PC + clay/yeast culture-based product, 0.2%); CYE (PC + clay/yeast cell wall/plant extracts/antioxidants-based product, 0.2%); and CYB (PC + clay/inactivated yeast/botanicals/antioxidants-based product, 0.2%). Blood and jejunal mucosa were sampled, and data were analyzed using Proc Mixed of SAS with pre-planned contrasts. Deoxynivalenol reduced the average daily gain (ADG) in phase 3. Pigs fed CYC had greater overall ADG, average daily feed intake during phase 3, and gain to feed ratio during phase 2 than PC. At d 14, deoxynivalenol reduced blood urea nitrogen/creatinine and tended to reduce blood urea nitrogen. Pigs fed CYB tended to have greater aspartate aminotransferase than PC. At d 34, pigs fed CYC and CYB tended to have lower serum creatine phosphokinase than PC. Pigs fed CYE had lower blood urea nitrogen/creatinine than PC. In jejunal mucosa, deoxynivalenol tended to increase malondialdehydes and decrease glutathione. Pigs fed CYE and CYB had lower malondialdehydes, pigs fed CYB had greater glutathione and tended to have lower immunoglobulin A than PC. Pigs fed CYC and CYE tended to have lower interleukin 8 than PC. In summary, deoxynivalenol challenge (1.2 vs. 3.2 mg/kg) mildly compromised growth performance and increased the oxidative stress of pigs. Mycotoxin detoxifiers could partially overcome deoxynivalenol toxicity enhancing liver health, whereas CYE and CYB reduced oxidative stress, and CYC and CYB reduced immune activation. In conclusion, yeast-based detoxifiers with functional components as clay/inactivated yeast/botanicals/antioxidants had increased detoxifying properties in newly-weaned pigs challenged with deoxynivalenol, potentially by enhancing adsorbability, immune function, gut health, and reducing oxidative stress.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
26
|
Lei XJ, Kim IH. Evaluation of coated zinc oxide in young pigs challenged with enterotoxigenic Escherichia coli K88. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Hejna M, Moscatelli A, Onelli E, Baldi A, Pilu S, Rossi L. Evaluation of concentration of heavy metals in animal rearing system. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1642806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Monika Hejna
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli Studi di Milano, Milano, Italy
| | | | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Antonella Baldi
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli Studi di Milano, Milano, Italy
| | - Salvatore Pilu
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Milano, Italy
| | - Luciana Rossi
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
28
|
Zhang JY, Kim YM, Kim IH. Effects of dietary supplemental phytoncide instead of zinc oxide on growth performance, nutrient digestibility, blood profiles, and faecal microflora in growing pigs. J Anim Physiol Anim Nutr (Berl) 2018; 103:269-275. [PMID: 30474163 DOI: 10.1111/jpn.13030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/02/2018] [Accepted: 11/02/2018] [Indexed: 11/28/2022]
Abstract
This study was aimed to evaluate the effect of phytoncide (PTC) instead of zinc oxide on growth performance, blood profile, nutrient digestibility and faecal microflora in growing pigs. A total of 120 growing pigs [(Landrace × Yorkshire) × Duroc] with initial body weight 24.48 ± 1.62 kg were randomly assigned to four dietary treatments for a 6 weeks feeding trials, the treatments as follow: CON (base diet),ZO (CON + 0.03% Zinc Oxide), PTC1 (CON + 0.5% PTC), PTC2 (CON + 1.0% PTC). Compared to basal diet, during weeks 1-3, 3-6, and overall experimental period, the ADG of growing pigs fed phytoncide diet trend to be increased, and fed ZO diet was significantly increased (p < 0.05). During weeks 3-6 and overall experiment period, pigs fed the ZO diet showed improvement in feed intake compared to pigs fed basal diet as a trend. Compared with basal diet, the pigs receiving phytoncide diet significantly increased the digestibility of DM and reduced the concentration of aspartate transaminase in pigs receiving 1.0% phytoncide diet. These results suggested that dietary supplement of phytoncide, Korean pine extract, could be used as an alternative to zinc oxide by decreasing detoxify to soil and plants without influencing the performance of growing pigs. Further study is needed to determine the systemic estimation of the dose of phytoncide.
