1
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Javanbakht P, Talebinasab A, Asadi-Golshan R, Shabani M, Kashani IR, Mojaverrostami S. Effects of Quercetin against fluoride-induced neurotoxicity in the medial prefrontal cortex of rats: A stereological, histochemical and behavioral study. Food Chem Toxicol 2024; 196:115126. [PMID: 39613240 DOI: 10.1016/j.fct.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Exposure to high levels of fluoride leads to brain developmental and functional damage. Motor performance deficits, learning and memory dysfunctions are related to fluoride neurotoxicity in human and rodent studies. MATERIALS AND METHODS Here, we evaluated the effects of Quercetin treatment (25 mg/kg) against sodium fluoride-induced neurotoxicity (NaF, 200 ppm) in the medial prefrontal cortex (mPFC) of male adult rats based on oxidative markers, behavioral performances, mRNA expressions, and stereological parameters. After a 4-week experimental period, the brains of rats were collected and used for molecular and histological analysis. RESULTS We found that 4 weeks of NaF exposure decreased body weight, working memory, Brain-derived neurotrophic factor (BDNF) mRNA expression, total volume of mPFC, number of neurons and non-neuronal cells in the mPFC, and anti-oxidative markers (CAT, SOD, and GSH-Px), while increased lipid peroxidation, P53 mRNA expression and anxiety. Quercetin treatment could significantly reverse the neurotoxic effect of NaF in the mPFC. CONCLUSIONS In summary, Quercetin could decrease the detrimental effects of NaF in the mPFC of adult rats by improving antioxidant potency and consequently decreasing neuronal and non-neuronal apoptosis.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Talebinasab
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chai L, Cao Q, Liu K, Zhu R, Li H, Yu Y, Wang J, Niu R, Zhang D, Yang B, Ommati MM, Sun Z. Exercise Alleviates Fluoride-Induced Learning and Memory Impairment in Mice: Role of miR-206-3p and PREG. Biol Trace Elem Res 2024; 202:5126-5144. [PMID: 38244175 DOI: 10.1007/s12011-024-04068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Fluorosis decreases the learning and memory ability in humans and animals, while exercise can reduce the risk of cognitive decline. However, the effect of exercise on learning and memory in fluoride-exposed mice is unclear. For this purpose, in this study, mice were randomly allotted into four groups (16 mice per group, half male and half female): control group (group C), fluoride group (group F, 100 mg/L sodium fluoride (NaF)), exercise group (group E, treadmill exercise), and E plus F group (group EF, treadmill exercise, and 100 mg/L NaF). During 6 months of exposure, exercise alleviated the NaF-induced decline in memory and learning. In addition, NaF induced injuries in mitochondria and myelin sheath ultrastructure and reduced the neurons number, while exercise restored them. Metabolomics results showed that phosphatidylethanolamine, pregnenolone (PREG), and lysophosphatidic acid (LysoPA) were altered among groups C, F, and EF. Combined with previous studies, it can be suggested that PREG might be a biomarker in response to exercise-relieving fluorine neurotoxicity. The miRNA sequencing results indicated that in the differently expressed miRNAs (DEmiRNAs), miR-206-3p, miR-96-5p, and miR-144-3p were shared in groups C, F, and EF. After the QRT-PCR validation and in vitro experiments, it was proved that miR-206-3p could reduce cell death and regulate AP-1 transcription factor subunit (JunD) and histone deacetylase 4 (HDAC4) to alleviate fluoride neurotoxicity. To sum up, the current study reveals that exercise could alleviate NaF-induced neurotoxicity by targeting miR-206-3p or PREG, which will contribute to revealing the pathogenesis and therapeutic method of fluoride neurotoxicity.
Collapse
Affiliation(s)
- Lei Chai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Qiqi Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ke Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Run Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Hao Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
4
|
Ruehlmann AK, Cecil KM, Lippert F, Yolton K, Ryan PH, Brunst KJ. Epigenome-wide association study of fluoride exposure during early adolescence and DNA methylation among U.S. children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174916. [PMID: 39038671 PMCID: PMC11514227 DOI: 10.1016/j.scitotenv.2024.174916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Exposure to fluoride in early childhood has been associated with altered cognition, intelligence, attention, and neurobehavior. Fluoride-related neurodevelopment effects have been shown to vary by sex and very little is known about the mechanistic processes involved. There is limited research on how fluoride exposure impacts the epigenome, potentially leading to changes in DNA methylation of specific genes regulating key developmental processes. In the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS), urine samples were analyzed using a microdiffusion method to determine childhood urinary fluoride adjusted for specific gravity (CUFsg) concentrations. Whole blood DNA methylation was assessed using the Infinium MethylationEPIC BeadChip 850 k Array. In a cross-sectional analysis, we interrogated epigenome-wide DNA methylation at 775,141 CpG loci across the methylome in relation to CUFsg concentrations in 272 early adolescents at age 12 years. Among all participants, higher concentrations of CUF were associated with differential methylation of one CpG (p < 6 × 10-8) located in the gene body of GBF1 (cg25435255). Among females, higher concentrations of CUFsg were associated with differential methylation of 7 CpGs; only three CpGs were differentially methylated among males with no overlap of significant CpGs observed among females. Secondary analyses revealed several differentially methylated regions (DMRs) and CpG loci mapping to genes with key roles in psychiatric outcomes, social interaction, and cognition, as well as immunologic and metabolic phenotypes. While fluoride exposure may impact the epigenome during early adolescence, the functional consequences of these changes are unclear warranting further investigation.
Collapse
Affiliation(s)
- Anna K Ruehlmann
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Kim M Cecil
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Frank Lippert
- Department of Cariology, Operative Dentistry, and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Kimberly Yolton
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick H Ryan
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly J Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Huang H, Lin Y, Xin J, Sun N, Zhao Z, Wang H, Duan L, Zhou Y, Liu X, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Li H, Ma H, Bai Y, Wei L, Ni X. Fluoride exposure-induced gut microbiota alteration mediates colonic ferroptosis through N 6-methyladenosine (m 6A) mediated silencing of SLC7A11. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116816. [PMID: 39096685 DOI: 10.1016/j.ecoenv.2024.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Fluoride exposure is widespread worldwide and poses a significant threat to organisms, particularly to their gastrointestinal tracts. However, due to limited knowledge of the mechanism of fluoride induced intestinal injury, it has been challenging to develop an effective treatment. To address this issue, we used a series of molecular biology in vitro and in vivo experiments. NaF triggered m6A mediated ferroptosis to cause intestinal damage. Mechanistically, NaF exposure increased the m6A level of SLC7A11 mRNA, promoted YTHDF2 binding to m6A-modified SLC7A11 mRNA, drove the degradation of SLC7A11 mRNA, and led to a decrease in its protein expression, which eventually triggers ferroptosis. Moreover, NaF aggravated ferroptosis of the colon after antibiotics destroyed the composition of gut microbiota. 16 S rRNA sequencing and SPEC-OCCU plots, Zi-Pi relationships, and Spearman correlation coefficients verified that Lactobacillus murinus (ASV54, ASV58, and ASV82) plays a key role in the response to NaF-induced ferroptosis. Collectively, NaF-induced gut microbiota alteration mediates severe intestinal cell injury by inducing m6A modification-mediated ferroptosis. Our results highlight a key mechanism of the gut in response to NaF exposure and suggest a valuable theoretical basis for its prevention and treatment.
Collapse
Affiliation(s)
- Haonan Huang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Department of Gastroenterology, Southern Medical University Hospital of Integrative Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhifang Zhao
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet 850000, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet 850000, China
| | - Yang Bai
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Yu FF, Luo KT, Wang GQ, Zhao CY, Wang M, Li Q, Sha TT, Dong ZC, Zhou GY, Ba Y, Wang S, Pan D. Association between fluoride exposure and psychiatric disorders in adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-10. [PMID: 39022824 DOI: 10.1080/09603123.2024.2378950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
To explore the association between fluoride exposure and depression / anxiety in adults, the 1,169 participants were recruited. The demographic information of participants was obtained through questionnaire survey and physical measurements. Morning urine samples were collected, and urinary fluoride (UF) level was determined. Changes in depression and anxiety levels were evaluated using the Patient Health Questionnaire-2 and General Anxiety Disorder-2 scales. The association between psychiatric disorders and UF levels was analyzed. In the total population, the prevalence of depression and anxiety were 3.17% and 4.19%, respectively. These results showed no significant association between depression / anxiety scale scores and UF levels. Logistic regression suggested no significant association between depression / anxiety levels, and UF levels, but there was an interaction between UF and income on depression. Our findings highlighted the interaction between fluoride exposure and monthly income, which may affect depression in adults.
Collapse
Affiliation(s)
- Fang-Fang Yu
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Kang-Ting Luo
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Guo-Qing Wang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Cheng-Yu Zhao
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Miao Wang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Qian Li
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tong-Tong Sha
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zai-Chao Dong
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Guo-Yu Zhou
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yue Ba
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shuai Wang
- Department of Water Resources Monitoring, Institute of Natural Resources Monitoring and Comprehensive Land Improvement of Henan Province, Zhengzhou, China
- Key Laboratory of Protection and Restoration of Water and Soil Resources in the Middle and Lower Reaches of the Yellow River Basin, MNR
| | - Deng Pan
- Department of Water Resources Monitoring, Institute of Natural Resources Monitoring and Comprehensive Land Improvement of Henan Province, Zhengzhou, China
- Key Laboratory of Protection and Restoration of Water and Soil Resources in the Middle and Lower Reaches of the Yellow River Basin, MNR
| |
Collapse
|
7
|
Du Y, Feng Z, Gao M, Wang A, Yan X, Chen R, Liu B, Yu F, Ba Y, Zhou G. Impaired neurogenesis induced by fluoride via the Notch1 signaling and effects of carvacrol intervention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124371. [PMID: 38880328 DOI: 10.1016/j.envpol.2024.124371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The negative regulation on neurogenesis has been implicated in fluoride neurotoxicity, while the evidence is limited. To explore whether fluoride interferes with neurogenesis via the Notch1 signaling and the potential alleviation effects of carvacrol (CAR), we conducted in vivo and in vitro experiments, as well as epidemiological analyses in this study. The results showed that urinary fluoride levels and circulating Notch1 levels were associated with IQ levels in boys. NaF-treated rats had fewer neurons, lower densities of dendritic spines, depressed neurogenesis, and impaired learning and memory abilities. In vitro experiments using undifferentiated PC12 cells mimicking neurogenesis revealed that NaF suppressed differentiation and neurite outgrowth. Besides, Notch1 signaling activation was detected in vivo and in vitro. The latter was confirmed using an in vitro model supplemented with DAPT, a potent Notch1 inhibitor. Furthermore, CAR supplementation negatively regulated NICD1 and Hes1 expressions and promoted hippocampal neurogenesis, thereby improving neurological functions in NaF-treated rats. These findings indicated that the inhibition of neurogenesis in hippocampi induced by fluoride via Notch1 signaling activation may be one of the underlying mechanisms of its neurotoxicity, and that CAR significantly alleviated the neurotoxicity of NaF via the Notch1 signaling.
