1
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Al-Kouh A, Babiker F. Nitric Oxide/Glucose Transporter Type 4 Pathway Mediates Cardioprotection against Ischemia/Reperfusion Injury under Hyperglycemic and Diabetic Conditions in Rats. J Vasc Res 2024; 61:179-196. [PMID: 38952123 DOI: 10.1159/000539461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart. METHODS All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated. RESULTS Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size. CONCLUSIONS The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.
Collapse
Affiliation(s)
- Aisha Al-Kouh
- Department of Physiology, College of Medicine, Kuwait University, Kuwait, Kuwait
| | - Fawzi Babiker
- Department of Physiology, College of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
3
|
Nasehi L, Morassaei B, Ghaffari M, Sharafi A, Dehpour AR, Hosseini MJ. The impacts of vorinostat on NADPH oxidase and mitochondrial biogenesis gene expression in the heart of mice model of depression. Can J Physiol Pharmacol 2022; 100:1077-1085. [PMID: 36166834 DOI: 10.1139/cjpp-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The comorbidity of depression and high risk of cardiovascular diseases (CVD) have been reported as major health problems. Our previous study confirmed that fluoxetine (FLX) therapy had a significant influence on brain function but not on the heart in depression. In the present study, suberoyanilide hydroxamic acid (SAHA) was proposed as another therapeutic candidate for treatment of depression comorbid CVD in maternal separation model, following behavioral analyses and gene expression level in the heart. Our data demonstrated that SAHA significantly attenuates the NOX-4 gene expression level in treated mice with SAHA and FLX without significant change in NOX-2 expression level. SAHA decreased the gene expression level of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and nuclear respiratory factors (Nrf2) in heart tissues of maternally separated mice. It supposed that non-effectiveness of FLX on mitochondrial biogenesis and NOX gene expression level in the heart of depressed patient can be related to recurrence of depression. It revealed that SAHA not only reversed the depressive-like behavior similar to our previous data but also recovered the heart mitochondrial function via effect on NOX-2, NOX-4, and mitochondrial biogenesis genes' (PGC-1α, Nrf-2, and peroxisome proliferator-activated receptor-α (PPAR-α)) expression levels. We suggest performing more studies to confirm SAHA as a therapeutic candidate in depression comorbid CVD.
Collapse
Affiliation(s)
- Leila Nasehi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Morassaei
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Maryam Ghaffari
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| |
Collapse
|
4
|
Fan Z, Dong J, Mu Y, Liu X. Nesfatin-1 protects against diabetic cardiomyopathy in the streptozotocin-induced diabetic mouse model via the p38-MAPK pathway. Bioengineered 2022; 13:14670-14681. [PMID: 35818327 PMCID: PMC9342195 DOI: 10.1080/21655979.2022.2066748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nesfatin-1 is a novel anorexigenic peptide that possesses antihyperglycemic and cardiovascular effects. We hypothesized that nesfatin-1 has a beneficial protective effect against diabetic cardiomyopathy (DC). We investigated the therapeutic effect of nesfatin-1 on diabetes-associated cardiac dysfunction in the high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mouse model. We found that the cardiac nesfatin-1 level was lower in diabetic mice than in normal mice. Nesfatin-1 treatment (180 mg/kg/day for two weeks) improved insulin sensitivity and mitigated diabetic dyslipidemia. Nesfatin-1 ameliorated the diabetes-related myocardial hypertrophy and heart dysfunction, as revealed by the reduced hypertrophy index, heart rate, mean arterial pressure (MAP), creatine kinase (CK)-MB, and aspartate aminotransferase (AST) levels. Nesfatin-1 exerted antioxidant and anti-inflammatory activity in diabetic mice, as shown by decreased reactive oxygen species (ROS), oxidative lipid product malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione (GSH), decreased cardiac and plasma interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) levels. Mechanistically, we found that nesfatin-1 inhibited the cardiac p38-MAPK pathway activation and subsequent glucagon-like peptide-1 (GLP-1) level. Collectively, our data shows nesfatin-1 exerted protective effects against diabetic cardiomyopathy. Our study suggests that nesfatin-1 therapy has therapeutic implications against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhanwei Fan
- Department of Cardiovascular Surgery, Fourth Hospital of Harbin Medical Harbin, Heilongjiang, 150001, China China
| | - Jianjiang Dong
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang Province, Heilongjiang, China
| | - Yindong Mu
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang Province, Heilongjiang, China
| | - Xian Liu
- Department of Cardiovascular Surgery, Fourth Hospital of Harbin Medical Harbin, Heilongjiang, 150001, China China
| |
Collapse
|
5
|
Effects of Regular Exercise on Diabetes-Induced Memory Deficits and Biochemical Parameters in Male Rats. J Mol Neurosci 2020; 71:1023-1030. [PMID: 33000398 DOI: 10.1007/s12031-020-01724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
The main objective of current work was to determine the effects of treadmill-running and swimming exercise on passive avoidance learning (PAL) and blood biochemical parameters in rats with streptozotocin (STZ)-induced diabetes. Male Wistar rats were divided into the following 6 groups (N = 6-8 per group): CON, healthy rats without exercise (N = 8); STZ, diabetic rats without exercise (N = 8); CON-SE, healthy rats subjected to swimming exercise (2 months; N = 6); STZ-SE, diabetic rats subjected to swimming exercise (2 months; N = 7); CON-TE, healthy rats subjected to treadmill exercise (2 months; N = 8); STZ-TE, diabetic rats subjected to treadmill exercise (2 months; N = 8). Diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ. Our results showed that STZ decreased the step-through latency in the retention test (STLr) and increased the time spent in the dark compartment (TDC) when compared with the CON group. However, treadmill-running and swimming exercise in STZ-treated rats increased the STLr and decreased the TDC when compared with STZ-treated rats without exercise in PAL. Blood low-density lipoprotein (LDL) and triglyceride (TG) levels in the STZ group were significantly higher than those in the CON group, whereas plasma total antioxidant capacity (TAC) and levels of catalase (CAT) and glutathione peroxidase (GPx) were lower in the STZ group compared with the CON group. The levels of LDL and TG decreased and the levels of TAC, CAT, and GPx increased in the exercise groups in comparison with the STZ group. The present results indicate that regular exercise enhances learning and memory in diabetic rats and that these effects may occur through activation of the antioxidant system.