Collapse
Affiliation(s)
- Jian Ying Zhang
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam, South Korea
| | - Yong Min Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam, South Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, Choongnam, South Korea
| |
Collapse
|
29
|
Lei XJ, Kim IH. Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Wang C, Zhang L, Ying Z, He J, Zhou L, Zhang L, Zhong X, Wang T. Effects of Dietary Zinc Oxide Nanoparticles on Growth, Diarrhea, Mineral Deposition, Intestinal Morphology, and Barrier of Weaned Piglets. Biol Trace Elem Res 2018; 185:364-374. [PMID: 29468613 DOI: 10.1007/s12011-018-1266-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
This study was conducted to investigate effects of dietary zinc oxide nanoparticles (nano-ZnOs) on growth, diarrhea rate, mineral deposition (Zn, Fe, and Mn), intestinal morphology, and barrier of weaned piglets. A total of 384 weaned piglets (Duroc × Landrace × Yorkshire) in 4 groups were fed a basal diet supplemented with 0, 400, and 800 mg/kg nano-ZnOs or 3000 mg/kg ZnO for 14 days. Compared with the control group, 800 mg/kg nano-ZnOs and 3000 mg/kg ZnO significantly increased average daily gain and decreased diarrhea rate of weaned piglets. There was no significant difference among ZnO and nano-ZnO groups. ZnO and nano-ZnOs did not affect serum activities of glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase. However, ZnO and 800 mg/kg nano-ZnOs significantly increased zinc concentrations in plasma, liver, pancreas, and tibia, without affecting Fe and Mn concentrations. Compared with the control group, 800 mg/kg nano-ZnOs significantly reduced plasma diamine oxidase activity, decreased total aerobic bacterial population in mesenteric lymph node, enhanced mRNA expressions of occludin, ZO-1, IL-1β, IL-10, TNF-α, and ki67 in ileal mucosa, and increased villous height, width, crypt depth, and surface area. Compared to ZnO group, 800 mg/kg nano-ZnOs significantly decreased aerobic bacterial population, enhanced mRNA expressions of occludin, IL-1β, IL-10, and TNF-α, and reduced fecal zinc concentration. These results indicated that 800 mg/kg nano-ZnOs might be a potential substitute for 3000 mg/kg ZnO in diets of weaned piglets.
Collapse
Affiliation(s)
- Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ligen Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
31
|
Liu Y, Espinosa CD, Abelilla JJ, Casas GA, Lagos LV, Lee SA, Kwon WB, Mathai JK, Navarro DM, Jaworski NW, Stein HH. Non-antibiotic feed additives in diets for pigs: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:113-125. [PMID: 30140751 PMCID: PMC6103469 DOI: 10.1016/j.aninu.2018.01.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023]
Abstract
A number of feed additives are marketed to assist in boosting the pigs' immune system, regulate gut microbiota, and reduce negative impacts of weaning and other environmental challenges. The most commonly used feed additives include acidifiers, zinc and copper, prebiotics, direct-fed microbials, yeast products, nucleotides, and plant extracts. Inclusion of pharmacological levels of zinc and copper, certain acidifiers, and several plant extracts have been reported to result in improved pig performance or improved immune function of pigs. It is also possible that use of prebiotics, direct-fed microbials, yeast, and nucleotides may have positive impacts on pig performance, but results have been less consistent and there is a need for more research in this area.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95817, USA
| | | | | | - Gloria A. Casas
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Department of Animal Production, College of Animal and Veterinary Sciences, University of Colombia, Bogota 111321, Colombia
| | - L. Vanessa Lagos
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Su A. Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Woong B. Kwon
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - John K. Mathai
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | - Hans H. Stein
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Liu JB, Cao SC, Liu J, Pu J, Chen L, Zhang HF. Effects of dietary energy and lipase levels on nutrient digestibility, digestive physiology and noxious gas emission in weaning pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1963-1973. [PMID: 29879828 PMCID: PMC6212735 DOI: 10.5713/ajas.18.0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 12/02/2022]
Abstract
Objective This study was conducted to evaluate the effect of dietary energy and lipase supplementation on growth performance, nutrient digestibility, serum profiles, intestinal morphology, small intestinal digestive enzyme activities, biochemical index of intestinal development and noxious gas emission in weaning pigs. Methods A total of 240 weaning pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 7.3±0.12 kg were used in this 28-d experiment. Weaning pigs were randomly allocated to 4 dietary treatments in a 2×2 factorial arrangement with 2 levels of energy (net energy = 2,470 kcal/kg for low energy diet and 2,545 kcal/kg for basal diet) and 2 levels of lipase (0 and 1.5 U/g of lipase) according to BW and sex. There were 6 replications (pens) per treatment and 10 pigs per pen (5 barrows and 5 gilts). Results Weaning pigs fed the low energy diet had lower (p<0.05) gain-to-feed ratio (G:F) throughout the experiment, apparent digestibility of dry matter, nitrogen, ether extract, and gross energy during d 0 to 14, average daily gain during d 15 to 28, lipase activity in duodenum and ileum and protein/DNA in jejunum (p<0.05), respectively. Lipase supplementation had no effect on growth performance but affected apparent nutrient digestibility (p<0.05) on d 14 and enhanced lipase activity in the duodenum and ileum and protease activity in duodenum and jejunum of pigs (p<0.05) fed the low energy diet. Lipase reduced serum low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG), NH3 production (p<0.05) from the feces. Conclusion The low energy diet decreased G:F throughout the experiment and nutrient digestibility during d 0 to 14 as well as lipase activity in duodenum and ileum. Lipase supplementation increased nutrient digestibility during d 0 to 14 and exerted beneficial effects on lipase activity in duodenum and ileum as well as protease activity in duodenum and jejunum, while reduced serum LDL-C, TG and fecal NH3.
