1
|
Wu C, Jiang Y, Zhou Z, Zhang Y, Zhou Y, Bai S, Li J, Wu F, Wang J, Lyu Y. Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells. Curr Issues Mol Biol 2024; 46:13119-13130. [PMID: 39590376 PMCID: PMC11592890 DOI: 10.3390/cimb46110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cadmium (Cd) exposure can induce follicular atresia and laying performance reduction in hens, which is linked to autophagy within the granulosa cells. Selenium (Se) can influence autophagy and counteract Cd toxicity. This study aimed to investigate the protective effect of Se on Cd-induced follicular atresia in laying hens. Sixty-four laying hens were randomly allocated into 4 treatments: control group: basal diet; Se group: basal diet + 0.4 mg/kg Se from selenized yeast; Cd group: basal diet + 25 mg/kg Cd from CdCl2; and Cd+Se group: basal diet + 25 mg/kg Cd + 0.4 mg/kg Se. Compared to the Cd group, Se supplementation alleviated the ovarian pathological changes and oxidative stress in the follicles, serum, liver, and ovary, increased daily laying production, ovarian weight and F5-F1 follicle amounts, serum levels of progesterone and oestradiol, and up-regulated mTOR expression (p < 0.05), while decreasing the count of autophagic vacuoles, ovarian atresia follicle numbers, and Cd deposition, and down-regulated expression levels of autophagy-related mRNAs, including ATG5, LC3-I, and LC3-II, Beclin1, and Dynein in the follicles (p < 0.05). In conclusion, 0.4 mg/kg Se supplementation protected against Cd-induced laying performance reduction and follicular atresia, which were achieved via decreasing oxidative stress and inhibiting mTOR pathways of autophagy.
Collapse
Affiliation(s)
- Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yuxuan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Ziyun Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yuwei Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yixuan Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yang Lyu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| |
Collapse
|
2
|
Wang T, Li H, Li Y, Li M, Zhao H, Zhang W, Zhao T, Wang Y, Wang J, Wang J. Selenomethionine supplementation mitigates fluoride-induced liver apoptosis and inflammatory reactions by blocking Parkin-mediated mitophagy in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175458. [PMID: 39142410 DOI: 10.1016/j.scitotenv.2024.175458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
As an environmental pollutant, fluoride-induced liver damage is directly linked to mitochondrial alteration and oxidative stress. Selenium's antioxidant capacity has been shown to alleviate liver damage. Emerging research proves that E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy may be a therapeutic target for fluorosis. The current study explored the effect of diverse selenium sources on fluoride-caused liver injury and the role of Parkin-mediated mitophagy in this intervention process. Therefore, this study established a fluoride-different selenium sources co-intervention wild-type (WT) mouse model and a fluoride-optimum selenium sources co-intervention Parkin gene knockout (Parkin-/-) mouse model. Our results show that selenomethionine (SeMet) is the optimum selenium supplementation form for mice suffering from fluorosis when compared to sodium selenite and chitosan nano‑selenium because mice from the F-SeMet group showed more closely normal growth and development levels of liver function, antioxidant capacity, and anti-inflammatory ability. Explicitly, SeMet ameliorated liver inflammation and cell apoptosis in fluoride-toxic mice, accomplished through downregulating the mRNA and protein expression levels associated with mitochondrial fusion and fission, mitophagy, apoptosis, inflammatory signalling pathway of nuclear factor-kappa B (NF-κB), reducing the protein expression levels of PARKIN, PTEN-induced putative kinase1 (PINK1), SQSTM1/p62 (P62), microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate specific proteinase 3 (CASPAS3), as well as restraining the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ). The Parkin-/- showed comparable positive effects to the SeMet in the liver of fluorosis mice. The structure of the mitochondria, mRNA, protein expression levels, and the content of proinflammatory factors in mice from the FParkin-/- and F + SeMetParkin-/- groups closely resembled those in the F + SeMetWT group. Overall, the above results indicated that SeMet could alleviate fluoride-triggered inflammation and apoptosis in mice liver via blocking Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Haojei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Yuanyuan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Meng Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Hui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Wenhui Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Tianrui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Yinghui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China.