Collapse
|
6
|
Ferraz APCR, Garcia JL, Costa MR, Almeida CCVD, Gregolin CS, Alves PHR, Hasimoto FK, Berchieri-Ronchi CB, dos Santos KC, Corrêa CR. Yacon (Smallanthus sonchifolius) use as an antioxidant in diabetes. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Eid RA, Eleawa SM, Alkhateeb MA, Aldera H, Zaki MSA, Al-Shraim M, Saeed MA, El-Kott AF, Alaa Eldeen M, Alassiri M, Alshehri MM, Salem Al-Shudiefat AAR, Khalil MA. Chronic consumption of a high-fat diet rich in corn oil activates intrinsic cell death pathway and induces several ultrastructural changes in the atria of healthy and type 1 diabetic rat. Clin Exp Pharmacol Physiol 2019; 46:1111-1123. [PMID: 31398260 DOI: 10.1111/1440-1681.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 08/04/2019] [Indexed: 11/27/2022]
Abstract
This study investigates the effect of chronic consumption of a high-fat diet rich in corn oil (CO-HFD) on atrial cells ultrastructure, antioxidant levels and markers of intrinsic cell death of both control and type 1 diabetes mellitus (T1DM)-induced rats. Adult male rats (10 rats/group) were divided into four groups: control fed standard diet (STD) (3.82 kcal/g, 9.4% fat), CO-HFD (5.4 kcal/g, 40% fat), T1DM fed STD, and T1DM + CO-HFD. CO-HFD and T1DM alone or in combination impaired systolic and diastolic functions of rats and significantly reduced levels of GSH and the activity of SOD, enhanced lipid peroxidation, increased protein levels of P53, Bax, cleaved caspase-3, and ANF and decreased levels of Bcl-2 in their atria. Concomitantly, atrial cells exhibited fragmentation of the myofibrils, disorganized mitochondria, decreased number of atrionatriuretic factor (ANF) granules, and loss of gap junctions accompanied by changes in capillary walls. Among all treatments, the severity of all these findings was more severe in T1DM and most profound in the atria of T1DM + CO-HFD. In conclusion, chronic consumption of CO-HFD by T1DM-induced rats elicits significant biochemical and ultrastructural damage to rat atrial cells accompanied by elevated oxidative stress and mitochondria-mediated cell death.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, PAAET, Shuwaikh, Kuwait
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour A Saeed
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Muhammad Alaa Eldeen
- Physiology Section, Biology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohammed Alassiri
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Majed M Alshehri
- Central Laboratories, King Faisal Medical City (Southern Region), Abha, Saudi Arabia
| | | | - Mohammad A Khalil
- Department of Basic Medical Science, Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Ulusu NN, Gok M, Erman B, Turan B. Effects of Timolol Treatment on Pancreatic Antioxidant Enzymes in Streptozotocin-induced Diabetic Rats: An Experimental and Computational Study. J Med Biochem 2019; 38:306-316. [PMID: 31156341 PMCID: PMC6534949 DOI: 10.2478/jomb-2018-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The study aimed to investigate whether timolol-treatment has a beneficial effect on pentose phosphate pathway enzyme activities such as glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGDH) enzyme activities and cAMP level in streptozotocin-induced diabetic rats in pancreatic tissues. METHODS Diabetes was induced by streptozotocin (STZ) in 3-month old male Wistar rats. The diabetic rats were treated with timolol (5 mg/kg body weight, for 12 weeks) while the control group received saline. Enzyme activities were determined in pancreas tissue. To support our results, we performed in silico calculations, using Protein Data Bank structures. RESULTS Timolol treatment of STZ-induced diabetic rats had no noteworthy effect on high blood-glucose levels. However, this treatment induced activities of G6PD and 6PGDH in diabetic rats. Timolol treatment significantly increased cAMP level in diabetic pancreatic tissue. We found that timolol cannot bind strongly to either G6PD or 6PGD, but there is a relatively higher binding affinity to adenylyl cyclase, responsible for cAMP production, serving as a regulatory signal via specific cAMP-binding proteins. CONCLUSIONS Our data point out that timolol treatment has beneficial effects on the antioxidant defence mechanism enzymes in the pancreas of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Nuriye Nuray Ulusu
- Koc University, School of Medicine, Department of Medical Biochemistry, IstanbulTurkey
| | - Muslum Gok
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, AnkaraTurkey
| | - Burak Erman
- Koc University, School of Engineering, Department of Chemical and Biological Engineering, IstanbulTurkey
| | - Belma Turan
- Ankara University, Faculty of Medicine, Department of Biophysics, AnkaraTurkey
| |
Collapse
|
9
|
Xiao C, Xia ML, Wang J, Zhou XR, Lou YY, Tang LH, Zhang FJ, Yang JT, Qian LB. Luteolin Attenuates Cardiac Ischemia/Reperfusion Injury in Diabetic Rats by Modulating Nrf2 Antioxidative Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2719252. [PMID: 31089405 PMCID: PMC6476158 DOI: 10.1155/2019/2719252] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022]
Abstract
Luteolin has been reported to attenuate ischemia/reperfusion (I/R) injury in the diabetic heart through endothelial nitric oxide synthase- (eNOS-) related antioxidative response. Though the nuclear factor erythroid 2-related factor 2 (Nrf2) is regarded as a key endogenous factor to reduce diabetic oxidative stress, whether luteolin reduces cardiac I/R injury in the diabetic heart via enhancing Nrf2 function needs to be clarified. We hypothesized that pretreatment with luteolin could alleviate cardiac I/R injury in the diabetic heart by affecting the eNOS/Nrf2 signaling pathway. The diabetic rat was produced by a single injection of streptozotocin (65 mg/kg, i.p.) for 6 weeks, and then, luteolin (100 mg/kg/day, i.g.), eNOS inhibitor L-NAME, or Nrf2 inhibitor brusatol was administered for the succedent 2 weeks. After that, the isolated rat heart was exposed to 30 min of global ischemia and 120 min of reperfusion to establish I/R injury. Luteolin markedly ameliorated cardiac function and myocardial viability; upregulated expressions of heme oxygenase-1, superoxide dismutase, glutathione peroxidase, and catalase; and reduced myocardial lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R heart. All these ameliorating effects of luteolin were significantly reversed by L-NAME or brusatol. Luteolin also markedly reduced S-nitrosylation of Kelch-like ECH-associated protein 1 (Keap1) and upregulated Nrf2 and its transcriptional activity. This effect of luteolin on Keap1/Nrf2 signaling was attenuated by L-NAME. These data reveal that luteolin protects the diabetic heart against I/R injury by enhancing eNOS-mediated S-nitrosylation of Keap1, with subsequent upregulation of Nrf2 and the Nrf2-related antioxidative signaling pathway.
Collapse
Affiliation(s)
- Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Man-Li Xia
- Institute of Physiological Function, Medical College of Jiaxing University, Jiaxing 314001, China
| | - Jue Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Li-Hui Tang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng-Jiang Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
10
|
Korakas E, Dimitriadis G, Raptis A, Lambadiari V. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? Nutrients 2018; 10:E1912. [PMID: 30518065 PMCID: PMC6316552 DOI: 10.3390/nu10121912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
The role of nutrition in the pathogenesis of cardiovascular disease has long been debated. The established notion of the deleterious effects of fat is recently under question, with numerous studies demonstrating the benefits of low-carbohydrate, high-fat diets in terms of obesity, diabetes, dyslipidemia, and metabolic derangement. Monounsaturated and polyunsaturated fatty acids, especially n-3 PUFAs (polyunsaturated fatty acids), are the types of fat that favor metabolic markers and are key components of the Mediterranean Diet, which is considered an ideal dietary pattern with great cardioprotective effects. Except for macronutrients, however, micronutrients like polyphenols, carotenoids, and vitamins act on molecular pathways that affect oxidative stress, endothelial function, and lipid and glucose homeostasis. In relation to these metabolic markers, the human gut microbiome is constantly revealed, with its composition being altered by even small dietary changes and different microbial populations being associated with adverse cardiovascular outcomes, thus becoming the target for potential new treatment interventions. This review aims to present the most recent data concerning different dietary patterns at both the macro- and micronutrient level and their association with atherosclerosis, obesity, and other risk factors for cardiovascular disease.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - George Dimitriadis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - Athanasios Raptis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - Vaia Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| |
Collapse
|
11
|
Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 2018; 17:144. [PMID: 30447687 PMCID: PMC6240275 DOI: 10.1186/s12933-018-0790-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a prevalent risk factor for cardiac dysfunction. Although SGLT2-inhibitors have important cardioprotective effects in hyperglycemia, their underlying mechanisms are complex and not completely understood. Therefore, we examined mechanisms of a SGLT2-inhibitor dapagliflozin (DAPA)-related cardioprotection in overweight insulin-resistant MetS-rats comparison with insulin (INSU), behind its glucose-lowering effect. METHODS A 28-week high-carbohydrate diet-induced MetS-rats received DAPA (5 mg/kg), INSU (0.15 mg/kg) or vehicle for 2 weeks. To validate MetS-induction, we monitored all animals weekly by measuring body weight, blood glucose and HOMO-IR index, electrocardiograms, heart rate, systolic and diastolic pressures. RESULTS DAPA-treatment of MetS-rats significantly augmented the increased blood pressure, prolonged Q-R interval, and low heart rate with depressed left ventricular function and relaxation of the aorta. Prolonged-action potentials were preserved with DAPA-treatment, more prominently than INSU-treatment, at most, through the augmentation in depressed voltage-gated K+-channel currents. DAPA, more prominently than INSU-treatment, preserved the depolarized mitochondrial membrane potential, and altered mitochondrial protein levels such as Mfn-1, Mfn-2, and Fis-1 as well as provided significant augmentation in cytosolic Ca2+-homeostasis. Furthermore, DAPA also induced significant augmentation in voltage-gated Na+-currents and intracellular pH, and the cellular levels of increased oxidative stress, protein-thiol oxidation and ADP/ATP ratio in cardiomyocytes from MetS rats. Moreover, DAPA-treatment normalized the increases in the mRNA level of SGLT2 in MetS-rat heart. CONCLUSIONS Overall, our data provided a new insight into DAPA-associated cardioprotection in MetS rats, including suppression of prolonged ventricular-repolarization through augmentation of mitochondrial function and oxidative stress followed by improvement of fusion-fission proteins, out of its glucose-lowering effect.
Collapse
Affiliation(s)
- Aysegul Durak
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yusuf Olgar
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sinan Degirmenci
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erman Akkus
- Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
12
|
Cheng X, Ni X, Wu R, Chong Y, Gao X, Ge C, Yin JJ. Evaluation of the structure–activity relationship of carbon nanomaterials as antioxidants. Nanomedicine (Lond) 2018. [DOI: 10.2217/nnm-2017-0314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To develop the potential application of carbon nanomaterials as antioxidants calls for better understanding of how the specific structure affects their antioxidant activity. Materials & methods: Several typical carbon nanomaterials, including graphene quantum dots and fullerene derivatives were characterized and their radical scavenging activities were evaluated; in addition, the in vitro and in vivo radioprotection experiments were performed. Results: These carbon nanomaterials can efficiently scavenge free radicals in a structure-dependent manner. In vitro assays demonstrate that administration of these carbon nanomaterials markedly increases the surviving fraction of cells exposed to ionizing radiation. Moreover, in vivo experiments confirm that their administration can also increase the survival rates of mice exposed to radiation. Conclusion: All results confirm that large, buckyball-shaped fullerenes show the strongest antioxidant properties and the best radioprotective efficiency. Our work will be useful in guiding the design and optimization of nanomaterials for potential antioxidant and radioprotection bio-applications.
