1
|
Tocci A. Reply to: Neither rationale nor scientific evidence exist to support that double stimulation is potentially unsafe. Hum Reprod 2022; 37:1951-1952. [PMID: 35394502 DOI: 10.1093/humrep/deac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
2
|
Tocci A. Why double ovarian stimulation in an in vitro fertilization cycle is potentially unsafe. Hum Reprod 2022; 37:199-202. [PMID: 34849903 DOI: 10.1093/humrep/deab259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The occurrence of two antral follicle recruitment waves in a single inter-ovulatory interval has been detected in ovaries of normal women. This data supports the claim that a double ovarian stimulation in the same cycle may benefit poor responder patients with an increased recovery of mature oocytes and good quality embryos per single cycle. The double stimulation protocol was the object of several published studies in which, surprisingly, the mechanism and the safety of the double stimulation in the same cycle were poorly addressed. We propose that in the double stimulation protocol, the first stimulation impacts more committed oocytes progenitors ready to differentiate into mature oocytes. Conversely, the protracted exposure of developmentally earlier less-committed ovarian stem cells to FSH, which occurs in the double stimulation protocol, impacts the less differentiated stem cells which take longer to differentiate into oocytes. The proposed mechanism has broad implications for the safety of the double stimulation strategy.
Collapse
|
3
|
Lunenfeld E. Specialty Grand Challenge—Assisted Reproduction. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:551499. [PMID: 36304062 PMCID: PMC9580703 DOI: 10.3389/frph.2021.551499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
|
4
|
The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Rev Rep 2021; 16:288-300. [PMID: 31813120 DOI: 10.1007/s12015-019-09936-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is the worst prognosis predictor in the clinical course of cancer development. Features of metastatic cancer cells include migratory ability, low degree of differentiation, self-renewal and proliferation potentials, as well as resistance to therapies. Metastatic cells do not present all of the necessary characteristics at once. Indeed, they have a unique phenotypic plasticity, allowing the acquisition of features that make them successful in all steps of metastasis. Cancer stem cells (CSC), the most undifferentiated cells in the tumor mass, display highest metastatic potential and resistance to radio- and chemotherapy. Growing tumors exhibit marked upregulation of P2X7 receptor expression and secrete ATP. Since the P2X7 receptor plays an important role in the maintenance of undifferentiated state of pluripotent cells, its importance on cell fate regulation in the tumor mass is suggested. Considering the extensive crosstalk between CSCs, epithelial-mesenchymal transition, drug resistance and metastasis, current knowledge implicating P2X7 receptor function in these phenomena and new avenues for therapeutic strategies to control metastasis are reviewed.
Collapse
|
5
|
Tripathi V, Bhartiya D, Vaid A, Chhabria S, Sharma N, Chand B, Takle V, Palahe P, Tripathi A. Quest for Pan-Cancer Diagnosis/Prognosis Ends with HrC Test Measuring Oct4A in Peripheral Blood. Stem Cell Rev Rep 2021; 17:1827-1839. [PMID: 33954878 DOI: 10.1007/s12015-021-10167-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease whose incidence has increased in recent times and early detection can lead to effective treatment. Existing detection tools suffer from low sensitivity and specificity, and are high cost, invasive and painful procedures. Cancers affecting different tissues, ubiquitously express embryonic markers including Oct-4A, whose expression levels have also been correlated to staging different types of cancer. Cancer stem cells (CSCs) that initiate cancer are possibly the 'transformed' and pluripotent very small embryonic-like stem cells (VSELs) that also express OCT-4A. Excessive self-renewal of otherwise quiescent, pluripotent VSELs in normal tissues possibly initiates cancer. In an initial study on 120 known cancer patients, it was observed that Oct-4A expression in peripheral blood correlated well with the stage of cancer. Based on these results, we developed a proprietary HrC scale wherein fold change of OCT-4A was linked to patient status - it is a numerical scoring system ranging from non-cancer (0-2), inflammation (>2-6), high-risk (>6-10), stage I (>10-20), stage II (>20-30), stage III (>30-40), and stage IV (>40) cancers. Later the scale was validated on 1000 subjects including 500 non-cancer and 500 cancer patients. Ten case studies are described and show (i) HrC scale can detect cancer, predict and monitor treatment outcome (ii) is superior to evaluating circulating tumor cells and (iii) can also serve as an early biomarker. HrC method is a novel breakthrough, non-invasive, blood-based diagnostic tool that can detect as well as classify solid tumors, hematological malignancies and sarcomas, based on their stage.
