1
|
Ramírez-Hernández AA, Reyes-Jiménez E, Velázquez-Enríquez JM, Santos-Álvarez JC, Soto-Guzmán A, Castro-Sánchez L, Tapia-Pastrana G, Torres-Aguilar H, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Zingiber officinale-Derived Extracellular Vesicles Attenuate Bleomycin-Induced Pulmonary Fibrosis Trough Antioxidant, Anti-Inflammatory and Protease Activity in a Mouse Model. Cells 2023; 12:1852. [PMID: 37508515 PMCID: PMC10378408 DOI: 10.3390/cells12141852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most frequent and severe idiopathic interstitial pneumonia. It is a chronic and progressive disease with a poor prognosis and is a major cause of morbidity and mortality. This disease has no cure; therefore, there is a clinical need to search for alternative treatments with greater efficacy. In this study, we aimed to evaluate the effect of extracellular vesicles (EVs) from Zingiber officinale (EVZO) in a murine model of bleomycin (BLM)-induced IPF administered through an osmotic minipump. EVZO had an average size of 373 nm and a spherical morphology, as identified by scanning electron microscopy. Label-free proteomic analysis of EVZOs was performed by liquid chromatography coupled to mass spectrometry, and 20 proteins were identified. In addition, we demonstrated the protease activity of EVZO by gelatin-degrading zymography assay and the superoxide dismutase (SOD) activity of EVZO by an enzymatic assay. In the BLM-induced IPF mouse model, nasal administration of 50 μg of EVZO induced recovery of alveolar space size and decreased cellular infiltrate, collagen deposition, and expression of α-SMA-positive cells. Additionally, EVZO inhibited inflammatory markers such as iNOS and COX-2, lipid peroxidation, and apoptotic cells. These results show that EVZO may represent a novel natural delivery mechanism to treat IPF.
Collapse
Affiliation(s)
- Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (E.R.-J.); (J.M.V.-E.); (J.C.S.-Á.); (V.R.V.-G.)
| | - Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (E.R.-J.); (J.M.V.-E.); (J.C.S.-Á.); (V.R.V.-G.)
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (E.R.-J.); (J.M.V.-E.); (J.C.S.-Á.); (V.R.V.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (E.R.-J.); (J.M.V.-E.); (J.C.S.-Á.); (V.R.V.-G.)
| | - Adriana Soto-Guzmán
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Luis Castro-Sánchez
- CONAHCYT-Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico;
| | - Gabriela Tapia-Pastrana
- Laboratorio en Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca de Juárez 71256, Mexico;
| | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Av. Universidad S/N, Cinco Señores, Oaxaca de Juárez 68120, Mexico;
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (E.R.-J.); (J.M.V.-E.); (J.C.S.-Á.); (V.R.V.-G.)
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico
| | - Rafael Baltiérrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico; (A.A.R.-H.); (E.R.-J.); (J.M.V.-E.); (J.C.S.-Á.); (V.R.V.-G.)
- CONAHCYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca de Juárez 68120, Mexico
| |
Collapse
|
2
|
Smereczański NM, Brzóska MM. Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data. Int J Mol Sci 2023; 24:ijms24098413. [PMID: 37176121 PMCID: PMC10179615 DOI: 10.3390/ijms24098413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The growing number of reports indicating unfavorable outcomes for human health upon environmental exposure to cadmium (Cd) have focused attention on the threat to the general population posed by this heavy metal. The kidney is a target organ during chronic Cd intoxication. The aim of this article was to critically review the available literature on the impact of the current levels of environmental exposure to this xenobiotic in industrialized countries on the kidney, and to evaluate the associated risk of organ damage, including chronic kidney disease (CKD). Based on a comprehensive review of the available data, we recognized that the observed adverse effect levels (NOAELs) of Cd concentration in the blood and urine for clinically relevant kidney damage (glomerular dysfunction) are 0.18 μg/L and 0.27 μg/g creatinine, respectively, whereas the lowest observed adverse effect levels (LOAELs) are >0.18 μg/L and >0.27 μg/g creatinine, respectively, which are within the lower range of concentrations noted in inhabitants of industrialized countries. In conclusion, the current levels of environmental exposure to Cd may increase the risk of clinically relevant kidney damage, resulting in, or at least contributing to, the development of CKD.