Collapse
Affiliation(s)
- Xiaju Cheng
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xiaohu Ni
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Renfei Wu
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yu Chong
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xingfa Gao
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Cuicui Ge
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jun-Jie Yin
- Division of Bioanalytical Chemistry & Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD 20740, USA
| |
Collapse
|
13
|
Tsai KL, Kao CL, Hung CH, Cheng YH, Lin HC, Chu PM. Chicoric acid is a potent anti-atherosclerotic ingredient by anti-oxidant action and anti-inflammation capacity. Oncotarget 2018; 8:29600-29612. [PMID: 28410194 PMCID: PMC5444689 DOI: 10.18632/oncotarget.16768] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/04/2017] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic cardiovascular disease is linked to both oxidative stress and endothelial cell dysfunction. Chicoric acid has antioxidant and anti-inflammatory properties. In the present investigation, we demonstrated that chicoric acid inhibits oxidized low-density lipoprotein (oxLDL)-facilitated dysfunction in human umbilical vein endothelial cells (HUVECs). Oxidative injuries were tested by investigating the formation of intracellular reactive oxygen species (ROS) and by examining the activity of antioxidant enzymes and the function of endothelial nitric oxide synthase (eNOS). We also confirmed that chicoric acid mitigates apoptotic features caused by oxLDL, such as the subsequent break down of mitochondrial transmembrane potential and the activation of Bax, which promote DNA strand breaks and activate caspase-3. Moreover, our data revealed that chicoric acid attenuated the oxLDL activation of NF-κB, the attachment of THP-1 cells and the overexpression of adhesion molecules in human endothelial cells. The results of this study suggest a potential molecular mechanism through which chicoric acid inhibits oxLDL-induced human endothelial dysfunction.
Collapse
Affiliation(s)
- Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsin Cheng
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Huei-Chen Lin
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Physical Therapy, Shu-Zen Junior College Of Medicine And Management, Kaohsiung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Anti-Inflammatory Treatment. Coron Artery Dis 2018. [DOI: 10.1016/b978-0-12-811908-2.00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Xianchu L, Lan Z, Ming L, Yanzhi M. Protective effects of rutin on lipopolysaccharide-induced heart injury in mice. J Toxicol Sci 2018; 43:329-337. [DOI: 10.2131/jts.43.329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
dos Santos KC, Bueno BG, Pereira LF, Francisqueti FV, Braz MG, Bincoleto LF, da Silva LX, Ferreira ALA, Nakamune ACDMS, Chen CYO, Blumberg JB, Corrêa CR. Yacon ( Smallanthus sonchifolius) Leaf Extract Attenuates Hyperglycemia and Skeletal Muscle Oxidative Stress and Inflammation in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:6418048. [PMID: 28808475 PMCID: PMC5541823 DOI: 10.1155/2017/6418048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023]
Abstract
The effects of hydroethanolic extract of Yacon leaves (HEYL) on antioxidant, glycemic, and inflammatory biomarkers were tested in diabetic rats. Outcome parameters included glucose, insulin, interleukin-6 (IL-6), and hydrophilic antioxidant capacity (HAC) in serum and IL-6, HAC, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in soleus. The rats (10/group) were divided as follows: C, controls; C + Y, HEYL treated; DM, diabetic controls; and DM + Y, diabetic rats treated with HEYL. Diabetes mellitus was induced by administration of streptozotocin. C + Y and DM + Y groups received 100 mg/kg HEYL daily via gavage for 30 d. Hyperglycemia was improved in the DM + Y versus DM group. Insulin was reduced in DM versus C group. DM rats had higher IL-6 and MDA and lower HAC in the soleus muscle. HEYL treatment decreased IL-6 and MDA and increased HAC in DM rats. DM + Y rats had the highest CAT activity versus the other groups; GPx was higher in C + Y and DM + Y versus their respective controls. The apparent benefit of HEYL may be mediated via improving glucoregulation and ameliorating oxidative stress and inflammation, particularly in diabetic rats.
Collapse
Affiliation(s)
- Klinsmann Carolo dos Santos
- São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | | | | | - Mariana Gobbo Braz
- São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | | | | | | | - C.-Y. Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Jeffrey B. Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | |
Collapse
|
17
|
Liu Y, Zhao YB, Wang SW, Zhou Y, Tang ZS, Li F. Mulberry granules protect against diabetic cardiomyopathy through the AMPK/Nrf2 pathway. Int J Mol Med 2017; 40:913-921. [PMID: 28677741 DOI: 10.3892/ijmm.2017.3050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
Abstract
Mulberry granules (MLD) is a traditional Chinese medicine prescription that has been used in the treatment of diabetes for many years. Recently, we found that MLD protected the heart from diabetes-associated cardiomyopathy when it was used to treat diabetes. However, the beneficial effects and possible mechanism remain unknown. To elucidate these effects, an experimental myocardial ischemia/reperfusion (MI/R) injury model in diabetes rats was used in this study. Male C57BL/6 mice were injected with streptozotocin to induce diabetes. The mice were pretreated with MLD for one month, and then exposed to 30 min of ischemia followed by 24 h of reperfusion. Infarct size, heart function and various cytokines in the heart were assessed. Expression of AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were investigated by western blotting. In vitro, MLD significantly cleared oxygen-free radicals in DPPH and luminol chemiluminescence models. In vivo, fasting blood glucose, fasting blood insulin and lipids were significantly decreased by MLD. The results showed that MLD improved the cardiac function and decreased myocardial infarct size in the diabetic mice subjected to MI/R. In addition, upon pretreatment with MLD before MI/R treatment, GSH, SOD, CAT and GR were significantly increased in a dose-dependent manner. Pretreatment with MLD also significantly induced the expression of Nrf2, and the cardioprotective effects of MLD were abolished in Nrf2-knockout mice. Furthermore, we also found that AMPK increase is upstream and was required for Nrf2 activation mediated by MLD. In conclusion, MLD protects against diabetic-associated cardiomyopathy by suppressing oxidative stress induced by hyperglycemia and MI/R through the AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Yan-Bo Zhao
- Department of Emergency, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Si-Wang Wang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Zhou
- Department of Otorhinolaryngology, The People's Hospital of Ankang, Ankang, Shaanxi 725000, P.R. China
| | - Zhi-Shu Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Feng Li
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
18
|
Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B. Hyperglycemia-Induced Changes in ZIP7 and ZnT7 Expression Cause Zn 2+ Release From the Sarco(endo)plasmic Reticulum and Mediate ER Stress in the Heart. Diabetes 2017; 66:1346-1358. [PMID: 28232492 DOI: 10.2337/db16-1099] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022]
Abstract
Changes in cellular free Zn2+ concentration, including those in the sarco(endo)plasmic reticulum [S(E)R], are primarily coordinated by Zn2+ transporters (ZnTs) whose identity and role in the heart are not well established. We hypothesized that ZIP7 and ZnT7 transport Zn2+ in opposing directions across the S(E)R membrane in cardiomyocytes and that changes in their activity play an important role in the development of ER stress during hyperglycemia. The subcellular S(E)R localization of ZIP7 and ZnT7 was determined in cardiomyocytes and in isolated S(E)R preparations. Markedly increased mRNA and protein levels of ZIP7 were observed in ventricular cardiomyocytes from diabetic rats or high-glucose-treated H9c2 cells while ZnT7 expression was low. In addition, we observed increased ZIP7 phosphorylation in response to high glucose in vivo and in vitro. By using recombinant-targeted Förster resonance energy transfer sensors, we show that hyperglycemia induces a marked redistribution of cellular free Zn2+, increasing cytosolic free Zn2+ and lowering free Zn2+ in the S(E)R. These changes involve alterations in ZIP7 phosphorylation and were suppressed by small interfering RNA-mediated silencing of CK2α. Opposing changes in the expression of ZIP7 and ZnT7 were also observed in hyperglycemia. We conclude that subcellular free Zn2+ redistribution in the hyperglycemic heart, resulting from altered ZIP7 and ZnT7 activity, contributes to cardiac dysfunction in diabetes.
