1
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
2
|
Andrianov VV, Kulchitsky VA, Yafarova GG, Bazan LV, Bogodvid TK, Deryabina IB, Muranova LN, Silantyeva DI, Arslanov AI, Paveliev MN, Fedorova EV, Filipovich TA, Nagibov AV, Gainutdinov KL. Investigation of NO Role in Neural Tissue in Brain and Spinal Cord Injury. Molecules 2023; 28:7359. [PMID: 37959778 PMCID: PMC10650517 DOI: 10.3390/molecules28217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Nitric oxide (NO) production in injured and intact brain regions was compared by EPR spectroscopy in a model of brain and spinal cord injury in Wistar rats. The precentral gyrus of the brain was injured, followed by the spinal cord at the level of the first lumbar vertebra. Seven days after brain injury, a reduction in NO content of 84% in injured brain regions and 66% in intact brain regions was found. The difference in NO production in injured and uninjured brain regions persisted 7 days after injury. The copper content in the brain remained unchanged one week after modeling of brain and spinal cord injury. The data obtained in the experiments help to explain the problems in the therapy of patients with combined brain injury.
Collapse
Affiliation(s)
- Viacheslav V. Andrianov
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Vladimir A. Kulchitsky
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Guzel G. Yafarova
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Leah V. Bazan
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
| | - Tatiana K. Bogodvid
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
- Department of Biomedical Sciences, Volga Region State University of Physical Culture, Sport and Tourism, 420000 Kazan, Russia
| | - Irina B. Deryabina
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Lyudmila N. Muranova
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Dinara I. Silantyeva
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Almaz I. Arslanov
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | | | - Ekaterina V. Fedorova
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Tatiana A. Filipovich
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Aleksei V. Nagibov
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Khalil L. Gainutdinov
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| |
Collapse
|
3
|
Li H, Deng X, Zhang Z, Yang Z, Huang H, Ye X, Zhong L, Xu G, Liu R, Fang Y. Nitric oxide/paclitaxel micelles enhance anti-liver cancer effects and paclitaxel sensitivity by inducing ferroptosis, endoplasmic reticulum stress and pyroptosis. RSC Adv 2023; 13:31772-31784. [PMID: 37908648 PMCID: PMC10613954 DOI: 10.1039/d3ra04861f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
The objective of this study was to investigate the anticancer activities of biodegradable polymeric micelles composed of monomethoxy poly(ethylene glycol), polylactic acid, and nitric oxide (mPEG-PLA-NO) loaded with paclitaxel (PTX) as a nanomedicine delivery system. We aimed to compare the anticancer effects of these NO/PTX micelles with PTX alone and elucidate their mechanism of action. We evaluated the impact of NO/PTX and PTX on cell viability using Cell Counting Kit-8 (CCK8) assays conducted on the Bel-7402 liver cancer cell line. Additionally, we employed H22 xenografted mice to assess the in vivo tumor growth inhibitory activity of NO/PTX. To examine the cytotoxicity of NO/PTX, the intracellular levels of reactive oxygen species (ROS), and the expression of ferroptosis-related proteins, we conducted experiments in the presence of the ferroptosis inhibitor ferrostatin-1 (Fer-1) or the ROS inhibitor N-acetyl cysteine (NAC). Furthermore, we investigated the expression of endoplasmic reticulum stress (ERS) and apoptosis-associated proteins. Our results demonstrated that NO/PTX exhibited enhanced anticancer effects compared to PTX alone in both Bel-7402 cells and H22 xenografted mice. The addition of Fer-1 or NAC reduced the anticancer activity of NO/PTX, indicating the involvement of ferroptosis and ROS in its mechanism of action. Furthermore, NO/PTX modulated the expression of proteins related to ERS and apoptosis, indicating the activation of these cellular pathways. The anticancer effects of NO/PTX in liver cancer cells were mediated through the induction of ferroptosis, pyroptosis, ERS, and apoptosis-associated networks. Ferroptosis and pyroptosis were activated by treatment of NO/PTX at low concentration, whereas ERS was induced to trigger apoptosis at high concentration. The superior anti-tumor effect of NO/PTX may be attributed to the downregulation of a multidrug resistance transporter and the sensitization of cells to PTX chemotherapy. In summary, our study highlights the potential of mPEG-PLA-NO micelles loaded with PTX as a nanomedicine delivery system for liver cancer treatment. The observed enhancement in anticancer activity, combined with the modulation of key cellular pathways, provides valuable insights into the therapeutic potential of NO/PTX in overcoming resistance and improving treatment outcomes in liver cancer patients.