Collapse
Affiliation(s)
- Nazar M Smereczański
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
3
|
Zinc Chloride Can Mitigate the Alterations in Metallothionein and Some Apoptotic Proteins Induced by Cadmium Chloride in Mice Hepatocytes: A Histological and Immunohistochemical Study. J Toxicol 2023; 2023:2200539. [PMID: 36793583 PMCID: PMC9925264 DOI: 10.1155/2023/2200539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
The heavy metal cadmium is extremely harmful to both humans and animals. Zinc supplementation protects the biological system and reduces cadmium-induced toxicity. This study aimed to determine whether zinc chloride (ZnCl2) could protect male mice with the damaged liver induced by cadmium chloride (CdCl2). The protective role of zinc chloride and expression of the metallothionein (MT), Ki-67, and Bcl-2 apoptotic proteins in hepatocytes were studied after subchronic exposure of mice to cadmium chloride for 21 days. Thirty male mice were randomly categorized into 6 groups (5 mice/group) as follows: a control group that did not receive any treatment, a group given ZnCl2 at 10 mg/kg alone, and two groups received ZnCl2 (10 mg/kg) in combination with CdCl2 at two concentrations (1.5 and 3 mg/kg), while the last two groups received CdCl2 alone at 1.5 and 3 mg/kg, respectively. Immunohistochemical examination revealed a decrease in Ki-67 expression in Kupffer and endothelial cells, which reflected cell proliferation downregulation accompanied by MT increased expression. However, the Bcl-2 was ameliorated and reduced to demonstrate an enhanced rate of necrosis rather than apoptosis. Furthermore, histopathological results showed significant alteration such as hepatocytes with a pyknotic nucleus, infiltration of inflammatory cells around the central vein, and the presence of many binucleated hepatocytes. Zinc chloride treatment resulted in histological and morphological improvements that were average in the expression of apoptosis proteins modifications induced by cadmium. Our findings revealed that the positive effects of zinc might be linked to the high metallothionein expression and enhanced cell proliferation. Furthermore, at low-dose exposure, cadmium-induced damage to cells could be more closely related to necrosis rather than apoptosis.
Collapse
|
4
|
Mofed D, Sabet S, Baiomy AA, Salem TZ. The Transgene Expression of the Immature Form of the HCV Core Protein (C191) and the LncRNA MEG3 Increases Apoptosis in HepG2 Cells. Curr Issues Mol Biol 2022; 44:3632-3647. [PMID: 36005145 PMCID: PMC9406719 DOI: 10.3390/cimb44080249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulated in cancer cells, including lncRNA MEG3, which is downregulated in Hepatocellular Carcinoma (HCC). In addition, hepatitis C virus (HCV) core proteins are known to dysregulate important cellular pathways that are linked to HCC development. In this study, we were interested in evaluating the overexpression of lncRNA MEG3, either alone or in combination with two forms of HCV core protein (C173 and C191) in HepG2 cells. Cell viability was assessed by MTT assay. Transcripts' levels of key genes known to be regulated in HCC, such as p53, DNMT1, miRNA152, TGF-b, and BCL-2, were measured by qRT-PCR. Protein expression levels of caspase-3 and MKI67 were determined by immunocytochemistry and apoptosis assays. The co-expression of lncRNA MEG3 and C191 resulted in a marked increase and accumulation of dead cells and a reduction in cell viability. In addition, a marked increase in the expression of tumor suppressor genes (p53 and miRNA152), as well as a marked decrease in the expression of oncogenes (DNMT1, BCL2, and TGF-b), were detected. Moreover, apoptosis assay results revealed a significant increase in total apoptosis (early and late). Finally, immunocytochemistry results detected a significant increase in apoptotic marker caspase-3 and a decrease in tumor marker MKI67. In this study, transgene expression of C191 and lncRNA MEG3 showed induction in apoptosis in HepG2 cells greater than the expression of each one alone. These results suggest potential anticancer characteristics.
