1
|
Blinov A, Rekhman Z, Yasnaya M, Gvozdenko A, Golik A, Kravtsov A, Shevchenko I, Askerova A, Prasolova A, Pirogov M, Piskov S, Rzhepakovsky I, Nagdalian A. Enhancement of stability and activity of zinc carbonate nanoparticles using chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid for multifaceted applications in medicine. Int J Biol Macromol 2025; 298:139768. [PMID: 39818387 DOI: 10.1016/j.ijbiomac.2025.139768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents. The optimal precursor (Zn(CH3COO)2) and the optimal precipitator ((NH₄)₂CO₃) were detected. ZnC-NPs had one phase (Zn5(OH)6(CO3)2) with diameter from 35 to 120 nm. Thus, the optimal synthesis parameters were set as stoichiometric ratio of precursor and precipitator and the maximum concentration of biopolymer. It was found that polymers are sorbed on different crystallographic planes of crystallites, which affects the morphology of Zn5(OH)6(CO3). Quantum chemical modelling revealed that all models of interaction are energetically advantageous (∆E > 9788.910 kcal/mol) and preferably occurs through OH group, which was confirmed by FTIR spectroscopy of synthesized samples. Notably, CAM assay and histological evaluation showed that ZnC-NPs stabilized with chitosan (as represent of considered biopolymers) have no toxic effect and are compatible with CAM biological environment, which open a great potential for further studies of ZnC-NPs stabilized with biopolymers for multifaceted applications in medicine.
Collapse
Affiliation(s)
- Andrey Blinov
- North Caucasus Federal University, 355000 Stavropol, Russia
| | - Zafar Rekhman
- North Caucasus Federal University, 355000 Stavropol, Russia
| | - Mariya Yasnaya
- North Caucasus Federal University, 355000 Stavropol, Russia
| | | | - Alexey Golik
- North Caucasus Federal University, 355000 Stavropol, Russia
| | | | | | - Alina Askerova
- North Caucasus Federal University, 355000 Stavropol, Russia
| | | | - Maksim Pirogov
- North Caucasus Federal University, 355000 Stavropol, Russia
| | - Sergey Piskov
- North Caucasus Federal University, 355000 Stavropol, Russia
| | | | | |
Collapse
|
2
|
Nasser S, Elkodous MA, Tawfik R, Tohamy H, El-Kammar M, Nouh S, Elkhenany H. Concentration-Dependent Effects of MXene Nanocomposite-Loaded Carboxymethyl Cellulose on Wound Healing. Biotechnol J 2024; 19:e202400448. [PMID: 39380501 DOI: 10.1002/biot.202400448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Nanoparticles (NPs) have emerged as a promising solution for many biomedical applications. Although not all particles have antimicrobial or regenerative properties, certain NPs show promise in enhancing wound healing by promoting tissue regeneration, reducing inflammation, and preventing infection. Integrating various NPs can further enhance these effects. Herein, the zinc oxide (ZnO)-MXene-Ag nanocomposite was prepared, and the conjugation of its three components was confirmed through scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) mapping analysis. In vitro analysis using the agar well diffusion technique demonstrated that ZnO-MXene-Ag nanocomposite exhibited high antimicrobial efficacy, significantly inhibiting Escherichia coli, Salmonella, and Candida albicans, and showing enhanced potency when combined with tetracycline, resulting in a 2.6-fold increase against Staphylococcus and a 2.4-fold increase against Pseudomonas. The efficacy of nanocomposite-loaded carboxymethyl cellulose (CMC) gel on wound healing was investigated using varying concentrations (0, 1, 5, and 10 mg/mL). Wound healing was monitored over 21 days, with results indicating that wounds treated with 1 mg/mL ZnO-MXene-Ag gel exhibited superior healing compared to the control group (0 mg/mL), with significant improvements noted from Day 3 onward. Conversely, higher concentrations (10 mg/mL) resulted in reduced healing efficiency, particularly notable on Day 15. In conclusion, the ZnO-MXene-Ag nanocomposite-loaded CMC gel is a promising agent for enhanced wound healing and antimicrobial applications. These findings highlight the importance of optimizing NP concentration to maximize therapeutic benefits while minimizing potential cytotoxicity.
Collapse
Affiliation(s)
- Salma Nasser
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rasha Tawfik
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hossam Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud El-Kammar
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samir Nouh
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Kalaba MH, El-Sherbiny GM, Ewais EA, Darwesh OM, Moghannem SA. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Streptomyces baarnensis and its active metabolite (Ka): a promising combination against multidrug-resistant ESKAPE pathogens and cytotoxicity. BMC Microbiol 2024; 24:254. [PMID: 38982372 PMCID: PMC11232237 DOI: 10.1186/s12866-024-03392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Various eco-friendly techniques are being researched for synthesizing ZnO-NPs, known for their bioactivity. This study aimed at biosynthesizing ZnO-NPs using Streptomyces baarnensis MH-133, characterizing their physicochemical properties, investigating antibacterial activity, and enhancement of their efficacy by combining them with a water-insoluble active compound (Ka) in a nanoemulsion form. Ka is a pure compound of 9-Ethyl-1,4,6,9,10-pentahydroxy-7,8,9,10-tetrahydrotetracene-5,12-dione obtained previously from our strain of Streptomyces baarnensis MH-133. Biosynthesized ZnO-NPs employing Streptomyces baarnensis MH-133 filtrate and zinc sulfate (ZnSO4.7H2O) as a precursor were purified and characterized by physicochemical investigation. High-resolution-transmission electron microscopy (HR-TEM) verified the effective biosynthesis of ZnO-NPs (size < 12 nm), whereas dynamic light scattering (DLS) analysis showed an average size of 17.5 nm. X-ray diffraction (XRD) exhibited characteristic diffraction patterns that confirmed crystalline structure. ZnO-NPs efficiently inhibited both Gram-positive and Gram-negative bacteria (MICs: 31.25-125 µg/ml). The pure compound (Ka) was combined with ZnO-NPs to improve effectiveness and reduce dose using checkerboard microdilution. Niteen treatments of Ka and ZnO-NPs combinations obtained by checkerboard matrix inhibited Klebsiella pneumonia. Eleven combinations had fractional inhibitory concentration index (FICi) between 1.03 and 2, meaning indifferent, another five combinations resulted from additive FICi (0.625-1) and only one combination with FICi of 0.5, indicating synergy. In the case of methicillin-resistant S. aureus (MRSA), Ka-ZnO-NPs combinations yielded 23 treatments with varying degrees of interaction. The results showed eleven treatments with indifferent interaction, eight additive interactions, and two synergies with FICi of 0.5 and 0.375. The combinations that exhibited synergy action were transformed into a nanoemulsion form to improve their solubility and bioavailability. The HR-TEM analysis of the nanoemulsion revealed spherical oil particles with a granulated core smaller than 200 nm and no signs of aggregation. Effective dispersion was confirmed by DLS analysis which indicated that Ka-ZnO-NPs nanoemulsion droplets have an average size of 53.1 nm and a polydispersity