Collapse
Affiliation(s)
- Yuhui Du
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zichen Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Minghui Gao
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
| | - Anqi Wang
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, 450000, China
| | - Xi Yan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Ruiqin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, 450000, China
| | - Bin Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
8
|
Zhang S, Meng L, Hu Y, Yuan Z, Li J, Liu H. Green Synthesis and Biosafety Assessment of MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308600. [PMID: 37974554 DOI: 10.1002/smll.202308600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The rise of MXene-based materials with fascinating physical and chemical properties has attracted wide attention in the field of biomedicine, because it can be exploited to regulate a variety of biological processes. The biomedical applications of MXene are still in its infancy, nevertheless, the comprehensive evaluation of MXene's biosafety is desperately needed. In this review, the composition and the synthetic methods of MXene materials are first introduced from the view of biosafety. The evaluation of the interaction between MXene and cells, as well as the safety of different forms of MXene applied in vivo are then discussed. This review provides a basic understanding of MXene biosafety and may bring new inspirations to the future applications of MXene-based materials in biomedicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- Department of Stomatology, Cangzhou Medical College, Jinan, 061001, China
| | - Ling Meng
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Ying Hu
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Zihan Yuan
- State Key Laboratory of Crystal Materials Shandong University, Jinan, Shandong, 250100, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
9
|
Zhang Q, Li T, Shi R, Qi R, Hao X, Ma B. Fluoride promotes the secretion of inflammatory factors in microglia through NLRP3/Caspase-1/GSDMD pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19844-19855. [PMID: 38367109 DOI: 10.1007/s11356-024-32443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
It is widespread of endemic fluorosis in China, and the exposure of excessive fluoride will cause nervous system disease and activate microglia. However, the mechanism of the damage is not clear. It is well-known that NLRP3/Caspase-1/GSDMD pathway, a classic pyroptosis pathway, is widely involved in the occurrence and development of nervous system-related diseases, infectious diseases, and atherosclerotic diseases. This research aimed to explore the molecular mechanism of sodium fluoride on inflammation and pyroptosis in BV2 microglia based on the NLRP3/Caspase-1/GSDMD signaling pathway. BV2 microglia was treated with sodium fluoride at the dose of 0.25, 1, and 2 mmol/L for 24, 48, and 72 h, respectively. Cell viability, cell morphology, lactate dehydrogenase content, and related proteins and genes were examined to investigate if sodium fluoride caused damage to BV2 microglia through the pyroptosis pathway. Dithiolam (5 μmol/L), a pyroptosis inhibitor, was added for further verification. NaF could induced BV2 cells injury in a dose-dependent fashion through disrupting the integrity of cell membranes and increasing IL-1β via upregulating NLRP3, Caspase-1, and its downstream protein GSDMD. Disulfiram could improve these changes caused by NaF. In conclusion, our results suggested that NLRP3/Caspase-1/GSDMD-mediated classical pyroptosis pathway was involved in fluoride-induced BV2 microglia damage.
Collapse
Affiliation(s)
- Qiuyi Zhang
- School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Tao Li
- School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Ruili Shi
- School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
- Institute of Neuroscience, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Ruifang Qi
- School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
- Institute of Neuroscience, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Xiaoqiong Hao
- School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
- Institute of Neuroscience, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Baohui Ma
- School of Basic Medical Sciences and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China.
- Institute of Neuroscience, Baotou Medical College, Baotou, 014040, Inner Mongolia, China.
| |
Collapse
|
10
|
Kupnicka P, Listos J, Tarnowski M, Kolasa A, Kapczuk P, Surówka A, Kwiatkowski J, Janawa K, Chlubek D, Baranowska-Bosiacka I. The Effect of Prenatal and Neonatal Fluoride Exposure to Morphine-Induced Neuroinflammation. Int J Mol Sci 2024; 25:826. [PMID: 38255899 PMCID: PMC10815549 DOI: 10.3390/ijms25020826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Physical dependence is associated with the formation of neuroadaptive changes in the central nervous system (CNS), both at the molecular and cellular levels. Various studies have demonstrated the immunomodulatory and proinflammatory properties of morphine. The resulting neuroinflammation in drug dependence exacerbates substance abuse-related behaviors and increases morphine tolerance. Studies prove that fluoride exposure may also contribute to the development of neuroinflammation and neurodegenerative changes. Morphine addiction is a major social problem. Neuroinflammation increases tolerance to morphine, and neurodegenerative effects caused by fluoride in structures related to the development of dependence may impair the functioning of neuronal pathways, change the concentration of neurotransmitters, and cause memory and learning disorders, which implies this element influences the development of dependence. Therefore, our study aimed to evaluate the inflammatory state of selected brain structures in morphine-dependent rats pre-exposed to fluoride, including changes in cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression as well as microglial and astroglial activity via the evaluation of Iba1 and GFAP expression. We provide evidence that both morphine administration and fluoride exposure have an impact on the inflammatory response by altering the expression of COX-1, COX-2, ionized calcium-binding adapter molecule (Iba1), and glial fibrillary acidic protein (GFAP) in brain structures involved in dependence development, such as the prefrontal cortex, striatum, hippocampus, and cerebellum. We observed that the expression of COX-1 and COX-2 in morphine-dependent rats is influenced by prior fluoride exposure, and these changes vary depending on the specific brain region. Additionally, we observed active astrogliosis, as indicated by increased GFAP expression, in all brain structures of morphine-dependent rats, regardless of fluoride exposure. Furthermore, the effect of morphine on Iba1 expression varied across different brain regions, and fluoride pre-exposure may influence microglial activation. However, it remains unclear whether these changes are a result of the direct or indirect actions of morphine and fluoride on the factors analyzed.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland
| | - Jakub Kwiatkowski
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Kamil Janawa
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Nadei OV, Agalakova NI. Optimal Reference Genes for RT-qPCR Experiments in Hippocampus and Cortex of Rats Chronically Exposed to Excessive Fluoride. Biol Trace Elem Res 2024; 202:199-209. [PMID: 37010724 DOI: 10.1007/s12011-023-03646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Normalization of the quantitative real-time PCR (RT-qPCR) data to the stably expressed reference genes is critically important for obtaining reliable results. However, all previous studies focused on F- toxicity for brain tissues used a single, non-validated reference gene, what might be a cause of contradictory or false results. The present study was designed to analyze the expression of a series of reference genes to select optimal ones for RT-qPCR analysis in cortex and hippocampus of rats chronically exposed to excessive fluoride (F-) amounts. Six-week-old male Wistar rats randomly assigned to four groups consumed regular tap water with 0.4 (control), 5, 20, and 50 ppm F- (NaF) for 12 months. The expression of six genes (Gapdh, Pgk1, Eef1a1, Ppia, Tbp, Helz) was compared by RT-qPCR in brain tissues from control and F--exposed animals. The stability of candidate reference genes was evaluated by coefficient of variation (CV) analysis and RefFinder online program summarizing the results of four well-acknowledged statistical methods (Delta-Ct, BestKeeper, NormFinder, and GeNorm). In spite of some discrepancies in gene ranking between these algorisms, Pgk1, Eef1a1, and Ppia were found to be most valid in cortex, while Ppia, Eef1a1, and Helz showed the greatest expression stability in hippocampus. Tbp and Helz were identified as the least stable genes in cortex, whereas Gapdh and Tbp are unsuitable for hippocampus. These data indicate that reliable mRNA quantification in the cortex and hippocampus of F--poisoned rats is possible using normalization to geometric mean of Pgk1+Eef1a1 or Ppia+Eef1a1 expression, respectively.
Collapse
Affiliation(s)
- Olga V Nadei
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, Saint-Petersburg, Russia
| | - Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, Saint-Petersburg, Russia.
| |
Collapse
|
12
|
Elghareeb MM, Elshopakey GE, Rezk S, Ateya A, El-Ashry ES, Shukry M, Ghamry HI, Alotaibi BS, Hashem NMA. Nigella sativa oil restores hormonal levels, and endocrine signals among thyroid, ovarian, and uterine tissues of female Wistar rats following sodium fluoride toxicity. Biomed Pharmacother 2024; 170:116080. [PMID: 38147737 DOI: 10.1016/j.biopha.2023.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
The current study aimed to explore the possible prophylactic and therapeutic effect of Nigella sativa L. oil (NSO) against disruption of endocrine signals and injuries in the thyroid gland, ovary, and uterine tissues induced by sodium fluoride (NaF). Twenty-eight mature female Wistar rats were randomly allocated into four experimental groups (n = 7/group) as follows: control group; NaF group, orally received NaF (20 mg/kg b.wt.) daily; NSO/NaF, orally received NSO (300 mg/kg b.wt.) two weeks before being given NaF and continued throughout the experiment; and NSO+NaF group orally received NSO concurrently with NaF. Our results indicated that NSO restored hormonal balance and suppressed oxidative damage and inflammation. Moreover, the levels of triiodothyronine, thyroxine, thyroid peroxidase, estrogen (E2), progesterone, follicle-stimulating hormone, and luteinizing hormone were elevated, while prostaglandins F2-α and cortisol levels were decreased in NSO treated groups compared to NaF-intoxicated rats. As well, NSO significantly boosted levels of antioxidant molecules, and lowered lipid peroxidation of examined tissues, unlike NaF-treated group. NSO also up-regulated antioxidant enzymes, anti-apoptotic protein, zona pellucida sperm-binding protein, bone morphogenetic protein, and thyroid stimulating hormone, conversely down-regulated inflammatory cytokines, apoptotic proteins, estrogen receptor-α, estrogen receptor-β, and thyroid stimulating hormone receptors compared to NaF-intoxicated group. Additionally, NSO ameliorated tissue damage of the thyroid gland, ovary, and uterus induced by NaF. -Overall, the prophylactic group (NSO/NaF) performed better antioxidant and anti-inflammatory activities than the treated group almost in all examined tissues, which is reflected by the improvement in the structure of the thyroid, ovarian, and uterine tissues.
Collapse
Affiliation(s)
- Mona M Elghareeb
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Ateya
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
13
|
Wang F, Li Y, Tang D, Zhao J, Yang B, Zhang C, Su M, He Z, Zhu X, Ming D, Liu Y. Epidemiological analysis of drinking water-type fluorosis areas and the impact of fluorosis on children's health in the past 40 years in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9925-9940. [PMID: 37906380 PMCID: PMC10673999 DOI: 10.1007/s10653-023-01772-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
This study analyzed the effect of China's fluorosis prevention and control program, which has been in effect for more than 40 years, and the impact of fluorosis on children's health. Relevant research studies were retrieved from the following online databases from the time of their inception to May 2022: PubMed, ScienceDirect, Embase, Cochrane, China National Knowledge Infrastructure, and Wanfang. The Review Manager 5.3 software was used in statistical analyses. This article included seventy studies: Thirty-eight studies reported the effect of improving water quality and reducing fluoride content, the incidence rate of dental fluorosis in children, and the level of urinary fluoride, and thirty-two studies reported the intelligence quotient (IQ) and health status of children. Following water improvement strategies, the fluoride levels in drinking water decreased significantly; urinary fluoride levels and dental fluorosis decreased significantly in children. With regard to the effect of fluorosis on the IQ of children, the results showed that the IQ of children in areas with a high fluoride of fluorosis was lesser than that in areas with a low fluoride, and this difference was significant. Based on the prevalence of dental fluorosis and its effect on the intelligence of children, it appears that reducing fluoride levels in drinking water and monitoring water quality are important strategies for the prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Feiqing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin City, 300072, China
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Yanju Li
- Clinical Research Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Dongxin Tang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Jianing Zhao
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Bo Yang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Chike Zhang
- Clinical Research Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Min Su
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guiyang, 550004, Guizhou Province, China
| | - Zhixu He
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guiyang, 550004, Guizhou Province, China
| | - Xiaodong Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin City, 300072, China.
- Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin City, 300072, China
| | - Yang Liu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
14
|
El-Helaly A, Abou-El-Naga AM, Alshehri KM, El-Dein MA. Miracle Tree ( Moringa oleifera) Attuned GFAP and Synaptophysin Levels, Oxidative Stress and Biomarkers in Cerebellar Fluorosis of Pregnant Rats. Pak J Biol Sci 2023; 26:628-650. [PMID: 38334155 DOI: 10.3923/pjbs.2023.628.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
<b>Background and Objective:</b> Cerebellar fluorosis is a health issue associated with excessive exposure to fluoride (F) either in direct or indirect ways as pesticides, drinking water and caries preventing prescriptions. It is characterized by elevation in oxidative stress, inflammation, demyelination and Purkinje cell loss. <i>Moringa oleifera</i> (M), is a widely cultivated plant used as a health-booster agent in modulating various disorders because of its high content of vitamins and minerals. The beneficial effect of moringa against fluoride-induced cerebellar toxicity in pregnant rats was investigated in this study. <b>Materials and Methods:</b> Twenty pregnant rats were administered daily 300 mg kg<sup></sup><sup>1</sup> <i>M. oleifera</i> aqueous extract incorporated with 10 mg kg<sup></sup><sup>1</sup> of F intoxication from the 1st day of gestation until the 20th day. Following the termination of the trial, sera were collected and cerebellar tissue was removed for further examinations, along with the assessment of maternity. <b>Results:</b> The <i>M. oleifera</i> significantly normalized serum FSH, LH, progesterone, dopamine and serotonin levels of F-intoxicated mothers. Additionally, <i>M. oleifera</i> markedly prevented the lipid peroxidation and DNA fragmentation indicated by the tail length and moment in comet assay (-34.4 and -75.3%, respectively, when compared to the fluoride intoxicated group), while sustaining the levels of SOD and CAT revealing its antioxidant activity. The <i>M. oleifera</i> regressed the cerebellar α-amylase (-25.4%) and acetylcholinesterase activity (-40.6%), also attenuated GFAP (-73.4%, p<0.0001), synaptophysin level (216.6%, p<0.0001) and IL-6 expression (-91.2%) comparing to fluoride only treated mothers. <b>Conclusion:</b> Histological and ultrastructural examinations confirmed the recuperating effects of <i>M. oleifera</i> on mothers' cerebellar tissue intoxicated with fluoride indicated by intact folia and restored Purkinje cells number and architecture. The maternal study emphasized the anti-abortifacient activity of moringa against fluoride induced-fetotoxicity.
Collapse
|
15
|
Zhao T, Lv J, Peng M, Mi J, Zhang S, Liu J, Chen T, Sun Z, Niu R. Fecal microbiota transplantation and short-chain fatty acids improve learning and memory in fluorosis mice by BDNF-PI3K/AKT pathway. Chem Biol Interact 2023; 387:110786. [PMID: 39491142 DOI: 10.1016/j.cbi.2023.110786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Fluoride, an environmental toxicant, not only arouses intestinal microbiota dysbiosis, but also causes neuronal apoptosis and a decline in learning and memory ability. The purpose of this study was to explore whether fecal microbiota transplantation (FMT) from healthy mice and bacteria-derived metabolites short-chain fatty acids (SCFAs) supplement protect against fluoride-induced learning and memory impairment. Results showed that FMT reversed the elevated percentage of working memory errors (WME) and reference memory errors (RME) in fluorosis mice during the eight-arm maze test. Nissl and TUNEL staining presented that fluoride led to a decreased proportion of Nissl bodies area in the hippocampal CA3 region and an increased apoptotic ratio of nerve cells in CA1, CA3 and DG areas, whereas FMT alleviated those pathological damages. Moreover, the expressions of mRNA in hippocampal BDNF, PDK1, AKT, Bcl-2, and Bcl-xL were downregulated in mice exposed to fluoride, but the levels of PI3K, Bax, Bak, and Caspase-7 mRNA were upregulated. NaF treatment had an increase in PI3K and Caspase-3 protein levels and reduced the expressions of these four proteins, including BDNF, p-PI3K, AKT and p-AKT. By contrast, FMT enhanced the expression of BDNF and thus activated the PI3K/AKT pathway. Besides, the 16S rRNA sequencing revealed that fluoride caused a reduction in certain SCFA producers in the colon as evidenced by a decline in Erysipelatoclostridiaceae, and a downward trend in Akkermansia, Blautia and Alistipes. However, the disordered gut microbiome was restored via frequent FMT. Of note, SCFAs administration also increased BDNF levels and regulated its downstream pathways, which contributed to cell survival and learning and memory function recovery. In conclusion, FMT and SCFAs may activate the BDNF-PI3K/AKT pathway to play an anti-apoptotic role and ultimately improve learning and memory deficits in fluorosis mice.
Collapse
Affiliation(s)
- Taotao Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jia Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyuan Peng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiahui Mi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shaosan Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Tong Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
16
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
17
|
Gopnar VV, Rakshit D, Bandakinda M, Kulhari U, Sahu BD, Mishra A. Fisetin attenuates arsenic and fluoride subacute co-exposure induced neurotoxicity via regulating TNF-α mediated activation of NLRP3 inflammasome. Neurotoxicology 2023:S0161-813X(23)00086-4. [PMID: 37331635 DOI: 10.1016/j.neuro.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Groundwater is considered safe, however, the occurrence of contaminants like arsenic and fluoride has raised a major healthcare concern. Clinical studies suggested that arsenic and fluoride co-exposure induced neurotoxicity, however efforts to explore safe and effective management of such neurotoxicity are limited. Therefore, we investigated the ameliorative effect of Fisetin against arsenic and fluoride subacute co-exposure-induced neurotoxicity, and associated biochemical and molecular changes. Male BALB/c mice Arsenic (NaAsO2: 50mg/L) and fluoride (NaF: 50mg/L) were exposed to drinking water and fisetin (5, 10, and 20mg/kg/day) was administered orally for 28 days. The neurobehavioral changes were recorded in the open field, rotarod, grip strength, tail suspension, forced swim, and novel object recognition test. The co-exposure resulted in anxiety-like behaviour, loss of motor coordination, depression-like behaviour, and loss of novelty-based memory, along with enhanced prooxidant, inflammatory markers and loss of cortical and hippocampal neurons. The treatment with fisetin reversed the co-exposure-induced neurobehavioral deficit along with restoration of redox & inflammatory milieu, and cortical and hippocampal neuronal density. Apart from antioxidants, inhibition of TNF-α/ NLRP3 expression has been suggested as one of the plausible neuroprotective mechanisms of Fisetin in this study.
Collapse
Affiliation(s)
- Vitthal V Gopnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Mounisha Bandakinda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Uttam Kulhari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India.
| |
Collapse
|
18
|
Li L, Xin J, Wang H, Wang Y, Peng W, Sun N, Huang H, Zhou Y, Liu X, Lin Y, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Qin X, Bai Y, Ni X. Fluoride disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated RhoA/ROCK signaling and myosin light chain kinase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114940. [PMID: 37099960 DOI: 10.1016/j.ecoenv.2023.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Fluoride is a common contaminant of groundwater and agricultural commodity, which poses challenges to animal and human health. A wealth of research has demonstrated its detrimental effects on intestinal mucosal integrity; however, the underlying mechanisms remain obscure. This study aimed to investigate the role of the cytoskeleton in fluoride-induced barrier dysfunction. After sodium fluoride (NaF) treatment of the cultured Caco-2 cells, both cytotoxicity and cytomorphological changes (internal vacuoles or massive ablation) were observed. NaF lowered transepithelial electrical resistance (TEER) and enhanced paracellular permeation of fluorescein isothiocyanate dextran 4 (FD-4), indicating Caco-2 monolayers hyperpermeability. In the meantime, NaF treatment altered both the expression and distribution of the tight junction protein ZO-1. Fluoride exposure increased myosin light chain II (MLC2) phosphorylation and triggered actin filament (F-actin) remodeling. While inhibition of myosin II by Blebbistatin blocked NaF-induced barrier failure and ZO-1 discontinuity, the corresponding agonist Ionomycin had effects comparable to those of fluoride, suggesting that MLC2 serves as an effector. Given the mechanisms upstream of p-MLC2 regulation, further studies demonstrated that NaF activated RhoA/ROCK signaling pathway and myosin light chain kinase (MLCK), strikingly increasing the expression of both. Pharmacological inhibitors (Rhosin, Y-27632 and ML-7) reversed NaF-induced barrier breakdown and stress fiber formation. The role of intracellular calcium ions ([Ca2+]i) in NaF effects on Rho/ROCK pathway and MLCK was investigated. We found that NaF elevated [Ca2+]i, whereas chelator BAPTA-AM attenuated increased RhoA and MLCK expression as well as ZO-1 rupture, thus, restoring barrier function. Collectively, abovementioned results suggest that NaF induces barrier impairment via Ca2+-dependent RhoA/ROCK pathway and MLCK, which in turn triggers MLC2 phosphorylation and rearrangement of ZO-1 and F-actin. These results provide potential therapeutic targets for fluoride-induced intestinal injury.
Collapse
Affiliation(s)
- Lianxin Li
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqi Peng
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haonan Huang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiang Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Bai
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Fiore G, Veneri F, Di Lorenzo R, Generali L, Vinceti M, Filippini T. Fluoride Exposure and ADHD: A Systematic Review of Epidemiological Studies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040797. [PMID: 37109754 PMCID: PMC10143272 DOI: 10.3390/medicina59040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Background and objectives: Attention deficit hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder characterized by two dimensions: inattentiveness and hyperactivity/impulsivity. ADHD may be the result of complex interactions between genetic, biological and environmental factors possibly including fluoride exposure. Materials and methods: A literature search was performed on 31 March 2023 in the following databases: PubMed, Embase and Web of Science. We defined the following inclusion criteria according to the PECOS statement: a healthy child and adolescent population (P), fluoride exposure of any type (E), comparison with low or null exposure (C), ADHD spectrum disorder (O), and ecological, cross-sectional, case-control and cohort studies (S). Results: We found eight eligible records corresponding to seven different studies investigating the effect of fluoride exposure on children and adolescents. One study had a cohort design and one a case-control one, while five were cross-sectional. Only three studies applied validated questionnaires for the purpose of ADHD diagnosis. As regards exposure assessment, levels of fluoride in urine and tap water were, respectively used in three and two studies, while two used both. Three studies reported a positive association with ADHD risk, all assessing exposure through fluoride levels. By using urinary fluoride, conversely, a positive correlation with inattention, internalizing symptoms, cognitive and psychosomatic problems was found in three studies, but no relation was found in the other one. Conclusions: The present review suggests that early exposure to fluoride may have neurotoxic effects on neurodevelopment affecting behavioral, cognitive and psychosomatic symptoms related to ADHD diagnosis. However, due to the heterogeneity of the studies included, current evidence does not allow to conclusively confirm that fluoride exposure is specifically linked to ADHD development.