Collapse
Affiliation(s)
- Dina Mofed
- Molecular Biology and Virology Lab, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed A. Baiomy
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Tamer Z. Salem
- Molecular Biology and Virology Lab, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Department of Microbial Genetics, Agricultural Genetic Engineering Research Institute (AGERl), Agricultural Research Center (ARC), Giza 12619, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Science Research and Technology (ASRT), Cairo 11334, Egypt
- Correspondence: ; Tel.: +20-1014114122
| |
Collapse
|
5
|
Zhang L, Yang F, Li Y, Cao H, Huang A, Zhuang Y, Zhang C, Hu G, Mao Y, Luo J, Xing C. The protection of selenium against cadmium-induced mitophagy via modulating nuclear xenobiotic receptors response and oxidative stress in the liver of rabbits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117301. [PMID: 34049137 DOI: 10.1016/j.envpol.2021.117301] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal that can cause many health problems, while selenium (Se) is an essential nutrient for organisms that can protect them from heavy metal-induced damage. To explore the effects of Se on Cd-induced mitophagy in the liver, forty 3-month-old New Zealand white rabbits (2-2.5 kg), half male and half female, were randomly divided into four groups: the Control group, the Se (0.5 mg/kg body weight (BW)) group, the Cd (1 mg/kg BW) group and the Se+Cd group. After 30 days, the toxicity from Cd in the liver was assessed in terms of the nuclear xenobiotic receptor (NXR) response, oxidative stress and mitophagy. It was found that Cd decreased the activities of CYP450 enzymes and antioxidant enzymes and increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) and also increased the consumption of reduced glutathione (GSH). Moreover, the mRNA levels of NXRs (CAR, PXR, AHR and Nrf2), some mitochondrial function factors (PGC-1α, Sirt1, Sirt3, Nrf1 and TFAM) and mitochondrial fusion factors (Mfn1, Mfn2 and OPA1) were downregulated, but the mRNA levels of other mitochondrial function factors (VDAC1, Cyt C and PRDX3), mitochondrial fission factors (Fis1 and MFF) and those in the PINK1/Parkin-mediated mitophagy pathway (p62, Bnip3 and LC3) were upregulated under Cd exposure. The protein expression levels of Nrf2, SOD2, PGC-1α, PINK1 and Parkin were consistent with the mRNA expression levels in the Cd group. Se alleviated the changes in the abovementioned factors induced by Cd. In conclusion, the results indicate that Cd can cause oxidative stress in rabbit livers by inhibiting NXRs and the antioxidation response leading to mitophagy, and these harmful changes caused by Cd can be alleviated by Se.
Collapse
Affiliation(s)
- Linwei Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yong Li
- Jiangxi Province Institute of Veterinary Drug and Feed Control, Nanchang, 330029, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| | - Aimin Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yaqing Mao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| |
Collapse
|
6
|
Nedzvetsky VS, Gasso VY, Agca CA, Sukharenko EV. Soluble curcumin ameliorates motility, adhesiveness and abrogate parthanatos in cadmium-exposed retinal pigment epithelial cells. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cadmium (Cd) is a nonessential transition metal and one of the most toxic environmental pollutants. Industrial, agricultural and urban activities are the main sources of Cd environmental contamination. Multiple deleterious effects of Cd exposure were reported for different cell types and living organisms in a great number of research papers. Cd bioaccumulation hazard is mediated by the relatively long half-life of this metal in an organism. For example, in mammals its half-life lasts for about 10–30 years. Cd exposure affects many tissues. However, some of them, including the central nervous system and sensory organs, are most susceptible to its toxicity. The harmful effects of Cd could be linked to oxidative stress generation and consequently intracellular signalling disruption. Since Cd induces redox imbalance the antioxidants could be a prospective tool to ameliorate Cd cytotoxicity. In present work, we have studied the protective efficacy of soluble curcumin on Cd-caused retinal pigment epithelium (RPE) cells viability, reactive oxygen species production, adhesive and extracellular matrix proteins expression, cell migration and parthanatos level. Low dose (5 µM) of soluble curcumin ameliorated all aforementioned indices of Cd-induced cytotoxicity. Curcumin has restored the RPE cells motility as well as fibronectin and E-cadherin expression. Therefore, the modulation of RPE adhesiveness could be regarded as a cytoprotective effect of curcumin. Furthermore, Cd-caused poly(ADP-ribose) polymerase-1 (PARP-1) suppression and cleaved PARP-1 upregulation were ameliorated by curcumin exposure. Therefore, the protective effect of soluble curcumin could be related, at least partially, to the modulation of PARP activity and inhibition of parthanatos flux. The observed results have demonstrated that low doses of soluble curcumin are a promising tool to protect RPE cells against Cd-caused retinal injury.