index (PI) of 0.523. The killing kinetic assay assessed the viability of methicillin-resistant Staphylococcus aureus (MRSA) and K. pneumonia post-treatment with Ka-ZnO-NPs combinations either in non-formulated or nanoemulsion form. Results showed Ka-ZnO-NPs combinations show concentration and time-dependent manner, with higher efficacy in nanoemulsion form. The findings indicated that Ka-ZnO-NPs without formulation at MIC values killed K. pneumonia after 24 h but not MRSA. Our nanoemulsion loaded with the previously mentioned combinations at MIC value showed bactericidal effect at MIC concentration of Ka-ZnO-NPs combination after 12 and 18 h of incubation against MRSA and K. pneumonia, respectively, compared to free combinations. At half MIC value, nanoemulsion increased the activity of the combinations to cause a bacteriostatic effect on MRSA and K. pneumonia after 24 h of incubation. The free combination showed a bacteriostatic impact for 6 h before the bacteria regrew to increase log10 colony forming unit (CFU)/ml over the initial level. Similarly, the cytotoxicity study revealed that the combination in nanoemulsion form decreased the cytotoxicity against kidney epithelial cells of the African green monkey (VERO) cell line. The IC50 for Ka-ZnO-NPs non-formulated treatment was 8.17/1.69 (µg/µg)/ml, but in nano-emulsion, it was 22.94 + 4.77 (µg/µg)/mL. In conclusion, efficient Ka-ZnO-NPs nanoemulsion may be a promising solution for the fighting of ESKAPE pathogenic bacteria according to antibacterial activity and low toxicity.
Collapse
Affiliation(s)
- Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Emad A Ewais
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saad A Moghannem
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
5
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
6
|
Mancuso G, Trinchera M, Midiri A, Zummo S, Vitale G, Biondo C. Novel Antimicrobial Approaches to Combat Bacterial Biofilms Associated with Urinary Tract Infections. Antibiotics (Basel) 2024; 13:154. [PMID: 38391540 PMCID: PMC10886225 DOI: 10.3390/antibiotics13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Urinary tract infections (UTIs) are prevalent bacterial infections in both community and healthcare settings. They account for approximately 40% of all bacterial infections and require around 15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs for several decades, the significant increase in antibiotic resistance in recent years has made many previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence of antibiotic resistance. Biofilms enable pathogens to evade the host's innate immune defences, resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum is critical, it alone will not solve the problem; innovative treatment approaches are also needed. This review analyses the main characteristics of biofilm formation and drug resistance in recurrent uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting biofilm-caused UTI is emphasised.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Marilena Trinchera
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Giulia Vitale
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Hossain N, Mobarak MH, Hossain A, Khan F, Mim JJ, Chowdhury MA. Advances of plant and biomass extracted zirconium nanoparticles in dental implant application. Heliyon 2023; 9:e15973. [PMID: 37215906 PMCID: PMC10192772 DOI: 10.1016/j.heliyon.2023.e15973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Nanoparticles are minimal materials with unique physicochemical features that set them apart from bulk materials of the same composition. These properties make nanoparticles highly desirable for use in commercial and medical research. The primary intention for the development of nanotechnology is to achieve overarching social objectives like bettering our understanding of nature, boosting productivity, improving healthcare, and extending the bounds of sustainable development and human potential. Keeping this as a motivation, Zirconia nanoparticles are becoming the preferred nanostructure for modern biomedical applications. This nanotechnology is exceptionally versatile and has several potential uses in dental research. This review paper concentrated on the various benefits of zirconium nanoparticles in dentistry and how they provide superior strength and flexibility compared to their counterparts. Moreover, the popularity of zirconium nanoparticles is also growing as it has strong biocompatibility potency. Zirconium nanoparticles can be used to develop or address the major difficulty in dentistry. Therefore, this review paper aims to provide a summary of the fundamental research and applications of zirconium nanoparticles in dental implants.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Amran Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fardin Khan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| |
Collapse
|
8
|
Abd Elkodous M, Kawamura G, Matsuda A. Al–SrTiO3/Au/CdS Z-schemes for the efficient photocatalytic H2 production under visible light. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2023. [DOI: 10.1016/j.ijhydene.2023.05.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Abd Elkodous M, El-Khawaga AM, Abouelela MM, Abdel Maksoud MIA. Cocatalyst loaded Al-SrTiO 3 cubes for Congo red dye photo-degradation under wide range of light. Sci Rep 2023; 13:6331. [PMID: 37072527 PMCID: PMC10113377 DOI: 10.1038/s41598-023-33249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
The continued pollution, waste, and unequal distribution of the limited amount of fresh water on earth are pushing the world into water scarcity crisis. Consequently, development of revolutionary, cost-effective, and efficient techniques for water purification is essential. Herein, molten flux method was used for the preparation of micro-sized Al-doped SrTiO3 photocatalyst loaded with RhCr2O3 and CoOOH cocatalysts via simple impregnation method for the photo-assisted degradation of Congo red dye under UV and visible irradiation compared with P25 standard photocatalyst. In addition, photoelectrochemical analysis was conducted to reveal the separation and transfer efficiency of the photogenerated e-/h+ pairs playing the key role in photocatalysis. SEM and TEM analyses revealed that both P25 and the pristine SrTiO3 have spherical shapes, while Al-doped SrTiO3 and the sample loaded with cocatalysts have cubic shapes with a relatively higher particle size reaching 145 nm. In addition, the lowest bandgap is due to Al+3 ion doping and excessive surface oxygen vacancies, as confirmed by both UV-Vis diffuse-reflectance and XPS analyses. The loading of the cocatalysts resulted in a change in the bandgap from n-type (pristine SrTiO3 and Al-SrTiO3) into p-type (cocatalyst loaded sample) as exhibited by Mott-Schottky plots. Besides, the cocatalyst-loaded sample exhibited good performance stability after 5 cycles of the photocatalytic removal of Congo red dye. OH· radical was the primary species responsible for CR degradation as confirmed by experiments with radical scavengers. The observed performance of the prepared samples under both UV and visible light could foster the ongoing efforts towards more efficient photocatalysts for water purification.