Collapse
Affiliation(s)
- Gianluca Fiore
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Federica Veneri
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences-University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rosaria Di Lorenzo
- Service of Psychiatric Diagnosis and Care (SPDC), Department of Mental Health and Drug Abuse, AUSL Modena, 41124 Modena, Italy
| | - Luigi Generali
- Unit of Dentistry & Oral-Maxillo-Facial Surgery, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
20
|
Zhou J, Sun D, Wei W. Necessity to Pay Attention to the Effects of Low Fluoride on Human Health: an Overview of Skeletal and Non-skeletal Damages in Epidemiologic Investigations and Laboratory Studies. Biol Trace Elem Res 2023; 201:1627-1638. [PMID: 35661326 DOI: 10.1007/s12011-022-03302-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Due to the implementation of water improvement and fluoride reduction plans supported by central and local governments in recent years, areas with high fluoride exposure are being gradually decreased. Therefore, it is of practical importance to study the effect of low fluoride on human health. Epidemiologic investigations and in vivo and in vitro studies based on low fluoride have also confirmed that fluoride not only causes skeletal damage, such as dental fluorosis, but also causes non-skeletal damage involving the cardiovascular system, nervous system, hepatic and renal function, reproductive system, thyroid function, blood glucose homeostasis, and the immune system. This article summarizes the effects of low fluoride on human and animal skeletal and non-skeletal systems. A preliminary exploration of corresponding mechanisms that will help to fully understand the harm of low fluoride on human health was undertaken to provide the basis for establishing new water fluoride standards and help to implement individual guidance.
Collapse
Affiliation(s)
- Jing Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China.
| |
Collapse
|
21
|
Chen L, Jia P, Liu Y, Wang R, Yin Z, Hu D, Ning H, Ge Y. Fluoride exposure disrupts the cytoskeletal arrangement and ATP synthesis of HT-22 cell by activating the RhoA/ROCK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114718. [PMID: 36950989 DOI: 10.1016/j.ecoenv.2023.114718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fluoride, an environmental contaminant, is ubiquitously present in air, water, and soil. It usually enters the body through drinking water and may cause structural and functional disorders in the central nervous system in humans and animals. Fluoride exposure affects cytoskeleton and neural function, but the mechanism is not clear. METHODS The specific neurotoxic mechanism of fluoride was explored in HT-22 cells. Cellular proliferation and toxicity detection were investigated by CCK-8, CCK-F, and cytotoxicity detection kits. The development morphology of HT-22 cells was observed under a light microscope. Cell membrane permeability and neurotransmitter content were determined using lactate dehydrogenase (LDH) and glutamate content determination kits, respectively. The ultrastructural changes were detected by transmission electron microscopy, and actin homeostasis was observed by laser confocal microscopy. ATP enzyme and ATP activity were determined using the ATP content kit and ultramicro-total ATP enzyme content kit, respectively. The expression levels of GLUT1 and 3 were assessed by Western Blot assays and qRT-PCR. RESULTS Our results showed that fluoride reduced the proliferation and survival rates of HT-22 cells. Cytomorphology showed that dendritic spines became shorter, cellular bodies became rounder, and adhesion decreased gradually after fluoride exposure. LDH results showed that fluoride exposure increased the membrane permeability of HT-22 cells. Transmission electron microscopy results showed that fluoride caused cells to swell, microvilli content decreased, cellular membrane integrity was damaged, chromatin was sparse, mitochondria ridge gap became wide, and microfilament and microtubule density decreased. Western Blot and qRT-PCR analyses showed that RhoA/ROCK/LIMK/Cofilin signaling pathway was activated by fluoride. F-actin/G-actin fluorescence intensity ratio remarkably increased in 0.125 and 0.5 mM NaF, and the mRNA expression of MAP2 was significantly decreased. Further studies showed that GLUT3 significantly increased in all fluoride groups, while GLUT1 decreased (p < 0.05). ATP contents remarkably increased, and ATP enzyme activity substantially decreased after NaF treatment with the control. CONCLUSION Fluoride activates the RhoA/ROCK/LIMK/Cofilin signaling pathway, impairs the ultrastructure, and depresses the connection of synapses in HT-22 cells. Moreover, fluoride exposure affects the expression of glucose transporters (GLUT1 and 3) and ATP synthesis. Sum up fluoride exposure disrupts actin homeostasis, ultimately affecting structure, and function in HT-22 cells. These findings support our previous hypothesis and provide a new perspective on the neurotoxic mechanism of fluorosis.
Collapse
Affiliation(s)
- Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China; Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Penghuan Jia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Yuye Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Rui Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China.
| |
Collapse
|
22
|
Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E. Fluoride Induced Neurobehavioral Impairments in Experimental Animals: a Brief Review. Biol Trace Elem Res 2023; 201:1214-1236. [PMID: 35488996 DOI: 10.1007/s12011-022-03242-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
Fluoride is one of the major toxicants in the environment and is often found in drinking water at higher concentrations. Living organisms including humans exposed to high fluoride levels are found to develop mild-to-severe detrimental pathological conditions called fluorosis. Fluoride can cross the hematoencephalic barrier and settle in various brain regions. This accumulation affects the structure and function of both the central and peripheral nervous systems. The neural ultrastructure damages are reflected in metabolic and cognitive activities. Hindrances in synaptic plasticity and signal transmission, early neuronal apoptosis, functional alterations of the intercellular signaling pathway components, improper protein synthesis, dyshomeostasis of the transcriptional and neurotrophic factors, oxidative stress, and inflammatory responses are accounted for the fluoride neurotoxicity. Fluoride causes a decline in brain functions that directly influence the overall quality of life in both humans and animals. Animal studies are widely used to explore the etiology of fluoride-induced neurotoxicity. A good number of these studies support a positive correlation between fluoride intake and toxicity phenotypes closely associated with neurotoxicity. However, the experimental dosages highly surpass the normal environmental concentrations and are difficult to compare with human exposures. The treatment procedures are highly dependent on the dosage, duration of exposure, sex, and age of specimens among other factors which make it difficult to arrive at general conclusions. Our review aims to explore fluoride-induced neuronal damage along with associated histopathological, behavioral, and cognitive effects in experimental models. Furthermore, the correlation of various molecular mechanisms upon fluoride intoxication and associated neurobehavioral deficits has been discussed. Since there is no well-established mechanism to prevent fluorosis, phytochemical-based alleviation of its characteristic indications has been proposed as a possible remedial measure.
Collapse
Affiliation(s)
| | - Srija Babu
- Bharathiar University, Coimbatore, Tamilnadu, India
| | | | | | | |
Collapse
|
23
|
Li W, Sun Z, Li M, Yue B, Zhang X, Zhao Y, Wang J. Exposure to Fluoride From in Utero to Puberty Alters Gonadal Structure and Steroid Hormone Expression in Offspring Rats. Biol Trace Elem Res 2023; 201:1261-1273. [PMID: 35445938 DOI: 10.1007/s12011-022-03220-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
The reproductive toxicity of fluoride has been proven by a large number of studies. While the underlying mechanism of reproductive toxicity during pregnancy is still unclear. Hence, in this study, we investigated the effects of fluoride exposure on ovarian and testicular steroid hormone synthesis in young and adult rat offspring. We established a model of fluoride-exposed rat pups from in utero to puberty to explore the mechanisms of fluoride impacts on reproductive toxicity in the offspring. The results showed that NaF exposure did not affect the 3 weeks of age offspring. Whereas the body weight in both sexes significantly decreased, and the ovarian and testicular tissue structures were damaged at 11 weeks of age. In females, the total number of secondary follicles and mature follicles were significantly reduced after NaF exposure. Moreover, estradiol (E2) and follicle-stimulating hormone (FSH) levels in the females were significantly reduced in the 100 mg/L NaF exposure group. In males, the sperm viability and testosterone (T) were significantly decreased in the NaF exposure groups. Additionally, during steroidogenesis in ovaries and testes, fluoride remarkably decreased the expression levels of genes and proteins, including acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17a-hydroxylase (CYP17A1), and cholesterol side-chain cleavage enzyme (CYP11A1), while the mRNA levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) decreased only in the testes. These results indicated that fluoride exposure disrupted the steroid hormone balance by changing several important steroidogenic-related genes associated with the development of the gonads, and damage the normal structure of the gonads in rat offspring.
Collapse
Affiliation(s)
- Wanpan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Meiyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baijuan Yue
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xuhua Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
24
|
Zhang J, Tang Y, Hu Z, Xu W, Ma Y, Xu P, Xing H, Niu Q. The inhibition of TRPML1/TFEB leads to lysosomal biogenesis disorder, contributes to developmental fluoride neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114511. [PMID: 36608573 DOI: 10.1016/j.ecoenv.2023.114511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Fluoride is capable of inducing developmental neurotoxicity; regrettably, the mechanism is obscure. We aimed to probe the role of lysosomal biogenesis disorder in developmental fluoride neurotoxicity-specifically, the regulating effect of the transient receptor potential mucolipin 1 (TRPML1)/transcription factor EB (TFEB) signaling pathway on lysosomal biogenesis. Sprague-Dawley rats were given fluoridated water freely, during pregnancy to the parental rats to 2 months after delivery to the offspring. In addition, neuroblastoma SH-SY5Y cells were treated with sodium fluoride (NaF), with or without mucolipin synthetic agonist 1 (ML-SA1) or adenovirus TFEB (Ad-TFEB) intervention. Our findings revealed that NaF impaired learning and memory as well as memory retention capacities in rat offspring, induced lysosomal biogenesis disorder, and decreased lysosomal degradation capacity, autophagosome accumulation, autophagic flux blockade, apoptosis, and pyroptosis. These changes were evidenced by the decreased expression of TRPML1, nuclear TFEB, LAMP2, CTSB, and CTSD, as well as increased expression of LC3-II, p62, cleaved PARP, NLRP3, Caspase1, and IL-1β. Furthermore, TRPML1 activation and TFEB overexpression both restored TFEB nuclear protein expression and promoted lysosomal biogenesis while enhancing lysosomal degradation capacity, recovering autophagic flux, and attenuating NaF-induced apoptosis and pyroptosis. Taken together, these results show that NaF promotes the progression of developmental fluoride neurotoxicity by inhibiting TRPML1/TFEB expression and impeding lysosomal biogenesis. Notably, the activation of TRPML1/TFEB alleviated NaF-induced developmental neurotoxicity. Therefore, TRPML1/TFEB may be promising markers of developmental fluoride neurotoxicity.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, People's Republic of China.