Collapse
Affiliation(s)
- J B Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S C Cao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - J Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - J Pu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - L Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - H F Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
33
|
Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. PLoS One 2017; 12:e0182550. [PMID: 28792520 PMCID: PMC5549748 DOI: 10.1371/journal.pone.0182550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to compare the effect of dietary supplementation with low dose of porous and nano zinc oxide (ZnO) on weaning piglets, and to evaluate the possibility of using them as an alternative to high dose of regular ZnO. Piglets were randomly allocated into four treatment groups fed with four diets: (1) basal diet (NC), (2) NC+ 3000 mg/kg ZnO (PC), (3) NC + 500 mg/kg porous ZnO (HiZ) and (4) NC + 500 mg/kg nano ZnO (ZNP). The result showed that piglets in HiZ group had less diarrhea than ZNP group (P < 0.05). Besides, there was no significant difference between PC, HiZ and ZNP groups in terms of serum malondialdeyhde (MDA) concentration and glutathione peroxidase (GSH-Px) activity (P > 0.05). Analysis of trace metal elements revealed that piglets fed with high dose of regular ZnO had the highest Zn level in kidney (P < 0.05), which may induce kidney stone formation. Additionally, a decrease in ileal crypt depth was observed in PC, HiZ and ZNP group, suggesting an effective protection against intestinal injury. Results of mRNA analysis in intestine showed that ZNP supplementation had better effects on up-regulated trefoil factor 3 (TFF3) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in duodenum and jejunum than HiZ did (P < 0.05), implying that nano ZnO may possess higher anti-inflammatory capacity than porous ZnO. In conclusion, dietary supplementation with low dose of porous and nano ZnO had similar (even better) effect on improving growth performance and intestinal morphology, reducing diarrhea and intestinal inflammatory as high dose of regular ZnO in weaning piglets. Compared with nano ZnO, porous ZnO had better performance on reducing diarrhea but less effect on up-regulation of intestinal TFF3 and Nrf2.
Collapse
|
34
|
Feed supplementation with arginine and zinc on antioxidant status and inflammatory response in challenged weanling piglets. ACTA ACUST UNITED AC 2017; 3:236-246. [PMID: 29767161 PMCID: PMC5941224 DOI: 10.1016/j.aninu.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/18/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022]
Abstract
Although supplementing the diet with zinc oxide and arginine is known to improve growth in weanling piglets, the mechanism of action is not well understood. We measured the antioxidant status and inflammatory response in 48 weanling castrated male piglets fed diets supplemented with or without zinc oxide (2,500 mg Zn oxide per kg) and arginine (1%) starting at the age of 20 days. The animals were injected with lipopolysaccharide (100 μg/kg) on day 5. Half of them received another injection on day 12. Blood samples were taken just before and 6, 24 and 48 h after injection and the mucosa lining the ileum was recovered following euthanizing on days 7 and 14. Zinc supplementation increased reduced and total glutathione (GSH) (reduced and total) during days 5 to 7 and arginine decreased oxidized GSH measured on days 5 and 12 and the ratio of total antioxidant capacity to total oxidative status during days 12 to 14. Zinc decreased plasma malondialdehyde measured on days 5 and 12 and serum haptoglobin measured on day 12 and increased both metallothionein-1 expression and total antioxidant capacity measured in the ileal mucosa on day 14. Tumour necrosis factor α concentration decreased from days 5 to 12 (all effects were significant at P < 0.05). This study shows that the zinc supplement reduced lipid oxidation and lipopolysaccharide-induced inflammation during the post-weaning period, while the arginine supplementation had only a limited effect.
Collapse
|
35
|
Wang C, Zhang L, Su W, Ying Z, He J, Zhang L, Zhong X, Wang T. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS One 2017; 12:e0181136. [PMID: 28704517 PMCID: PMC5509312 DOI: 10.1371/journal.pone.0181136] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.