| |
Collapse
|
3
|
Rao SP, Dobariya P, Bellamkonda H, More SS. Role of 3-Mercaptopyruvate Sulfurtransferase (3-MST) in Physiology and Disease. Antioxidants (Basel) 2023; 12:antiox12030603. [PMID: 36978851 PMCID: PMC10045210 DOI: 10.3390/antiox12030603] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) plays the important role of producing hydrogen sulfide. Conserved from bacteria to Mammalia, this enzyme is localized in mitochondria as well as the cytoplasm. 3-MST mediates the reaction of 3-mercaptopyruvate with dihydrolipoic acid and thioredoxin to produce hydrogen sulfide. Hydrogen sulfide is also produced through cystathionine beta-synthase and cystathionine gamma-lyase, along with 3-MST, and is known to alleviate a variety of illnesses such as cancer, heart disease, and neurological conditions. The importance of cystathionine beta-synthase and cystathionine gamma-lyase in hydrogen sulfide biogenesis is well-described, but documentation of the 3-MST pathway is limited. This account compiles the current state of knowledge about the role of 3-MST in physiology and pathology. Attempts at targeting the 3-MST pathway for therapeutic benefit are discussed, highlighting the potential of 3-MST as a therapeutic target.
Collapse
|
4
|
Li X, Hua J, Wang S, Hu Z, Wen A, Yang B. Genes and Signaling Pathways Involved in the Regulation of Selenium-Enriched Yeast on Liver Metabolism and Health of Broiler (Gallus gallus). Biol Trace Elem Res 2023; 201:387-402. [PMID: 35143018 DOI: 10.1007/s12011-022-03150-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Selenium-enriched yeast (SeY) plays an important role in the liver health and metabolism of the broiler. However, the mechanism by which it regulates liver metabolism and the health of broilers is largely unknown. Therefore, this study was conducted to elucidate the key genes and signaling pathways involved in regulating SeY in liver metabolism and bird's health. Thus, the mRNA expression microarray, GSE25151, was downloaded from Gene Expression Omnibus (GEO) database. GSE25151 consists of liver samples from SeY-treated and the control broilers. Six hundred four differentially expressed genes (DEGs) were identified in livers between SeY-treated and control. Gene ontology (GO) enrichment analysis indicated that those DEGs are mainly involved in metabolism-related biological processes, such as biological regulation, molecular processes, responses to stimuli, cell communication and proliferation, and growth. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the DEGs mainly enriched in metabolism-related signaling pathways, including PI3K, Akt, Wnt, calcium, IGF1 receptor, and MAPK signaling pathways. Moreover, many genes, such as NMUR1, NMU, and GPRC6A, might contribute to the regulation of SeY to broiler liver metabolism and health. In conclusion, the current study enhances our understanding of the regulation of SeY in liver metabolism and health of the birds and will assist studies of the molecular mechanisms of SeY regulation in chicken liver.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongze Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230039, China.
- Longyan University & Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, 233100, China.
| |
Collapse
|
5
|
Zhang R, Liu Q, Guo R, Zhang D, Chen Y, Li G, Huang X. Selenium Deficiency Induces Autophagy in Chicken Bursa of Fabricius Through ChTLR4/MyD88/NF-κB Pathway. Biol Trace Elem Res 2022; 200:3303-3314. [PMID: 34467441 DOI: 10.1007/s12011-021-02904-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
To explore the role of ChTLR4/MyD88/NF-κB signaling pathway on autophagy induced by selenium (Se) deficiency in the chicken bursa of Fabricius, autophagosome formation in the bursa of Fabricius was observed by transmission electron microscopy. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of ChTLR4 and its signaling pathway molecules (MyD88, TRIF, and NF-κB), inflammatory factors (IL-1β, IL-8, and TNF-α), and autophagy-related factors (ATG5, Beclin1, and LC3-II) in the Se-deficient chicken bursa of Fabricius at different ages. The results showed that ChTLR4/MyD88/NF-κB signaling pathway was activated in the chicken bursa of Fabricius and autophagy was induced at the same time by Se deficiency. In order to verify the relationship between the autophagy and ChTLR4/MyD88/NF-κB signaling pathway, HD11 cells were used to establish the normal C group, low Se group, and low Se + TLR4 inhibitor (TAK242) group. The results demonstrated that autophagy could be hindered when the TLR4 signaling pathway was inhibited under Se deficiency. Furthermore, autophagy double-labeled adenovirus was utilized to verify the integrity of autophagy flow induced by Se deficiency in HD11 cells. The results showed that it appeared to form a complete autophagy flow under the condition of Se deficiency and could be blocked by TAK242. In summary, we found that Se deficiency was involved in the chicken bursa of Fabricius autophagy occurring by activating the ChTLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Qing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Rong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Yang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China.