Collapse
|
7
|
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3782. [PMID: 32466586 PMCID: PMC7312803 DOI: 10.3390/ijerph17113782] [Citation(s) in RCA: 973] [Impact Index Per Article: 194.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic non-essential transition metal that poses a health risk for both humans and animals. It is naturally occurring in the environment as a pollutant that is derived from agricultural and industrial sources. Exposure to cadmium primarily occurs through the ingestion of contaminated food and water and, to a significant extent, through inhalation and cigarette smoking. Cadmium accumulates in plants and animals with a long half-life of about 25-30 years. Epidemiological data suggest that occupational and environmental cadmium exposure may be related to various types of cancer, including breast, lung, prostate, nasopharynx, pancreas, and kidney cancers. It has been also demonstrated that environmental cadmium may be a risk factor for osteoporosis. The liver and kidneys are extremely sensitive to cadmium's toxic effects. This may be due to the ability of these tissues to synthesize metallothioneins (MT), which are Cd-inducible proteins that protect the cell by tightly binding the toxic cadmium ions. The oxidative stress induced by this xenobiotic may be one of the mechanisms responsible for several liver and kidney diseases. Mitochondria damage is highly plausible given that these organelles play a crucial role in the formation of ROS (reactive oxygen species) and are known to be among the key intracellular targets for cadmium. When mitochondria become dysfunctional after exposure to Cd, they produce less energy (ATP) and more ROS. Recent studies show that cadmium induces various epigenetic changes in mammalian cells, both in vivo and in vitro, causing pathogenic risks and the development of various types of cancers. The epigenetics present themselves as chemical modifications of DNA and histones that alter the chromatin without changing the sequence of the DNA nucleotide. DNA methyltransferase, histone acetyltransferase, histone deacetylase and histone methyltransferase, and micro RNA are involved in the epigenetic changes. Recently, investigations of the capability of sunflower (Helianthus annuus L.), Indian mustard (Brassica juncea), and river red gum (Eucalyptus camaldulensis) to remove cadmium from polluted soil and water have been carried out. Moreover, nanoparticles of TiO2 and Al2O3 have been used to efficiently remove cadmium from wastewater and soil. Finally, microbial fermentation has been studied as a promising method for removing cadmium from food. This review provides an update on the effects of Cd exposure on human health, focusing on the cellular and molecular alterations involved.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| |
Collapse
|
8
|
|
9
|
Mężyńska M, Brzóska MM, Rogalska J, Galicka A. Extract from Aronia melanocarpa L. Berries Protects Against Cadmium-induced Lipid Peroxidation and Oxidative Damage to Proteins and DNA in the Liver: A Study using a Rat Model of Environmental Human Exposure to this Xenobiotic. Nutrients 2019; 11:E758. [PMID: 30935147 PMCID: PMC6520854 DOI: 10.3390/nu11040758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022] Open
Abstract
It was investigated, using a female rat model of low and moderate exposure of human to cadmium (Cd, 1 and 5 mg Cd/kg diet for 3⁻24 months), whether a polyphenol-rich 0.1% aqueous extract from Aronia melanocarpa L. berries (AE) may prevent Cd-induced lipid peroxidation and oxidative modifications of proteins and deoxyribonucleic acid (DNA) in the liver. For this purpose, markers of lipid peroxidation (lipid peroxides and 8-isoprostane) and oxidative injury of proteins (protein carbonyl groups and 3-nitrotyrosine) and DNA (8-hydroxy-2'-deoxyguanosine) were measured in this organ. The expression of metallothionein 1 (MT1) and metallothionein 2 (MT2) genes was estimated for a better explanation of the possible mechanisms of protective action of AE against Cd hepatotoxicity. The low and moderate treatment with Cd induced lipid peroxidation and oxidatively modified proteins and DNA, as well as enhanced the expression of MT1 and MT2 in the liver, whereas the co-administration of AE completely prevented almost all of these effects. The results allow us to conclude that the consumption of aronia products under exposure to Cd may offer protection against oxidative injury of the main cellular macromolecules in the liver, including especially lipid peroxidation, and in this way prevent damage to this organ.
Collapse
Affiliation(s)
- Magdalena Mężyńska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A, 15-222 Bialystok, Poland.
| |
Collapse
|
10
|
Khafaga AF, Abd El-Hack ME, Taha AE, Elnesr SS, Alagawany M. The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4588-4604. [PMID: 30612355 DOI: 10.1007/s11356-018-4037-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a heavy and toxic metal and easily absorbed by animals and plants; subsequently, it is an environmental risk factor with several toxic effects in humans and animals. The main pathway of human or animal exposure to Cd is through its ingestion by water or food and by particles or fume inhalation during industrial processes. With continuous exposure to small levels of cadmium, it is being deposited in different tissues day after day, causing toxic effects on the liver, kidney, and testes. Long-term exposure to this toxic metal resulted in inflammatory infiltration, necrosis of hepatocytes, degenerative changes in testis tissues, reduction in spermatocytes, degeneration in renal tubules, and hypertrophy of renal epithelium. Therefore, we need an effective treatment to overcome cadmium poisoning. Thus, in the current review, we try to provide compiled reports and summarize information about the toxicological effects of Cd in human, animals, and poultry. This review also provides updated information about the protective actions of herbs and herbal extracts and their role as an effective strategy in reducing or preventing serious health problems and tissue damage in response to Cd toxicity.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
11
|
Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019; 123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Fatal unintentional poisoning is widespread upon human exposure to toxic agents such as pesticides, heavy metals, environmental pollutants, bacterial and fungal toxins or even some medications and cosmetic products. In this regards, the application of the natural dietary agents as antidotes has engrossed a substantial attention. One of the ancient known traditional medicines and spices with an arsenal of metabolites of several reported health benefits is ginger. This extended literature review serves to demonstrate the protective effects and mechanisms of ginger and its phytochemicals against natural, chemical and radiation-induced toxicities. Collected data obtained from the in-vivo and in-vitro experimental studies in this overview detail the designation of the protective effects to ginger's antioxidant, anti-inflammatory, and anti-apoptotic properties. Ginger's armoury of phytochemicals exerted its protective function via different mechanisms and cell signalling pathways, including Nrf2/ARE, MAPK, NF-ƙB, Wnt/β-catenin, TGF-β1/Smad3, and ERK/CREB. The outcomes of this review could encourage further clinical trials of ginger applications in radiotherapy and chemotherapy regime for cancer treatments or its implementation to counteract the chemical toxicity induced by industrial pollutants, alcohol, smoking or administered drugs.
