1
|
Potential Role of GST- π in Lung Cancer Stem Cell Cisplatin Resistance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9142364. [PMID: 34840986 PMCID: PMC8626171 DOI: 10.1155/2021/9142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022]
Abstract
Background Cancer stem cells (CSCs) are responsible for tumorigenesis, chemoresistance, and metastasis. Chemoresistance is a major challenge in the management of lung cancer. Glutathione-sulphur-transferase-π (GST-π) plays an important role in the origin and development of various types of cancer by regulating the cellular redox balance. Recent investigations have demonstrated that GST-π is associated with the chemoresistance of lung CSCs (LCSCs). However, the mechanism of GST-π in lung cancer, particularly in LCSCs, remains unclear. The present study is aimed at exploring the potential role of GST-π in stemness and cisplatin (DDP) resistance of LCSCs. Materials and methods. In the present study, lung cancer cell spheres were established using the A549 cell line, which according to our previous research, was confirmed to exhibit characteristics of stem cells. Next, GST-π protein expression, apoptosis percentage, and intracellular reactive oxygen species (ROS) concentration in A549 adherent cells and A549 cell spheres were analyzed by western blotting and flow cytometry, respectively. Finally, DDP resistance, ROS concentration, and GST-π expression in LCSCs were analyzed following the interference with GST-π using DL-buthionine-(S,R)-sulphoximine and N-acetylcysteine. Results The results revealed that GST-π was highly expressed in A549 cell spheres compared with A549 adherent cells and was associated with a decreased intracellular ROS concentration (both P < 0.05). Regulating GST-π protein expression could alter DDP resistance of LCSCs by influencing ROS. Conclusion These results suggested that GST-π may be important for LCSC drug resistance by downregulating ROS levels. These findings may contribute to the development of new adjuvant therapeutic strategies for lung cancer.
Collapse
|
2
|
Rabelo ILA, Arnaud-Sampaio VF, Adinolfi E, Ulrich H, Lameu C. Cancer Metabostemness and Metabolic Reprogramming via P2X7 Receptor. Cells 2021; 10:1782. [PMID: 34359950 PMCID: PMC8305434 DOI: 10.3390/cells10071782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
The heterogeneity of tumor cell mass and the plasticity of cancer cell phenotypes in solid tumors allow for the insurgence of resistant and metastatic cells, responsible for cancer patients' clinical management's main challenges. Among several factors that are responsible for increased cancer aggression, metabolic reprogramming is recently emerging as an ultimate cancer hallmark, as it is central for cancer cell survival and self-renewal, metastasis and chemoresistance. The P2X7 receptor, whose expression is upregulated in many solid and hematological malignancies, is also emerging as a good candidate in cancer metabolic reprogramming and the regulation of stem cell proliferation and differentiation. Metabostemness refers to the metabolic reprogramming of cancer cells toward less differentiated (CSCs) cellular states, and we believe that there is a strong correlation between metabostemness and P2X7 receptor functions in oncogenic processes. Here, we summarize important aspects of P2X7 receptor functions in normal and tumor tissues as well as essential aspects of its structure, regulation, pharmacology and its clinical use. Finally, we review current knowledge implicating P2X7 receptor functions in cancer-related molecular pathways, in metabolic reprogramming and in metabostemness.
Collapse
Affiliation(s)
- Izadora Lorrany Alves Rabelo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Vanessa Fernandes Arnaud-Sampaio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil; (I.L.A.R.); (V.F.A.-S.); (H.U.)
| |
Collapse
|
3
|
Gokce M, Guler EM. A. hierchuntica extract exacerbates genotoxic, cytotoxic, apoptotic and oxidant effects in B16F10 melanoma cells. Toxicon 2021; 198:73-79. [PMID: 33971212 DOI: 10.1016/j.toxicon.2021.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Melanoma is a highly malignant tumor caused by melanocytes. Even though melanoma represents just 3% of all skin malignancies, it represents 75% of deaths. Extracts of A. hierchuntica were reported to have anti-inflammatory, hepatoprotective, and anti-melanogenic activities. This study aims to investigate the dose-related relationship and selectivity of the toxic effects of A. hierchuntica extracts (AHE) on melanoma cells and provide a new option that can be used in the future treatment of melanoma. B16F10 Mus musculus malign melanoma cells and L929 Mus musculus healthy fibroblast cells were treated with root and leaf AHEs in a dose-dependent manner. Intracellular glutathione levels, mitochondrial membrane potential activity, apoptosis, genotoxicity, and cytotoxicity of AHE were evaluated. This study is probably the first study to show a significant apoptotic and genotoxic activity of AHE in selected B16F10 cancer cell lines. Mitochondrial membrane potential and glutathione activity of B16F10 and L929 melanoma cells decreased with increasing concentrations of both leaf and root AHEs. However, viability and reactive oxygen species levels showed selectivity especially the AHEs concentrations between 400 μg/mL and 500 μg/mL. This selectivity based on doses was also validated in apoptosis and genotoxicity between healthy and cancer cells (p < 0.001). The results showed that when looking at melanoma-specific, AHE could be a source of inspiration as an active ingredient in future treatment protocols. AHE can be recommended as potential nutraceuticals in the prevention of human melanoma cancer.