| |
Collapse
|
25
|
Bartos M, Gumilar F, Baier CJ, Dominguez S, Bras C, Cancela LM, Minetti A, Gallegos CE. Rat developmental fluoride exposure affects retention memory, leads to a depressive-like behavior, and induces biochemical changes in offspring rat brains. Neurotoxicology 2022; 93:222-232. [DOI: 10.1016/j.neuro.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
26
|
Zhang J, Tang Y, Xu W, Hu Z, Xu S, Niu Q. Fluoride-Induced Cortical Toxicity in Rats: the Role of Excessive Endoplasmic Reticulum Stress and Its Mediated Defective Autophagy. Biol Trace Elem Res 2022:10.1007/s12011-022-03463-5. [PMID: 36327065 DOI: 10.1007/s12011-022-03463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The cerebral cortex is closely associated with learning and memory, and fluoride is capable of inducing cortical toxicity, but its mechanism is unclear. This study aimed to investigate the role of endoplasmic reticulum stress and autophagy in fluoride-induced cortical toxicity. Rats exposed to sodium fluoride (NaF) were used as an in vivo model. The results showed that NaF exposure impaired the learning and memory capacities and increased urinary fluoride levels in rats. In addition, NaF exposure induced excessive endoplasmic reticulum stress and associated apoptosis, as evidenced by elevated IRE1α, GRP78, cleaved caspase-12, and cleaved caspase-3, as well as defective autophagy, as evidenced by increased expression of Beclin1, LC3-II, and p62 in cortical areas. Importantly, the endoplasmic reticulum stress inhibitor 4-phenylbutyric acid (4-PBA) alleviated endoplasmic reticulum stress as well as defective autophagy, thus confirming the critical role of endoplasmic reticulum stress and autophagy in fluoride-induced cortical toxicity. Taken together, these results suggest that excessive endoplasmic reticulum stress and its mediated defective autophagy lead to fluoride-induced cortical toxicity. This provides new insights into the mechanisms of fluoride-induced neurotoxicity and a new theoretical basis for the prevention and treatment of fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Shangzhi Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, North 2th Road, Shihezi, Xinjiang, 832000, People's Republic of China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China.
| |
Collapse
|
27
|
Kowalkińska M, Sikora K, Łapiński M, Karczewski J, Zielińska-Jurek A. Non-toxic fluorine-doped TiO2 nanocrystals from TiOF2 for facet-dependent naproxen degradation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Ali M, Aziz T. The Combination of Zinc and Melatonin Enhanced Neuroprotection and Attenuated Neuropathy in Oxaliplatin-Induced Neurotoxicity. Drug Des Devel Ther 2022; 16:3447-3463. [PMID: 36217449 PMCID: PMC9547652 DOI: 10.2147/dddt.s385914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The present study was designed to investigate the possible synergistic effects of melatonin with zinc in the prevention and treatment of oxaliplatin-induced neurotoxicity in rats. Methodology Forty-eight male Wistar albino rats were used and randomly allocated into six groups: The negative control group, oxaliplatin group, zinc + oxaliplatin group, melatonin + oxaliplatin group, zinc + melatonin + oxaliplatin prevention-approach group, and zinc + melatonin + oxaliplatin treatment-approach group. The thermal nociceptive/hyperalgesia tests were performed. Brain tissue homogenate was used for measuring GFAP, NCAM, TNF α, MAPK 14, NF-kB, GPX, and SOD. Brain tissue was sent for histopathological and immunohistochemistry studies. Results The combination therapies showed improvement in the behavioral tests. A significant increase in GPX and SOD with a significant decrease in GFAP levels resulted in the prevention approach. TNF α decreased significantly in the treatment approach. No significant changes were seen in NCAM, NFkB, and MAPK-14. The histopathological findings support the biochemical results. Additionally, immunohistochemistry revealed a significant attenuation of p53 and a non-significant decrease in Bcl2 levels in the combination groups. Conclusion The combination of zinc with melatonin for the prevention approach was effective in attenuating neurotoxicity induced by oxaliplatin. The proposed mechanisms are boosting the antioxidant system and attenuating the expression of p53, GFAP, and TNF-α.
Collapse
Affiliation(s)
- Mayyadah Ali
- Hiwa Cancer Hospital, Sulaimani, Kurdistan Region, Iraq
| | - Tavga Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq,Correspondence: Tavga Aziz, Tel +9647701523544, Email
| |
Collapse
|
29
|
Ren C, Li HH, Zhang CY, Song XC. Effects of chronic fluorosis on the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114021. [PMID: 36049331 DOI: 10.1016/j.ecoenv.2022.114021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury, and pathogenesis. A large number of in vivo and in vitro studies and epidemiological investigations have found that chronic fluorosis can cause brain damage, resulting in abnormal brain structure and brain function.Chronic fluorosis not only causes a decline in concentration, learning, and memory, but also has mental symptoms such as anxiety, tension, and depression. Several possible mechanisms that have been proposed: the oxidative stress and inflammation theory, neural cell apoptosis theory, neurotransmitter imbalance theory, as well as the doctrine of the interaction of fluorine with other elements. However, the specific mechanism of chronic fluorosis on brain damage is still unclear. Thus, a better understanding of the mechanisms via which chronic fluorosis causes brain damage is of great significance to protect the physical and mental health of people in developing countries, especially those living in the endemic areas of fluorosis. In brief, further investigation concerning the influence of fluoride on the brain should be conducted as the neural damage induced by it may bring about a huge problem in public health, especially considering growing environmental pollution.
Collapse
Affiliation(s)
- Chao Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China; Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China.
| | - Hui-Hua Li
- Zhenjiang Mental Health Center, The Fifth People's Hospital of Zhenjiang City, Zhenjiang, Jiangsu Province 212000, China
| | - Cai-Yi Zhang
- Department of Psychiatry, Xuzhou Medical University Affiliated Xuzhou Oriental Hospital, No.379 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency psychology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency, Xuzhou Medical University Affiliate Hospital, No.99 Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China.
| |
Collapse
|
30
|
Matos-Sousa JM, Bittencourt LO, Ferreira MKM, dos Santos VRN, Balbinot KM, Alves-Júnior S, Pinheiro JDJV, Charone S, Pessan JP, Lima RR. Fluoride Exposure and Salivary Glands: How Is Glandular Morphology Susceptible to Long-Term Exposure? A Preclinical Study. J Clin Med 2022; 11:jcm11185373. [PMID: 36143018 PMCID: PMC9501535 DOI: 10.3390/jcm11185373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Despite a strong body of evidence attesting to the effectiveness of fluoride (F) in preventing and controlling caries, some studies have sought to investigate the influence of F exposure on the salivary glands, organs that are essential for the maintenance of cavity homeostasis through salivary production, finding that exposure to F can cause biochemical and proteomic changes. Thus, this study aimed to investigate the morphological effects of prolonged exposure to F on the salivary glands of mice, at concentrations that would correspond to optimally fluoridated water (suitable for human consumption) and to fluorosis-endemic regions. Twenty-four male mice (Mus musculus) were divided into three groups, according to F levels in the drinking water: 0 (control), 10, or 50 mg F/L, with an exposure period of 60 days. The glands were morphometrically analyzed for the total acinar area, parenchyma area, and stromal area, as well as for the immunohistochemical analysis of myoepithelial cells. The results showed that prolonged exposure to F at 10 mg F/L did not promote significant changes in the morphometry of the salivary glands of mice, which reinforces the safety of the chronic use of F in low doses.
Collapse
Affiliation(s)
- José Mário Matos-Sousa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Vinicius Ruan Neves dos Santos
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Sérgio Alves-Júnior
- School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Senda Charone
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University, Araçatuba 14801-385, SP, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
31
|
Yu Y, Li L, Yu W, Guan Z. Fluoride Exposure Suppresses Proliferation and Enhances Endoplasmic Reticulum Stress and Apoptosis Pathways in Hepatocytes by Downregulating Sirtuin-1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7380324. [PMID: 36046439 PMCID: PMC9420589 DOI: 10.1155/2022/7380324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the function and mechanism of Sirt-1 in fluorine-induced liver injury. Method Fluorosis rats were first established. The fluorine content, pathological structure, collagen fibers, and fibrosis in liver tissues were tested through the fluoride ion selective electrode method, H&E, Masson, and Sirius red staining; alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin 18 (IL-18), and tumor necrosis factor-α (TNF-α) levels in rat serum were also analyzed using ELISA kits. Then, the fluorosis cell model was built, which was also alleviated with NaF, Sirt-1 siRNAs, or endoplasmic reticulum stress (ERS) alleviator (4-PBA). CCK-8 also assessed cell proliferation; RT-qPCR or Western blots detect sirtuin-1 (Sirt-1), protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), and endoplasmic reticulum stress (ERS) and apoptosis-related protein levels in liver tissue. Results Our results uncovered that fluorine exposure could aggravate the pathological damage and fibrosis of rat liver tissues and increase indicators related to liver injury. And fluoride exposure also could downregulate Sirt-1 and upregulate ERS-related proteins (PERK, 78-kD glucose-regulated protein (GRP-78), and activating transcription factor 6 (ATF6)) and apoptosis-related protein (caspase-3 and C/EBP-homologous protein (CHOP)) in rat liver tissues. Besides, we proved that fluoride exposure could suppress proliferation and enhances ERS and apoptotic pathways in AML12 cells by downregulating Sirt-1. Moreover, we revealed that ERS alleviator (4-PBA) could induce proliferation and prevent ERS and apoptosis in fluorine-exposed AML12 cells. Conclusions We suggested that fluorine exposure can induce hepatocyte ERS and apoptosis through downregulation of Sirt-1.
Collapse
Affiliation(s)
- Yanlong Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ling Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Intrauterine and Postnatal Exposure to High Levels of Fluoride Is Associated with Motor Impairments, Oxidative Stress, and Morphological Damage in the Cerebellum of Offspring Rats. Int J Mol Sci 2022; 23:ijms23158556. [PMID: 35955690 PMCID: PMC9369436 DOI: 10.3390/ijms23158556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Fluoride (F) is abundantly present on Earth and plays a beneficial role in human health. However, exposure to high doses of F can be a risk, mainly in endemic fluorosis regions. In light of this, we investigated the effects of F exposure during the intrauterine and postnatal periods of rats, in doses similar to those recommended in drinking water and the levels of F in regions with endemic fluorosis, on the offspring rats’ cerebellum. Pregnant rats were divided into three groups: control (received ultrapure water only), 10 mg F/L, and 50 mg F/L for a period of 42 days (21 days gestation and 21 days lactation). At the end of the lactation period, the male pups were evaluated by behavioral tests, morphological markers, and biochemistry assays. The results pointed out that 50 mg F/L exposure during the intrauterine and lactational period of rats is capable of promoting oxidative stress in the cerebellum with a decrease in Purkinje cell density and myelin basic protein compromise, which could be associated with functional motor impairments. In addition, although 10 mg F/L exposure promoted redox alterations, it did not affect other parameters evaluated, highlighting the safe use of F in low doses.