Collapse
Affiliation(s)
- M Abd Elkodous
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| | - Marwa Mohamed Abouelela
- Petrochemical Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-Cho, Toyohashi, Aichi, 441-8580, Japan
| | - M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
10
|
Crintea A, Carpa R, Mitre AO, Petho RI, Chelaru VF, Nădășan SM, Neamti L, Dutu AG. Nanotechnology Involved in Treating Urinary Tract Infections: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:555. [PMID: 36770516 PMCID: PMC9919202 DOI: 10.3390/nano13030555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Considered as the most frequent contaminations that do not require hospitalization, urinary tract infections (UTIs) are largely known to cause significant personal burdens on patients. Although UTIs overall are highly preventable health issues, the recourse to antibiotics as drug treatments for these infections is a worryingly spread approach that should be addressed and gradually overcome in a contemporary, modernized healthcare system. With a virtually alarming global rise of antibiotic resistance overall, nanotechnologies may prove to be the much-needed 'lifebuoy' that will eventually suppress this prejudicial phenomenon. This review aims to present the most promising, currently known nano-solutions, with glimpses on clinical and epidemiological aspects of the UTIs, prospective diagnostic instruments, and non-antibiotic treatments, all of these engulfed in a comprehensive overview.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Department of Pathophysiology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Robert Istvan Petho
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Vlad-Florin Chelaru
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Sebastian-Mihail Nădășan
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Lidia Neamti
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
11
|
New Insights into the In Vitro Antioxidant Routes and Osteogenic Properties of Sr/Zn Phytate Compounds. Pharmaceutics 2023; 15:pharmaceutics15020339. [PMID: 36839661 PMCID: PMC9965475 DOI: 10.3390/pharmaceutics15020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Sr/Zn phytate compounds have been shown interest in biomaterial science, specifically in dental implantology, due to their antimicrobial effects against Streptococcus mutans and their capacity to form bioactive coatings. Phytic acid is a natural chelating compound that shows antioxidant and osteogenic properties that can play an important role in bone remodelling processes affected by oxidative stress environments, such as those produced during infections. The application of non-protein cell-signalling molecules that regulate both bone and ROS homeostasis is a promising strategy for the regeneration of bone tissues affected by oxidative stress processes. In this context, phytic acid (PA) emerged as an excellent option since its antioxidant and osteogenic properties can play an important role in bone remodelling processes. In this study, we explored the antioxidant and osteogenic properties of two metallic PA complexes bearing bioactive cations, i.e., Sr2+ (SrPhy) and Zn2+ (ZnPhy), highlighting the effect of the divalent cations anchored to phytate moieties and their capability to modulate the PA properties. The in vitro features of the complexes were analyzed and compared with those of their precursor PA. The ferrozine/FeCl2 method indicated that SrPhy exhibited a more remarkable ferrous ion affinity than ZnPhy, while the antioxidant activity demonstrated by a DPPH assay showed that only ZnPhy reduced the content of free radicals. Likewise, the antioxidant potential was assessed with RAW264.7 cell cultures. An ROS assay indicated again that ZnPhy was the only one to reduce the ROS content (20%), whereas all phytate compounds inhibited lipid peroxidation following the decreasing order of PA > SrPhy > ZnPhy. The in vitro evaluation of the phytate's osteogenic ability was performed using hMSC cells. The results showed tailored properties related to the cation bound in each complex. ZnPhy overexpressed ALP activity at 3 and 14 days, and SrPhy significantly increased calcium deposition after 21 days. This study demonstrated that Sr/Zn phytates maintained the antioxidant and osteogenic properties of PA and can be used in bone regenerative therapies involving oxidative environments, such as infected implant coatings and periodontal tissues.