Collapse
Affiliation(s)
- Mustafa Gokce
- Bezmialem Vakif University, School of Pharmacy, Department of Pharmacology, Istanbul, Turkey; Istanbul University, Graduate School of Health Sciences, Istanbul, Turkey.
| | - Eray Metin Guler
- Health Sciences University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
4
|
Chang CH, Pauklin S. ROS and TGFβ: from pancreatic tumour growth to metastasis. J Exp Clin Cancer Res 2021; 40:152. [PMID: 33941245 PMCID: PMC8091747 DOI: 10.1186/s13046-021-01960-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGFβ) signalling pathway switches between anti-tumorigenic function at early stages of cancer formation and pro-tumorigenic effects at later stages promoting cancer metastasis. A similar contrasting role has been uncovered for reactive oxygen species (ROS) in pancreatic tumorigenesis. Down-regulation of ROS favours premalignant tumour development, while increasing ROS level in pancreatic ductal adenocarcinoma (PDAC) enhances metastasis. Given the functional resemblance, we propose that ROS-mediated processes converge with the spatial and temporal activation of TGFβ signalling and thereby differentially impact early tumour growth versus metastatic dissemination. TGFβ signalling and ROS could extensively orchestrate cellular processes and this concerted function can be utilized by cancer cells to facilitate their malignancy. In this article, we revisit the interplay of canonical and non-canonical TGFβ signalling with ROS throughout pancreatic tumorigenesis and metastasis. We also discuss recent insight that helps to understand their conflicting effects on different stages of tumour development. These considerations open new strategies in cancer therapeutics.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK.
| |
Collapse
|
5
|
Weng CH, Wu CS, Wu JC, Kung ML, Wu MH, Tai MH. Cisplatin-Induced Giant Cells Formation Is Involved in Chemoresistance of Melanoma Cells. Int J Mol Sci 2020; 21:ijms21217892. [PMID: 33114317 PMCID: PMC7660656 DOI: 10.3390/ijms21217892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
Melanoma is notoriously resistant to current cancer therapy. However, the chemoresistance mechanism of melanoma remains unclear. The present study unveiled that chemotherapy drug cisplatin induced the formation of giant cells, which exhibited enlargement in cell diameter and nucleus in mice and human melanoma cells. Giant cells were positive with melanoma maker S100 and cancer stem cell markers including ABCB5 and CD133 in vitro and in vivo. Moreover, giant cells retained the mitotic ability with expression of proliferation marker Ki-67 and exhibited multiple drug resistance to doxorubicin and actinomycin D. The mitochondria genesis/activities and cellular ATP level were significantly elevated in giant cells, implicating the demand for energy supply. Application of metabolic blockers such as sodium azide or 2-deoxy glucose abolished the cisplatin-induced giant cells formation and expression of cancer stemness markers. The present study unveils a novel chemoresistance mechanism of melanoma cells via size alteration and the anti-neoplastic strategy by targeting giant cells.
Collapse
Affiliation(s)
- Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
| | - Chieh-Shan Wu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Department of Dermatology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jian-Ching Wu
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Ming-Hsiu Wu
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: (M.-H.W.); (M.-H.T.)
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (M.-H.W.); (M.-H.T.)
| |
Collapse
|
6
|
The Metabolic Heterogeneity and Flexibility of Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12102780. [PMID: 32998263 PMCID: PMC7601708 DOI: 10.3390/cancers12102780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) have been shown to be the main cause of therapy resistance and cancer recurrence. An analysis of their biological properties has revealed that CSCs have a particular metabolism that differs from non-CSCs to maintain their stemness properties. In this review, we analyze the flexible metabolic mechanisms of CSCs and highlight the new therapeutics that target CSC metabolism. Abstract Numerous findings have indicated that CSCs, which are present at a low frequency inside primary tumors, are the main cause of therapy resistance and cancer recurrence. Although various therapeutic methods targeting CSCs have been attempted for eliminating cancer cells completely, the complicated characteristics of CSCs have hampered such attempts. In analyzing the biological properties of CSCs, it was revealed that CSCs have a peculiar metabolism that is distinct from non-CSCs to maintain their stemness properties. The CSC metabolism involves not only the catabolic and anabolic pathways, but also intracellular signaling, gene expression, and redox balance. In addition, CSCs can reprogram their metabolism to flexibly respond to environmental changes. In this review, we focus on the flexible metabolic mechanisms of CSCs, and highlight the new therapeutics that target CSC metabolism.