Collapse
|
33
|
Saraiva ÍCG, Ezaki S, Calabria GD, Shinzato MC. Groundwater defluoridation efficacy of manganese-oxide-coated alumina prepared via two-step heating. ENVIRONMENTAL TECHNOLOGY 2022; 43:2684-2696. [PMID: 33615995 DOI: 10.1080/09593330.2021.1894242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Fluoride concentrations in groundwater can be high in some Brazilian aquifers and therefore these waters should be treated before consumption. This study assessed the properties of Mn-oxide-coated alumina (AM) prepared by two-step heating in water defluoridation. The release of secondary contaminants (e.g. Al3+ and Mn2+) from alumina was also examined, as their removal by vermiculite. The process of Mn-oxide coating changed some properties of the activated alumina (AA), decomposing the crystalline phases and reducing some parameters, e.g. specific surface area (from 295.90 to 94.51 m2 g-1) and pHPZC (from 7.34 to 5.74). These changes increased the efficiency and kinetics of alumina in removing F- from synthetic solutions and groundwater (from 80%/16 h to 100%/1 h). This efficiency was not affected by the presence of other anions in groundwater, such as HCO3- and SO42-. The optimum rate of F- removal occurred at pH 5; however, during the F- removal, Al3+ and Mn2+ ions were released, respectively, from the AA (0.61 mg L-1 Al3+) and from the AM ( 52 mg L-1 Mn2+). Vermiculite used to remove these cations adsorbed about 86% Al3+ and 90% Mn2+. However, only Al3+ concentrations fell below the standard limit for drinking water of <0.5 mg L-1. Therefore, AA has the advantage of not containing Mn, and after 3 h kept F- concentrations in solutions 5 mg L-1F- below the standard limit of 1.5 mg L-1. This study revealed that, depending on the groundwater characteristics, AA may be more efficient and sustainable for defluoridation than coated alumina.
Collapse
Affiliation(s)
- Ísis Cristina Garcia Saraiva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, Diadema, Brazil
| | - Sibele Ezaki
- Instituto Geológico - Secretaria de Infraestrutura e Meio Ambiente, São Paulo, Brazil
| | - Giovanna Dias Calabria
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, Diadema, Brazil
| | - Mirian Chieko Shinzato
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
34
|
Maternal Fluoride Exposure Exerts Different Toxicity Patterns in Parotid and Submandibular Glands of Offspring Rats. Int J Mol Sci 2022; 23:ijms23137217. [PMID: 35806221 PMCID: PMC9266858 DOI: 10.3390/ijms23137217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
There is currently a controversial and heated debate about the safety and ethical aspects of fluoride (F) used for human consumption. Thus, this study assessed the effects of prenatal and postnatal F exposure of rats on the salivary glands of their offspring. Pregnant rats were exposed to 0, 10, or 50 mg F/L from the drinking water, from the first day of gestation until offspring weaning (42 days). The offspring rats were euthanized for the collection of the parotid (PA) and submandibular (SM) glands, to assess the oxidative biochemistry and to perform morphometric and immunohistochemical analyses. F exposure was associated with a decrease in the antioxidant competence of PA in the 10 mg F/L group, contrasting with the increase observed in the 50 mg F/L group. On the other hand, the antioxidant competence of the SM glands was decreased at both concentrations. Moreover, both 10 and 50 mg F/L groups showed lower anti-α-smooth muscle actin immunostaining area in SM, while exposure to 50 mg F/L was associated with changes in gland morphometry by increasing the duct area in both glands. These findings demonstrate a greater susceptibility of the SM glands of the offspring to F at high concentration in comparison to PA, reinforcing the need to adhere to the optimum F levels recommended by the regulatory agencies. Such findings must be interpreted with caution, especially considering their translational meaning.
Collapse
|
35
|
Song J, Qu R, Sun B, Chen R, Kan H, An Z, Jiang J, Li J, Zhang Y, Wu W. Associations of Short-Term Exposure to Fine Particulate Matter with Neural Damage Biomarkers: A Panel Study of Healthy Retired Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7203-7213. [PMID: 34964348 DOI: 10.1021/acs.est.1c03754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with various adverse health effects, such as respiratory and cardiovascular diseases. This study aimed to evaluate the association of PM2.5 with neural damage biomarkers. A total of 34 healthy retirees were recruited from Xinxiang Medical University from December 2018 to April 2019. Concentrations of PM2.5 constituents including 24 metals and nonmetallic elements and 6 ions, and 5 biomarkers of neural damage including brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B) in serum were measured. A linear mixed-effect model was employed to estimate the association of PM2.5 and its constituents with neural damage biomarkers. Modification effects of glutathione S-transferase theta 1 gene (GSTT1) polymorphism, sex, education, and physical activity on PM2.5 exposure with neural damage were explored. PM2.5 and its key constituents were significantly associated with neural damage biomarkers. A 10 μg/m3 increase in PM2.5 concentration was associated with 2.09% (95% CI, 39.3-76.5%), 100% (95% CI, 1.73-198%), and 122% (95% CI, 20.7-222%) increments in BDNF, NfL, and PGP9.5, respectively. Several constituents such as Cu, Zn, Ni, Mn, Sn, V, Rb, Pb, Al, Be, Cs, Co, Th, U, Cl-, and F- were significantly associated with NfL. The estimated association of PM2.5 with NSE in GSTT1-sufficient volunteers was significantly higher than that in GSTT1-null volunteers. Therefore, short-term PM2.5 exposure was associated with neural damage, and GSTT1 expression levels modified the PM2.5-induced adverse neural effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai 200437, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200437, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| |
Collapse
|
36
|
Sierra-Sánchez AG, Castillo-Suárez LA, Martínez-Miranda V, Linares-Hernández I, Teutli-Sequeira EA. As and [Formula: see text] cooccurrence in drinking water: critical review of the international scenario, physicochemical behavior, removal technologies, health effects, and future trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38768-38796. [PMID: 35277825 DOI: 10.1007/s11356-022-19444-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Drinking water contaminated with As and [Formula: see text] is increasingly prevalent worldwide. Their coexistence can have negative effects due to antagonistic or synergistic mechanisms, ranging from cosmetic problems, such as skin lesions and teeth staining, to more severe abnormalities, such as cancer and neurotoxicity. Available technologies for concurrent removal include electrocoagulation ~ adsorption > membranes > chemical coagulation > , and among others, all of which have limitations despite their advantages. Nevertheless, the existence of competing ions such as silicon > phosphate > calcium ~ magnesium > sulfate > and nitrate affects the elimination efficiency. Mexico is one of the countries that is affected by As and [Formula: see text] contamination. Because only 10 of the 32 states have adequate removal technologies, more than 65% of the country is impacted by co-presence problems. Numerous reviews have been published concerning the elimination of As or [Formula: see text]. However, only a few studies have focused on the simultaneous removal. This critical review analyzes the new sources of contamination, simultaneous physicochemical behaviors, available technologies for the elimination of both species, and future trends. This highlights the need to implement technologies that work with actual contaminated water instead of aqueous solutions (55% of the works reviewed correspond to aqueous solutions). Similarly, it is necessary to migrate to the creation of pilot, pre-pilot, or prototype scale projects, because 77% of the existing studies correspond to lab-scale research.
Collapse
Affiliation(s)
- Ana Gabriela Sierra-Sánchez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km.14.5, Carretera Toluca-Atlacomulco, C.P 50200, Toluca, Estado de México, México
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km.14.5, Carretera Toluca-Atlacomulco, C.P 50200, Toluca, Estado de México, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km.14.5, Carretera Toluca-Atlacomulco, C.P 50200, Toluca, Estado de México, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km.14.5, Carretera Toluca-Atlacomulco, C.P 50200, Toluca, Estado de México, México.
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km.14.5, Carretera Toluca-Atlacomulco, C.P 50200, Toluca, Estado de México, México
| |
Collapse
|
37
|
Han X, Tang Y, Zhang Y, Zhang J, Hu Z, Xu W, Xu S, Niu Q. Impaired V-ATPase leads to increased lysosomal pH, results in disrupted lysosomal degradation and autophagic flux blockage, contributes to fluoride-induced developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113500. [PMID: 35421827 DOI: 10.1016/j.ecoenv.2022.113500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is capable of inducing developmental neurotoxicity, yet its mechanisms remain elusive. We aimed to explore the possible role and mechanism of autophagic flux blockage caused by abnormal lysosomal pH in fluoride-induced developmental neurotoxicity, focusing on the role of V-ATPase in regulating the neuronal lysosomal pH. Using Sprague-Dawley rats exposed to sodium fluoride (NaF) from gestation through delivery until the neonatal offspring reached six months of age as an in vivo model. The results showed that NaF impaired the cognitive abilities of the offspring rats. In addition, NaF reduced V-ATPase expression, diminished lysosomal degradation capacity and blocked autophagic flux, and increased apoptosis in the hippocampus of offspring. Consistently, these results were validated in SH-SY5Y cells incubated with NaF. Moreover, NaF increased the SH-SY5Y lysosomal pH. Mechanistically, V-ATPase B2 overexpression and ATP effectively restored V-ATPase expression, reducing NaF-induced lysosomal alkalinization while increasing lysosomal degradation capacity. Notably, those above pharmacological and molecular interventions diminished NaF-induced apoptosis by restoring autophagic flux. Collectively, the present findings suggested that NaF impairs the lysosomal pH raised by V-ATPase. This leads to reduced lysosomal degradation capacity and triggers autophagic flux blockage and apoptosis, thus contributing to neuronal death. Therefore, V-ATPase might be a promising indicator of developmental fluoride neurotoxicity.
Collapse
Affiliation(s)
- Xie Han
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yuanli Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Shangzhi Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
38
|
Ayele BA, Godebo TR, Tekle-Haimanot R, Yifru YM. Neuro-medical manifestations of fluorosis in populations living in the Main Ethiopian Rift Valley. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1129-1136. [PMID: 34173906 DOI: 10.1007/s10653-021-01016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Prolonged exposure to higher concentrations of fluoride (> 1.5 mg/L) is associated with dental and skeletal fluorosis. The effects of fluoride on dental and skeletal system have been studied extensively; however, the neurological consequences of fluoride in population-based studies are limited. The study aims to assess the epidemiology of neurological and other manifestations of fluorosis among rural populations living in the Main Ethiopian Rift valley. In this cross-sectional study, we enrolled 316 individuals from 23 rural communities in the Main Ethiopian Rift valley. Fluoride concentration was measured in drinking water samples collected from 23 community wells. Association between fluoride concentrations and clinical features of fluorosis was assessed using student t test, chi square, multivariable regression using adjusted odds ratio (OR). The mean fluoride concentration in the drinking water was 6.8 ± 4.3 mg/L (range: 0.3-15.5 mg/L). At least one clinical sign of skeletal fluorosis was observed in 54.4% (n = 175) of the study participants. Headache and joint pain reported by 67.1% and 56.3% of the participants as the most common neurological manifestation, and skeletal fluorosis symptom, respectively. The mean fluoride level was higher for those individuals who reported paresthesia compared to those with no-paresthesia. Loss of appetite, constipation, and fatigue were reported by 48.0%, 45.6%, and 56.6% of the participants, respectively. Signs of crippling fluorosis were observed in small proportion (1.6%) of the participants. Individuals who reported headache are most likely exposed to higher fluoride concentrations in drinking water compared to those reported no-headache (p < 0.001). The study demonstrates high prevalence of neuro-medical manifestations of fluorosis in population living in the Main Ethiopian Rift valley. Fluoride concentration in drinking water and joint pain were independent predictors of fluorosis.