Collapse
|
12
|
Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Abd Elkodous M, El-Khawaga AM, Abdel Maksoud MIA, El-Sayyad GS, Alias N, Abdelsalam H, Ibrahim MA, Elsayed MA, Kawamura G, Lockman Z, Tan WK, Matsuda A. Enhanced photocatalytic and antimicrobial performance of a multifunctional Cu-loaded nanocomposite under UV light: theoretical and experimental study. NANOSCALE 2022; 14:8306-8317. [PMID: 35660850 DOI: 10.1039/d2nr01710e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to modern industrialization and population growth, access to clean water has become a global challenge. In this study, a metal-semiconductor heterojunction was constructed between Cu NPs and the Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix for the photodegradation of potassium permanganate, hexavalent chromium Cr(VI) and p-nitroaniline (pNA) under UV light. In addition, the electronic and adsorption properties after Cu loading were evaluated using density functional theory (DFT) calculations. Moreover, the antimicrobial properties of the prepared samples toward pathogenic bacteria and unicellular fungi were investigated. Photocatalytic measurements show the outstanding efficiency of the Cu-loaded nanocomposite compared to that of bare Cu NPs and the composite matrix. Degradation efficiencies of 44% after 80 min, 100% after 60 min, and 65% after 90 min were obtained against potassium permanganate, Cr(VI), and pNA, respectively. Similarly, the antimicrobial evaluation showed high ZOI, lower MIC, higher protein leakage amount, and cell lysis of nearly all microbes treated with the Cu-loaded nanocomposite.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| | - M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nurhaswani Alias
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
- Theoretical Physics Department, National Research Centre, El-Buhouth Str., Dokki, Giza, 12622, Egypt
| | - Medhat A Ibrahim
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, 11837, Egypt
- Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | - Zainovia Lockman
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
14
|
Rahman H, Kumar V, Singh P, Kumar A. Catalytic effect of silver nanoparticles on ZnO surface for CO gas-sensing applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Gharpure S, Yadwade R, Ankamwar B. Non-antimicrobial and Non-anticancer Properties of ZnO Nanoparticles Biosynthesized Using Different Plant Parts of Bixa orellana. ACS OMEGA 2022; 7:1914-1933. [PMID: 35071882 PMCID: PMC8771956 DOI: 10.1021/acsomega.1c05324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 05/02/2023]
Abstract
As traditional cancer therapy is toxic to both normal and cancer cells, there is a need for newer approaches to specifically target cancer cells. ZnO nanoparticles can be promising due their biocompatible nature. However, ZnO nanoparticles have also shown cytotoxicity against mammalian cells in some cases, because of which there is a need for newer synthesis approaches for biocompatible ZnO nanoparticles to be used as carrier molecules in drug delivery applications. Here, we report the biosynthesis of ZnO nanoparticles using different plant parts (leaf, seed, and seed coat) of Bixa orellana followed by different characterizations. The UV-visible spectra of ZnO showed absorption maxima at 341 and 353 nm, 378 and 373 nm, and 327 and 337 nm, respectively, before and after calcination corresponding to the band gap energy of 3.636 and 3.513 eV, 3.280 and 3.324 eV, and 3.792 and 3.679 eV for L-ZnO, S-ZnO, and Sc-ZnO, respectively. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structures. Attenuated total reflectance infrared spectra revealed the presence of stretching vibrations of C-C, C=C, C=O, and NH3 + groups along with C-H deformation involving biomolecules from extracts responsible for reduction and stabilization of nanoparticles. Field emission scanning electron microscopy and transmission electron microscopy images showed spherical and almond-like morphologies of L-ZnO and Sc-ZnO with spherical morphologies, whereas S-ZnO showed almond-like morphologies. The presence of antibacterial activity was observed in L-ZnO against Staphylococcus aureus and Bacillus subtilis, in S-ZnO nanoparticles only against Escherichia coli, and in Sc-ZnO only against Staphylococcus aureus. Uncalcinated ZnO nanoparticles showed weak antibacterial activities, whereas calcinated ZnO nanoparticles showed a non-antibacterial nature. The antifungal activity against different fungi (Penicillium sp., Aspergillus flavus, Fusarium oxysporum, and Rhizoctonia solani) and cytotoxicity against HCT-116 cancer cells were not observed before and after calcination in all three ZnO nanoparticles. The antimicrobial nature and biocompatibility of ZnO nanoparticles were influenced by different parameters of the nanoparticles along with microorganisms and the human cells. Non-antimicrobial properties of ZnO nanoparticles can be treated as a pre-requisite for its biocompatibility due to its inert nature. Thus, biosynthesized ZnO nanoparticles showed a nontoxic nature, which can be exploited as promising alternatives in biomedical applications.
Collapse
|
16
|
Current strategies in inhibiting biofilm formation for combating urinary tract infections: Special focus on peptides, nano-particles and phytochemicals. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Bekhit M, El-Sabbagh SH, Mohamed RM, El-Sayyad GS, Sokary R. Mechanical, Thermal and Antimicrobial Properties of LLDPE/EVA/MMT/Ag Nanocomposites Films Synthesized by Gamma Irradiation. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02137-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Gamma Irradiation Assisted the Sol–Gel Method for Silver Modified-Nickel Molybdate Nanoparticles Synthesis: Unveiling the Antimicrobial, and Antibiofilm Activities Against Some Pathogenic Microbes. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02132-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Eldebany N, Abd Elkodous M, Tohamy H, Abdelwahed R, El-Kammar M, Abou-Ahmed H, Elkhenany H. Gelatin Loaded Titanium Dioxide and Silver Oxide Nanoparticles: Implication for Skin Tissue Regeneration. Biol Trace Elem Res 2021; 199:3688-3699. [PMID: 33200397 DOI: 10.1007/s12011-020-02489-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Treatment of burn wounds has many requirements to ensure wound closure with healthy tissue, increased vascularization, guarantee edema resolution, and control bacterial infection. We propose that titanium oxide (TiO2) nanoparticles (NPs) will be more efficient than silver dioxide (Ag2O) in the treatment of burn wounds. Herein, gelatin loaded NPs (GLT-NPs) were evaluated for their efficacy to regenerate second-degree burn wound in rabbit skin. TEM results revealed that the average particle sizes were ⁓ 7.5 and 17 nm for Ag2O and TiO2 NPs, respectively. The results of the in vivo application of GLT-NPs on burn wound in the rabbit revealed that both Ag2O and TiO2 NPs were efficient than the control none treated (CTRL) and GLT group. In terms of the healing rate, the GLT-TiO2 did not show any significant difference than GLT-Ag2O (99.57% vs. 99.85%, p = 0.2). Meanwhile, the healing rate was significantly higher in both NPs' treated groups than CTRL (94.16%, p < 0.01) and GLT group (95.07%, p < 0.05). Also, the histological analysis using H&E staining showed re-epithelization, less edema, and enhanced vascularization in both GLT-NPs than CTRL and GLT groups. Furthermore, immunohistochemical analysis of TGF-β1 and α-SMA revealed significantly a higher expression in both GLT-NPs groups than CTRL and GLT groups at weeks 1 and 2 (p < 0.05). Interestingly, TGF-β1 and α-SMA were substantially higher in GLT- TiO2 than GLT-Ag2O at weeks 1 and 2 (p < 0.05), but the expression was not significant at week 3. In conclusion, GLT-NPs showed higher regenerative capacity and enhanced the healing quality after burn wound compared to CTRL and GLT. Graphical abstract.