Collapse
|
7
|
Shen YA, Pan SC, Chu I, Lai RY, Wei YH. Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood) 2020; 245:465-476. [PMID: 32102562 PMCID: PMC7082881 DOI: 10.1177/1535370220909309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The process of cancer development and progression is driven by distinct subsets of cancer stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the metastatic dissemination and main impediments in cancer treatment. Given that CSCs are so scarce in the tumor mass, there are debatable points on the metabolic signatures of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxidative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic heterogeneity of CSCs, which attributes to differences in type and microenvironment of tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strategies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic targets for clinical application in cancer treatments.Impact statementThis minireview highlights the current evidence on the mechanisms of pivotal metabolic pathways that attribute to cancer stem cells (CSCs) with a special focus on developing metabolic strategies of anticancer treatment that can be exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm the properties of CSCs may impede tumor recurrence and metastasis, and potentially achieve a permanent cure of cancer patients.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - I Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ruo-Yun Lai
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
8
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
9
|
Ramanujan VK. Quantitative Imaging of Morphometric and Metabolic Signatures Reveals Heterogeneity in Drug Response of Three-Dimensional Mammary Tumor Spheroids. Mol Imaging Biol 2019; 21:436-446. [DOI: 10.1007/s11307-019-01324-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Qian X, Nie X, Yao W, Klinghammer K, Sudhoff H, Kaufmann AM, Albers AE. Reactive oxygen species in cancer stem cells of head and neck squamous cancer. Semin Cancer Biol 2018; 53:248-257. [PMID: 29935313 DOI: 10.1016/j.semcancer.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 12/12/2022]
Abstract
One of the greatest challenges in systemic treatment of head and neck squamous cell carcinoma (HNSCC) is a small tumor cell population, namely, cancer stem-like cells (CSC). CSC can regenerate and maintain a heterogenic tumor by their self-renewal capacity. Their potential ability to be more resistant to and survival after chemo- and radiation therapy was also identified. Further studies have shown that reactive oxygen species (ROS) contribute to this CSC-associated resistance. In this review, we focus on the current knowledge of HNSCC-CSC, with regard to ROS as a possible and novel therapeutic approach in targeting CSC.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany; Division of Molecular Diagnostics, Department of Laboratory Medicine, Zhejiang Cancer Hospital, Hangzhou, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, PR China
| | - Wenhao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Konrad Klinghammer
- Department of Hematology and Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Holger Sudhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas E Albers
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
11
|
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475:1611-1634. [PMID: 29743249 PMCID: PMC5941316 DOI: 10.1042/bcj20170164] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Collapse
|
12
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
13
|
Schibler J, Tomanek-Chalkley AM, Reedy JL, Zhan F, Spitz DR, Schultz MK, Goel A. Mitochondrial-Targeted Decyl-Triphenylphosphonium Enhances 2-Deoxy-D-Glucose Mediated Oxidative Stress and Clonogenic Killing of Multiple Myeloma Cells. PLoS One 2016; 11:e0167323. [PMID: 27902770 PMCID: PMC5130279 DOI: 10.1371/journal.pone.0167323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022] Open
Abstract
Therapeutic advances have markedly prolonged overall survival in multiple myeloma (MM) but the disease currently remains incurable. In a panel of MM cell lines (MM.1S, OPM-2, H929, and U266), using CD138 immunophenotyping, side population staining, and stem cell-related gene expression, we demonstrate the presence of stem-like tumor cells. Hypoxic culture conditions further increased CD138low stem-like cells with upregulated expression of OCT4 and NANOG. Compared to MM cells, these stem-like cells maintained lower steady-state pro-oxidant levels with increased uptake of the fluorescent deoxyglucose analog. In primary human MM samples, increased glycolytic gene expression correlated with poorer overall and event-free survival outcomes. Notably, stem-like cells showed increased mitochondrial mass, rhodamine 123 accumulation, and orthodox mitochondrial configuration while more condensed mitochondria were noted in the CD138high cells. Glycolytic inhibitor 2-deoxyglucose (2-DG) induced ER stress as detected by qPCR (BiP, ATF4) and immunoblotting (BiP, CHOP) and increased dihydroethidium probe oxidation both CD138low and CD138high cells. Treatment with a mitochondrial-targeting agent decyl-triphenylphosphonium (10-TPP) increased intracellular steady-state pro-oxidant levels in stem-like and mature MM cells. Furthermore, 10-TPP mediated increases in mitochondrial oxidant production were suppressed by ectopic expression of manganese superoxide dismutase. Relative to 2-DG or 10-TPP alone, 2-DG plus 10-TPP combination showed increased caspase 3 activation in MM cells with minimal toxicity to the normal hematopoietic progenitor cells. Notably, treatment with polyethylene glycol conjugated catalase significantly reduced 2-DG and/or 10-TPP-induced apoptosis of MM cells. Also, the combination of 2-DG with 10-TPP decreased clonogenic survival of MM cells. Taken together, this study provides a novel strategy of metabolic oxidative stress-induced cytotoxicity of MM cells via 2-DG and 10-TPP combination therapy.