Collapse
Affiliation(s)
- Huilan Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine Nanchang 330006 China
| | - Xiaoyu Deng
- College of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 China
| | - Ziwei Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 China
| | - Hesong Huang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine Nanchang 330006 China
| | - Xide Ye
- College of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 China
| | - Linyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 China
| | - Guoliang Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine Nanchang 330004 China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine Nanchang 330006 China
| |
Collapse
|
4
|
Seckler JM, Getsy PM, May WJ, Gaston B, Baby SM, Lewis THJ, Bates JN, Lewis SJ. Hypoxia releases S-nitrosocysteine from carotid body glomus cells-relevance to expression of the hypoxic ventilatory response. Front Pharmacol 2023; 14:1250154. [PMID: 37886129 PMCID: PMC10598756 DOI: 10.3389/fphar.2023.1250154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
We have provided indirect pharmacological evidence that hypoxia may trigger release of the S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), from primary carotid body glomus cells (PGCs) of rats that then activates chemosensory afferents of the carotid sinus nerve to elicit the hypoxic ventilatory response (HVR). The objective of this study was to provide direct evidence, using our capacitive S-nitrosothiol sensor, that L-CSNO is stored and released from PGCs extracted from male Sprague Dawley rat carotid bodies, and thus further pharmacological evidence for the role of S-nitrosothiols in mediating the HVR. Key findings of this study were that 1) lysates of PGCs contained an S-nitrosothiol with physico-chemical properties similar to L-CSNO rather than S-nitroso-L-glutathione (L-GSNO), 2) exposure of PGCs to a hypoxic challenge caused a significant increase in S-nitrosothiol concentrations in the perfusate to levels approaching 100 fM via mechanisms that required extracellular Ca2+, 3) the dose-dependent increases in minute ventilation elicited by arterial injections of L-CSNO and L-GSNO were likely due to activation of small diameter unmyelinated C-fiber carotid body chemoafferents, 4) L-CSNO, but not L-GSNO, responses were markedly reduced in rats receiving continuous infusion (10 μmol/kg/min, IV) of both S-methyl-L-cysteine (L-SMC) and S-ethyl-L-cysteine (L-SEC), 5) ventilatory responses to hypoxic gas challenge (10% O2, 90% N2) were also due to the activation of small diameter unmyelinated C-fiber carotid body chemoafferents, and 6) the HVR was markedly diminished in rats receiving L-SMC plus L-SEC. This data provides evidence that rat PGCs synthesize an S-nitrosothiol with similar properties to L-CSNO that is released in an extracellular Ca2+-dependent manner by hypoxia.
Collapse
Affiliation(s)
- James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M. Getsy
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Walter J. May
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Tristan H. J. Lewis
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Departments of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Pechyonkin EV, Kovrizhkin AV, Pekshev AV, Vagapov AB, Sharapov NA, Vanin AF. High Dose Inhalation with Gaseous Nitric Oxide in COVID-19 Treatment. Biophysics (Nagoya-shi) 2023; 67:1023-1032. [PMID: 36883180 PMCID: PMC9984126 DOI: 10.1134/s0006350922060185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 03/06/2023] Open
Abstract
A method of treatment of a new coronavirus infection COVID-19 in patients undergoing high flow oxygenation is proposed and technically implemented; the method is based on high-dose inhalation of gaseous nitric oxide (NO) with the patient's spontaneous breathing. The results of the treatment of this disease demonstrating the high efficiency of the new method are presented. A possible mechanism of the blocking effect of high doses of inhaled nitric oxide on the replication of the SARS-CoV-2 virus is discussed; it is based on the formation of dinitrosyl iron complexes in the respiratory tract and lungs of COVID-19 patients with thiol-containing ligands acting as donors of NO and nitrosonium NO+ cations in a living organism that have a cytotoxic effect on the SARS CoV-2 virus.