Collapse
Affiliation(s)
- Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Allan Torres
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia.
| |
Collapse
|
12
|
Mężyńska M, Brzóska MM, Rogalska J, Piłat-Marcinkiewicz B. Extract from Aronia melanocarpa L. Berries Prevents Cadmium-Induced Oxidative Stress in the Liver: A Study in A Rat Model of Low-Level and Moderate Lifetime Human Exposure to this Toxic Metal. Nutrients 2018; 11:E21. [PMID: 30577648 PMCID: PMC6357096 DOI: 10.3390/nu11010021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 12/25/2022] Open
Abstract
The study investigated, in a rat model of low-level and moderate environmental exposure to cadmium (Cd; 1 or 5 mg Cd/kg diet, respectively, for 3 to 24 months), whether the co-administration of 0.1% extract from Aronia melanocarpa L. berries (AE) may protect against oxidative stress in the liver and in this way mediate this organ status. The intoxication with Cd, dose- and duration-dependently, weakened the enzymatic antioxidative barrier, decreased the concentrations of reduced glutathione and total thiol groups, and increased the concentrations of oxidized glutathione, hydrogen peroxide, xanthine oxidase, and myeloperoxidase in this organ. These resulted in a decrease in the total antioxidative status, increase in the total oxidative status and development of oxidative stress (increased oxidative stress index and malondialdehyde concentration) and histopathological changes in the liver. The administration of AE at both levels of Cd treatment significantly improved the enzymatic and nonenzymatic antioxidative barrier, decreased pro-oxidant concentration, and protected from the development of oxidative stress in the liver and changes in its morphology, as well as normalized the serum activities of liver enzymes markers. In conclusion, consumption of aronia products may prevent Cd-induced destroying the oxidative/antioxidative balance and development of oxidative stress in the liver protecting against this organ damage.
Collapse
Affiliation(s)
- Magdalena Mężyńska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222 Bialystok, Poland.
| | - Barbara Piłat-Marcinkiewicz
- Department of Histology and Embryology, Medical University of Bialystok, Jerzego Waszyngtona 13 street, 15-269 Bialystok, Poland.
| |
Collapse
|
13
|
Mężyńska M, Brzóska MM. Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J Appl Toxicol 2018; 39:117-145. [PMID: 30216481 DOI: 10.1002/jat.3709] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Recently, the growing attention of the scientific community has been focused on the threat to health created by environmental pollutants, including toxic metals such as cadmium (Cd), and on the need of finding effective ways to prevent and treat the unfavorable health effects of exposure to them. Particularly promising for Cd, and thus arousing the greatest interest, is the possibility of using various ingredients present in plants, including mainly polyphenolic compounds. As the liver is one of the target organs for this toxic metal and disturbances in the proper functioning of this organ have serious consequences for health, the aim of the present review was to discuss the possibility of using polyphenol-rich food products (e.g., chokeberry, black and green tea, blueberry, olive oil, rosemary and ginger) as the strategy in protection from this xenobiotic hepatotoxicity and treatment of this heavy metal-induced liver damage. Owing to the ability of polyphenols to bind ions of Cd and the strong antioxidative potential of these compounds, as well as their abundance in dietary products, it seems to be of high importance to consider the possibility of using polyphenols as potential preventive and therapeutic agents against Cd hepatotoxicity, determined by its strong pro-oxidative properties. Although most of the data on the effectiveness of polyphenols comes from studies in animals, the fact that some of them are derived from experimental models that reflect human exposure to this metal allows us to assume that some polyphenol-rich food products may be promising protective agents against Cd hepatotoxicity in humans.