| |
Collapse
|
6
|
Protective Effect of Mitophagy Regulated by mTOR Signaling Pathway in Liver Fibrosis Associated with Selenium. Nutrients 2022; 14:nu14122410. [PMID: 35745140 PMCID: PMC9227084 DOI: 10.3390/nu14122410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Background: As a central organ of energy metabolism, the liver is closely related to selenium for its normal function and disease development. However, the underlying roles of mitochondrial energy metabolism and mitophagy in liver fibrosis associated with selenium remain unclear. Methods: 28 rats were randomly divided into normal, low-selenium, nano-selenium supplement-1, and supplement-2 groups for a 12-week intervention. We observed pathological and ultrastructural changes in the liver and analyzed the effects of selenium deficiency and nano-selenium supplementation on liver metabolic activities and crucial proteins expression of mammalian target of the rapamycin (mTOR) signaling pathway. Results: Selenium deficiency caused liver pathological damage and fibrosis with the occurrence of mitophagy by disrupting normal metabolic activities; meanwhile, the mTOR signaling pathway was up-regulated to enhance mitophagy to clear damaged mitochondria. Furthermore, nano-selenium supplements could reduce the severity of pathological damage and fibrosis in livers and maintain normal energy metabolic activity. With the increased concentrations of nano-selenium supplement, swelling mitochondria and mitophagy gradually decreased, accompanied by the higher expression of mTOR and phosphorylation-modified mTOR proteins and lower expression of unc-51 like autophagy activating kinase 1 (ULK1) and phosphorylation-modified ULK1 proteins. Conclusions: Mitophagy regulated by the mTOR signaling pathway plays a dual protective role on low-selenium inducing liver fibrosis and nano-selenium supplements preventing liver fibrosis. Mitochondrial energy metabolism plays an important role in these processes as well.
Collapse
|
7
|
Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11020251. [PMID: 35204134 PMCID: PMC8868242 DOI: 10.3390/antiox11020251] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
Selenium is an essential microelement required for a number of biological functions. Selenium—and more specifically the amino acid selenocysteine—is present in at least 25 human selenoproteins involved in a wide variety of essential biological functions, ranging from the regulation of reactive oxygen species (ROS) concentration to the biosynthesis of hormones. These processes also play a central role in preventing and modulating the clinical outcome of several diseases, including cancer, diabetes, Alzheimer’s disease, mental disorders, cardiovascular disorders, fertility impairments, inflammation, and infections (including SARS-CoV-2). Over the past years, a number of studies focusing on the relationship between selenium and such pathologies have been reported. Generally, an adequate selenium nutritional state—and in some cases selenium supplementation—have been related to improved prognostic outcome and reduced risk of developing several diseases. On the other hand, supra-nutritional levels might have adverse effects. The results of recent studies focusing on these topics are summarized and discussed in this review, with particular emphasis on advances achieved in the last decade.