Collapse
Affiliation(s)
- Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Ligen Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
- * E-mail:
| |
Collapse
|
36
|
Wu Y, Zhou Y, Lu C, Ahmad H, Zhang H, He J, Zhang L, Wang T. Influence of Butyrate Loaded Clinoptilolite Dietary Supplementation on Growth Performance, Development of Intestine and Antioxidant Capacity in Broiler Chickens. PLoS One 2016; 11:e0154410. [PMID: 27104860 PMCID: PMC4841535 DOI: 10.1371/journal.pone.0154410] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry.
Collapse
Affiliation(s)
- Yanan Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Changhui Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hussain Ahmad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
37
|
Song ZH, Ke YL, Xiao K, Jiao LF, Hong QH, Hu CH. Diosmectite-zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge. J Anim Sci 2016; 93:1599-607. [PMID: 26020182 DOI: 10.2527/jas.2014-8580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study evaluated the beneficial effect of diosmectite-zinc oxide composite (DS-ZnO) on improving intestinal barrier restoration in piglets after acetic acid challenge and explored the underlying mechanisms. Twenty-four 35-d-old piglets (Duroc × Landrace × Yorkshire), with an average weight of 8.1 kg, were allocated to 4 treatment groups. On d 1 of the trial, colitis was induced via intrarectal injection of acetic acid (10 mL of 10% acetic acid [ACA] solution for ACA, DS-ZnO, and mixture of diosmectite [DS] and ZnO [DS+ZnO] groups) and the control group was infused with saline. Twenty-four hours after challenged, piglets were fed with the following diets: 1) control group (basal diet), 2) ACA group (basal diet), 3) DS-ZnO group (basal diet supplemented with DS-ZnO), and 4) DS+ZnO group (mixture of 1.5 g diosmectite [DS]/kg and 500 mg Zn/kg from ZnO [equal amount of DS and ZnO in the DS-ZnO treatment group]). On d 8 of the trial, piglets were sacrificed. The results showed that DS-ZnO supplementation improved (P < 0.05) ADG, ADFI, and transepithelial electrical resistance and decreased (P < 0.05) fecal scores, crypt depth, and fluorescein isothiocyanate-dextran 4 kDa (FD4) influx as compared with ACA group. Moreover, DS-ZnO increased (P < 0.05) occludin, claudin-1, and zonula occluden-1 expressions; reduced (P < 0.05) caspase-9 and caspase-3 activity and Bax expression; and improved (P < 0.05) Bcl2, XIAP, and PCNA expression. Diosmectite-zinc oxide composite supplementation also increased (P < 0.05) TGF-β1 expression and ERK1/2 and Akt activation. These results suggest that DS-ZnO attenuates the acetic acid-induced colitis by improving mucosa barrier restoration, inhibiting apoptosis, and improving intestinal epithelial cells proliferation and modulation of TGF-β1 and ERK1/2 and Akt signaling pathway.
Collapse
|
38
|
Wang F, Li Y, Cao Y, Li C. Zinc might prevent heat-induced hepatic injury by activating the Nrf2-antioxidant in mice. Biol Trace Elem Res 2015; 165:86-95. [PMID: 25586622 DOI: 10.1007/s12011-015-0228-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Zinc (Zn) is generally known to be an essential trace element with growth-promoting and antioxidant activities. The present study was performed to clarify the role of Zn in the livers of heat-treated mice. Eight-week-old male mice were divided into control (Con), heat treatment (HT) and heat treatment plus zinc groups (HT + Zn) and were fed diets containing 60, 60, or 300 mg/kg Zn (zinc sulfate), respectively. After 30 days of feeding on their respective diets, the control group was maintained at a controlled temperature (25 °C), whereas the HT and HT + Zn groups were exposed to an elevated ambient temperature (40-42 °C) for 2 h each day. After heat exposure for seven consecutive days, sera and liver tissues were collected. The mice in the HT group exhibited reduced liver weights and lower hepatosomatic indices. Histological findings revealed that the hepatocytes of the HT group were subjected to serious damage and exhibited irregular arrangements and nuclear pyknosis. Moreover, in the HT group, the hepatic malondialdehyde levels were significantly increased, while the serum alkaline phosphatase levels, hepatic copper/zinc-superoxide dismutase (CuZn-SOD) and glutathione peroxidase activities were significantly reduced compared to those of the control group. However, in the HT + Zn group, the histomorphology of the liver was restored, the serum aspartate aminotransferase (AST) level was significantly decreased, and the hepatic CuZn-SOD activity was significantly increased compared to the HT group. Furthermore, expressions of the hepatic Nrf2 protein and Nrf2, Keap1, and NQO1 genes in the HT + Zn group were not only higher than the HT group but also higher than the control group. Zn might alleviate heat-induced hepatic injury as revealed by restored histomorphology and AST level. Our results further suggest that Zn might exert its protective effects via the activation of the Nrf2-antioxidant pathway.