Collapse
Affiliation(s)
- Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Verda C Bitirim
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Gaelle R J Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, U.K
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Duan J, Guan Y, Mu F, Guo C, Zhang E, Yin Y, Wei G, Zhu Y, Cui J, Cao J, Weng Y, Wang Y, Xi M, Wen A. Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice: involvement of the AMPK/GSK-3β/Nrf2 signaling pathway. Sci Rep 2017; 7:41491. [PMID: 28128361 PMCID: PMC5269748 DOI: 10.1038/srep41491] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
Hyperglycemia-induced reactive oxygen species (ROS) generation contributes to development of diabetic cardiomyopathy (DCM). This study was designed to determine the effect of an antioxidant butin (BUT) on ischemia/reperfusion-induced myocardial injury in diabetic mice. Myocardial ischemia/reperfusion (MI/R) was induced in C57/BL6J diabetes mice. Infarct size and cardiac function were detected. For in vitro study, H9c2 cells were used. To clarify the mechanisms, proteases inhibitors or siRNA were used. Proteins levels were investigated by Western blotting. In diabetes MI/R model, BUT significantly alleviated myocardial infarction and improved heart function, together with prevented diabetes-induced cardiac oxidative damage. The expression of Nrf2, AMPK, AKT and GSK-3β were significantly increased by BUT. Furthermore, in cultured H9c2 cardiac cells silencing Nrf2 gene with its siRNA abolished the BUT's prevention of I/R-induced myocardial injury. Inhibition of AMPK and AKT signaling by relative inhibitor or specific siRNA decreased the level of BUT-induced Nrf2 expression, and diminished the protective effects of BUT. The interplay relationship between GSK-3β and Nrf2 was also verified with relative overexpression and inhibitors. Our findings indicated that BUT protected against I/R-induced ROS-mediated apoptosis by upregulating the AMPK/Akt/GSK-3β pathway, which further activated Nrf2-regulated antioxidant enzymes in diabetic cardiomyocytes exposed to I/R.
Collapse
Affiliation(s)
- Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, XianYang 712083, PR China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Enhu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, XianYang 712083, PR China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
20
|
Salem ESB, Fan GC. Pathological Effects of Exosomes in Mediating Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:113-138. [PMID: 28936736 DOI: 10.1007/978-981-10-4397-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic subjects are at risk of developing cardiovascular disease, which accounts for 60-80% of diabetes-related mortality. Atherosclerosis is still considered as a leading cause of heart failure in diabetic patients, but it could also be an intrinsic and long-term effect of contractile cardiac cells malfunction, known as diabetic cardiomyopathy (DCM). Pathologically, this cardiac dysfunction is manifested by inflammation, apoptosis, fibrosis, hypertrophy and altered cardiomyocytes metabolism. However, the underlying molecular mechanisms of DCM pathophysiology are not clearly understood. Recent and several studies have suggested that exosomes are contributed to the regulation of cell-to-cell communication. Therefore, their in-depth investigation can interpret the complex pathophysiology of DCM. Structurally, exosomes are membrane-bounded vesicles (10-200 nm in diameter), which are actively released from all types of cells and detected in all biological fluids. They carry a wide array of bioactive molecules, including mRNAs, none-coding RNAs (e.g., microRNAs, lncRNAs, circRNAs, etc), proteins and lipids. Importantly, the abundance and nature of loaded molecules inside exosomes fluctuate with cell types and pathological conditions. This chapter summarizes currently available studies on the exosomes' role in the regulation of diabetic cardiomyopathy. Specifically, the advances on the pathological effects of exosomes in diabetic cardiomyopathy as well as the therapeutic potentials and perspectives are also discussed.
Collapse
Affiliation(s)
- Esam S B Salem
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 5872 Care Mail Loc-0575, Cincinnati, OH, 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 5872 Care Mail Loc-0575, Cincinnati, OH, 45267, USA.
| |
Collapse
|
21
|
Nahvinejad M, Pourrajab F, Hekmatimoghaddam S. Extract of Dorema aucheri induces PPAR-γ for activating reactive oxygen species metabolism. J Herb Med 2016. [DOI: 10.1016/j.hermed.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Alghadir AH, Gabr SA, Al-Eisa E. Cellular fibronectin response to supervised moderate aerobic training in patients with type 2 diabetes. J Phys Ther Sci 2016; 28:1092-9. [PMID: 27190433 PMCID: PMC4868193 DOI: 10.1589/jpts.28.1092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022] Open
Abstract
[Purpose] Physical activity is one of the most pivotal targets for the prevention and
management of vascular complications, especially endothelial dysfunctions. Cellular
fibronectin is an endothelium-derived protein involved in subendothelial matrix assembly.
Its plasma levels reflect matrix alterations and vessel wall destruction in patients with
type II diabetes. This study investigated the influence of 12 weeks of supervised aerobic
training on cellular fibronectin and its relationship with insulin resistance and body
weight in type II diabetic subjects. [Subjects and Methods] This study included 50 men
with type II diabetes who had a mean age of 48.8 ± 14.6 years and were randomly divided
into two groups: an aerobic exercise group (12 weeks, three 50 minutes sessions per week)
and control group. To examine changes in cellular fibronectin, glycosylated hemoglobin,
insulin resistance, fasting insulin, fasting blood sugar, and lipid profile, 5 ml of blood
was taken from the brachial vein of patients before and 48 hours after completion of the
exercise period and after 12 hours of fasting at rest. Data analysis was performed using
the SPSS-16 software with the independent and paired t-tests. [Results] A significant
decrease was observed in body mass index and body fat percentage in the experimental
group. Compared with the control group, the aerobic exercise group showed a significant
decrease in cellular fibronectin, glycosylated hemoglobin, insulin resistance, fasting
insulin, fasting blood sugar, and lipid profile after 12 weeks of aerobic exercise. The
change in cellular fibronectin showed positive significant correlation with body mass
index, diabetic biomarkers, and physical activity level. [Conclusion] The results showed
that supervised aerobic exercise as a stimulus can change the levels of cellular
fibronectin as matrix metalloproteinase protein a long with improvement of insulin
sensitivity and glycosylated hemoglobin in order to prevent cardiovascular diseases in men
with diabetes
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, KSA
| | - Sami A Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, KSA; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt
| | - Einas Al-Eisa
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, KSA
| |
Collapse
|
23
|
Deletioglu V, Tuncay E, Toy A, Atalay M, Turan B. Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide. Mol Cell Biochem 2015; 409:23-31. [DOI: 10.1007/s11010-015-2508-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/04/2015] [Indexed: 11/29/2022]
|
24
|
Uryash A, Bassuk J, Kurlansky P, Altamirano F, Lopez JR, Adams JA. Antioxidant Properties of Whole Body Periodic Acceleration (pGz). PLoS One 2015; 10:e0131392. [PMID: 26133377 PMCID: PMC4489838 DOI: 10.1371/journal.pone.0131392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
The recognition that oxidative stress is a major component of several chronic diseases has engendered numerous trials of antioxidant therapies with minimal or no direct benefits. Nanomolar quantities of nitric oxide released into the circulation by pharmacologic stimulation of eNOS have antioxidant properties but physiologic stimulation as through increased pulsatile shear stress of the endothelium has not been assessed. The present study utilized a non-invasive technology, periodic acceleration (pGz) that increases pulsatile shear stress such that upregulation of cardiac eNOS occurs, We assessed its efficacy in normal mice and mouse models with high levels of oxidative stress, e.g. Diabetes type 1 and mdx (Duchene Muscular Dystrophy). pGz increased protein expression and upregulated eNOS in hearts. Application of pGz was associated with significantly increased expression of endogenous antioxidants (Glutathioneperoxidase-1(GPX-1), Catalase (CAT), Superoxide, Superoxide Dismutase 1(SOD1). This led to an increase of total cardiac antioxidant capacity along with an increase in the antioxidant response element transcription factor Nrf2 translocation to the nucleus. pGz decreased reactive oxygen species in both mice models of oxidative stress. Thus, pGz is a novel non-pharmacologic method to harness endogenous antioxidant capacity.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Jorge Bassuk
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Paul Kurlansky
- Department of Surgery, Columbia University, New York, New York, United States of America
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose R. Lopez
- Department of Molecular Biosciences, University of California Davis, Davis, California, United States of America
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Pyrroloquinoline quinone protects mouse brain endothelial cells from high glucose-induced damage in vitro. Acta Pharmacol Sin 2014; 35:1402-10. [PMID: 25283505 DOI: 10.1038/aps.2014.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
AIM To investigate the effects of pyrroloquinoline quinone (PQQ), an oxidoreductase cofactor, on high glucose-induced mouse endothelial cell damage in vitro. METHODS Mouse brain microvascular endothelial bEND.3 cells were exposed to different glucose concentrations (5.56, 25 and 40 mmol/L) for 24 or 48 h. The cell viability was examined using MTT assay. Flow cytometry was used to analyze the apoptosis and ROS levels in the cells. MitoTracker Green staining was used to examine the mitochondria numbers in the cells. Western blot analysis was used to analyze the expression of HIF-1α and the proteins in JNK pathway. RESULTS Treatment of bEND.3 cells with high glucose significantly decreased the cell viability, while addition of PQQ (1 and 10 μmol/L) reversed the high glucose-induced cell damage in a concentration-dependent manner. Furthermore, PQQ (100 μmol/L) significantly suppressed the high glucose-induced apoptosis and ROS production in the cells. PQQ significantly reversed the high glucose-induced reduction in both the mitochondrial membrane potential and mitochondria number in the cells. The high glucose treatment significantly increased the expression of HIF-1α and JNK phosphorylation in the cells, and addition of PQQ led to a further increase of HIF-1α level and a decrease of JNK phosphorylation. Addition of JNK inhibitor SP600125 (10 μmol/L) also significantly suppressed high glucose-induced apoptosis and JNK phosphorylation in bEND.3 cells. CONCLUSION PQQ protects mouse brain endothelial cells from high glucose damage in vitro by suppressing intracellular ROS and apoptosis via inhibiting JNK signaling pathway.