Collapse
|
8
|
Tesseraud S, Avril P, Bonnet M, Bonnieu A, Cassar-Malek I, Chabi B, Dessauge F, Gabillard JC, Perruchot MH, Seiliez I. Autophagy in farm animals: current knowledge and future challenges. Autophagy 2021; 17:1809-1827. [PMID: 32686564 PMCID: PMC8386602 DOI: 10.1080/15548627.2020.1798064] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy (a process of cellular self-eating) is a conserved cellular degradative process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Surprisingly, little attention has been paid to the role of this cellular function in species of agronomical interest, and the details of how autophagy functions in the development of phenotypes of agricultural interest remain largely unexplored. Here, we first provide a brief description of the main mechanisms involved in autophagy, then review our current knowledge regarding autophagy in species of agronomical interest, with particular attention to physiological functions supporting livestock animal production, and finally assess the potential of translating the acquired knowledge to improve animal development, growth and health in the context of growing social, economic and environmental challenges for agriculture.Abbreviations: AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ASC: adipose-derived stem cells; ATG: autophagy-related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BVDV: bovine viral diarrhea virus; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DAP: Death-Associated Protein; ER: endoplasmic reticulum; GFP: green fluorescent protein; Gln: Glutamine; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IF: immunofluorescence; IVP: in vitro produced; LAMP2A: lysosomal associated membrane protein 2A; LMS: lysosomal membrane stability; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MDBK: Madin-Darby bovine kidney; MSC: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NDV: Newcastle disease virus; NECTIN4: nectin cell adhesion molecule 4; NOD1: nucleotide-binding oligomerization domain 1; OCD: osteochondritis dissecans; OEC: oviduct epithelial cells; OPTN: optineurin; PI3K: phosphoinositide-3-kinase; PPRV: peste des petits ruminants virus; RHDV: rabbit hemorrhagic disease virus; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy.
Collapse
Affiliation(s)
| | - Pascale Avril
- INRAE, UAR1247 Aquapôle, Saint Pée Sur Nivelle, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Anne Bonnieu
- DMEM, Univ Montpellier, INRAE, Montpellier, France
| | - Isabelle Cassar-Malek
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | | | - Frédéric Dessauge
- INRAE, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE, Rennes, France
| | | | - Marie-Hélène Perruchot
- INRAE, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE, Rennes, France
| | - Iban Seiliez
- Université de Pau et des Pays de l’Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
9
|
H 2S protects hippocampal neurons against hypoxia-reoxygenation injury by promoting RhoA phosphorylation at Ser188. Cell Death Discov 2021; 7:132. [PMID: 34088899 PMCID: PMC8178328 DOI: 10.1038/s41420-021-00514-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of RhoA-ROCK pathway is involved in the H2S-induced cerebral vasodilatation and H2S-mediated protection on endothelial cells against oxygen-glucose deprivation/reoxygenation injury. However, the inhibitory mechanism of H2S on RhoA-ROCK pathway is still unclear. The aim of this study was to investigate the target and mechanism of H2S in inhibition of RhoA/ROCK. GST-RhoAwild and GST-RhoAS188A proteins were constructed and expressed, and were used for phosphorylation assay in vitro. Recombinant RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids were constructed and transfected into primary hippocampal nerve cells (HNCs) to evaluate the neuroprotective mechanism of endothelial H2S by using transwell co-culture system with endothelial cells from cystathionine-γ-lyase knockout (CSE-/-) mice and 3-mercaptopyruvate sulfurtransferase knockout (3-MST-/-) rats, respectively. We found that NaHS, exogenous H2S donor, promoted RhoA phosphorylation at Ser188 in the presence of cGMP-dependent protein kinase 1 (PKG1) in vitro. Besides, both exogenous and endothelial H2S facilitated the RhoA phosphorylation at Ser188 in HNCs, which induced the reduction of RhoA activity and membrane transposition, as well as ROCK2 activity and expression. To further investigate the role of endothelial H2S on RhoA phosphorylation, we detected H2S release from ECs of CSE+/+ and CSE-/- mice, and 3-MST+/+ and 3-MST-/- rats, respectively, and found that H2S produced by ECs in the culture medium is mainly catalyzed by CSE synthase. Moreover, we revealed that both endothelial H2S, mainly catalyzed by CSE, and exogenous H2S protected the HNCs against hypoxia-reoxygenation injury via phosphorylating RhoA at Ser188.