Collapse
Affiliation(s)
- Nermeen Eldebany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Giza, Egypt
| | - Hossam Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Ramadan Abdelwahed
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Mahmoud El-Kammar
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Howaida Abou-Ahmed
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt.
| |
Collapse
|
20
|
Doghish AS, El-Sayyad GS, Sallam AAM, Khalil WF, El Rouby WMA. Graphene oxide and its nanocomposites with EDTA or chitosan induce apoptosis in MCF-7 human breast cancer. RSC Adv 2021; 11:29052-29064. [PMID: 35478542 PMCID: PMC9038105 DOI: 10.1039/d1ra04345e] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
To achieve the advanced anticancer activity of nanocomposites fabricated with graphene oxide (GO), a novel procedure was used during the fabrication of chitosan (CS) or ethylene diamine tetra acetic acid (EDTA). The synthesized GO-based nanocomposites were distinguished through different analytical techniques. The cytotoxic activity was examined using MTT assays against three different cancer cell lines. Cell cycle distribution and apoptosis were studied by flow cytometry. Caspase-8, caspase-9, and VEGFR-2 levels were determined using the ELISA technique. HRTEM results revealed a regular 2D thin sheet with a transparent surface in non-modified GO and for GO-CS, the surface of GO has clear cuts and lines had developed due to CS insertion. Concerning the MCF-7 breast cancer cell line, the lowest IC50 values were recorded, suggesting the most powerful cytotoxic effect on breast cancer cells. Treatment with GO-EDTA resulted in the lowest IC50 value of 3.8 ± 0.18 μg mL-1. As indicated by the annexin V-FITC apoptosis assay, the total apoptosis highest percentage was in GO-EDTA treatment (30.12%). In addition, the study of cell cycle analysis showed that GO-EDTA arrested the cell cycle primarily in the G0/G1 phase (33.74%). CS- and EDTA-conjugated GO showed an anti-cancer activity through their cytotoxic effect against the MCF-7 breast cancer cell line.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City Cairo 11651 Egypt
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC) Badr City Cairo 11829 Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Chemical Engineering Department, Military Technical College (MTC) Egyptian Armed Forces Cairo Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain-Shams University Abassia Cairo 11566 Egypt
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC) Badr City Cairo 11829 Egypt
| | - Waleed F Khalil
- Safety Fuel Cycle Department, Egyptian Nuclear and Radiological Regulatory Authority (ENRRA) Cairo Egypt
| | - Waleed M A El Rouby
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
21
|
Abd Elkodous M, El-Sayyad GS, Abdel-Daim MM. Engineered nanomaterials as fighters against SARS-CoV-2: The way to control and treat pandemics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40409-40415. [PMID: 33068246 PMCID: PMC7568023 DOI: 10.1007/s11356-020-11032-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
In this editorial trend, we aim to collect and present recently available data about the characteristics of SARS-CoV-2 virus, severity, infection, replication, diagnosis, and current medications. In addition, we propose the role of nanomaterials in controlling and treating COVID-19 through their antiviral and antibacterial potential with suggested action mechanisms indicating the capability of interaction between these nanomaterials and SARS-CoV-2. These nanomaterials might be among the possible and most effective cures against coronavirus.
Collapse
Affiliation(s)
- Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt.
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal university, Ismailia, 41522, Egypt.
| |
Collapse
|
22
|
Elbasuney S, El-Sayyad GS, Tantawy H, Hashem AH. Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites. RSC Adv 2021; 11:25961-25975. [PMID: 35479482 PMCID: PMC9037130 DOI: 10.1039/d1ra04542c] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial infections are considered one of the most dangerous infections in humans due to their resistance to most antimicrobial agents. In this study, nanocomposites based on reduced graphene oxide (RGO) and metal oxides (NiO, AgO, and ZnO) were fabricated. The graphite precursor and RGO were characterized by XRD, Raman spectroscopy, SEM, and HRTEM, while SEM, XRD, and EDX mapping analysis validated the synthesized nanocomposites. In addition, ZOI and MIC were employed to test the antimicrobial potential, while their antibiofilm activity and the effect of UV illumination were also investigated. Finally, reaction mechanism determination was performed using SEM analysis. The results revealed that all the synthesized nanocomposites (RGO-NiO, RGO-AgO, and RGO-ZnO) had outstanding antimicrobial activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), unicellular fungi (Candida albicans and Cryptococcus neoformans) and multicellular fungi (Aspergillus niger, A. terreus, A. flavus and A. fumigatus). Moreover, the synthesized RGO-NiO nanocomposite exhibited antibiofilm activity (following 10.0 µg mL-1 RGO-NiO), with an inhibition percentage of 94.60% for B. subtilis, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. The maximum percentage inhibition under UV illumination toward P. aeruginosa, B. subtilis and C. neoformans at the end of the experiment using RGO-NiO were 83.21%, 88.54%, and 91.15%, respectively, while the values of RGO-AgO were 64.85%, 68.0%, and 80.15%, respectively, and those of RGO-ZnO were 72.95%, 82.15%, and 79.25%, respectively. The SEM analysis of C. neoformans in the absence of the RGO-NiO nanocomposite showed the development of unicellular fungal cells by regular budding. In contrast, after RGO-NiO treatment, noticeable morphological differences were identified in C. neoformans, including the lysis of the outer surface with deformations of the fungal cells. In conclusion, the prepared nanocomposites are promising antimicrobial and antibiofilm agents and can be used to treat the pathogenic microbes at low concentrations and represent a new strategy for managing infectious diseases caused by pathogenic microorganisms.