Collapse
|
26
|
Carolo dos Santos K, Pereira Braga C, Octavio Barbanera P, Rodrigues Ferreira Seiva F, Fernandes Junior A, Fernandes AAH. Cardiac energy metabolism and oxidative stress biomarkers in diabetic rat treated with resveratrol. PLoS One 2014; 9:e102775. [PMID: 25050809 PMCID: PMC4106839 DOI: 10.1371/journal.pone.0102775] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/24/2014] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (RSV), polyphenol from grape, was studied to evaluate its effects on calorimetric parameters, energy metabolism, and antioxidants in the myocardium of diabetic rats. The animals were randomly divided into four groups (n = 8): C (control group): normal rats; C-RSV: normal rats receiving RSV; DM: diabetic rats; and DM-RSV: diabetics rats receiving RSV. Type 1 diabetes mellitus was induced with administration of streptozotocin (STZ; 60 mg−1 body weight, single dose, i.p.). After 48 hours of STZ administration, the animals received RSV (1.0 mg/kg/day) for gavage for 30 days. Food, water, and energy intake were higher in the DM group, while administration of RSV caused decreases (p<0.05) in these parameters. The glycemia decreased and higher final body weight increased in DM-RSV when compared with the DM group. The diabetic rats showed higher serum-free fatty acid, which was normalized with RSV. Oxygen consumption (VO2) and carbon dioxide production (VCO2) decreased (p<0.05) in the DM group. This was accompanied by reductions in RQ. The C-RSV group showed higher VO2 and VCO2 values. Pyruvate dehydrogenase activity was lower in the DM group and normalizes with RSV. The DM group exhibited higher myocardial β-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase activity, and RSV decreased the activity of these enzymes. The DM group had higher cardiac lactate dehydrogenase compared to the DM-RSV group. Myocardial protein carbonyl was increased in the DM group. RSV increased reduced glutathione in the cardiac tissue of diabetic animals. The glutathione reductase activity was higher in the DM-RSV group compared to the DM group. In conclusion, diabetes is accompanied by cardiac energy metabolism dysfunction and change in the biomarkers of oxidative stress. The cardioprotective effect may be mediated through RVS's ability to normalize free fatty acid oxidation, enhance utilization glucose, and control the biomarkers' level of oxidative stress under diabetic conditions.
Collapse
Affiliation(s)
- Klinsmann Carolo dos Santos
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu/São Paulo, Brazil
| | - Camila Pereira Braga
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu/São Paulo, Brazil
| | - Pedro Octavio Barbanera
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu/São Paulo, Brazil
| | | | - Ary Fernandes Junior
- Department of Microbiology and Immunology, Institute of Bioscience, São Paulo State University (UNESP), Botucatu/São Paulo, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University (UNESP), Botucatu/São Paulo, Brazil
- * E-mail:
| |
Collapse
|
27
|
Yildirim SS, Akman D, Catalucci D, Turan B. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1. Cell Biochem Biophys 2014; 67:1397-408. [PMID: 23723006 DOI: 10.1007/s12013-013-9672-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress is involved in the etiology of diabetes-induced cardiac dysfunction while microRNAs (miRNAs) are known as regulators for genes involved in cardiac remodeling. However, a functional link between miRNAs and diabetes-induced cardiac dysfunction remains to be investigated. Here, we aimed to identify whether the expression levels of miRNAs are associated with oxidative stress/diabetic heart and if proteins responsible from contractile activity during diabetes might be directly modulated by miRNAs. Diabetic cardiomyopathy developed with streptozotocin, is characterized with marked changes in sarcomere and mitochondria, depressed left ventricular developed pressure, and a massive oxidative stress that is particularly evident in the heart. miRNA profiling was performed in freshly isolated left ventricular cells from diabetic rats. Using microarray analysis, we identified marked changes in the expression of 43 miRNAs (37 of them were downregulated while 6 miRNAs were upregulated) out of examined total of 351 miRNAs. Among them, 6 miRNAs were further validated by real-time PCR. The expression levels of miR-1, miR-499, miR-133a, and miR-133b were markedly depressed in the diabetic cardiomyocytes while miR-21 level increased and miR-16 level was unchanged. Notably, normalization of cardiac function and oxidant/antioxidant level after N-acetylcysteine (NAC)-treatment of diabetic rats resulted with a significant restoration in the expression levels of miR-499, miR-1, miR-133a, and miR-133b in the myocardium. Since changes in the level of muscle-specific miR-1 has been implicated in cardiac diseases and its specific molecular targets involved in its action, in part, associated with oxidative stress are limited, we first examined the protein levels of some SR-associated proteins such as junctin and triadin. Junctin but not triadin is markedly overexpressed in diabetic cardiomyocytes while its level was normalized in NAC-treated diabetics. Luciferase reporter assay showed that junctin is targetted by miR-1. Taken together, our data demonstrates that intervention with an antioxidant treatment for 4-week leads to significant cardioprotection against diabetes-induced injury, controlling oxidant/antioxidant level, which may directly control the levels of some miRNAs including miR-1 and its target protein junctin, which is involved in the development of diabetic cardiomyopathy.
Collapse
|
28
|
Chen HW, Huang YJ, Yao HT, Lii CK. Induction of Nrf2-dependent Antioxidation and Protection Against Carbon Tetrachloride-induced Liver Damage by Andrographis Herba (chuān xīn lián) Ethanolic Extract. J Tradit Complement Med 2014; 2:211-9. [PMID: 24716135 PMCID: PMC3942898 DOI: 10.1016/s2225-4110(16)30102-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Andrographis paniculata is a traditional Chinese herb and displays diverse biological activities including antioxidation, anti-tumorigenesis, anti-virus, and anti-atherogenesis. In this study, we investigated the up-regulation of ethanolic extract of A. paniculata (APE) on the antioxidant defense in rat livers and whether this enhancement protected against carbon tetrachloride (CCl4)-induced liver damage. Male Sprague-Dawley rats were orally administered (i.g.) 0, 0.75, or 2 g/kg/d APE for 5 d. At d 6, rats were sacrificed and liver tissues were removed. Some animals (n=8) were intraperitoneally injected CCl4 (1 mL/kg, 50% in olive oil) and blood was drawn 24 h after CCl4 treatment. The results showed that APE increased hepatic glutathione (GSH) content and superoxide dismutase, GSH peroxidase, and GSH S-transferase activities in a dose-dependent manner (p < 0.05). Results of immunoblotting and RT-PCR revealed that rats treated with APE had higher glutamate cysteine ligase catalytic and modifier subunits, heme oxygenase 1, superoxide dismutase 1, and GSH S-transferase Ya and Yb protein and mRNA expression than those of control rats. Moreover, APE increased Nrf2 nuclear translocation and Nrf2 binding to DNA in rat liver. In the presence of CCl4, APE decreased hepatic thiobarbituric acid-reactive substances production and plasma aspartate aminotransferase and alanine aminotransferase activities. These results suggest that APE protection against CCl4 insult is attributed, at least in part, to its up-regulation of antioxidant defense in rat liver.