Collapse
Affiliation(s)
| | | | - A. V. Pekshev
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - A. B. Vagapov
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - N. A. Sharapov
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - A. F. Vanin
- Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Vanin AF, Mikoyan VD, Tkachev NA. Nitrosonium Cation Release from Dinitrosyl Iron Complexes in the Decomposition Induced by Superoxide Anions or Ethylenediaminetetraacetate. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
8
|
Vanin AF. Positive (Regulatory) and Negative (Cytotoxic) Effects of Dinitrosyl Iron Complexes on Living Organisms. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1367-1386. [PMID: 36509730 PMCID: PMC9672603 DOI: 10.1134/s0006297922110153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
The proposed in our studies mechanism of dinitrosyl iron complex (DNIC) formation through the main step of disproportionation of two NO molecules in complex with Fe2+ ion leads to emergence of the resonance structure of dinitrosyl-iron fragment of DNIC, [Fe2+(NO)(NO+)]. The latter allowed suggesting capacity of these complexes to function as donor of both neutral NO molecules as well as nitrosonium cations (NO+), which has been demonstrated in experiments. Analysis of biological activity of DNICs with thiol-containing ligands presented in this review demonstrates that NO molecules and nitrosonium cations released from the complexes exert respectively positive (regulatory) and negative (cytotoxic) effects on living organisms. It has been suggested to use dithiocarbamate derivatives to enhance selective release of nitrosonium cations from DNIC in living organisms followed by simultaneous incorporation of the released NO molecules into the biologically non-active mononitrosyl iron complexes with dithiocarbamate derivatives.
Collapse
Affiliation(s)
- Anatoly F Vanin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Getsy PM, Young AP, Bates JN, Baby SM, Seckler JM, Grossfield A, Hsieh YH, Lewis THJ, Jenkins MW, Gaston B, Lewis SJ. S-nitroso-L-cysteine stereoselectively blunts the adverse effects of morphine on breathing and arterial blood gas chemistry while promoting analgesia. Biomed Pharmacother 2022; 153:113436. [PMID: 36076552 PMCID: PMC9464305 DOI: 10.1016/j.biopha.2022.113436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Alex P Young
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Santhosh M Baby
- Galleon Pharmaceuticals, Inc., 213 Witmer Road, Horsham, PA, USA.
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Tristan H J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
11
|
Vanin AF. Nitrosonium Cations as the Most Effective Cytotoxic Components of Dinitrosyl Iron Complexes. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s000635092203023x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Getsy PM, Baby SM, Gruber RB, Gaston B, Lewis THJ, Grossfield A, Seckler JM, Hsieh YH, Bates JN, Lewis SJ. S-Nitroso-L-Cysteine Stereoselectively Blunts the Deleterious Effects of Fentanyl on Breathing While Augmenting Antinociception in Freely-Moving Rats. Front Pharmacol 2022; 13:892307. [PMID: 35721204 PMCID: PMC9199495 DOI: 10.3389/fphar.2022.892307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Endogenous and exogenously administered S-nitrosothiols modulate the activities of central and peripheral systems that control breathing. We have unpublished data showing that the deleterious effects of morphine on arterial blood-gas chemistry (i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas exchange) were markedly diminished in anesthetized Sprague Dawley rats that received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-L-cysteine. The present study extends these findings by showing that unanesthetized adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine (100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of breathing, tidal volume, and minute ventilation. Our study also found that the ability of intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which was measured as a marked increase of the non-eupneic breathing index, was substantially reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine (100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and 50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine. In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on breathing, and opens the door for mechanistic studies designed to establish whether the pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1) the activation of plasma membrane ion channels and receptors, 2) selective intracellular entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in determining the potency/efficacy of fentanyl on breathing is an intriguing question.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ryan B. Gruber
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Shipovalov AV, Vanin AF, Pyankov OV, Bagryanskaya EG, Mikoyan VD, Tkachev NA, Asanbaeva NA, Popkova VY. Antiviral Activity of Nitrosonium Cations against SARS-CoV-2 on a Syrian Hamster Model. Biophysics (Nagoya-shi) 2022; 67:785-795. [PMID: 36567969 PMCID: PMC9762664 DOI: 10.1134/s0006350922050165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