Collapse
Affiliation(s)
- F Wang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Xun W, Shi L, Zhou H, Hou G, Cao T, Zhao C. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int Immunopharmacol 2015; 27:46-52. [PMID: 25937483 DOI: 10.1016/j.intimp.2015.04.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 01/28/2023]
Abstract
The aim of this study was to evaluate the effect of dietary curcumin supplementation on growth performance and intestinal mucosal barrier function of weaned piglets. Fifty piglets, weaned at 21±2 days of age, were randomly allotted to five treatments for 21 days. The dietary treatments were the control (basal diet), and the basal diet supplemented with 50mg/kg quinocetone, or 200 mg/kg, 300 mg/kg or 400mg/kg curcumin. The piglets were housed in individual pens and orally challenged with enterotoxigenic Escherichia coli (ETEC) during the preliminary trial period. The jejunal morphology and histology analysis were detected under light microscope. The plasma D-lactate and diamine oxidase (DAO) were determined by using enzymatic spectrophotometric assay. Immunohistochemistry assays were used to examine secretory immunoglobulin (sIgA) protein expression. Real-time PCR was used to determine mRNA levels of cytokine and Toll-like receptor 4 (TLR4) in jejunal mucosa. The results showed that, compared with the control, dietary addition of 300 mg/kg or 400 mg/kg curcumin decreased (P<0.05) feed/gain ratio and crypt depth, improved (P<0.05) villus height and villus height:crypt depth ratio, reduced (P<0.05) plasma D-lactate and DAO activity, up-regulated the protein expression of sIgA (P<0.05), increased (P<0.05) the number of goblet cells (GCs) and reduced (P<0.05) the number of intraepithelial lymphocytes (IELs). The mRNA levels of interleukin 1β (IL-1β) and TLR4 and tumor necrosis factor α (TNF-α) were also decreased (P<0.05), but mRNA level of interleukin 10 (IL-10) was increased (P<0.05). There was no difference in the above parameters between the 300 mg/kg and 400 mg/kg curcumin groups. Pigs fed with 50 mg/kg quinocetone also decreased (P<0.05) feed/gain ratio, increased villus height:crypt depth ratio (P<0.05), and reduced (P<0.05) crypt depth and mRNA levels of TLR4. In conclusion, curcumin and the quinocetone have similar effects in improving piglet growth, but dietary addition of 300 mg/kg or 400 mg/kg curcumin was more effective than quinocetone in improving intestinal mucosal barrier integrity, morphology, and immune status of weaned pigs. This indicates that curcumin could be used as a potential feed additive replacing quinocetone in weaned piglets.
Collapse
Affiliation(s)
- Wenjuan Xun
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China.
| | - Ting Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | | |
Collapse
|
40
|
Ke Y, Jiao L, Song Z, Xiao K, Lai T, Lu J, Hu C. Effects of cetylpyridinium-montmorillonite, as alternative to antibiotic, on the growth performance, intestinal microflora and mucosal architecture of weaned pigs. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Bergeron N, Robert C, Guay F. Antioxidant status and inflammatory response in weanling piglets fed diets supplemented with arginine and zinc. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bergeron, N., Robert, C. and Guay, F. 2014. Antioxidant status and inflammatory response in weanling piglets fed diets supplemented with arginine and zinc. Can. J. Anim. Sci. 94: 87–97. Dietary supplementation with zinc oxide (Zn oxide) and arginine (Arg) is known to improve growth in weanling piglets. The mechanism of action is not yet well understood, although antioxidant effects and inflammatory responses may be involved. This experiment was conducted to evaluate the effects of Zn and Arg supplementation on the antioxidant status and inflammatory response of piglets. Thirty-two 20-d-old weanling piglets were placed for 12 d on diets supplemented or not with Zn (2500 mg Zn oxide kg−1) and Arg (1%), designated ZN0ARG0, ZN2500ARG0, ZN0ARG1 and ZN2500ARG1. On day 12, blood samples were taken before and 3 h after intra-peritoneal injection of lipopolysaccharide (LPS; 10 µg kg−1). The piglets were euthanized just after the second blood sample, and samples of mucosae were taken from the jejunum and ileum for determination of mRNA expression and morphological observation. Zn supplementation decreased plasma malondialdehyde measured before LPS injection (P<0.05). Arg supplementation increased the ferric-reducing ability of plasma (indicator of antioxidant status) measured after LPS injection (P<0.05). Piglets fed Zn-supplemented diets had lower total plasma superoxide-dismutase (SOD) activity (P<0.05) but higher plasma tumour necrosis factor-α (P<0.05) after LPS injection. Zinc-supplemented diets increased metallothionein-1 expression and total antioxidant capacity in the ileum and jejunum (P<0.05) and decreased interleukin-10 expression (P<0.05) in the ileum. In the jejunum, the combination of Zn and Arg supplementation increased villus height (Arg×Zn, P<0.05). These results indicate that Zn may reduce systemic oxidation and improve the antioxidant status in the jejunal and ileal mucosae. However, Zn and Arg supplementation did not appear to act synergistically to enhance antioxidant status or reduce inflammation in weanling piglets.