Collapse
Affiliation(s)
- Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Yu-Ju Huang
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
29
|
Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:290381. [PMID: 24693334 PMCID: PMC3945998 DOI: 10.1155/2014/290381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 01/03/2023]
Abstract
We examined whether cellular antioxidant-defence enhancement preserves diastolic dysfunction via regulation of both diastolic intracellular free Zn2+ and Ca2+ levels ([Zn2+]i and [Ca2+]i) levels N-acetyl cysteine (NAC) treatment (4 weeks) of diabetic rats preserved altered cellular redox state and also prevented diabetes-induced tissue damage and diastolic dysfunction with marked normalizations in the resting [Zn2+]i and [Ca2+]i. The kinetic parameters of transient changes in Zn2+ and Ca2+ under electrical stimulation and the spatiotemporal properties of Zn2+ and Ca2+ sparks in resting cells are found to be normal in the treated diabetic group. Biochemical analysis demonstrated that the NAC treatment also antagonized hyperphosphorylation of cardiac ryanodine receptors (RyR2) and significantly restored depleted protein levels of both RyR2 and calstabin2. Incubation of cardiomyocytes with 10 µM ZnCl2 exerted hyperphosphorylation in RyR2 as well as higher phosphorphorylations in both PKA and CaMKII in a concentration-dependent manner, similar to hyperglycemia. Our present data also showed that a subcellular oxidative stress marker, NF-κB, can be activated if the cells are exposed directly to Zn2+. We thus for the first time report that an enhancement of antioxidant defence in diabetics via directly targeting heart seems to prevent diastolic dysfunction due to modulation of RyR2 macromolecular-complex thereby leading to normalized [Ca2+]i and [Zn2+]i
in cardiomyocytes.
Collapse
|
30
|
Atangwho IJ, Egbung GE, Ahmad M, Yam MF, Asmawi MZ. Antioxidant versus anti-diabetic properties of leaves from Vernonia amygdalina Del. growing in Malaysia. Food Chem 2013; 141:3428-34. [DOI: 10.1016/j.foodchem.2013.06.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 05/09/2013] [Accepted: 06/12/2013] [Indexed: 11/25/2022]
|
31
|
Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediators Inflamm 2013; 2013:461967. [PMID: 24288443 PMCID: PMC3833358 DOI: 10.1155/2013/461967] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/01/2023] Open
Abstract
Diabetic cardiomyopathy is initiated by alterations in energy substrates. Despite excess of plasma glucose and lipids, the diabetic heart almost exclusively depends on fatty acid degradation. Glycolytic enzymes and transporters are impaired by fatty acid metabolism, leading to accumulation of glucose derivatives. However, fatty acid oxidation yields lower ATP production per mole of oxygen than glucose, causing mitochondrial uncoupling and decreased energy efficiency. In addition, the oxidation of fatty acids can saturate and cause their deposition in the cytosol, where they deviate to induce toxic metabolites or gene expression by nuclear-receptor interaction. Hyperglycemia, the fatty acid oxidation pathway, and the cytosolic storage of fatty acid and glucose/fatty acid derivatives are major inducers of reactive oxygen species. However, the presence of these species can be essential for physiological responses in the diabetic myocardium.
Collapse
|
32
|
Thangapandiyan S, Miltonprabu S. Epigallocatechin gallate effectively ameliorates fluoride-induced oxidative stress and DNA damage in the liver of rats. Can J Physiol Pharmacol 2013; 91:528-37. [DOI: 10.1139/cjpp-2012-0347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Environmental exposure to sodium fluoride (NaF) compounds is a worldwide health concern. Epigallocatechin gallate (EGCG) is a green tea catechin found in a variety of green tea preparations. The intention of this study was to investigate the hepatoprotective role of EGCG in NaF-intoxicated rats. Rats were orally treated with NaF alone (25 mg·(kg body mass)−1·day−1) or plus EGCG at different doses (20, 40, and 80 mg·(kg body mass)−1·day−1) for 4 weeks. Hepatotoxicity of NaF was determined by increased levels of serum hepatospecific markers and total bilirubin, along with increased levels of thiobarbituric acid reactive substances, lipid hydroperoxides, protein carbonyl content, and conjugated dienes. The hepatotoxic nature of NaF was further evidenced by the decreased activity of enzymatic and nonenzymatic antioxidant levels in liver. NaF-treated rats also showed increased DNA damage and fragmentation in hepatocytes. Administration of EGCG (40 mg·(kg body mass)−1) to NaF-intoxicated rats significantly recuperated the distorted biochemical indices, DNA damage, and pathological changes in the liver tissue. Thus, the results of the present study clearly demonstrate that EGCG has strong free radical scavenging, antioxidant, and antigenotoxic properties that protect against NaF-induced oxidative hepatic injury in rats.
Collapse
Affiliation(s)
| | - Selvaraj Miltonprabu
- Department of Zoology, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| |
Collapse
|
33
|
Yi T, Vick JS, Vecchio MJH, Begin KJ, Bell SP, Delay RJ, Palmer BM. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol 2013; 305:H706-15. [PMID: 23812383 DOI: 10.1152/ajpheart.00025.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We tested several molecular and cellular mechanisms of cardiomyocyte contraction-relaxation function that could account for the reduced systolic and enhanced diastolic function observed with exposure to extracellular Zn(2+). Contraction-relaxation function was monitored in isolated rat and mouse cardiomyocytes maintained at 37°C, stimulated at 2 or 6 Hz, and exposed to 32 μM Zn(2+) or vehicle. Intracellular Zn(2+) detected using FluoZin-3 rose to a concentration of ∼13 nM in 3-5 min. Peak sarcomere shortening was significantly reduced and diastolic sarcomere length was elongated after Zn(2+) exposure. Peak intracellular Ca(2+) detected by Fura-2FF was reduced after Zn(2+) exposure. However, the rate of cytosolic Ca(2+) decline reflecting sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) activity and the rate of Na(+)/Ca(2+) exchanger activity evaluated by rapid Na(+)-induced Ca(2+) efflux were unchanged by Zn(2+) exposure. SR Ca(2+) load evaluated by rapid caffeine exposure was reduced by ∼50%, and L-type calcium channel inward current measured by whole cell patch clamp was reduced by ∼70% in cardiomyocytes exposed to Zn(2+). Furthermore, ryanodine receptor (RyR) S2808 and phospholamban (PLB) S16/T17 were markedly dephosphorylated after perfusing hearts with 50 μM Zn(2+). Maximum tension development and thin-filament Ca(2+) sensitivity in chemically skinned cardiac muscle strips were not affected by Zn(2+) exposure. These findings suggest that Zn(2+) suppresses cardiomyocyte systolic function and enhances relaxation function by lowering systolic and diastolic intracellular Ca(2+) concentrations due to a combination of competitive inhibition of Ca(2+) influx through the L-type calcium channel, reduction of SR Ca(2+) load resulting from phospholamban dephosphorylation, and lowered SR Ca(2+) leak via RyR dephosphorylation. The use of the low-Ca(2+)-affinity Fura-2FF likely prevented the detection of changes in diastolic Ca(2+) and SERCA2a function. Other strategies to detect diastolic Ca(2+) in the presence of Zn(2+) are essential for future work.
Collapse
Affiliation(s)
- Ting Yi
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | |
Collapse
|
34
|
Khan M, Ali F, Mohsin S, Akhtar S, Mehmood A, Choudhery MS, Khan SN, Riazuddin S. Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 2013; 4:58. [PMID: 23706645 PMCID: PMC3707006 DOI: 10.1186/scrt207] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/16/2013] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have the potential for treatment of diabetic cardiomyopathy; however, the repair capability of MSCs declines with age and disease. MSCs from diabetic animals exhibit impaired survival, proliferation, and differentiation and therefore require a strategy to improve their function. The aim of the study was to develop a preconditioning strategy to augment the ability of MSCs from diabetes patients to repair the diabetic heart. METHODS Diabetes was induced in C57BL/6 mice (6 to 8 weeks) with streptozotocin injections (55 mg/kg) for 5 consecutive days. MSCs isolated from diabetic animals were preconditioned with medium from cardiomyocytes exposed to oxidative stress and high glucose (HG/H-CCM). RESULTS Gene expression of VEGF, ANG-1, GATA-4, NKx2.5 MEF2c, PCNA, and eNOS was upregulated after preconditioning with HG/H-CCM, as evidenced by reverse transcriptase/polymerase chain reaction (RT-PCR). Concurrently, increased AKT phosphorylation, proliferation, angiogenic ability, and reduced levels of apoptosis were observed in HG/H-CCM-preconditioned diabetic MSCs compared with nontreated controls. HG/H-CCM-preconditioned diabetic-mouse-derived MSCs (dmMSCs) were transplanted in diabetic animals and demonstrated increased homing concomitant with augmented heart function. Gene expression of angiogenic and cardiac markers was significantly upregulated in conjunction with paracrine factors (IGF-1, HGF, SDF-1, FGF-2) and, in addition, reduced fibrosis, apoptosis, and increased angiogenesis was observed in diabetic hearts 4 weeks after transplantation of preconditioned dmMSCs compared with hearts with nontreated diabetic MSCs. CONCLUSIONS Preconditioning with HG/H-CCM enhances survival, proliferation, and the angiogenic ability of dmMSCs, augmenting their ability to improve function in a diabetic heart.