Collapse
Affiliation(s)
- Sherif Elbasuney
- Head of Nanotechnology Research Center, Military Technical College (MTC) Egyptian Armed Forces, Kobry Elkobbah Cairo 262-111 Egypt
- Chemical Engineering Department, Military Technical College (MTC) Egyptian Armed Forces, Kobry Elkobbah Cairo 262-111 Egypt
| | - Gharieb S El-Sayyad
- Chemical Engineering Department, Military Technical College (MTC) Egyptian Armed Forces, Kobry Elkobbah Cairo 262-111 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Nasr City Cairo 11787 Egypt
| | - Hesham Tantawy
- Chemical Engineering Department, Military Technical College (MTC) Egyptian Armed Forces, Kobry Elkobbah Cairo 262-111 Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
23
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021; 12:685465. [PMID: 34140892 PMCID: PMC8205439 DOI: 10.3389/fphar.2021.685465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient's quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
Affiliation(s)
- Chun-Ping Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-De Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Zi-Yan Ye
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Dong-Yue He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Wei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Ren
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jin Fan
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021. [DOI: 10.3389/fphar.2021.685465
expr 881861845 + 830625731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient’s quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
|
25
|
Qindeel M, Barani M, Rahdar A, Arshad R, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Urinary Tract Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:546. [PMID: 33671511 PMCID: PMC7926703 DOI: 10.3390/nano11020546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
The diagnosis and treatment of urinary tract infections (UTIs) remain challenging due to the lack of convenient assessment techniques and to the resistance to conventional antimicrobial therapy, showing the need for novel approaches to address such problems. In this regard, nanotechnology has a strong potential for both the diagnosis and therapy of UTIs via controlled delivery of antimicrobials upon stable, effective and sustained drug release. On one side, nanoscience allowed the production of various nanomaterial-based evaluation tools as precise, effective, and rapid procedures for the identification of UTIs. On the other side, nanotechnology brought tremendous breakthroughs for the treatment of UTIs based on the use of metallic nanoparticles (NPs) for instance, owing to the antimicrobial properties of metals, or of surface-tailored nanocarriers, allowing to overcome multidrug-resistance and prevent biofilm formation via targeted drug delivery to desired sites of action and preventing the development of cytotoxic processes in healthy cells. The goal of the current study is therefore to present the newest developments for the diagnosis and treatment of UTIs based on nanotechnology procedures in relation to the currently available techniques.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg, Germany
| |
Collapse
|
26
|
Synergistic Catalytic Effect of Thermite Nanoparticles on HMX Thermal Decomposition. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01916-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Khalil WF, El-Sayyad GS, El Rouby WM, Sadek M, Farghali AA, El-Batal AI. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some Candida species and pathogenic bacteria. Int J Biol Macromol 2020; 164:1370-1383. [DOI: 10.1016/j.ijbiomac.2020.07.205] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
|
28
|
Gheidari D, Mehrdad M, Maleki S, Hosseini S. Synthesis and potent antimicrobial activity of CoFe 2O 4 nanoparticles under visible light. Heliyon 2020; 6:e05058. [PMID: 33083590 PMCID: PMC7550927 DOI: 10.1016/j.heliyon.2020.e05058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The nanoparticles of Cobalt ferrite are synthesized using polyethylene glycol as a solvent by the solvothermal method in a surfactant-free condition. Nanoparticles that were synthesized were determined by using various techniques such as Diffuse Reflection Spectroscopy (DRS), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray spectroscopy (EDAX). The Scanning electron microscope confirmed the range of spherical nanoparticles in the size of 20–33 nm. An excellent match was observed between the calculated particles size in the X-ray diffraction and electron microscopes results. Furthermore, their antimicrobial efficacy was determined by MIC, MBC, IC50 and disc diffusion method on Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus, Bacillus cereus) bacteria. The results indicated an acceptable bacteriostatic and bactericidal effects of this nanoparticles. Additionally, it was seen that by the increase in the concentration of nanoparticles, their antimicrobial property would increase. Background and objective In recent years, antibacterial materials have found a special place to avoid the overuse of antibiotics. In this study, the antibacterial effects of CoFe2O4 nanoparticles on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus, were investigated due to their importance as human pathogens in nosocomial infection. Methodology In this study, the antibacterial effects of CoFe2O4 nanoparticles such as MIC, MBC, IC50, and disc diffusion method were examined. Findings According to the results, CoFe2O4 nanoparticles exhibited potent antibacterial activity against the bacteria that were examined, especially Bacillus cereus. The MBC (Minimum Bactericidal Concentration) of CoFe2O4 nanoparticle on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus was between 0.12-0.48 mg/ml and MIC (Minimum Inhibition Concentration) on these bacteria detected between 0.06-0.24 mg/ml. The least IC50 determined for Bacillus cereus with a concentration of 0.061 mg/ml. Pseudomonas aeruginosa and Bacillus cereus identified as the most resistant and sensitive bacteria in the disc diffusion method, respectively.
Collapse
Affiliation(s)
- Davood Gheidari
- Department of Chemistry, Faculty of Science, University of Guilan, Iran
| | - Morteza Mehrdad
- Department of Chemistry, Faculty of Science, University of Guilan, Iran
| | - Saloomeh Maleki
- Department of Chemistry, Faculty of Science, University of Shahrood, Iran
| | | |
Collapse
|
29
|
El-Batal AI, Abd Elkodous M, El-Sayyad GS, Al-Hazmi NE, Gobara M, Baraka A. Gum Arabic polymer-stabilized and Gamma rays-assisted synthesis of bimetallic silver-gold nanoparticles: Powerful antimicrobial and antibiofilm activities against pathogenic microbes isolated from diabetic foot patients. Int J Biol Macromol 2020; 165:169-186. [PMID: 32987079 DOI: 10.1016/j.ijbiomac.2020.09.160] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