Collapse
Affiliation(s)
- Biniyam A Ayele
- Department of Neurology, School of Medicine College of Health Sciences, Addis Ababa University, Zambia Street, Po Box 1171, Addis Ababa, Ethiopia.
| | - Tewodros Rango Godebo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, Canal Street Suite 2100, New Orleans, LA, 70112, USA
| | | | - Yared Mamushet Yifru
- Department of Neurology, School of Medicine College of Health Sciences, Addis Ababa University, Zambia Street, Po Box 1171, Addis Ababa, Ethiopia
| |
Collapse
|
39
|
NaF-induced neurotoxicity via activation of the IL-1β/JNK signaling pathway. Toxicology 2022; 469:153132. [DOI: 10.1016/j.tox.2022.153132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/23/2023]
|
40
|
Cao Q, Wang J, Hao Y, Zhao F, Fu R, Yu Y, Wang J, Niu R, Bian S, Sun Z. Exercise Ameliorates Fluoride-induced Anxiety- and Depression-like Behavior in Mice: Role of GABA. Biol Trace Elem Res 2022; 200:678-688. [PMID: 33825162 DOI: 10.1007/s12011-021-02678-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022]
Abstract
Fluoride exposure caused anxiety- and depression-like behavior in mice. Meanwhile, exercise contributes to relieve anxiety and depression. However, the effects of exercise on anxiety- and depression-like behavior in fluorosis mice remain unclear. In the current study, thirty-six Institute of Cancer Research (ICR) female mice were randomly assigned to four groups: control group (C, gavage with distilled water); exercise group (E, gavage with distilled water and treadmill exercise (speed, 10 m/min; time, 30 min/day)); fluoride group (F, gavage with 24 mg/kg sodium fluoride (NaF)); and exercise plus fluoride group (EF, gavage with 24 mg/kg NaF and treadmill exercise). All treatments lasted for 8 weeks. A number of entries into and time spent in the open zone in the elevated zero maze (EZM), resting time in the tail suspension test (TST) and levels of serotonin (5-HT) and gamma-aminobutyric acid (GABA), were significantly altered in F when compared to C. Meanwhile, the anxiety-like behavior in the EZM and the depression-like behavior in the TST were significantly improved in EF when compared to group F. Exercise significantly enhanced fluoride-induced low GABA level, with less effect on the concentration of 5-HT. Moreover, the mRNA and protein expressions of GABA synthesis and transport-related proteins of glutamic acid decarboxylase (GAD) 65 and GAD67 and vesicular GABA transporter (VGAT) were all strikingly decreased in F, while those in EF were increased. In conclusion, exercise ameliorates anxiety- and depression-like behavior in fluorosis mice through increasing the expressions of GABA synthesis and transport-related proteins, rather than 5-HT system.
Collapse
Affiliation(s)
- Qiqi Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yanru Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Fangye Zhao
- Division of Sports Science and Physical Education, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Rong Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Shengtai Bian
- School of Sport Science, Beijing Sport University, Beijing, 100084, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
41
|
Dondossola ER, Pacheco SD, Visentin SC, Mendes NV, Baldin SL, Bernardo HT, Scussel R, Rico EP. Prolonged fluoride exposure alters neurotransmission and oxidative stress in the zebrafish brain. Neurotoxicology 2022; 89:92-98. [PMID: 35065950 DOI: 10.1016/j.neuro.2022.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Fluoride is an essential chemical found in dental preparations, pesticides and drinking water. Excessive fluoride exposure is related to toxicological and neurological disruption. Zebrafish are used in translational approaches to understand neurotoxicity in both biomedical and environmental areas. However, there is no complete knowledge about the cumulative effects of fluoride on neurotransmission systems. Therefore, the aim of this study was to evaluate whether prolonged exposure to sodium fluoride (NaF) alters cholinergic and glutamatergic systems and oxidative stress homeostasis in the zebrafish brain. Adult zebrafish were used, divided into four experimental groups, one control group and three groups exposed to NaF at 30, 50 and 100 mg.L-1 for a period of 30 days. After NaF at 30 mg.L-1 exposure, there were significant decreases in acetylcholinesterase (29.8%) and glutamate uptake (39.3%). Furthermore, thiobarbituric acid-reactive species were decreased at NaF 50 mg.L-1 (32.7%), while the group treated with NaF at 30 mg.L-1 showed an increase in dichlorodihydrofluorescein oxidation (41.4%). NaF at 30 mg.L-1 decreased both superoxide dismutase (55.3%) and catalase activities (26.1%). The inhibitory effect observed on cholinergic and glutamatergic signalling mechanisms could contribute to the neurodegenerative events promoted by NaF in the zebrafish brain.
Collapse
Affiliation(s)
- Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Suzielen Damin Pacheco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Sulingue Casagrande Visentin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Niuany Viel Mendes
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Rahisa Scussel
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
42
|
Wang A, Duan L, Huang H, Ma J, Zhang Y, Ma Q, Guo Y, Li Z, Cheng X, Zhu J, Zhou G, Ba Y. Association between fluoride exposure and behavioural outcomes of school-age children: a pilot study in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:232-241. [PMID: 32281876 DOI: 10.1080/09603123.2020.1747601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
To assess the association between fluoride exposure and children's behavioural outcomes, we recruited 325 resident school-age children (7-13 years old) lived in Tongxu County of Henan Province in China. We measured urinary fluoride (UF) concentrations using the ion-selective electrode method. Children's behavioural outcomes were assessed by Conners' Parent Rating Scale-Revised, including conduct problems, learning problems, psychosomatic problems, impulsive-hyperactive, anxiety, and ADHD index. It turned out that each 1.0 mg/L increment in UF concentration corresponded with an elevation in the psychosomatic problem score of 4.01 (95% CI: 2.74, 5.28) and a 97% (OR = 1.97, 95% CI: 1.19, 3.27) increase in the prevalence of psychosomatic problems after adjusting for potential influencing factors. The sensitivity analysis results were consistent with those observed in our preliminary analysis. Our study suggests that fluoride exposure is positively related to the behavioural problem in school-age children, psychosomatic problem in particular.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
- Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Leizhen Duan
- Department of Medical Services, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Hui Huang
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
- Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jun Ma
- Department of Endemic Disease, Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan, P. R. China
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, USA
| | - Qiang Ma
- Teaching and Research Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yao Guo
- Nursing College of Henan University of Chinese Medicine, Zhengzhou, Henan, P. R. China
| | - Zhiyuan Li
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
- Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xuemin Cheng
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
- Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingyuan Zhu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Guoyu Zhou
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
- Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yue Ba
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
- Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
43
|
A systematic review and meta-analysis of the association between fluoride exposure and neurological disorders. Sci Rep 2021; 11:22659. [PMID: 34811523 PMCID: PMC8609002 DOI: 10.1038/s41598-021-99688-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Different studies have suggested that fluoride is related to neurological disorders in children and adolescents, but clinical evidences of which neurological parameters associated to fluoride exposure are, in fact, still controversial. In this way, this systematic review and meta-analysis aimed to show if there is an association between fluoride exposure from different sources, doses and neurological disorders. Terms related to "Humans"; "Central nervous system"; "Fluorides"; and "Neurologic manifestations" were searched in a systematic way on PubMed, Scopus, Web of Science, Lilacs, Cochrane and Google Scholar. All studies performed on humans exposed to fluoride were included on the final assessment. A meta-analysis was then performed and the quality level of evidence was performed using the GRADE approach. Our search retrieved 4,024 studies, among which 27 fulfilled the eligibility criteria. The main source of fluoride was naturally fluoridated water. Twenty-six studies showed alterations related to Intelligence Quotient (IQ) while only one has evaluated headache, insomnia, lethargy, polydipsia and polyuria. Ten studies were included on the meta-analysis, which showed IQ impairment only for individuals under high fluoride exposure considering the World Health Organization criteria, without evidences of association between low levels and any neurological disorder. However, the high heterogeneity observed compromise the final conclusions obtained by the quantitative analyses regarding such high levels. Furthermore, this association was classified as very low-level evidence. At this time, the current evidence does not allow us to state that fluoride is associated with neurological damage, indicating the need for new epidemiological studies that could provide further evidences regarding this possible association.
Collapse
|
44
|
Wang D, Cao L, Pan S, Wang G, Wang L, Cao N, Hao X. Sirt3-mediated mitochondrial dysfunction is involved in fluoride-induced cognitive deficits. Food Chem Toxicol 2021; 158:112665. [PMID: 34780879 DOI: 10.1016/j.fct.2021.112665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Excessive fluoride is capable of inducing cognitive deficits, but the mechanisms remain elusive. This study aimed to investigate the effects and underlying mechanisms of fluoride on mitochondrial dysfunction and neurobiological alterations, as well as cognitive impairment. C57BL/6 mice were orally administered 25, 50, and 100 mg/L NaF for 90 days. Cultured human neuroblastoma SH-SY5Y cells were exposed to NaF (110 mg/L) for 24 h in the presence or absence of Sirt3 overexpression. The results demonstrated that chronic exposure to high fluoride induced cognitive deficits and neural/synaptic injury in mice. Fluoride reduced mitochondrial antioxidant enzyme activities and elevated SOD2 acetylation by downregulating Sirt3 expression in the brains of mice and NaF-treated SH-SY5Y cells. Moreover, fluoride lowered mtDNA transcription and induced mitochondrial dysfunction along with increased FoxO3A acetylation in the brains of mice and NaF-treated SH-SY5Y cells. Subsequent experiments revealed that overexpression of Sirt3 significantly attenuated the adverse effects of fluoride on radical scavenging capabilities and mtDNA transcription, as well as mitochondrial function in SH-SY5Y cells. These results suggest that chronic long-term fluoride exposure evokes neural/synaptic injury and cognitive impairment through mitochondrial dysfunction and its associated oxidative stress, which is, at least partly, mediated by Sirt3 inhibition in the mouse brain.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China.