Collapse
Affiliation(s)
- Mohsin Khan
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Fatima Ali
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sadia Mohsin
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Shoaib Akhtar
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Mahmood S Choudhery
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Shaheen N Khan
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Center of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| |
Collapse
|
35
|
Hou Q, Qiu S, Liu Q, Tian J, Hu Z, Ni J. Selenoprotein-transgenic Chlamydomonas reinhardtii. Nutrients 2013; 5:624-36. [PMID: 23443677 PMCID: PMC3705309 DOI: 10.3390/nu5030624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) deficiency is associated with the occurrence of many diseases. However, excessive Se supplementation, especially with inorganic Se, can result in toxicity. Selenoproteins are the major forms of Se in vivo to exert its biological function. Expression of those selenoproteins, especially with the application of a newly developed system, is thus very important for studying the mechanism of Se in nutrition. The use of Chlamydomonas reinhardtii (C. reinhardtii) as a biological vector to express an heterogeneous protein is still at the initial stages of development. In order to investigate the possibility of using this system to express selenoproteins, human 15-KDa selenoprotein (Sep15), a small but widely distributed selenoprotein in mammals, was chosen for the expression platform test. Apart from the wild-type human Sep15 gene fragment, two Sep15 recombinants were constructed containing Sep15 open reading frame (ORF) and the selenocysteine insertion sequence (SECIS) element from either human Sep15 or C. reinhardtii selenoprotein W1, a highly expressed selenoprotein in this alga. Those Sep15-containing plasmids were transformed into C. reinhardtii CC-849 cells. Results showed that Sep15 fragments were successfully inserted into the nuclear genome and expressed Sep15 protein in the cells. The transgenic and wild-type algae demonstrated similar growth curves in low Se culture medium. To our knowledge, this is the first report on expressing human selenoprotein in green alga.
Collapse
Affiliation(s)
- Qintang Hou
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
| | - Shi Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
| | - Qiong Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.N.); Tel.: +86-755-26535432; Fax: +86-755-26534274
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Department of Marine Biology, Shenzhen University, Shenzhen 518060, China; E-Mails: (Q.H.); (J.T.); (Z.H.)
- Authors to whom correspondence should be addressed; E-Mails: (Q.L.); (J.N.); Tel.: +86-755-26535432; Fax: +86-755-26534274
| |
Collapse
|
36
|
Formigari A, Gregianin E, Irato P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol 2013; 33:527-36. [PMID: 23401182 DOI: 10.1002/jat.2854] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Metals can directly or indirectly cause an increase in reactive oxygen species (ROS) accumulation in cells, and this may result in programmed cell death. A number of previous studies have shown that zinc (Zn) modulates mitogenic activity via several signalling pathways, such as AKT, mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF -κB), AP-1 and p53. The exact role that Zn plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, and excess Zn alters the p53 protein structure and down-regulates p53's binding to DNA. Copper (Cu) accumulation causes apoptosis that seems to be mediated by DNA damage and subsequent p53 activation. Cu can also displace Zn from its normal binding site on p53, resulting in abnormal protein folding and disruption of p53 function. In spite of the induction of the tumour suppressor p53, hepatic Cu accumulation significantly increases the risk of cancerous neoplasm both in humans and rats, suggesting that p53 function may be impaired in these cells. It is generally understood that imbalances in Cu and Zn levels may lead to a higher prevalence of p53 mutations. An increased number of p53 mutations have been found in liver samples from Wilson's disease (WD) patients. High levels of the p53 mutation most probably contribute to the pathogenesis of cancer in individuals with WD, but the cause and effect are not clear. The protein p53 also plays a crucial role in the transcriptional regulation of metallothionein, which indicates a novel regulatory role for p53. This review discusses the central role of p53 and the redox-inert metal Zn in the cellular stress responses induced by the redox active biometal Cu.
Collapse
Affiliation(s)
- Alessia Formigari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | | | | |
Collapse
|
37
|
Huang YT, Yao CH, Way CL, Lee KW, Tsai CY, Ou HC, Kuo WW. Diallyl trisulfide and diallyl disulfide ameliorate cardiac dysfunction by suppressing apoptotic and enhancing survival pathways in experimental diabetic rats. J Appl Physiol (1985) 2013; 114:402-10. [PMID: 23139364 DOI: 10.1152/japplphysiol.00672.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease is one of the major causes of mortality in diabetic patients. Mounting studies have shown that garlic exhibits, possibly through its antioxidant potential, diverse biological activities. In this study, we investigated the alleviating effects of garlic oil (GO) and its two major components, diallyl disulfide (DADS) and diallyl trisulfide (DATS), on diabetic cardiomyopathy in rats. Physiological cardiac parameters were obtained using echocardiography. Apoptotic cells were evaluated using TUNEL and DAPI staining. Protein expression levels were determined using Western blotting analysis. Our findings indicated that in diabetic rat hearts significantly decreased fractional shortening percentage, increased levels of nitrotyrosine, an elevated number of TUNEL-positive cells, enhanced levels of caspase 3 expression, and decreased PI3K-Akt signaling pathway activities were observed. Furthermore, all of these alterations were reversed following both GO and DATS (or DADS) administrations through increasing PI3K-Akt signaling pathway activities and inhibiting both the death receptor-dependent and the mitochondria-dependent apoptotic pathways. In conclusion, this study shows that DATS and DADS, with the efficacy order DATS > DADS, have the therapeutic potential for ameliorating diabetic cardiomyopathy. Furthermore, the therapeutic effects of GO on diabetic cardiomyopathy should be mainly from DATS and DADS.
Collapse
Affiliation(s)
- Yao-Te Huang
- Department of Biological Science and Technology, China Medical University, Taichung
| | - Chun-Hsu Yao
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung
| | - Chia-Li Way
- Department of Biological Science and Technology, China Medical University, Taichung
| | - Kung-Wei Lee
- Division of Cardiology, Department of Internal Medicine, China Medical University Hospital, Taichung
| | - Cheng-Yen Tsai
- Departments of Pediatrics, China Medical University Beigang Hospital, Yunlin; and
| | - Hsiu-Chung Ou
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung
| |
Collapse
|
38
|
In vivo hypotensive and physiological effects of a silk fibroin hydrolysate on spontaneously hypertensive rats. Biosci Biotechnol Biochem 2012; 76:1987-9. [PMID: 23047112 DOI: 10.1271/bbb.120418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A silk fibroin hydrolysate (SFH) exhibited a pronounced in vivo blood pressure-lowering effect on spontaneously hypertensive rats (SHRs) accompanied with decreases in the plasma angiotensin II, endothelin (ET), TNF-α and NO concentrations. We also observed a markedly decreased LPO level, a parameter of oxidative tissue damage, in the medium- and high-dose SFH-treated groups which was accompanied by an increased SOD level in erythrocytes. Our data suggest ACE inhibition together with an improved antioxidative status as the underlying antihypertensive mechanism for the silk fibroin hydrolysate. Since SFH could markedly lower the blood pressure and improve several physiological parameters involved in the occurrence of hypertension, it could be used as a possible supplement against cardiovascular diseases and as a functional food ingredient.
Collapse
|
39
|
Amino acids with basic amino side chain accelerate the pro-oxidant ability of polyphenolic compounds. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Prahalathan P, Kumar S, Raja B. Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation. Metabolism 2012; 61:1087-99. [PMID: 22386933 DOI: 10.1016/j.metabol.2011.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/02/2011] [Accepted: 12/29/2011] [Indexed: 01/07/2023]
Abstract
The present study was designed to evaluate the antihypertensive and antioxidant effect of morin, a flavonoid against deoxycorticosterone acetate (DOCA)-salt induced hypertension in male Wistar rats. Hypertension was induced in uninephrectomized rats (UNX) by weekly twice subcutaneous injection of DOCA (25mg/kg) and 1% NaCl in the drinking water for six consecutive weeks. The DOCA-salt hypertensive rats showed significant (P < .05) increase in the systolic and diastolic blood pressure, heart rate, water intake and organ weights (kidney, heart, aorta and liver). DOCA-salt hypertensive rats also showed significant (P < .05) increase in the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes in plasma and tissues (kidney, heart, aorta and liver), and significant (P < .05) decrease in the body weight, nitrite and nitrate levels in plasma and heart. Furthermore, the activities of enzymic antioxidants such as superoxide dismutase, catalase and glutathione peroxidase in erythrocyte and tissues and the levels of non-enzymic antioxidants such as reduced glutathione, vitamin C and vitamin E in plasma and tissues were significantly (P < .05) decreased in DOCA-salt rats. Morin supplementation (50mg/kg) daily for six weeks brought back all the above parameters to near normal level. The above findings were confirmed by the histopathological examination. No significant (P < .05) effect was observed in UNX-rats treated with morin (50mg/kg). These results suggest that morin acts as an antihypertensive and antioxidant agent against DOCA-salt induced hypertension.