The antiviral action of binuclear dinitrosyl iron complexes with glutathione along with diethyldithiocarbamate against the SARS-CoV-2 virus has been demonstrated on a Syrian hamster model after aerosol exposure of SARS-CoV-2-infected animals to the solutions of said compounds. EPR assays in analogous experiments on intact hamsters have demonstrated that the iron complexes and diethyldithiocarbamate are predominantly localized in lung tissues. These results have been compared with similar measurements on intact mice, which have shown the equal localization of these agents in both the lungs and liver. We assume that the release of the nitrosonium cations from the binuclear dinitrosyl iron complexes with glutathione occurs during their contact with diethyldithiocarbamate in the animal body. These cations caused S-nitrosation of host and viral cell proteases, leading to suppression of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- A. V. Shipovalov
- State Scientific Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk oblast Russia
| | - A. F. Vanin
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O. V. Pyankov
- State Scientific Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk oblast Russia
| | - E. G. Bagryanskaya
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - V. D. Mikoyan
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N. A. Tkachev
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N. A. Asanbaeva
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - V. Ya. Popkova
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
14
|
Vanin AF, Telegina VI, Mikoyan VD, Tkachev NA, Vasilieva SV. The Cytostatic Action of Dinitrosyl Iron Complexes with Glutathione on Escherichia coli Cells Is Mediated by Nitrosonium Cations Released from These Complexes. Biophysics (Nagoya-shi) 2022; 67:761-767. [PMID: 36567970 PMCID: PMC9762666 DOI: 10.1134/s0006350922050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/23/2022] Open
Abstract
This study demonstrates a bacteriostatic effect of binuclear dinitrosyl iron complexes with glutathione on Escherichia coli TN300 cells. It has been quantified by the colony formation assay. The bacteriostatic effect exerted by these complexes increases considerably in the presence of diethyldithiocarbamate. Our results suggest that this effect is caused by the intense release of nitrosonium cations, NO+, from the complexes, which decompose under the action of diethyldithiocarbamate. A similar effect is observed when E. coli cells are treated with diethyldithiocarbamate 40 min after the addition of sodium nitrite or S-nitrosoglutathione. Notably, the level of dinitrosyl iron complexes observed in the bacterial cells due to the effects of sodium nitrite or S-nitrosoglutathione is almost the same as that obtained after treatment with glutathione-containing complexes. The bacteriostatic effects of the NO molecules released from nitrite or S-nitrosoglutathione during their brief interaction with bacteria were significantly smaller than the bacteriostatic effect of NO+. We deduce therefrom that the nitrosonium cations released from DNICs are responsible for the observed bacteriostatic effect of these complexes in E. coli cells.
Collapse
Affiliation(s)
- A. F. Vanin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - V. I. Telegina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - V. D. Mikoyan
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - N. A. Tkachev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - S. V. Vasilieva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
15
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
16
|
Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite. Int J Mol Sci 2021; 22:13649. [PMID: 34948445 PMCID: PMC8703631 DOI: 10.3390/ijms222413649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (•NO) in an organism. They are able not only to deposit and transport •NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized. Through EPR spectroscopy we show that Hb-DNICs are destroyed under the peroxynitrite action in a dose-dependent manner. At the same time, DNICs inhibit the oxidation of tryptophan and tyrosine residues and formation of carbonyl derivatives. They also prevent the formation of covalent crosslinks between Hb subunits and degradation of a heme group. These effects can arise from the oxoferryl heme form being reduced, and they can be connected with the ability of DNICs to directly intercept peroxynitrite and free radicals, which emerge due to its homolysis. These data show that DNICs may ensure protection from myocardial ischemia.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | - Elvira I. Nasybullina
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | - Konstantin B. Shumaev
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | | | - Alexey F. Topunov
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| |
Collapse
|
17
|
Smulik-Izydorczyk R, Dębowska K, Rostkowski M, Adamus J, Michalski R, Sikora A. Kinetics of Azanone (HNO) Reactions with Thiols: Effect of pH. Cell Biochem Biophys 2021; 79:845-856. [PMID: 33950351 PMCID: PMC8558164 DOI: 10.1007/s12013-021-00986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/04/2022]
Abstract
HNO (nitroxyl, IUPAC name azanone) is an electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present data on the pH-dependent kinetics of azanone reactions with the low molecular thiols glutathione and N-acetylcysteine, as well as with important serum proteins: bovine serum albumin and human serum albumin. The competition kinetics method used is based on two parallel HNO reactions: with RSH/RS- or with O2. The results provide evidence that the reaction of azanone with the anionic form of thiols (RS-) is favored over reactions with the protonated form (RSH). The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with thiolates is provided.