Collapse
Affiliation(s)
- Magdalena Mężyńska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| | - Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| |
Collapse
|
14
|
Refaie MMM, El-Hussieny M, Zenhom NM. Protective role of nebivolol in cadmium-induced hepatotoxicity via downregulation of oxidative stress, apoptosis and inflammatory pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:212-219. [PMID: 29408764 DOI: 10.1016/j.etap.2018.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) intoxication in human occurs through inhalation of cigarette smoke and ingestion of contaminated water and food. We investigated the role of nebivolol (NEB) in Cd induced hepatotoxicity. In our study; NEB was given as (10 mg/kg/d) orally to rats for 6 weeks, in the presence or absence of hepatotoxicity induced by oral administration of Cd (7 mg/kg/d) for 6 weeks. Levels of serum liver enzyme biomarkers; alanine transaminase (ALT), aspartate transaminase (AST) and serum total antioxidant capacity (TAC) were measured. In addition; mean arterial pressure and total cholesterol levels were measured. Hepatic superoxide dismutase (SOD) and malondialdehyde (MDA) were detected. Hepatic histopathological features, inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) immunoexpressions were evaluated. Tumor necrosis factor alpha (TNF-α) and B-cell lymphoma-2 (Bcl-2) mRNA gene expressions were detected using real time-PCR (rt-PCR). Our results showed marked increase in all measured parameters except SOD, TAC, eNOS immunoexpression and Bcl2 mRNA gene expression which decreased in Cd induced hepatotoxicity group. NEB showed marvelous protective effect against Cd induced changes. NEB decreased liver enzymes (ALT and AST), mean arterial pressure, total cholesterol levels, MDA, iNOS immunoexpression and TNF-α gene expression but significantly increased SOD, TAC, eNOS immunoexpression and Bcl-2 gene expression. Moreover; NEB markedly improved the histopathological changes induced by Cd. These findings prove the antioxidant, anti-apoptotic and anti-inflammatory properties of NEB and its protective role in Cd induced hepatotoxicity.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt.
| |
Collapse
|
15
|
Mezynska M, Brzóska MM. Environmental exposure to cadmium-a risk for health of the general population in industrialized countries and preventive strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3211-3232. [PMID: 29230653 DOI: 10.1007/s11356-017-0827-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 11/23/2017] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a heavy metal belonging to the group of the main chemical pollutants of the natural and occupational environment in economically developed countries. The forecasts indicate that contamination of the environment with this toxic metal, and thus the exposure of the general population, will increase. Food (particularly plant products) is the main source of the general population exposure to this element. Moreover, an important, and often the main, source of intoxication with Cd is habitual tobacco smoking. Recent epidemiological studies have provided numerous evidence that even low-level environmental exposure to this toxic metal, nowadays occurring in numerous economically developed countries, creates a risk for health of the general population. The low-level lifetime exposure to this metal may lead to the damage to the kidneys, liver, skeletal system, and cardiovascular system, as well as to the deterioration of the sight and hearing. Moreover, it has been suggested that environmental exposure to this xenobiotic may contribute to the development of cancer of the lung, breast, prostate, pancreas, urinary bladder, and nasopharynx. Taking the above into account, the aim of this review article is to draw more attention to Cd as an environmental risk factor for the health of the general population and the need to undertake preventive actions allowing to reduce the risk of health damage due to a lifetime exposure to this toxic metal.
Collapse
Affiliation(s)
- Magdalena Mezynska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222, Bialystok, Poland.
| | - Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222, Bialystok, Poland.
| |
Collapse
|
16
|
Oda SS, Waheeb RS. Ginger attenuated di (n-butyl) phthalate-induced reproductive toxicity in pubertal male rabbits. WORLD RABBIT SCIENCE 2017. [DOI: 10.4995/wrs.2017.7466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study was conducted to investigate the toxic effects of di (n-butyl) phthalate (DBP) on reproductive functions in male rabbits and the probable protective role of ginger. Twenty rabbits were divided equally into 4 groups: control group; DBP group (520 mg/kg body weight [BW] DBP orally), DBP+ginger group (520 mg/kg BW DBP and 400 mg/kg BW ginger) and ginger group (400 mg/kg BW ginger orally). Treatments were given three-times/week. After 7 wk of the experiment, DBP induced significant reduction in testis and prostate weights, serum and intratesticular testosterone concentrations, sperm counts both mass and progressive sperm motility and live sperms percentage as well as significant elevation of testicular malondialdehyde compared to control group. No significant changes were detected in epididymal weights, serum FSH and serum LH concentrations and testicular total superoxide dismutase and glutathione peroxidase activities in all treated groups. DBP induced considerable histopathological alterations in testis and to minimal extent in epididymis and prostates. Ginger treatment attenuated the significant changes to a certain extent induced by DBP intoxication in male rabbits probably due to its potential to scavenge free radicals.