Collapse
Affiliation(s)
- Jeanine Schibler
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, United States of America
| | - Ann M. Tomanek-Chalkley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
| | - Jessica L. Reedy
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
| | - Fenghuang Zhan
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
| | - Michael K. Schultz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
- Department of Radiology, University of Iowa, Iowa City, IA, United States of America
| | - Apollina Goel
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA, United States of America
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gao J, Li W, Guo Y, Feng SS. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine (Lond) 2016; 11:3261-3282. [PMID: 27854161 DOI: 10.2217/nnm-2016-0261] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, the Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Si-Shen Feng
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China.,Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore.,Suzhou NanoStar Biopharm Inc. Ltd, BioBay, Bld B2, Unit 604, 218 Xing-Hu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
15
|
The repopulating cancer cells in melanoma are characterized by increased mitochondrial membrane potential. Cancer Lett 2016; 382:186-194. [DOI: 10.1016/j.canlet.2016.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
16
|
Gaelzer MM, Santos MSD, Coelho BP, de Quadros AH, Simão F, Usach V, Guma FCR, Setton-Avruj P, Lenz G, Salbego CG. Hypoxic and Reoxygenated Microenvironment: Stemness and Differentiation State in Glioblastoma. Mol Neurobiol 2016; 54:6261-6272. [DOI: 10.1007/s12035-016-0126-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
|
17
|
Intraperitoneal 188Re-Liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice. Radiother Oncol 2016; 119:282-90. [DOI: 10.1016/j.radonc.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023]
|
18
|
Sukumar M, Liu J, Mehta GU, Patel SJ, Roychoudhuri R, Crompton JG, Klebanoff CA, Ji Y, Li P, Yu Z, Whitehill GD, Clever D, Eil RL, Palmer DC, Mitra S, Rao M, Keyvanfar K, Schrump DS, Wang E, Marincola FM, Gattinoni L, Leonard WJ, Muranski P, Finkel T, Restifo NP. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metab 2016; 23:63-76. [PMID: 26674251 PMCID: PMC4747432 DOI: 10.1016/j.cmet.2015.11.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/07/2015] [Accepted: 11/04/2015] [Indexed: 01/22/2023]
Abstract
Long-term survival and antitumor immunity of adoptively transferred CD8(+) T cells is dependent on their metabolic fitness, but approaches to isolate therapeutic T cells based on metabolic features are not well established. Here we utilized a lipophilic cationic dye tetramethylrhodamine methyl ester (TMRM) to identify and isolate metabolically robust T cells based on their mitochondrial membrane potential (ΔΨm). Comprehensive metabolomic and gene expression profiling demonstrated global features of improved metabolic fitness in low-ΔΨm-sorted CD8(+) T cells. Transfer of these low-ΔΨm T cells was associated with superior long-term in vivo persistence and an enhanced capacity to eradicate established tumors compared with high-ΔΨm cells. Use of ΔΨm-based sorting to enrich for cells with superior metabolic features was observed in CD8(+), CD4(+) T cell subsets, and long-term hematopoietic stem cells. This metabolism-based approach to cell selection may be broadly applicable to therapies involving the transfer of HSC or lymphocytes for the treatment of viral-associated illnesses and cancer.
Collapse
Affiliation(s)
- Madhusudhanan Sukumar
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Jie Liu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gautam U Mehta
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Shashank J Patel
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; NIH-Georgetown University Graduate Partnership Program, Georgetown University Medical School, Washington, DC 20057, USA
| | - Rahul Roychoudhuri
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joseph G Crompton
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Christopher A Klebanoff
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Clinical Investigator Development Program, NCI, NIH, Bethesda, MD 20892, USA
| | - Yun Ji
- Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | - David Clever
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Robert L Eil
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Douglas C Palmer
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suman Mitra
- Laboratory of Molecular Immunology and the Immunology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Mahadev Rao
- Thoracic and GI Oncology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | | - David S Schrump
- Thoracic and GI Oncology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Ena Wang
- Sidra Medical and Research Center, Doha, Qatar
| | | | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | | | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Yan B, Dong L, Neuzil J. Mitochondria: An intriguing target for killing tumour-initiating cells. Mitochondrion 2016; 26:86-93. [DOI: 10.1016/j.mito.2015.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
|
20
|
Shen YA, Wang CY, Hsieh YT, Chen YJ, Wei YH. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle 2015; 14:86-98. [PMID: 25483072 DOI: 10.4161/15384101.2014.974419] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of tumor cells endowed with self-renewal capacity and are considered as an underlying cause of tumor recurrence and metastasis. The metabolic signatures of CSCs and the mechanisms involved in the regulation of their stem cell-like properties still remain elusive. We utilized nasopharyngeal carcinoma (NPC) CSCs as a model to dissect their metabolic signatures and found that CSCs underwent metabolic shift and mitochondrial resetting distinguished from their differentiated counterparts. In metabolic shift, CSCs showed a greater reliance on glycolysis for energy supply compared with the parental cells. In mitochondrial resetting, the quantity and function of mitochondria of CSCs were modulated by the biogenesis of the organelles, and the round-shaped mitochondria were distributed in a peri-nuclear manner similar to those seen in the stem cells. In addition, we blocked the glycolytic pathway, increased the ROS levels, and depolarized mitochondrial membranes of CSCs, respectively, and examined the effects of these metabolic factors on CSC properties. Intriguingly, the properties of CSCs were curbed when we redirected the quintessential metabolic reprogramming, which indicates that the plasticity of energy metabolism regulated the balance between acquisition and loss of the stemness status. Taken together, we suggest that metabolic reprogramming is critical for CSCs to sustain self-renewal, deter from differentiation and enhance the antioxidant defense mechanism. Characterization of metabolic reprogramming governing CSC properties is paramount to the design of novel therapeutic strategies through metabolic intervention of CSCs.