Collapse
Affiliation(s)
- Nadia Bergeron
- Department of Animal Science, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Claude Robert
- Department of Animal Science, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Frédéric Guay
- Department of Animal Science, Université Laval, Québec, Québec, Canada G1V 0A6
| |
Collapse
|
42
|
Tang CH, Wang XQ, Zhang JM. Effects of supplemental palygorskite instead of zinc oxide on growth performance, apparent nutrient digestibility and fecal zinc excretion in weaned piglets. Anim Sci J 2014. [DOI: 10.1111/asj.12162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao H. Tang
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences; Beijing China
| | - Xiu Q. Wang
- Department of Animal Science; South China Agricultural University; Guangzhou China
| | - Jun M. Zhang
- State Key Laboratory of Animal Nutrition; Institute of Animal Science, Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
43
|
Lindenmayer GW, Stoltzfus RJ, Prendergast AJ. Interactions between zinc deficiency and environmental enteropathy in developing countries. Adv Nutr 2014; 5:1-6. [PMID: 24425714 PMCID: PMC3884090 DOI: 10.3945/an.113.004838] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Zinc deficiency affects one-fifth of the world's population and leads to substantial morbidity and mortality. Environmental enteropathy (EE), a subclinical pathology of altered intestinal morphology and function, is almost universal among people living in developing countries and affects long-term growth and health. This review explores the overlapping nature of these 2 conditions and presents evidence for their interaction. EE leads to impaired zinc homeostasis, predominantly due to reduced absorptive capacity arising from disturbed intestinal architecture, and zinc deficiency exacerbates several of the proposed pathways that underlie EE, including intestinal permeability, enteric infection, and chronic inflammation. Ongoing zinc deficiency likely perpetuates the adverse outcomes of EE by worsening malabsorption, reducing intestinal mucosal immune responses, and exacerbating systemic inflammation. Although the etiology of EE is predominantly environmental, zinc deficiency may also have a role in its pathogenesis. Given the impact of both EE and zinc deficiency on morbidity and mortality in developing countries, better understanding the relation between these 2 conditions may be critical for developing combined interventions to improve child health.
Collapse
Affiliation(s)
| | | | - Andrew J. Prendergast
- Zvitambo Institute for Maternal Child Health Research, Harare, Zimbabwe,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and,Centre for Paediatrics, Queen Mary University of London, UK,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Bondzio A, Pieper R, Gabler C, Weise C, Schulze P, Zentek J, Einspanier R. Feeding low or pharmacological concentrations of zinc oxide changes the hepatic proteome profiles in weaned piglets. PLoS One 2013; 8:e81202. [PMID: 24282572 PMCID: PMC3839893 DOI: 10.1371/journal.pone.0081202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022] Open
Abstract
Pharmacological levels of zinc oxide can promote growth and health of weaning piglets, but the underlying molecular mechanisms are yet not fully understood. The aim of this study was to determine changes in the global hepatic protein expression in response to dietary zinc oxide in weaned piglets. Nine half-sib piglets were allocated to three dietary zinc treatment groups (50, 150, 2500 mg/kg dry matter). After 14 d, pigs were euthanized and liver samples taken. The increase in hepatic zinc concentration following dietary supplementation of zinc was accompanied by up-regulation of metallothionein mRNA and protein expression. Global hepatic protein profiles were obtained by two-dimensional difference gel electrophoresis following matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. A total of 15 proteins were differentially (P<0.05) expressed between groups receiving control (150 mg/kg) or pharmacological levels of zinc (2500 mg/kg) with 7 down- (e.g. arginase1, thiosulfate sulfurtransferase, HSP70) and 8 up-regulated (e.g. apolipoprotein AI, transferrin, C1-tetrahydrofolate synthase) proteins. Additionally, three proteins were differentially expressed with low zinc supply (50 mg/kg Zn) in comparison to the control diet. The identified proteins were mainly associated with functions related to cellular stress, transport, metabolism, and signal transduction. The differential regulation was evaluated at the mRNA level and a subset of three proteins of different functional groups was selected for confirmation by western blotting. The results of this proteomic study suggest that zinc affects important liver functions such as blood protein secretion, protein metabolism, detoxification and redox homeostasis, thus supporting the hypothesis of intermediary effects of pharmacological levels of zinc oxide fed to pigs.