Collapse
|
10
|
Effects of Different Laying Hen Species on Odour Emissions. Animals (Basel) 2020; 10:ani10112172. [PMID: 33233353 PMCID: PMC7700304 DOI: 10.3390/ani10112172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
Odour is one of the main environmental concerns in the laying hen industry and may also influence animal health and production performance. Previous studies showed that odours from the laying hen body are primarily produced from the microbial fermentation (breakdown) of organic materials in the caecum, and different laying hen species may have different odour production potentials. This study was conducted to evaluate the emissions of two primary odorous gases, ammonia (NH3) and hydrogen sulphide (H2S), from six different laying hen species (Hyline, Lohmann, Nongda, Jingfen, Xinghua and Zhusi). An in vitro fermentation technique was adopted in this study, which has been reported to be an appropriate method for simulating gas production from the microbial fermentation of organic materials in the caecum. The results of this study show that Jingfen produced the greatest volume of gas after 12 h of fermentation (p < 0.05). Hyline had the highest, while Lohmann had the lowest, total NH3 emissions (p < 0.05). The total H2S emissions of Zhusi and Hyline were higher than those of Lohmann, Jingfen and Xinghua (p < 0.05), while Xinghua exhibited the lowest total H2S emissions (p < 0.05). Of the six laying hen species, Xinghua was identified as the best species because it produced the lowest total amount of NH3 + H2S (39.94 µg). The results for the biochemical indicators showed that the concentration of volatile fatty acids (VFAs) from Zhusi was higher than that for the other five species, while the pH in Zhusi was lower (p < 0.01), and the concentrations of ammonium nitrogen (NH4+), uric acid and urea in Xinghua were lower than those in the other species (p < 0.01). Hyline had the highest change in SO42- concentration during the fermentation processes (p < 0.05). In addition, the results of the correlation analysis suggested that NH3 emission is positively related to urease activities but is not significantly related to the ureC gene number. Furthermore, H2S emission was observed to be significantly related to the reduction of SO42- but showed no connection with the aprA gene number. Overall, our findings provide a reference for future feeding programmes attempting to reduce odour pollution in the laying hen industry.
Collapse
|
11
|
Zhang C, Wang LL, Cao CY, Li N, Talukder M, Li JL. Selenium mitigates cadmium-induced crosstalk between autophagy and endoplasmic reticulum stress via regulating calcium homeostasis in avian leghorn male hepatoma (LMH) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114613. [PMID: 32504893 DOI: 10.1016/j.envpol.2020.114613] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal and widespread in environment and food, which is adverse to human and animal health. Food intervention is a hot topic because it has no side effects. Selenium (Se) is an essential trace element, found in various fruits and vegetables. Many previous papers have described that Se showed ameliorative effects against Cd. However, the underlying mechanism of antagonistic effect of Se against Cd-induced cytotoxicity in avian leghorn male hepatoma (LMH) cells is unknown, the molecular mechanism of Se antagonistic effect on Cd-induced and calcium (Ca2+) homeostasis disorder and crosstalk of ER stress and autophagy remain to be explored. In order to confirm the antagonistic effect of Se on Cd-induced LMH cell toxicity, LMH cells were treated with CdCl2 (2.5 μM) and Na2SeO3 (1.25 and 2.5 μM) for 24 h. In this study, Cd exposure induced cell death, disrupted intracellular Ca2+ homeostasis and Ca2+ homeostasis related regulatory factors, interfered with the cycle of cadherin (CNX)/calreticulin (CRT), and triggered ER stress and autophagy. Se intervention inhibited Cd-induced LDH release and crosstalk of ER stress and autophagy via regulating intracellular Ca2+ homeostasis. Moreover, Se mitigated Cd-induced Intracellular Ca2+ overload by Ca2+/calmodulin (CaM)/calmodulin kinase IV (CaMK-IV) signaling pathway. Herein, CNX/CRT cycle played a critical role for the protective effect of Se on Cd-induced hepatotoxicity. Based on these findings, we demonstrated that the application of Se is beneficial for prevention and alleviation of Cd toxicity.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Veterinary Medcine, Henan Agricultural University, Zhengzhou, 450046 Henan, PR China