Collapse
|
17
|
Bao RK, Zheng SF, Wang XY. Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20342-20353. [PMID: 28707237 DOI: 10.1007/s11356-017-9422-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can induce apoptosis. Selenium (Se) is a necessary trace element and can antagonize the toxicity of many heavy metals, including Cd. PI3K/AKT/Bcl-2 is a key survival signaling pathway that regulates cellular defense system against oxidative injury as well as cell proliferation, survival, and apoptosis. The antagonistic effects of Se on Cd-induced toxicity have been reported. However, little is known about the effect of Se on Cd-induced apoptosis in chicken kidneys via the PI3K/AKT/Bcl-2 signaling pathway. In the present study, we fed chickens with Se, Cd, or both Se and Cd supplements, and after 90 days of treatment, we detected the related index. The results showed that the activity of inducible nitric oxide synthase (iNOS) and concentration of nitric oxide (NO) were increased; activities of the mitochondrial respiratory chain complexes (complexes I, II, and V) and ATPases (the Na+-K+-ATPase, the Mg2+-ATPase, and the Ca2+-ATPase) were decreased; expression of PI3K, AKT, and Bcl-2 were decreased; and expression of Bax, Bak, P53, Caspase-3, Caspase-9, and cytochrome c (Cyt c) were increased. Additionally, the results of the TUNEL assay showed that the number of apoptotic cells was increased in the Cd group. By contrast, there was a significant improvement of the correlation indicators and occurrence of apoptosis in the Se + Cd group compared to the Cd group. In conclusion, our results confirmed that Se had a positive effect on ameliorating Cd-induced apoptosis in chicken kidney tissue by activating the PI3K/AKT/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Rong-Kun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Key Laboratory of the Provincial Education, Harbin, People's Republic of China.
| | - Shu-Fang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin-Yue Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
18
|
Mansour AA, Nassan MA, Saleh OM, Soliman MM. PROTECTIVE EFFECT OF CAMEL MILK AS ANTI-DIABETIC SUPPLEMENT: BIOCHEMICAL, MOLECULAR AND IMMUNOHISTOCHEMICAL STUDY. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638873 PMCID: PMC5471457 DOI: 10.21010/ajtcam.v14i4.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Diabetes is a serious disease affects human health. Diabetes in advanced stages is accompanied by general weakness and alteration in fats and carbohydrates metabolism. Recently there are some scientific trends about the usage of camel milk (CM) in the treatment of diabetes and its associated alterations. CM contains vital active particles with insulin like action that cure diabetes and its complications but how these effects occur, still unclear. Materials and Methods: Seventy-five adult male rats of the albino type divided into five equal groups. Group 1 served as a negative control (C). Group 2 was supplemented with camel milk (CM). Diabetes was induced in the remaining groups (3, 4 and 5). Group 3 served as positive diabetic control (D). Group 4 served as diabetic and administered metformin (D+MET). Group 5 served as diabetes and supplemented with camel milk (D+CM). Camel milk was supplemented for two consecutive months. Serum glucose, leptin, insulin, liver, kidney, antioxidants, MDA and lipid profiles were assayed. Tissues from liver and adipose tissues were examined using RT-PCR analysis for the changes in mRNA expression of genes of carbohydrates and lipid metabolism. Pancreas and liver were used for immunohistochemical examination using specific antibodies. Results: Camel milk supplementation ameliorated serum biochemical measurements that altered after diabetes induction. CM supplementation up-regulated mRNA expression of IRS-2, PK, and FASN genes, while down-regulated the expression of CPT-1 to control mRNA expression level. CM did not affect the expression of PEPCK gene. On the other hand, metformin failed to reduce the expression of CPT-1 compared to camel milk administered rats. Immunohistochemical findings revealed that CM administration restored the immunostaining reactivity of insulin and GLUT-4 in the pancreas of diabetic rats. Conclusion: CM administration is of medical importance and helps physicians in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ahmed A Mansour
- Medical Biotechnology Department, Faculty of Applied Medical Sciences (Turbah), Taif Univ., KSA.,Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed A Nassan
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Osama M Saleh
- Medical Biotechnology Department, Faculty of Applied Medical Sciences (Turbah), Taif Univ., KSA.,National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Mohamed M Soliman
- Biochemistry Department, Faculty of Veterinary Medicine, Banha University, Banha, Egypt.,Medical Laboratories Department, Faculty of Applied Medical Sciences (Turbah), Taif University., KSA
| |
Collapse
|
19
|