Collapse
Affiliation(s)
- Pichavaram Prahalathan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | |
Collapse
|
41
|
Li Y, Hamasaki T, Teruya K, Nakamichi N, Gadek Z, Kashiwagi T, Yan H, Kinjo T, Komatsu T, Ishii Y, Shirahata S. Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 2011; 64:281-97. [PMID: 22143345 PMCID: PMC3386384 DOI: 10.1007/s10616-011-9414-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/18/2011] [Indexed: 11/29/2022] Open
Abstract
Insulin-producing cells express limited activities of anti-oxidative enzymes. Therefore, reactive oxygen species (ROS) produced in these cells play a crucial role in cytotoxic effects. Furthermore, diabetes mellitus (DM) development is closely linked to higher ROS levels in insulin-producing cells. Hita Tenryosui Water® (Hita T. W., Hita, Japan) and Nordenau water (Nord. W., Nordenau, Germany), referred to as natural reduced waters (NRWs), scavenge ROS in cultured cells, and therefore, might be a possibility as an alternative to conventional pharmacological agents against DM. Therefore, this study aimed to investigate the role of NRWs in alloxan (ALX)-induced β-cell apoptosis as well as in ALX-induced diabetic mice. NRWs equally suppressed DNA fragmentation levels. Hita T. W. and Nord. W. ameliorated ALX-induced sub-G1 phase production from approximately 40% of control levels to 8.5 and 11.8%, respectively. NRWs restored serum insulin levels (p < 0.01) and reduced blood glucose levels (p < 0.01) in ALX-induced mice. Hita T. W. restored tissue superoxide dismutase (SOD) (p < 0.05) activity but not tissue catalase activity. Hita T. W. did not elevate SOD or catalase activity in HIT-T15 cells. Nord. W. restored SOD (p < 0.05) and catalase (p < 0.05) activity in both cultured cells and pancreatic tissue to normal levels. Even though variable efficacies were observed between Hita T. W. and Nord. W., both waters suppressed ALX-induced DM development in CD-1 male mice by administering NRWs for 8 weeks. Our results suggest that Hita T. W. and Nord. W. protect against ALX-induced β-cell apoptosis, and prevent the development of ALX-induced DM in experimental animals by regulating ALX-derived ROS generation and elevating anti-oxidative enzymes. Therefore, the two NRWs tested here are promising candidates for the prevention of DM development.
Collapse
Affiliation(s)
- Yuping Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:2605-41. [PMID: 21391902 DOI: 10.1089/ars.2010.3547] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chronic inflammatory disease is a condition characterized by persistent inflammation. A number of human pathologies fall into this category, and a great deal of research has been conducted to learn more about their characteristics and underlying mechanisms. In many cases, a genetic component has been identified, but also external factors like food, smoke, or environmental pollutants can significantly contribute to worsen their symptoms. Accumulated evidence clearly shows that chronic inflammatory diseases are subjected to a redox control. Here, we shall review the identity, source, regulation, and biological activity of redox molecules, to put in a better perspective their key-role in cancer, diabetes, cardiovascular diseases, atherosclerosis, chronic obstructive pulmonary diseases, and inflammatory bowel diseases. In addition, the impact of redox species on autoimmune disorders (rheumatoid arthritis, systemic lupus erythematosus, psoriasis, and celiac disease) and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) will be discussed, along with their potential therapeutic implications as novel drugs to combat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| | | |
Collapse
|
43
|
Antioxidant and anti-inflammatory effects of exercise in diabetic patients. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:941868. [PMID: 22007193 PMCID: PMC3191828 DOI: 10.1155/2012/941868] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory and chaperon effects of exercise-induced heat shock proteins are also reviewed.
Collapse
|
44
|
Chang CW, Su YC, Her GM, Ken CF, Hong JR. Betanodavirus induces oxidative stress-mediated cell death that prevented by anti-oxidants and zfcatalase in fish cells. PLoS One 2011; 6:e25853. [PMID: 21991373 PMCID: PMC3185053 DOI: 10.1371/journal.pone.0025853] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022] Open
Abstract
The role of oxidative stress in the pathogenesis of RNA nervous necrosis virus infection is still unknown. Red-spotted grouper nervous necrosis virus (RGNNV) induced free radical species (ROS) production at 12-24 h post-infection (pi; early replication stage) in fish GF-1 cells, and then at middle replication stage (24-48 h pi), this ROS signal may upregulate some expressions of the anti-oxidant enzymes Cu/Zn SOD and catalase, and eventually expression of the transcription factor Nrf2. Furthermore, both antioxidants diphenyliodonium and N-acetylcysteine or overexpression of zebrafish catalase in GF-1 cells also reduced ROS production and protected cells for enhancing host survival rate due to RGNNV infection. Furthermore, localization of ROS production using esterase activity and Mitotracker staining assays found that the ROS generated can affect mitochondrial morphology changes and causes ΔΨ loss, both of which can be reversed by antioxidant treatment. Taken together, our data suggest that RGNNV induced oxidative stress response for playing dual role that can initiate the host oxidative stress defense system to upregulate expression of antioxidant enzymes and induces cell death via disrupting the mitochondrial morphology and inducing ΔΨ loss, which can be reversed by anti-oxidants and zfcatalase, which provide new insight into betanodavirus-induced ROS-mediated pathogenesis.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yu-Chin Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Guor-Mour Her
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Chuian-Fu Ken
- The Department of Biotechnology, National Changhua University of Education, Changhua, Taiwan, Republic of China
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
45
|
Turan B, Vassort G. Ryanodine receptor: a new therapeutic target to control diabetic cardiomyopathy. Antioxid Redox Signal 2011; 15:1847-61. [PMID: 21091075 DOI: 10.1089/ars.2010.3725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a major risk factor for cardiovascular complications. Intracellular Ca(2+) release plays an important role in the regulation of muscle contraction. Sarcoplasmic reticulum Ca(2+) release is controlled by dedicated molecular machinery, composed of a complex of cardiac ryanodine receptors (RyR2s). Acquired and genetic defects in this complex result in a spectrum of abnormal Ca(2+) release phenotypes in heart. Cardiovascular dysfunction is a leading cause for mortality of diabetic individuals due, in part, to a specific cardiomyopathy, and to altered vascular reactivity. Cardiovascular complications result from multiple parameters, including glucotoxicity, lipotoxicity, fibrosis, and mitochondrial uncoupling. In diabetic subjects, oxidative stress arises from an imbalance between production of reactive oxygen and nitrogen species and capability of the system to readily detoxify reactive intermediates. To date, the etiology underlying diabetes-induced reductions in myocyte and cardiac contractility remains incompletely understood. However, numerous studies, including work from our laboratory, suggest that these defects stem in part from perturbation in intracellular Ca(2+) cycling. Since the RyR2s are one of the well-characterized redox-sensitive ion channels in heart, this article summarizes recent findings on redox regulation of cardiac Ca(2+) transport systems and discusses contributions of redox regulation to pathological cardiac function in diabetes.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey .
| | | |
Collapse
|
46
|
Vahtola E, Storvik M, Louhelainen M, Merasto S, Lakkisto P, Lakkisto J, Tikkanen I, Kaheinen P, Levijoki J, Mervaala E. Effects of Levosimendan on Cardiac Gene Expression Profile and Post-Infarct Cardiac Remodelling in Diabetic Goto-Kakizaki Rats. Basic Clin Pharmacol Toxicol 2011; 109:387-97. [DOI: 10.1111/j.1742-7843.2011.00743.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Abstract
Increasing evidences have suggested that oxidative stress plays a major role in the pathogenesis of diabetes mellitus (DM). Oxidative stress also appears to be the pathogenic factor in underlying diabetic complications. Reactive oxygen species (ROS) are generated by environmental factors, such as ionizing radiation and chemical carcinogens, and also by endogenous processes, including energy metabolism in mitochondria. ROS produced either endogenously or exogenously can attack lipids, proteins and nucleic acids simultaneously in living cells. There are many potential mechanisms whereby excess glucose metabolites traveling along these pathways might promote the development of DM complication and cause pancreatic β cell damage. However, all these pathways have in common the formation of ROS, that, in excess and over time, causes chronic oxidative stress, which in turn causes defective insulin gene expression and insulin secretion as well as increased apoptosis. Various methods for determining biomarkers of cellular oxidative stress have been developed, and some have been proposed for sensitive assessment of antioxidant defense and oxidative damage in diabetes and its complications. However, their clinical utility is limited by less than optimal standardization techniques and the lack of sufficient large-sized, multi-marker prospective trials.
Collapse
Affiliation(s)
- Hui Yang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Ministry of Health, Beijing, PR China
| | | | | | | |
Collapse
|
48
|
Emblica officinalis Exerts Antihypertensive Effect in a Rat Model of DOCA-Salt-Induced Hypertension: Role of (p) eNOS, NO and Oxidative Stress. Cardiovasc Toxicol 2011; 11:272-9. [DOI: 10.1007/s12012-011-9122-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|