Collapse
Key Words
- ATP6, ATP synthase 6
- COX, cytochrome c oxidase
- Cu/ZnSOD, copper/zinc superoxide dismutase
- GLUT1, glucose transporter 1
- GPI, glucose-6-phosphate isomerase
- GR, glutathione reductase
- HK, hexokinase
- MnSOD, manganese superoxide dismutase
- ND1, NADH dehydrogenase subunit 1
- PDH, pyruvate dehydrogenase
- PDK, pyruvate dehydrogenase kinase
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1α
- POLG, mitochondrial DNA polymerase gamma
- TFAM, mitochondrial transcription factor A
- cancer stem cells
- metabolic reprogramming
- metabolic shift
- mitochondrial membrane potential
- mitochondrial resetting
- nasopharyngeal carcinoma
- reactive oxygen species
Collapse
Affiliation(s)
- Yao-An Shen
- a Institute of Biochemistry and Molecular Biology ; Taipei , Taiwan
| | | | | | | | | |
Collapse
|
21
|
Increased Oxidative Stress as a Selective Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:294303. [PMID: 26273420 PMCID: PMC4529973 DOI: 10.1155/2015/294303] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment.
Collapse
|
22
|
Yan B, Stantic M, Zobalova R, Bezawork-Geleta A, Stapelberg M, Stursa J, Prokopova K, Dong L, Neuzil J. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 2015; 15:401. [PMID: 25967547 PMCID: PMC4494715 DOI: 10.1186/s12885-015-1394-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Accumulating evidence suggests that breast cancer involves tumour-initiating cells (TICs), which play a role in initiation, metastasis, therapeutic resistance and relapse of the disease. Emerging drugs that target TICs are becoming a focus of contemporary research. Mitocans, a group of compounds that induce apoptosis of cancer cells by destabilising their mitochondria, are showing their potential in killing TICs. In this project, we investigated mitochondrially targeted vitamin E succinate (MitoVES), a recently developed mitocan, for its in vitro and in vivo efficacy against TICs. Methods The mammosphere model of breast TICs was established by culturing murine NeuTL and human MCF7 cells as spheres. This model was verified by stem cell marker expression, tumour initiation capacity and chemotherapeutic resistance. Cell susceptibility to MitoVES was assessed and the cell death pathway investigated. In vivo efficacy was studied by grafting NeuTL TICs to form syngeneic tumours. Results Mammospheres derived from NeuTL and MCF7 breast cancer cells were enriched in the level of stemness, and the sphere cells featured altered mitochondrial function. Sphere cultures were resistant to several established anti-cancer agents while they were susceptible to MitoVES. Killing of mammospheres was suppressed when the mitochondrial complex II, the molecular target of MitoVES, was knocked down. Importantly, MitoVES inhibited progression of syngeneic HER2high tumours derived from breast TICs by inducing apoptosis in tumour cells. Conclusions These results demonstrate that using mammospheres, a plausible model for studying TICs, drugs that target mitochondria efficiently kill breast tumour-initiating cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1394-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Yan
- School of Medical Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Marina Stantic
- School of Medical Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Renata Zobalova
- School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. .,Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, 142 20, Czech Republic.
| | | | - Michael Stapelberg
- School of Medical Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Jan Stursa
- The Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czech Republic.
| | - Katerina Prokopova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, 142 20, Czech Republic.
| | - Lanfeng Dong
- School of Medical Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Qld, 4222, Australia. .,Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, 142 20, Czech Republic.