| | - Li-Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Chang-Yu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Life Science, Foshan University, Foshan, 528231, Guangdong, PR China
| | - Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Li M, Zhang Y, Li S. Effects of selenium deficiency on testis development and autophagy in chicks. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1786739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ming Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Life and environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
13
|
Zhang Y, Xu J, Yang H. Hydrogen: An Endogenous Regulator of Liver Homeostasis. Front Pharmacol 2020; 11:877. [PMID: 32595504 PMCID: PMC7301907 DOI: 10.3389/fphar.2020.00877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Basic and clinical studies have shown that hydrogen (H2), the lightest gas in the air, has significant biological effects of anti-oxidation, anti-inflammation, and anti-apoptosis. The mammalian cells have no abilities to produce H2 due to lack of the expression of hydrogenase. The endogenous H2 in human body is mainly produced by anaerobic bacteria, such as Firmicutes and Bacteroides, in gut and other organs through the reversible oxidation reaction of 2 H+ + 2 e- ⇌ H2. Supplement of exogenous H2 can improve many kinds of liver injuries, modulate glucose and lipids metabolism in animal models or in human beings. Moreover, hepatic glycogen has strong ability to accumulate H2, thus, among the organs examined, liver has the highest concentration of H2 after supplement of exogenous H2 by various strategies in vivo. The inadequate production of endogenous H2 play essential roles in brain, heart, and liver disorders, while enhanced endogenous H2 production may improve hepatitis, hepatic ischemia and reperfusion injury, liver regeneration, and hepatic steatosis. Therefore, the endogenous H2 may play essential roles in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Bai K, Hong B, He J, Huang W. Antioxidant Capacity and Hepatoprotective Role of Chitosan-Stabilized Selenium Nanoparticles in Concanavalin A-Induced Liver Injury in Mice. Nutrients 2020; 12:nu12030857. [PMID: 32210138 PMCID: PMC7146609 DOI: 10.3390/nu12030857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have attracted wide attention for their use in nutritional supplements and nanomedicine applications. However, their potential to protect against autoimmune hepatitis has not been fully investigated, and the role of their antioxidant capacity in hepatoprotection is uncertain. In this study, chitosan-stabilized SeNPs (CS-SeNPs) were prepared by means of rapid ultra-filtration, and then their antioxidant ability and free-radical scavenging capacity were evaluated. The hepatoprotective potential of a spray-dried CS-SeNPs powder against autoimmune liver disease was also studied in the concanavalin A (Con A)-induced liver injury mouse model. CS-SeNPs with size of around 60 nm exhibited acceptable oxygen radical absorbance capacity and were able to scavenge DPPH, superoxide anion, and hydroxyl radicals. The CS-SeNPs powder alleviated Con A-caused hepatocyte necrosis and reduced the elevated levels of serum alanine transaminase, aspartate transaminase, and lactic dehydrogenase in Con A-treated mice. These results suggest that the CS-SeNPs powder protected the mice from Con-A-induced oxidative stress in the liver by retarding lipid oxidation and by boosting the activities of superoxide dismutase, glutathione peroxidase, and catalase, partly because of its ability to improve Se retention. In conclusion, SeNPs present potent hepatoprotective potential against Con A-induced liver damage by enhancing the redox state in the liver; therefore, they deserve further development.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (B.H.); (J.H.); (W.H.)
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
- Correspondence: ; Tel.: +86-592-2195309
| | - Bihong Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (B.H.); (J.H.); (W.H.)
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (B.H.); (J.H.); (W.H.)
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
| | - Wenwen Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (B.H.); (J.H.); (W.H.)