Li Z, Jiang L, Tao T, Su W, Guo Y, Yu H, Qin J. Assessment of cadmium-induced nephrotoxicity using a kidney-on-a-chip device. Toxicol Res (Camb) 2017; 6:372-380. [PMID: 30090506 DOI: 10.1039/c6tx00417b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Cadmium (Cd) is a common environmental pollutant. Its effects on human health have attracted great attention. The kidney is the organ that is the most affected by Cd exposure. Thus, it is highly desirable to develop a reliable model to evaluate Cd-induced nephrotoxicity in vitro. We present a kidney-on-a-chip with three compartmentalized culture chambers to examine Cd-induced nephrotoxicity. The culture and collection channels represent the capillary and the glomerular capsule sides of the glomerular filtration barrier, respectively. Isolated primary rat glomerular endothelial cells (GECs) were cultured on the side surface of the middle gel channel. The integrated GEC layer demonstrated the selective permeability of the renal barrier. Therefore, it was further utilized to study the nephrotoxicity induced by Cd exposure at different concentrations. Cd induced significant cytotoxicity and disrupted the expression of tight junction protein ZO-1 in a dose-dependent manner. Moreover, Cd exposure increased the permeability of the endothelial layer to large molecules, immunoglobulin G and albumin. These results facilitate the understanding of the underlying mechanism of kidney dysfunction and glomerular disease. This is the first study on Cd-induced nephrotoxicity using primary GECs in a microfluidic device. The kidney-on-a-chip device enables direct visualization and quantitative analysis of GEC responses to Cd in real time. It may provide a micro-scale platform based on the human system for nephrotoxicity testing under varying environmental exposure.
Collapse
Affiliation(s)
- Zhongyu Li
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Lei Jiang
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Tingting Tao
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Wentao Su
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Yaqiong Guo
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Hao Yu
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China .
| | - Jianhua Qin
- Division of Biotechnology , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , 116023 , China . .,University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
20
|
Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2574637. [PMID: 26981526 PMCID: PMC4769746 DOI: 10.1155/2016/2574637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 01/15/2023]
Abstract
The effect of Menoprogen (MPG) on ovarian granulosa cell (GC) apoptosis was investigated in vitro and in vivo in an aged rat model of menopause. Intragastric administration of Menoprogen or estradiol valerate to 14-month-old senile female rats for eight weeks increased plasma E2 levels, as well as the weight of both ovarian and uterine tissues. Flow cytometric (FCM) analysis of isolated GCs from MPG-treated aged rats showed reductions in the G0/G1 ratio and apoptotic peaks. Isolated GCs also exhibited an increase in cell size and the number of cytoplastic organelles and intracellular gap junctions, the reappearance of secretory granules, and a lack of apoptotic bodies as determined by TEM. Results from a TdT-mediated dUTP nick end-labeling (TUNEL) assay revealed a reduction in TUNEL-positive GCs after MPG treatment. Immunohistochemical analysis showed a downregulation of proapoptotic Bax proteins and an upregulation of antiapoptotic Bcl-2 proteins. The addition of MPG-medicated serum to the media of cultured GCs also reduced cadmium chloride-induced apoptosis and downregulated caspase-3 protein expression. This work demonstrates that Menoprogen inhibits GC apoptosis in aged female rats and thereby increases E2 production. This represents a novel mechanism of action for this herbal medicine in the treatment of menopausal symptoms.
Collapse
|
21
|
Sandbichler AM, Höckner M. Cadmium Protection Strategies--A Hidden Trade-Off? Int J Mol Sci 2016; 17:ijms17010139. [PMID: 26805823 PMCID: PMC4730378 DOI: 10.3390/ijms17010139] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a non-essential transition metal which is introduced into the biosphere by various anthropogenic activities. Environmental pollution with Cd poses a major health risk and Cd toxicity has been extensively researched over the past decades. This review aims at changing the perspective by discussing protection mechanisms available to counteract a Cd insult. Antioxidants, induction of antioxidant enzymes, and complexation of Cd to glutathione (GSH) and metallothionein (MT) are the most potent protective measures to cope with Cd-induced oxidative stress. Furthermore, protection mechanisms include prevention of endoplasmic reticulum (ER) stress, mitophagy and metabolic stress, as well as expression of chaperones. Pre-exposure to Cd itself, or co-exposure to other metals or trace elements can improve viability under Cd exposure and cells have means to reduce Cd uptake and improve Cd removal. Finally, environmental factors have negative or positive effects on Cd toxicity. Most protection mechanisms aim at preventing cellular damage. However, this might not be possible without trade-offs like an increased risk of carcinogenesis.
Collapse
Affiliation(s)
| | - Martina Höckner
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|