Collapse
Affiliation(s)
- Angelika Bondzio
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Robert Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Christoph Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Schulze
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Juergen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
45
|
Hu CH, Song ZH, Xiao K, Song J, Jiao LF, Ke YL. Zinc oxide influences intestinal integrity, the expressions of genes associated with inflammation and TLR4-myeloid differentiation factor 88 signaling pathways in weanling pigs. Innate Immun 2013; 20:478-86. [DOI: 10.1177/1753425913499947] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/10/2013] [Indexed: 01/01/2023] Open
Abstract
This study explored whether zinc oxide (ZnO) supplementation could alleviate weanling-induced intestinal injury through TLR and NOD-like receptor signaling pathways. Twelve early-weanling piglets were allotted to two dietary treatments (control vs 2200 mg Zn/kg from ZnO) for 1 wk. The results showed that supplemental ZnO improved daily gain and feed intake, decreased post weaning scour scores, increased villus height and villus height:crypt depth ratio at the jejunal mucosa, and decreased diamine oxidase activity and endotoxin concentration in plasma. The intestinal mRNA levels of TLR4 and its downstream signals, including MyD88, IL-1 receptor-associated kinase 1 and TNF-α receptor-associated factor 6, were decreased, and the expressions of intestinal pro-inflammatory cytokines and chemokines were decreased simultaneously in the ZnO-supplemented piglets. Although NF-κB p65 mRNA abundance was not affected by ZnO supplementation, NF-κB p65 protein expression was down-regulated by ZnO. However, ZnO supplementation had no effect on intestinal expressions of NOD1 and NOD2, and their adaptor molecule receptor-interacting serine/threonine-protein kinase 2, as well as protein expressions of caspase-3 and heat shock protein 70. The results indicated that the protective effects of ZnO on intestinal integrity were closely related to decreasing the expressions of genes associated with inflammation through inhibiting the TLR4-MyD88 signaling pathways.
Collapse
Affiliation(s)
- Cai Hong Hu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Ze He Song
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Kan Xiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Juan Song
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Le Fei Jiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Ya Lu Ke
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| |
Collapse
|
46
|
Martin L, Pieper R, Schunter N, Vahjen W, Zentek J. Performance, organ zinc concentration, jejunal brush border membrane enzyme activities and mRNA expression in piglets fed with different levels of dietary zinc. Arch Anim Nutr 2013; 67:248-61. [PMID: 23742645 DOI: 10.1080/1745039x.2013.801138] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study aimed at investigating the effect of dietary zinc on performance, jejunal brush border membrane enzyme activities and mRNA levels of enzymes and two zinc transporters in piglets. A total of 126 piglets were weaned at 26 ±1 days of age and randomly allocated into three groups fed with diets 50, 150 and 2500 mg zinc/kg. Performance was recorded and at weekly intervals, eight piglets per group were killed. The activities of isolated brush border membrane enzymes including lactase, maltase, sucrase, aminopeptidase-N and intestinal alkaline phosphatase (IAP), and the relative transcript abundance of aminopeptidase-N (APN), sucrase-isomaltase (SUC), IAP and the two zinc transporters SLC39A4 (ZIP4) and SLC30A1 (ZnT1) were investigated in the jejunum. Feeding pharmacological zinc levels increased weight gain (p < 0.001) during the first week, but performance was lower (p < 0.05) in the third week. Organ zinc concentrations were increased by high dietary zinc level. The activity of IAP was higher (p < 0.05) with the highest dietary zinc level, no effects were determined for other enzymes. Dietary zinc level had no effect on transcript abundance of digestive enzymes. The mRNA levels decreased (p < 0.001) for ZIP4, and increased for ZnT1 (p < 0.05) with pharmacological zinc levels. In conclusion, pharmacological zinc levels improved performance in the short-term. Intestinal mRNA level of zinc transporters changed with high zinc supply, but this did not prevent zinc accumulation in tissues, suggesting hampered homoeostatic regulation. This might cause impaired performance during longer supply.