Collapse
Affiliation(s)
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michał Rostkowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland.
| |
Collapse
|
18
|
Vanin AF. Physico-Chemistry of Dinitrosyl Iron Complexes as a Determinant of Their Biological Activity. Int J Mol Sci 2021; 22:10356. [PMID: 34638698 PMCID: PMC8508859 DOI: 10.3390/ijms221910356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
In this article we minutely discuss the so-called "oxidative" mechanism of mononuclear form of dinitrosyl iron complexes (M-DNICs) formations proposed by the author. M-DNICs are proposed to be formed from their building material-neutral NO molecules, Fe2+ ions and anionic non-thiol (L-) and thiol (RS-) ligands based on the disproportionation reaction of NO molecules binding with divalent ion irons in pairs. Then a protonated form of nitroxyl anion (NO-) appearing in the reaction is released from this group and a neutral NO molecule is included instead. As a result, M-DNICs are produced. Their resonance structure is described as [(L-)2Fe2+(NO)(NO+)], in which nitrosyl ligands are represented by NO molecules and nitrosonium cations in equal proportions. Binding of hydroxyl ions with the latter causes conversion of these cations into nitrite anions at neutral pH values and therefore transformation of DNICs into the corresponding high-spin mononitrosyl iron complexes (MNICs) with the resonance structure described as [(L-)2Fe2+(NO)]. In case of replacing L- by thiol-containing ligands, which are characterized by high π-donor activity, electron density transferred from sulfur atoms to iron-dinitrosyl groups neutralizes the positive charge on nitrosonium cations, which prevents their hydrolysis, ensuring relatively a high stability of the corresponding M-DNICs with the resonance structure [(RS-)2Fe2+ (NO, NO+)]. Therefore, M-DNICs with thiol-containing ligands, as well as their binuclear analogs (B-DNICs, respective resonance structure [(RS-)2Fe2+2 (NO, NO+)2]), can serve donors of both NO and NO+. Experiments with solutions of B-DNICs with glutathione or N-acetyl-L-cysteine (B-DNIC-GSH or B-DNIC-NAC) showed that these complexes release both NO and NO+ in case of decomposition in the presence of acid or after oxidation of thiol-containing ligands in them. The level of released NO was measured via optical absorption intensity of NO in the gaseous phase, while the number of released nitrosonium cations was determined based on their inclusion in S-nitrosothiols or their conversion into nitrite anions. Biomedical research showed the ability of DNICs with thiol-containing ligands to be donors of NO and NO+ and produce various biological effects on living organisms. At the same time, NO molecules released from DNICs usually have a positive and regulatory effect on organisms, while nitrosonium cations have a negative and cytotoxic effect.
Collapse
Affiliation(s)
- Anatoly F Vanin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences Moscow, 119991 Moscow, Russia
| |
Collapse
|
19
|
Reaction mechanisms relevant to the formation and utilization of [Ru(edta)(NO)] complexes in aqueous media. J Inorg Biochem 2021; 225:111595. [PMID: 34555599 DOI: 10.1016/j.jinorgbio.2021.111595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
The advancement of Ru(edta) complexes (edta4- = ethylenediamineteraacetate) mediated reactions, including NO generation and its utilization, has not been systematically reviewed to date. This review aims to report the research progress that has been made in exploring the application of Ru(edta) complexes in trapping and generation of NO. Furthermore, utilization of the potential of Ru(edta) complexes to mimic NO synthase and nitrite reductase activity, including thermodynamics and kinetics of NO binding to Ru(edta) complexes, their NO scavenging (in vitro), and antitumor activity will be discussed. Also, the role of [Ru(edta)(NO)] in mediating electrochemical reduction of nitrite, S-nitrosylation of biological thiols, and cross-talk between NO and H2S, will be covered. Reports on the NO-related chemistry of Fe(edta) complexes showing similar behavior are contextualized in this review for comparison purposes. The research contributions compiled herein will provide in-depth mechanistic knowledge for understanding the diverse routes pertaining to the formation of the [Ru(edta)(NO)] species, and its role in effecting the aforementioned reactions of biochemical significance.