| | - Luyang Cao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Shunji Pan
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Gang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Lewei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Ningyao Cao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| | - Xueqin Hao
- School of Basic Medical Sciences, Henan University of Science and Technology, Henan, Luoyang, 471003, China
| |
Collapse
|
45
|
Wang A, Ma Q, Gong B, Sun L, Afrim FK, Sun R, He T, Huang H, Zhu J, Zhou G, Ba Y. DNA methylation and fluoride exposure in school-age children: Epigenome-wide screening and population-based validation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112612. [PMID: 34371455 DOI: 10.1016/j.ecoenv.2021.112612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Excessive fluoride exposure and epigenetic change can induce numerous adverse health outcomes, but the role of epigenetics underneath the harmful health effects induced by fluoride exposure is unclear. In such gap, we evaluated the associations between fluoride exposure and genome-wide DNA methylation, and identified that novel candidate genes associated with fluoride exposure. A total of 931 school-age children (8-12 years) in Tongxu County of Henan Province (China) were recruited in 2017. Urinary fluoride (UF) concentrations were measured using the national standardized ion selective electrode method. Participants were divided into a high fluoride-exposure group (HFG) and control group (CG) according to the UF concentrations. Candidate differentially methylated regions (DMRs) were screened by Infinium-Methylation EPIC BeadChip of DNA samples collected from 16 participants (eight each from each group). Differentially methylated genes (DMGs) containing DMRs associated with skeletal and neuronal development influenced by fluoride exposure were confirmed using MethylTarget™ technology from 100 participants (fifty each from each group). DMGs were verified by quantitative methylation specific PCR from 815 participants. Serum levels of hormones were measured by auto biochemical analyzer. The mediation analysis of methylation in the effect of fluoride exposure on hormone levels was also performed. A total of 237 differentially methylated sites (DMSs) and 212 DMRs were found in different fluoride-exposure groups in the epigenome-wide phase. Methylation of the target sequences of neuronatin (NNAT), calcitonin-related polypeptide alpha (CALCA) and methylenetetrahydrofolate dehydrogenase 1 showed significant difference between the HFG and CG. Each 0.06% (95% CI: -0.11%, -0.01%) decreased in NNAT methylation status correlated with each increase of 1.0 mg/L in UF concentration in 815 school-age children using QMSP. Also, each 1.88% (95% CI: 0.04%, 3.72%) increase in CALCA methylation status correlated with each increase of 1.0 mg/L in UF concentration. The mediating effect of NNAT methylation was found in alterations of ACTH levels influenced by fluoride exposure, with a β value of 11.7% (95% CI: 3.4%, 33.4%). In conclusion, long-term fluoride exposure affected the methylation pattern of genomic DNA. NNAT and CALCA as DMGs might be susceptible to fluoride exposure in school-age children.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qiang Ma
- Teaching and Research Office, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Biao Gong
- Department of Endemic Disease, Kaifeng Center for Disease Prevention and Control, Kaifeng, Henan 475004, PR China
| | - Long Sun
- Department of Endemic Disease, Kaifeng Center for Disease Prevention and Control, Kaifeng, Henan 475004, PR China
| | - Francis-Kojo Afrim
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Renjie Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Tongkun He
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jingyuan Zhu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
46
|
Ning H, Li C, Yin Z, Hu D, Ge Y, Chen L. Fluoride exposure decreased neurite formation on cerebral cortical neurons of SD rats in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50975-50982. [PMID: 33977427 DOI: 10.1007/s11356-021-13950-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Fluoride, a geochemical element, can damage the brain and result in dysfunction of the central nervous system. In recent years, fluoride-induced neurotoxicity has become one of research focuses of environmental toxicology. Our previous study showed that fluoride could induce the structural damages of the cerebral cortex and reduce the learning and memory abilities of mice offspring. However, the underlying mechanisms of these effects remain unclear. In this study, primary neurons were isolated from the cerebral cortices of postnatal 1-day SD rats. The primary cultured cerebral cortical neurons were adherent and the cellular network was obvious. Neurons were identified by Nissl's staining and were used for experiments. Different concentrations of sodium fluoride (0.5, 1.0, 1.5, 2.0 and 2.5 mM) were chosen to explore its toxic effects on neuron of SD rats in vitro. Results showed that neuronal morphology was obviously damaged in 2.0 and 2.5 mM, but was not adversely affected in 0.5 and 1 mM. Further studies revealed that the neurites of neuron were shrunken and even became fractured with the increase in NaF dose, which have been detected by scanning electron microscopy (SEM). Meanwhile, TEM showed marginated chromatin, widened nuclear gaps, damaged nuclei and swollen or even absent mitochondria in 1.5, 2 and 2.5 mM group. The cytoskeletal staining was consistent with the above results. The number of neurites of cerebral cortical neuron significantly decreased after fluoride exposure by immunofluorescent assay. In summary, high fluoride (1.5, 2 and 2.5 mM) concentrations exerted a significant toxic effect on the cellular morphologies and neural formation of primary cultured cortical neurons. These findings provide new insights into the roles of NaF in neuronal damage and can contribute to an improved understanding of fluoride-induced neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Chong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
47
|
Li A, Wang Y, He Y, Liu B, Iqbal M, Mehmood K, Jamil T, Chang YF, Hu L, Li Y, Guo J, Pan J, Tang Z, Zhang H. Environmental fluoride exposure disrupts the intestinal structure and gut microbial composition in ducks. CHEMOSPHERE 2021; 277:130222. [PMID: 33794430 DOI: 10.1016/j.chemosphere.2021.130222] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Fluorine (F) and its compounds produced from industrial production and coal combustion can cause air, water and soil contamination, which can accumulate in animals, plants and humans via food chain threatening public health. Fluoride exposure affects liver, kidney, gastrointestinal and reproductive system in humans and animals. Literature regarding fluoride influence on intestinal structure and microbiota composition in ducks is scarce. This study was designed to investigate these effects by using simple and electron microscopy and 16S rRNA sequencing techniques. Results indicated an impaired structure with reduced relative distribution of goblet cells in the fluoride exposed group. Moreover, the gut microbiota showed a significant decrease in alpha diversity. Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in both control and fluoride-exposed groups. Specifically, fluoride exposure resulted in a significant decrease in the relative abundance of 9 bacterial phyla and 15 bacterial genera. Among them, 4 phyla (Latescibacteria, Dependentiae, Zixibacteria and Fibrobacteres) and 4 genera (Thauera, Hydrogenophaga, Reyranella and Arenimonas) weren't even detectable in the gut microbiota of the ducks. In summary, higher fluoride exposure can significantly damage the intestinal structure and gut microbial composition in ducks.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
48
|
Recent advances in cellular effects of fluoride: an update on its signalling pathway and targeted therapeutic approaches. Mol Biol Rep 2021; 48:5661-5673. [PMID: 34254226 DOI: 10.1007/s11033-021-06523-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022]
Abstract
Fluoride is a natural element essential in minute quantities in human's to maintain dental and skeletal health. However, the disease fluorosis manifests itself due to excessive fluoride intake mostly through drinking water and sometimes through food. At the cellular energetics level, fluoride is a known inhibitor of glycolysis. At the tissue level, the effect of fluoride has been more pronounced in the musculoskeletal systems due to its ability to retain fluoride. Fluoride alters dentinogenesis, thereby affecting the tooth enamel formation. In bones, fluoride alters the osteogenesis by replacing calcium, thus resulting in bone deformities. In skeletal muscles, high concentration and long term exposure to fluoride causes loss of muscle proteins leading to atrophy. Although fluorosis is quite a familiar problem, the exact molecular pathway is not yet clear. Extensive research on the effects of fluoride on various organs and its toxicity was reported. Indeed, it is clear that high and chronic exposure to fluoride causes cellular apoptosis. Accordingly, in this review, we have highlighted fluoride-mediated apoptosis via two vital pathways, mitochondrial-mediated and endoplasmic reticulum stress pathways. This review also elaborates on new cellular energetic, apoptotic pathways and therapeutic strategies targeted to treat fluorosis.
Collapse
|
49
|
Deng Q, Yang J, Zhouyang J, Sheng W, Gao S, Zhang Y, Haopeng L, Bingxin B, Mengting W. Preliminary screening of fluorine-stained osteoblastic apoptosis-related microRNA. Anat Rec (Hoboken) 2021; 305:359-372. [PMID: 34236144 DOI: 10.1002/ar.24709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Endemic fluorosis is a chronic systemic disease that seriously endangers human health. In high fluoride areas, people consume excessive fluoride for a long time through drinking water or food, which leads to chronic cumulative fluorosis in the body. Fluorosis can cause changes in the expression of some miRNA in cells, and the miRNA can participate in fluoride-induced osteoblast activation through various signal pathways. To observe the differential expression of apoptosis-related microRNA (miRNA) in mouse osteoblasts under the action of excessive fluoride. Primary cultured mouse osteoblasts, identified by osteocalcin (OC) and alkaline phosphatase (ALP) staining, were treated with 20 mg/L sodium fluoride and 40 mg/L sodium fluoride for 12/24 hr, respectively, to establish the fluoride staining model for comparing and analyzing the sequence of miRNA among groups by bioinformatics methods; four miRNA chains were verified by fluorescence quantitative PCR. After treatment with 20 mg/L sodium fluoride for 12 hr and 24 hr, 128 miRNA expressions were up-regulated while 36 miRNA expressions were down-regulated. In Group 40 mg/L, 130 miRNA expressions were up-regulated while 29 miRNA expressions were down-regulated after 12 hr and 24 hr; 72 miRNA were up-regulated and 2 miRNA were down-regulated at the two time points. 10 up-regulated miRNA and 2 down-regulated miRNA with higher scores in Bioinformatics software were analyzed the target genes. Fluorescence quantitative PCR verified that the expressions of four miRNA were up-regulated. Target gene analysis of the 10 selected mouse osteoblastic apoptosis-related miRNA reveals their involvement of the functions of inhibiting or promoting apoptosis, which has certain theoretical significance for early identification of skeletal fluorosis. The involved signaling pathways include the Wnt signaling pathway, ubiquitin-regulated proteolysis, Toll signaling pathway, TNF signaling pathway, pluripotent stem cell signaling pathway, MAPK signaling pathway, phosphatidylinositide metabolism, FoxO signaling pathway, ErbB signaling pathway, autophagy, and so forth.
Collapse
Affiliation(s)
- Qiang Deng
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Jitao Yang
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Junjie Zhouyang
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Weibin Sheng
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Shutao Gao
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Yalou Zhang
- Department of Histology & Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Luan Haopeng
- Department of Spine Surgery, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Bai Bingxin
- The Fifth Teaching Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Wu Mengting
- The Fifth Teaching Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| |
Collapse
|
50
|
Puty B, Bittencourt LO, Nogueira IC, Buzalaf MAR, Oliveira EH, Lima RR. Human cultured IMR-32 neuronal-like and U87 glial-like cells have different patterns of toxicity under fluoride exposure. PLoS One 2021; 16:e0251200. [PMID: 34138870 PMCID: PMC8211231 DOI: 10.1371/journal.pone.0251200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Fluoride (F) is a naturally exists in nature but several studies have indicated it as an environmental toxicant to all leaving beings. Human F exposure has increased over the years since this ion has been used by industry on foods, beverages, toothpastes and on water supply. Although F is safe at optimal concentrations in water supply, human exposure to high levels could trigger neurofunctional deficits. MATERIALS AND METHODS In this study, human glial-like (U87) and neuronal-like (IMR-32) cells lineages were used to access F toxicity and CNS cell sensibility on both cell facing the same protocol. Cells were exposed to F over 3, 5 and 10 days on two different F concentrations. Fluoride exposed cells were evaluated by standard toxicity assays to cell viability, apoptosis, necrosis and general cell metabolism. Oxidative stress parameters were evaluated by ATP and ROS levels, lipid peroxidation, GSH/GSSG ratio and comet assay. RESULTS No changes were observed in IMR-32 at any given time while after 10 days of exposure to 0.22μg/mL, U87 glial-like cells showed signs of toxicity such as decreased cell viability by necrosis while general cell metabolism was increased. Oxidative stress parameters were next evaluated only on U87 glial-like cells after 10 days of exposure. F induced a decrease on ATP levels while no changes were observed on reactive oxygen species and lipid peroxidation. GSH/GSSG ratio was decreased followed by DNA damage both on 0.22μg/mL F. CONCLUSIONS Our results suggest an important differential behavior of the distinct types of cells exposed to the different fluoride concentrations, pointing that the U87 glial-like cells as more susceptible to damage triggered by this ion.
Collapse
Affiliation(s)
- Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Iago Cesar Nogueira
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Edivaldo Herculano Oliveira
- Laboratory of Cell Culture and Cytogenetics, Environmental Section, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|