In this research, irradiation by gamma rays was employed as an eco-friendly route for the construction of bimetallic silver-gold nanoparticles (Ag-Au NPs), while Gum Arabic polymer was used as a capping agent. Ag-Au NPs were characterized through UV-Vis., XRD, EDX, HR-TEM, FTIR, SEM/mapping and EDX analysis. Antibiofilm and antimicrobial activities were examined against some bacteria and Candida sp. isolates from diabetic foot patients. Our results revealed that the synthesis of Ag-Au NPs depended on the concentrations of tetra-chloroauric acid and silver nitrate. HR-TEM analysis confirmed the spherical nature and an average diameter of 18.58 nm. FTIR results assured many functional groups in Gum Arabic which assisted in increasing the susceptibility of incorporation with Ag-Au NPs. Our results showed that, Ag-Au NPs exhibited the highest antimicrobial performance against B. subtilis (14.30 mm ZOI) followed by E. coli (12.50 mm ZOI) and C. tropicalis (11.90 mm ZOI). In addition, Ag-Au NPs were able to inhibit the biofilm formation by 99.64%, 94.15%, and 90.79% against B. subtilis, E. coli, and C. tropicalis, respectively. Consequently, based on the promising properties, they showed superior antimicrobial potential at low concentration and continued-phase durability, they can be extensively-used in many pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza 16453, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Chemical Engineering Department, Military Technical Collage (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Nawal E Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Saudi Arabia
| | - Mohamed Gobara
- Chemical Engineering Department, Military Technical Collage (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Ahmad Baraka
- Chemical Engineering Department, Military Technical Collage (MTC), Egyptian Armed Forces, Cairo, Egypt
| |
Collapse
|
30
|
El-Khawaga AM, Farrag AA, Elsayed MA, El-Sayyad GS, El-Batal AI. Antimicrobial and Photocatalytic Degradation Activities of Chitosan-coated Magnetite Nanocomposite. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01869-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Abd Elkodous M, El-Sayyad GS, Youssry SM, Nada HG, Gobara M, Elsayed MA, El-Khawaga AM, Kawamura G, Tan WK, El-Batal AI, Matsuda A. Carbon-dot-loaded Co xNi 1-xFe 2O 4; x = 0.9/SiO 2/TiO 2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Sci Rep 2020; 10:11534. [PMID: 32661303 PMCID: PMC7358215 DOI: 10.1038/s41598-020-68173-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Water scarcity is now a serious global issue resulting from population growth, water decrease, and pollution. Traditional wastewater treatment plants are insufficient and cannot meet the basic standards of water quality at reasonable cost or processing time. In this paper we report the preparation, characterization and multiple applications of an efficient photocatalytic nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2/C-dots) synthesized by a layer-by-layer method. Then, the photocatalytic capabilities of the synthesized nanocomposite were extensively-studied against aqueous solutions of chloramine-T trihydrate. In addition, reaction kinetics, degradation mechanism and various parameters affecting the photocatalytic efficiency (nanocomposite dose, chloramine-T initial concentration, and reaction pH) were analyzed in detail. Further, the antimicrobial activities of the prepared nanocomposite were tested and the effect of UV-activation on the antimicrobial abilities of the prepared nanocomposite was analyzed. Finally, a comparison between the antimicrobial abilities of the current nanocomposite and our previously-reported nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2) had been carried out. Our results revealed that the prepared nanocomposite possessed a high degree of crystallinity, confirmed by XRD, while UV-Vis. recorded an absorption peak at 299 nm. In addition, the prepared nanocomposite possessed BET-surface area of (28.29 ± 0.19 m2/g) with narrow pore size distribution. Moreover, it had semi-spherical morphology, high-purity and an average particle size of (19.0 nm). The photocatalytic degradation efficiency was inversely-proportional to chloramine-T initial concentration and directly proportional to the photocatalyst dose. In addition, basic medium (pH 9) was the best suited for chloramine-T degradation. Moreover, UV-irradiation improved the antimicrobial abilities of the prepared nanocomposite against E. coli, B. cereus, and C. tropicalis after 60 min. The observed antimicrobial abilities (high ZOI, low MIC and more efficient antibiofilm capabilities) were unique compared to our previously-reported nanocomposite. Our work offers significant insights into more efficient water treatment and fosters the ongoing efforts looking at how pollutants degrade the water supply and the disinfection of water-borne pathogenic microorganisms.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, 16453, Giza, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Sally M Youssry
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Hanady G Nada
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Gobara
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Ahmed I El-Batal
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
32
|
Abdel Maksoud MIA, El-Sayyad GS, Abd Elkodous M, Awed AS. Controllable synthesis of Co1−x MxFe2O4 nanoparticles (M = Zn, Cu, and Mn; x = 0.0 and 0.5) by cost-effective sol–gel approach: analysis of structure, elastic, thermal, and magnetic properties. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2020; 31:9726-9741. [DOI: 10.1007/s10854-020-03518-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 09/02/2023]
|
33
|
Zaki AG, El-Sayed ESR, Abd Elkodous M, El-Sayyad GS. Microbial acetylcholinesterase inhibitors for Alzheimer's therapy: recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery. Appl Microbiol Biotechnol 2020; 104:4717-4735. [PMID: 32285176 PMCID: PMC7223626 DOI: 10.1007/s00253-020-10560-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Abstract Neurodegenerative disorders especially Alzheimer’s disease (AD) are significantly threatening the public health. Acetylcholinesterase (AChE) inhibitors are compounds of great interest which can be used as effective agents for the symptomatic treatment of AD. Although plants are considered the largest source for these types of inhibitors, the microbial production of AChE inhibitors represents an efficient, easily manipulated, eco-friendly, cost-effective, and alternative approach. This review highlights the recent advances on the microbial production of AChE inhibitors and summarizes all the previously reported successful studies on isolation, screening, extraction, and detecting methodologies of AChE inhibitors from the microbial fermentation, from the earliest trials to the most promising anti-AD drug, huperzine A (HupA). In addition, improvement strategies for maximizing the industrial production of AChE inhibitors by microbes will be discussed. Finally, the promising applications of nano-material-based drug delivery systems for natural AChE inhibitor (HupA) will also be summarized. Key Points • AChE inhibitors are potential therapies for Alzheimer’s disease. • Microorganisms as alternate sources for prospective production of such inhibitors. • Research advances on extraction, detection, and strategies for production improvement. • Nanotechnology-based approaches for an effective drug delivery for Alzheimer’s disease.
Collapse
Affiliation(s)
- Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.,Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt. .,Chemical Engineering Department, Egyptian Armed Forces, Military Technical College (MTC), Cairo, Egypt.