Collapse
|
20
|
Vanin AF, Pekshev AV, Vagapov AB, Sharapov NA, Lakomkin VL, Abramov AA, Timoshin AA, Kapelko VI. Gaseous Nitric Oxide and Dinitrosyl Iron Complexes with Thiol-Containing Ligands as Potential Medicines that Can Relieve COVID-19. Biophysics (Nagoya-shi) 2021; 66:155-163. [PMID: 33935291 PMCID: PMC8078388 DOI: 10.1134/s0006350921010218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/27/2022] Open
Abstract
It is shown that the inhalation of gaseous nitric oxide (gNO) or sprayed aqueous solutions of binuclear dinitrosyl iron complexes with glutathione or N-acetyl-L-cysteine by animals or humans provokes no perceptible hypotensive effects. Potentially, these procedures may be useful in COVID-19 treatment. The NO level in complexes with hemoglobin in blood decreases as the gNO concentration in the gas flow produced by the Plazon system increases from 100 to 2100 ppm, so that at 2000 ppm more than one-half of the gas can be incorporated into dinitrosyl complexes formed in tissues of the lungs and respiratory tract. Thus, the effect of gNO inhalation may be similar to that observed after administration of solutions of dinitrosyl iron complexes, namely, to the presence of dinitrosyl iron complexes with thiol-containing ligands in lung and airway tissues. With regard to the hypothesis posited earlier that these complexes can suppress coronavirus replication as donors of nitrosonium cations (Biophysics 65, 818, 2020), it is not inconceivable that administration of gNO or chemically synthesized dinitrosyl iron complexes with thiol-containing ligands may help treat COVID-19. In tests on the authors of this paper as volunteers, the tolerance concentration of gNO inhaled within 15 min was approximately 2000 ppm. In tests on rats that inhaled sprayed aqueous solutions of dinitrosyl iron complexes, their tolerance dose was approximately 0.4 mmol/kg body weight.
Collapse
Affiliation(s)
- A. F. Vanin
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| | - A. V. Pekshev
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - A. B. Vagapov
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - N. A. Sharapov
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - V. L. Lakomkin
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - A. A. Abramov
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - A. A. Timoshin
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - V. I. Kapelko
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
21
|
Redox and Antioxidant Modulation of Circadian Rhythms: Effects of Nitroxyl, N-Acetylcysteine and Glutathione. Molecules 2021; 26:molecules26092514. [PMID: 33925826 PMCID: PMC8123468 DOI: 10.3390/molecules26092514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated. Here, the one-electron reduction of NO• nitroxyl was pharmacologically delivered by Angeli’s salt (AS) donor to assess its modulation on phase-resetting of locomotor rhythms in hamsters. Intracerebroventricular AS generated nitroxyl at the SCN, promoting phase-delays at CT14, but potentiated light-induced phase-advances at CT18. Glutathione/glutathione disulfide (GSH/GSSG) couple measured in SCN homogenates showed higher values at CT14 (i.e., more reduced) than at CT18 (oxidized). In addition, administration of antioxidants N-acetylcysteine (NAC) and GSH induced delays per se at CT14 but did not affect light-induced advances at CT18. Thus, the relative of NO• nitroxyl generates phase-delays in a reductive SCN environment, while an oxidative favors photic-advances. These data suggest that circadian phase-locking mechanisms should include redox SCN environment, generating relatives of NO•, as well as coupling with the molecular oscillator.
Collapse
|
22
|
Korman DB, Ostrovskaya LA, Vanin AF. Nitric Oxide Donors as Potential Antitumor Agents. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092102010x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
23
|
Vanin AF, Tronov VA, Borodulin RR. Nitrosonium Cation as a Cytotoxic Component of Dinitrosyl Iron Complexes with Thiol-containing Ligands (based on the Experimental Work on MCF7 Human Breast Cancer Cell Culture). Cell Biochem Biophys 2021; 79:93-102. [PMID: 33492647 PMCID: PMC7829092 DOI: 10.1007/s12013-020-00962-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/02/2022]
Abstract
Here we demonstrate that binuclear dinitrosyl iron complexes with thiol-containing ligands (glutathione and mercaptosuccinate, B-DNIC-GSH and B-DNIC-MS, respectively) exert cytotoxic effects on MCF7 human breast cancer cells. We showed that they are mediated by nitrosonium cations released from these complexes (NO+). This finding is supported by the cytotoxic effect of both B-DNICs on MCF7 cells evidenced to retain or was even promoted in the presence of N-Methyl-D-glucamine dithiocarbamate (MGD). MGD recruits an iron nitrosyl group [Fe(NO)] from the iron-dinitrosyl fragment [Fe(NO)2] of B-DNIC-MS forming stable mononitrosyl complexes of iron with MGD and releasing NO+ cations from a [Fe(NO)2] fragment.