Collapse
Affiliation(s)
- Lena Martin
- Department of Veterinary Medicine, Freie Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Hu C, Xiao K, Song J, Luan Z. Effects of zinc oxide supported on zeolite on growth performance, intestinal microflora and permeability, and cytokines expression of weaned pigs. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Hu CH, Qian ZC, Song J, Luan ZS, Zuo AY. Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken. Poult Sci 2013; 92:143-50. [PMID: 23243241 DOI: 10.3382/ps.2012-02250] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A total of 450 one-day-old Arbor Acres male chickens were used to investigate the effects of zinc oxide-montmorillonite hybrid (ZnO-MMT) on growth performance, intestinal structure, and function. The birds were allotted to 5 dietary treatments for 21 d, each of which was replicated 6 times with 15 chicks per replicate. The dietary treatments were 1) corn-soybean meal diet (basal, containing 42.35 mg of Zn/kg); 2) basal diet + 600 mg of MMT/kg (equivalent to the MMT in the ZnO-MMT treatment); 3) basal diet + 60 mg of Zn/kg as ZnO; 4) basal diet + 60 mg of Zn/kg as ZnO-MMT; and 5) basal diet + 60 mg of Zn/kg as ZnSO(4)•7H(2)O. The results showed that chicks fed ZnO-MMT had higher (P < 0.05) ADG and feed intake than those fed the basal diet, MMT, or ZnO. Compared with the control, MMT, ZnO, or ZnSO(4), supplementation with ZnO-MMT decreased (P < 0.05) viable counts of Clostridium in small intestinal and cecal contents, increased (P < 0.05) colonic transepithelial electrical resistance (TER) values, and reduced (P < 0.05) colonic probe mannitol permeability as well as ileal or colonic inulin permeability. Compared with the control, supplemental ZnO-MMT increased (P < 0.05) villus height, the ratio of villus height to crypt depth at the small intestinal mucosa, the trypsin activity in the pancreas, and the digestive enzyme activities in small intestinal contents. Compared with the control, supplementation with ZnO increased (P < 0.05) the villus height and the villus height to crypt depth ratio at the duodenum. Supplementation with ZnSO(4) increased the trypsin activity in pancreas and small intestinal contents. However, supplemental MMT, ZnO, or ZnSO(4) did not affect (P > 0.05) growth performance, ileal and colonic barrier function, and intestinal microflora. The results indicated that supplementing 60 mg of Zn/kg as ZnO-MMT in broiler chickens improved growth performance, intestinal microflora, intestinal morphology, and barrier function as well as the digestive enzyme activities.
Collapse
Affiliation(s)
- C H Hu
- Institute of Feed Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China.
| | | | | | | | | |
Collapse
|
49
|
Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br J Nutr 2013; 110:681-8. [PMID: 23308387 DOI: 10.1017/s0007114512005508] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study evaluated whether feeding diosmectite-ZnO composite (DS-ZnO) at 500 mg Zn/kg to early weaned pigs would alleviate the weaning-related intestinal disorders as a substitute for high concentration of ZnO (2250 mg Zn/kg). The pigs weaned at an age of 21 ± 1 d were allotted to four treatments groups as follows: (1) control; (2) DS-ZnO, 500 mg Zn/kg diet; (3) ZnO, 2250 mg Zn/kg diet; and (4) mixture of 2·0 g DS/kg and 500 mg Zn/kg from ZnO (equal amount of DS and ZnO in the DS-ZnO treatment group). The results showed that, compared with the control on days 7 and 14 post-weaning, addition of DS-ZnO at 500 mg Zn/kg improved (P<0·05) daily gain and feed intake, decreased (P<0·05) post-weaning scour scores, increased (P<0·05) jejunal villus height and the ratio of villus height and crypt depth, decreased (P<0·05) jejunal paracellular permeability of fluorescein isothiocyanate dextran 4 kDa and up-regulated (P<0·05) tight junction protein expression of occludin, claudin-1 and zonula occludens-1 in jejunal mucosa. The mRNA levels of TNF-α, IL-6 and interferon-γ (IFN-γ) on day 7 post-weaning were also decreased (P<0·05). The piglets fed DS-ZnO at 500 mg Zn/kg did not differ in the above parameters from those fed ZnO at 2250 mg Zn/kg, while they had better performance than those fed the mixture of DS and ZnO. Supplementation with DS-ZnO at 500 mg Zn/kg was effective in alleviating diarrhoea, barrier dysfunction and inflammatory cytokine expression and up-regulating tight junction protein expression.
Collapse
|
50
|
Abstract
Diarrhea is a common intestinal disease with high morbidity and mortality, seriously affecting the growth performance and survival of piglets. Due to the restricted use of antibiotics, new feed additives or drugs have been paid more and more attention. This article reviews the use of nano-zinc oxide and montmorillonite as anti-diarrhea agents in piglets.
Collapse
|