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
15
|
Sattar H, Yang J, Zhao X, Cai J, Liu Q, Ishfaq M, Yang Z, Chen M, Zhang Z, Xu S. Selenoprotein-U (SelU) knockdown triggers autophagy through PI3K-Akt-mTOR pathway inhibition in rooster Sertoli cells. Metallomics 2019; 10:929-940. [PMID: 29961786 DOI: 10.1039/c8mt00090e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Selenium (Se) is a major component of male reproduction which exerts its effects via selenoproteins. Selenoprotein U (SelU), a newly identified protein, is expressed highly in eukaryotes and possesses a conserved motif similar to that existing in other thiol-dependent redox regulating selenoproteins; however its function is unknown. To investigate the role of SelU in testis autophagic and/or apoptosis cell death mechanisms, we established a Sertoli cell (SC) model isolated from 45 day old layer roosters. Small interfering RNA (siRNA) technology was used to develop SelU-knockdown (SelU-KD) and normal (N) SC models. Consequent to transfection, electron microscopy, qPCR, and western blot were performed. The results show that the mRNA and proteins of autophagy and anti-apoptosis genes increased while that of anti-autophagic mammalian target of rapamycin (mTOR) and pro-apoptosis genes decreased significantly in SelU-KD in contrast to N cells. Simultaneously, in contrast to N cells the expression of phosphoinositide-3-kinase (PI3K) and protein kinase B (PKB/Akt) both at the mRNA and protein levels decreased significantly in SelU-KD cells. In-addition, SelU depletion altered the expression of regulatory factors and increased the mRNA of TSC (tuberous sclerosis complex) genes as compared to N cells. Extensive autophagosome formation and lysosome degradation with an intact cytoskeleton were observed in SelU-KD cells. Our data indicate that SelU deprivation elicits autophagy and reduces the expression of important growth factors in SCs by disrupting the PI3K-Akt-mTOR signaling pathway. However SelU attenuation did not induce apoptosis in rooster SCs. Taken together, we conclude that SelU is essential for the survival and normal functioning of SCs.
Collapse
Affiliation(s)
- Hamid Sattar
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang SS, Chen YH, Chen N, Wang LJ, Chen DX, Weng HL, Dooley S, Ding HG. Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis 2017; 8:e2688. [PMID: 28333142 PMCID: PMC5386547 DOI: 10.1038/cddis.2017.18] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S), in its gaseous form, plays an important role in tumor carcinogenesis. This study investigated the effects of H2S on the cell biological functions of hepatocellular carcinoma (HCC). HCC cell lines, HepG2 and HLE, were treated with NaHS, a donor of H2S, and rapamycin, a classic autophagy inducer, for different lengths of time. Western blotting, immunofluorescence, transmission electron microscopy (TEM), scratch assay, CCK-8 and flow cytometric analysis were carried out to examine the effects of H2S on HCC autophagy, cell behavior and PI3K/Akt/mTOR signaling. Treatment with NaHS upregulated expression of LC3-II and Atg5, two autophagy-related proteins, in HepG2 and HLE cells. TEM revealed increased numbers of intracellular double-membrane vesicles in those cells treated with NaHS. Like rapamycin, NaHS also significantly inhibited expression of p-PI3K, p-Akt and mTOR proteins in HCC cells. Interestingly, the expression of LC3-II was further increased when the cells were treated with NaHS together with rapamycin. In addition, NaHS inhibited HCC cell migration, proliferation and cell division. These findings show that H2S can induce HCC cell apoptosis. The biological function of the gasotransmitter H2S in HCC cells was enhanced by the addition of rapamycin. Hydrogen sulfide influences multiple biological functions of HCC cells through inhibiting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Shanshan S Wang
- Department of Gastrointestinal and Hepatology, Beijing You' An Hospital Affiliated to Capital Medical University, Beijing, 100069, China.,Cell Biology Laboratory, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Yuhan H Chen
- Department of Gastrointestinal and Hepatology, Beijing You' An Hospital Affiliated to Capital Medical University, Beijing, 100069, China
| | - Ning Chen
- Department of Infections Disease, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Lijun J Wang
- Department of Gastroenterology, Pinggu Hospital, Pinggu District, Beijing 101200,China
| | - Dexi X Chen
- Cell Biology Laboratory, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Honglei L Weng
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Steven Dooley
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Huiguo G Ding
- Department of Gastrointestinal and Hepatology, Beijing You' An Hospital Affiliated to Capital Medical University, Beijing, 100069, China
| |
Collapse
|