Collapse
Affiliation(s)
- Anatoly F Vanin
- Semenov Federal Research Centre of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
- Institute of Regenerative Medicine, Sechenov Medical University, Moscow, Russia.
| | - Viktor A Tronov
- Semenov Federal Research Centre of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Rostislav R Borodulin
- Semenov Federal Research Centre of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
K. Martusevich A, G. Galka A, A. Karuzin K, N. Tuzhilkin A, L. Malinovskaya S. Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
25
|
Vanin AF. How is Nitric Oxide (NO) Converted into Nitrosonium Cations (NO +) in Living Organisms? (Based on the Results of Optical and EPR Analyses of Dinitrosyl Iron Complexes with Thiol-Containing Ligands). APPLIED MAGNETIC RESONANCE 2020; 51:851-876. [PMID: 33100585 PMCID: PMC7572240 DOI: 10.1007/s00723-020-01270-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The present work provides theoretical and experimental foundations for the ability of dinitrosyl iron complexes (DNICs) with thiol-containing ligands to be not only the donors of neutral NO molecules, but also the donors of nitrosonium cations (NO+) in living organisms ensuring S-nitrosation of various proteins and low-molecular-weight compounds. It is proposed that the emergence of those cations in DNICs is related to disproportionation reaction of NO molecules, initiated by their binding with Fe2+ ions (two NO molecules per one ion). At the same time, possible hydrolysis of iron-bound nitrosonium cations is prevented by the electron density transition to nitrosonium cations from sulfur atoms of thiol-containing ligands, which are included in the coordination sphere of iron. It allows supposing that iron in iron-nitrosyl complexes of DNICs has a d 7 electronic configuration. This supposition is underpinned by experimental data revealing that a half of nitrosyl ligands are converted into S-nitrosothiols (RSNOs) when those complexes decompose, with the other half of those ligands released in the form of neutral NO molecules.
Collapse
Affiliation(s)
- Anatoly F. Vanin
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| |
Collapse
|
26
|
Vanin AF. Dinitrosyl Iron Complexes with Thiol-Containing Ligands Can Suppress Viral Infections as Donors of the Nitrosonium Cation (Hypothesis). Biophysics (Nagoya-shi) 2020; 65:698-702. [PMID: 33100351 PMCID: PMC7569104 DOI: 10.1134/s0006350920040260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
The appropriateness of verification of the possible antiviral effect of dinitrosyl iron complexes with thiol-containing ligands as donors of nitrosonium cations (NO+) is argued. There is reason to hope that treatment of the human respiratory tract and lungs with sprayed solutions of dinitrosyl iron complexes with glutathione or N-acetylcysteine (NAC) as NO+ donors during COVID-19 infection can initiate S-nitrosylation of cellular proteases and thereby suppress viral infection.
Collapse
Affiliation(s)
- A. F. Vanin
- Semenov Institute of Chemical Physics, 119334 Moscow, Russia
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
27
|
The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020; 103:31-46. [DOI: 10.1016/j.niox.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
|
28
|
Serezhenkov VA, Tkachev NA, Artyushina ZS, Kuznetsova MI, Kovac M, Vanin AF. Reduced Nitric Oxide Bioavailability in Horses with Colic: Evaluation by ESR Spectroscopy. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Saratovskikh EA, Martynenko VM, Psikha BL, Sanina NA. Reaction of adenosine triphosphoric acid and tetranitrosyl iron complex [Fe2(S(CH2)2NH3)2(NO)4]SO4·2.5H2O. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Vanin AF. The Free-Radical Nature of Nitric Oxide Molecules as a Determinant of their Conversion to Nitrosonium Cations in Living Systems. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|