| |
Collapse
|
23
|
Zhang B, Shimada Y, Kuroyanagi J, Ariyoshi M, Nomoto T, Shintou T, Umemoto N, Nishimura Y, Miyazaki T, Tanaka T. In vivo selective imaging and inhibition of leukemia stem-like cells using the fluorescent carbocyanine derivative, DiOC5(3). Biomaterials 2015; 52:14-25. [PMID: 25818410 DOI: 10.1016/j.biomaterials.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/14/2015] [Accepted: 02/01/2015] [Indexed: 12/22/2022]
Abstract
Elimination of leukemia stem cells (LSCs) is necessary for the destruction of malignant cell populations. Owing to the very small number of LSCs in leukemia cells, xenotransplantation studies are difficult in terms of functionally and pathophysiologically replicating clinical conditions of cell culture experiments. There is currently a limited number of lead compounds that target LSCs. Using the LSC-xenograft zebrafish screening method we previously developed, we found that the fluorescent compound 3,3'-dipentyloxacarbocyanine iodide (DiOC5(3)) selectively marked LSCs and suppressed their proliferation in vivo and in vitro. DiOC5(3) had no obvious toxicity to human umbilical cord blood CD34+ progenitor cells and normal zebrafish. It accumulated in mitochondria through organic anion transporter polypeptides that are overexpressed in the plasma membrane of LSCs, and induced apoptosis via ROS overproduction. DiOC5(3) also inhibited the nuclear translocation of NF-κB through the downregulation of LSC-selective pathways, as indicated from DNA microarray analysis. In summary, DiOC5(3) is a new type of anti-LSC compound available for diagnostic imaging and therapeutics that has the advantage of being a single fluorescent chemical.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Junya Kuroyanagi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Michiko Ariyoshi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Tsuyoshi Nomoto
- Corporate R&D Headquarters, Canon Inc, Ohta-ku, Tokyo 146-8501, Japan
| | - Taichi Shintou
- Corporate R&D Headquarters, Canon Inc, Ohta-ku, Tokyo 146-8501, Japan
| | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Takeshi Miyazaki
- Corporate R&D Headquarters, Canon Inc, Ohta-ku, Tokyo 146-8501, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
24
|
Salamanzadeh A, Davalos RV. Electrokinetics and Rare-Cell Detection. MICROFLUIDICS IN DETECTION SCIENCE 2014. [DOI: 10.1039/9781849737609-00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lab-on-a-chip devices perform functions which are not feasible or difficult to achieve with macroscale devices. Importantly, isolating and enriching rare cells is key in health and environmental applications, such as detecting circulating tumor cells from body fluid biopsies, or pathogens from water. Within a microdevice, the dominant mechanical force on a suspended particle is the drag force as it flows through the fluid. Electrokinetic forces such as dielectrophoresis - the motion of a particle due to its polarization in the presence of a non-uniform electric field - may also be applied to manipulate particles. For instance, separation of particles can be achieved using a combination of drag and dielectrophoretic forces to precisely manipulate a particle. Understanding the interaction of electrokinetic forces, particles, and fluid flow is critical for engineering novel microsystems used for cell sorting. Determining this interaction is even more complicated when dealing with bioparticles, especially cells, due to their intrinsic complex biological properties which influence their electrical and mechanical behaviors. In order to design novel and more practical microdevices for medical, biological, and chemical applications, it is essential to have a comprehensive understanding of the mechanics of particle-fluid interaction and the dynamics of particle movement. This chapter will describe the role of electrokinetic techniques in rare cell detection and the behavior of electrokinetic microsystems.
Collapse
|
25
|
Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells. Cell Death Differ 2014; 21:1560-74. [PMID: 24832466 DOI: 10.1038/cdd.2014.66] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022] Open
Abstract
The relationship between mitochondrial metabolism and cell viability and differentiation in stem cells (SCs) remains poorly understood. In the present study, we compared mitochondrial physiology and metabolism between P19SCs before/after differentiation and present a unique fingerprint of the association between mitochondrial activity, cell differentiation and stemness. In comparison with their differentiated counterparts, pluripotency of P19SCs was correlated with a strong glycolytic profile and decreased mitochondrial biogenesis and complexity: round, low-polarized and inactive mitochondria with a closed permeability transition pore. This decreased mitochondrial capacity increased their resistance against dichloroacetate. Thus, stimulation of mitochondrial function by growing P19SCs in glutamine/pyruvate-containing medium reduced their glycolytic phenotype, induced loss of pluripotent potential, compromised differentiation and became P19SCs sensitive to dichloroacetate. Because of the central role of this type of SCs in teratocarcinoma development, our findings highlight the importance of mitochondrial metabolism in stemness, proliferation, differentiation and chemoresistance. In addition, the present work suggests the regulation of mitochondrial metabolism as a tool for inducing cell differentiation in stem line therapies.