| |
Collapse
|
34
|
Abdelhakim HK, El-Sayed ER, Rashidi FB. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J Appl Microbiol 2020; 128:1634-1646. [PMID: 31954094 DOI: 10.1111/jam.14581] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/02/2020] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
AIMS Zinc oxide nanoparticles (ZnONPs) were successfully synthesized using the culture filtrate of the endophytic fungus Alternaria tenuissima as a rapid, eco-friendly and cost-effective method. METHODS AND RESULTS The rapid synthesis of ZnONPs was completed after 20 min as confirmed by UV-Vis spectroscopy. The synthesized ZnONPs showed a single-phase crystalline structure. Dynamic light scattering analysis showed that the synthesized ZnONPs were monodispersed and the recorded polydispersity index value was 0·311. Zeta potential value of -23·92 mV indicated the high stability of ZnONPs. Transmission electron microscope revealed the spherical shape and the mean particle size was 15.45 nm. Functional groups present in the prepared samples of ZnONPs were confirmed by Fourier transform infrared spectroscopy. Additionally, the biological activities of in vitro antimicrobial, anticancer, antioxidant as well as the photocatalytic activities were evaluated. ZnONPs showed broad spectrum of antimicrobial potential against all the tested plant and human pathogens. Based on the MTT assay, ZnONPs inhibited the proliferation of normal human melanocytes, human breast and liver cancer cell lines with IC50 concentrations of 55·76, 18·02 and 16·87 µg ml-1 . ZnONPs exhibited promising antioxidant potential with 50% inhibitory concentration of 102·13 µg ml-1 . Moreover, ZnONPs showed efficient degradation of methylene blue dye. CONCLUSIONS The synthesized ZnONPs showed promising activities that can be better explored in the near future for many medical, agricultural and industrial applications. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests a new and alternate approach with the excellent biotechnological potentiality for the production of ZnONPs which could open up the way for the industrial manufacture of nanoparticles using microbial platforms.
Collapse
Affiliation(s)
- H K Abdelhakim
- Biochemistry Lab, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - E R El-Sayed
- Plant Research Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - F B Rashidi
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
35
|
El-Sayyad GS, Abd Elkodous M, El-Khawaga AM, Elsayed MA, El-Batal AI, Gobara M. Merits of photocatalytic and antimicrobial applications of gamma-irradiated Co x Ni 1-x Fe 2O 4/SiO 2/TiO 2; x = 0.9 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment. RSC Adv 2020; 10:5241-5259. [PMID: 35498317 PMCID: PMC9049020 DOI: 10.1039/c9ra10505k] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
In this paper, we report a layer-by-layer approach for the preparation of a concentric recyclable composite (Co x Ni1-x Fe2O4/SiO2/TiO2; x = 0.9) designed for wastewater treatment. The prepared composite was investigated by X-ray diffraction spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy (SEM) supported with energy dispersive X-ray (EDX) spectroscopy to analyze crystallinity, average particle size, morphology and elemental composition, respectively. The antimicrobial activities of the prepared composite have been investigated against multi-drug-resistant bacteria and pathogenic fungi using a variety of experiments, such as zone of inhibition, minimum inhibitory concentration, biofilm formation and SEM with EDX analysis of the treated bacterial cells. In addition, the effects of gamma irradiation (with different doses) and UV irradiation on the antibacterial abilities of the prepared composite have been evaluated. Moreover, the effect of gamma irradiation on the crystallite size of the prepared composite has been studied under varying doses of radiation (25 kGy, 50 kGy and 100 kGy). Finally, the photocatalytic efficiency of the prepared composite was tested for halogen-lamp-assisted removal of pyridine (artificial wastewater). Various parameters affecting the efficiency of the photocatalytic degradation, such as photocatalyst dose, pyridine concentration, pH, point of zero charge and the presence of hydrogen peroxide, have been studied. Our results show that the synthesized composite has a well-crystallized semi-spherical morphology with an average particle size of 125.84 nm. In addition, it possesses a high degree of purity, as revealed by EDX elemental analysis. Interestingly, the prepared composite showed promising antibacterial abilities against almost all the tested pathogenic bacteria and unicellular fungi, and this was further improved after gamma and UV irradiation. Finally, the prepared composite was very efficient in the light-assisted degradation of pyridine and its degradation efficiency can be tuned based on various experimental parameters. This work provides a revolutionary nanomaterial-based solution for the global water shortage and water contamination by offering a new wastewater treatment technique that is recyclable, cost effective and has an acceptable time and quality of water.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University Sheikh Zayed Giza 16453 Egypt
| | - Ahmed M El-Khawaga
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces Cairo Egypt
| | - Mohamed A Elsayed
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces Cairo Egypt
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo Egypt
| | - Mohamed Gobara
- Chemical Engineering Department, Military Technical College, Egyptian Armed Forces Cairo Egypt
| |
Collapse
|
36
|
Unveiling Antimicrobial Activity of Metal Iodide (CuI, AgI, and PbI2) Nanoparticles: Towards Biomedical Surfaces Applications. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01744-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int J Biol Macromol 2019; 156:1584-1599. [PMID: 31790741 DOI: 10.1016/j.ijbiomac.2019.11.210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
The novelty of the present work looks in the synthesis of aqueous dispersed selenium nanoparticles (Se NPs) using gamma rays with the aid of various natural macromolecules such as citrus pectin (CP), sodium alginate (Alg), chitosan (CS) and aqueous extract of fermented fenugreek powder (AEFFP) using Pleurotus ostreatus for investigating their impact in vitro toward carcinoma cell. The synthesized Se NPs were characterized by XRD, UV-Vis., DLS, HRTEM, SEM, EDX and FTIR. Nucleation and growth mechanisms were also discussed. The factorial design was applied to examine the importance of multiple parameters on Se NPs production with a special focus on temperature and gamma rays influences. FTIR spectrum exhibited the existence of several functional groups in Se NPs-capping macromolecules. Results revealed that Se NPs' size was dramatically-influenced by the type of stabilizer, precursors concentration, pH and the absorbed gamma rays dose. The current research reported the promising antitumor application of Se NPs against Ehrlich Ascites Carcinoma (EAC) and human Colon Adenocarcinoma (CACO) in vitro. The proliferation of EAC was significantly-hindered by Se NPs-CS (38.0 μg/ml) at 60 kGy (IC50 = 23.12%) and Se NPs-AEFFP (19.00 μg/ml) at 15 kGy (IC50 = 7.21%). Also, Se NPs control the generation of CACO cells, IC50 was recorded as 25.32% for Se NPs-CS (38.0 μg/ml) and 8.57% for Se NPs-AEFFP (19.00 μg/ml).
Collapse
|
38
|
Antibacterial and Antibiofilm Potential of Mono-dispersed Stable Copper Oxide Nanoparticles-Streptomycin Nano-drug: Implications for Some Potato Plant Bacterial Pathogen Treatment. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01707-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|