Collapse
|
26
|
Torri F, Dinov ID, Zamanyan A, Hobel S, Genco A, Petrosyan P, Clark AP, Liu Z, Eggert P, Pierce J, Knowles JA, Ames J, Kesselman C, Toga AW, Potkin SG, Vawter MP, Macciardi F. Next generation sequence analysis and computational genomics using graphical pipeline workflows. Genes (Basel) 2014; 3:545-75. [PMID: 23139896 PMCID: PMC3490498 DOI: 10.3390/genes3030545] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Whole-genome and exome sequencing have already proven to be essential and powerful methods to identify genes responsible for simple Mendelian inherited disorders. These methods can be applied to complex disorders as well, and have been adopted as one of the current mainstream approaches in population genetics. These achievements have been made possible by next generation sequencing (NGS) technologies, which require substantial bioinformatics resources to analyze the dense and complex sequence data. The huge analytical burden of data from genome sequencing might be seen as a bottleneck slowing the publication of NGS papers at this time, especially in psychiatric genetics. We review the existing methods for processing NGS data, to place into context the rationale for the design of a computational resource. We describe our method, the Graphical Pipeline for Computational Genomics (GPCG), to perform the computational steps required to analyze NGS data. The GPCG implements flexible workflows for basic sequence alignment, sequence data quality control, single nucleotide polymorphism analysis, copy number variant identification, annotation, and visualization of results. These workflows cover all the analytical steps required for NGS data, from processing the raw reads to variant calling and annotation. The current version of the pipeline is freely available at http://pipeline.loni.ucla.edu. These applications of NGS analysis may gain clinical utility in the near future (e.g., identifying miRNA signatures in diseases) when the bioinformatics approach is made feasible. Taken together, the annotation tools and strategies that have been developed to retrieve information and test hypotheses about the functional role of variants present in the human genome will help to pinpoint the genetic risk factors for psychiatric disorders.
Collapse
Affiliation(s)
- Federica Torri
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92617, USA; E-Mails: (F.T.); (S.G.P.)
- Biomedical Informatics Research Network (BIRN), Information Sciences Institute, University of Southern California, Los Angeles, CA 90292, USA; E-Mails: (I.D.D.); (J.A.); (C.K.); (A.W.T.)
| | - Ivo D. Dinov
- Biomedical Informatics Research Network (BIRN), Information Sciences Institute, University of Southern California, Los Angeles, CA 90292, USA; E-Mails: (I.D.D.); (J.A.); (C.K.); (A.W.T.)
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - Alen Zamanyan
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - Sam Hobel
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - Alex Genco
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - Petros Petrosyan
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - Andrew P. Clark
- Zilkha Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90033, USA; E-Mails: (A.P.C.); (J.A.K.)
| | - Zhizhong Liu
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - Paul Eggert
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Pierce
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - James A. Knowles
- Zilkha Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90033, USA; E-Mails: (A.P.C.); (J.A.K.)
| | - Joseph Ames
- Biomedical Informatics Research Network (BIRN), Information Sciences Institute, University of Southern California, Los Angeles, CA 90292, USA; E-Mails: (I.D.D.); (J.A.); (C.K.); (A.W.T.)
| | - Carl Kesselman
- Biomedical Informatics Research Network (BIRN), Information Sciences Institute, University of Southern California, Los Angeles, CA 90292, USA; E-Mails: (I.D.D.); (J.A.); (C.K.); (A.W.T.)
| | - Arthur W. Toga
- Biomedical Informatics Research Network (BIRN), Information Sciences Institute, University of Southern California, Los Angeles, CA 90292, USA; E-Mails: (I.D.D.); (J.A.); (C.K.); (A.W.T.)
- Laboratory of Neuro Imaging (LONI), University of California, Los Angeles, CA 90095, USA; E-Mails: (A.Z.); (S.H.); (A.G.); (P.P.); (Z.L.); (P.E.); (J.P.)
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92617, USA; E-Mails: (F.T.); (S.G.P.)
- Biomedical Informatics Research Network (BIRN), Information Sciences Institute, University of Southern California, Los Angeles, CA 90292, USA; E-Mails: (I.D.D.); (J.A.); (C.K.); (A.W.T.)
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry And Human Behavior, School of Medicine, University of California, Irvine, CA 92697, USA; E-Mail:
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92617, USA; E-Mails: (F.T.); (S.G.P.)
- Biomedical Informatics Research Network (BIRN), Information Sciences Institute, University of Southern California, Los Angeles, CA 90292, USA; E-Mails: (I.D.D.); (J.A.); (C.K.); (A.W.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-949-824-4559; Fax: +1-949-824-2072
| |
Collapse
|
27
|
Zhao Y, Alakhova DY, Kabanov AV. Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev 2013; 65:1763-83. [PMID: 24120657 DOI: 10.1016/j.addr.2013.09.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have the ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs.
Collapse
|
28
|
Song IS, Kim HK, Lee SR, Jeong SH, Kim N, Ko KS, Rhee BD, Han J. Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells. Int J Cancer 2013; 133:1357-67. [PMID: 23463417 DOI: 10.1002/ijc.28149] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/15/2013] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy that causes most patients to eventually relapse and die from their disease. The 20S proteasome inhibitor bortezomib has emerged as an effective drug for MM treatment; however, intrinsic and acquired resistance to bortezomib has already been observed in MM patients. We evaluated the involvement of mitochondria in resistance to bortezomib-induced cell death in two different MM cell lines (bortezomib-resistant KMS20 cells and bortezomib-sensitive KMS28BM cells). Indices of mitochondrial function, including membrane potential, oxygen consumption rate and adenosine-5'-triphosphate and mitochondrial Ca(2+) concentrations, were positively correlated with drug resistance of KMS cell lines. Mitochondrial genes including CYPD, SOD2 and MCU were differentially expressed in KMS cells. Thus, changes in the expression of these genes lead to changes in mitochondrial activity and in bortezomib susceptibility or resistance, and their combined effect contributes to differential sensitivity or resistance of MM cells to bortezomib. In support of this finding, coadministration of bortezomib and 2-methoxyestradiol, a SOD inhibitor, rendered KMS20 cells sensitive to apoptosis. Our results provide new insight into therapeutic modalities for MM patients. Studying mitochondrial activity and specific mitochondrial gene expression in fresh MM specimens might help predict resistance to proapoptotic chemotherapies and inform clinical decision-making.
Collapse
Affiliation(s)
- I S Song
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, Zhang X, Bian XW, Yu SC. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev 2013; 22:2221-39. [PMID: 23540661 DOI: 10.1089/scd.2012.0613] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) constitute a subpopulation of cancer cells that have the potential for self-renewal, multipotent differentiation, and tumorigenicity. Studies on CSC biology and CSC-targeted therapies depend on CSC isolation and/or enrichment methodologies. Scientists have conducted extensive research in this field since John Dick's group successfully isolated CSCs based on the expression of the CD34 and CD38 surface markers. Progress in CSC research has been greatly facilitated by the enrichment and isolation of these cells. In this review, we summarize the current strategies used in our and other laboratories for CSC isolation and enrichment, including methods based on stem cell surface markers, intracellular enzyme activity, the concentration of reactive oxygen species, the mitochondrial membrane potential, promoter-driven fluorescent protein expression, autofluorescence, suspension/adherent culture, cell division, the identification of side population cells, resistance to cytotoxic compounds or hypoxia, invasiveness/adhesion, immunoselection, and physical property. Although many challenges remain to be overcome, it is reasonable to believe that more reliable, efficient, and convenient methods will be developed in the near future.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xue X, You S, Zhang Q, Wu Y, Zou GZ, Wang PC, Zhao YL, Xu Y, Jia L, Zhang X, Liang XJ. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Mol Pharm 2012; 9:634-44. [PMID: 22289032 DOI: 10.1021/mp200571k] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor resistance to chemotherapy is the major obstacle to employ cisplatin, one of the broadly used chemotherapeutic drugs, for effective treatment of various tumors in the clinic. Most acknowledged mechanisms of cancer resistance to cisplatin focus on increased nuclear DNA repair or detoxicity of cisplatin. We previously demonstrated that there was a unique metabolic profile in cisplatin-resistant (CP-r) human epidermoid adenocarcinoma KB-CP 20 and hepatoma BEL 7404-CP 20 cancer cells. In this study, we further defined hyperpolarized mitochondrial membrane potentials (Δψ(m)) in CP-r KB-CP 20 and BEL 7404-CP 20 cells compared to the cisplatin-sensitive (CP-s) KB-3-1 and BEL 7404 cells. Based on the mitochondrial dysfunction, mitaplatin was designed with two mitochondrial-targeting moieties [dichloroacetate (DCA) units] to the axial positions of a six-coordinate Pt(IV) center to sensitize cisplatin resistance. It was found that mitaplatin induced more apoptosis in CP-r KB-CP 20 and BEL 7404-CP 20 cells than that of cisplatin, DCA and cisplatin/DCA compared on an equal molar basis. There was more platinum accumulation in mitaplatin-treated CP-r cells due to enhanced transmembrane permeability of lipophilicity, and mitaplatin also showed special targeting to mitochondria. Moreover, in the case of treatment with mitaplatin, the dramatic collapse of Δψ(m) was shown in a dose-dependent manner, which was confirmed by FACS and confocal microscopic measurements. Reduced glucose utilization of CP-r cells was detected with specifically inhibited phosphorylation of pyruvate dehydrogenase (PDH) at Ser-232, Ser-293, and Ser-300 of the E1α subunit when treated with mitaplatin, which was indicated to modulate the abnormal glycolysis of resistant cells. The present study suggested novel mitochondrial mechanism of mitaplatin circumventing cisplatin resistance toward CP-r cells as a carrier across membrane to produce CP-like cytotoxicity and DCA-like mitochondria-dependent apoptosis. Therefore, mitochondria targeting compounds would be more vulnerable and selective to overcome cisplatin resistance due to the unique metabolic properties of CP-r cancer cells.
Collapse
Affiliation(s)
- Xue Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|