Collapse
Affiliation(s)
- VinayKumar Tripathi
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Deepa Bhartiya
- ICMR - National Institute for Research in Reproductive Health, J Merwanji Street, Parel East, Parel, Mumbai, Maharashtra, 400012, India
| | - Ashok Vaid
- Medanta Hospital, CH Baktawar Singh Road, Sector 38, Gurugram, Haryana, 122001, India
| | - Sagar Chhabria
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Nripen Sharma
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Bipin Chand
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Vaishnavi Takle
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India
| | - Pratiksha Palahe
- National Facility for Biopharmaceuticals, Road Number 32, Matunga, Mumbai, 400019, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd., C-701, Ganpatrao Kadam Marg, Lower Parel, Mumbai, 400013, India. .,23Ikigai Pte Ltd., 30 Cecil Street, #21-08 Prudential Tower, Singapore, 049712, Singapore.
| |
Collapse
|
6
|
Targeting the purinergic pathway in breast cancer and its therapeutic applications. Purinergic Signal 2021; 17:179-200. [PMID: 33576905 PMCID: PMC7879595 DOI: 10.1007/s11302-020-09760-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the most frequent cause of death among women, representing a global public health problem. Here, we aimed to discuss the correlation between the purinergic system and BC, recognizing therapeutic targets. For this, we analyzed the interaction of extracellular nucleotides and nucleosides with the purinergic receptors P1 and P2, as well as the influence of ectonucleotidase enzymes (CD39 and CD73) on tumor progression. A comprehensive bibliographic search was carried out. The relevant articles for this review were found in the PubMed, Scielo, Lilacs, and ScienceDirect databases. It was observed that among the P1 receptors, the A1, A2A, and A2B receptors are involved in the proliferation and invasion of BC, while the A3 receptor is related to the inhibition of tumor growth. Among the P2 receptors, the P2X7 has a dual function. When activated for a short time, it promotes metastasis, but when activated for long periods, it is related to BC cell death. P2Y2 and P2Y6 receptors are related to BC proliferation and invasiveness. Also, the high expression of CD39 and CD73 in BC is strongly related to a worse prognosis. The receptors and ectonucleotidases involved with BC become possible therapeutic targets. Several purinergic pathways have been found to be involved in BC cell survival and progression. In this review, in addition to analyzing the pathways involved, we reviewed the therapeutic interventions already studied for BC related to the purinergic system, as well as to other possible therapeutic targets.
Collapse
|
7
|
Similar Population of CD133+ and DDX4+ VSEL-Like Stem Cells Sorted from Human Embryonic Stem Cell, Ovarian, and Ovarian Cancer Ascites Cell Cultures: The Real Embryonic Stem Cells? Cells 2019; 8:cells8070706. [PMID: 31336813 PMCID: PMC6678667 DOI: 10.3390/cells8070706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
A population of small stem cells with diameters of up to 5 μm resembling very small embryonic-like stem cells (VSELs) were sorted from human embryonic stem cell (hESC) cultures using magnetic-activated cell sorting (MACS) based on the expression of a stem-cell-related marker prominin-1 (CD133). These VSEL-like stem cells had nuclei that almost filled the whole cell volume and expressed stem-cell-related markers (CD133, SSEA-4) and markers of germinal lineage (DDX4/VASA, PRDM14). They were comparable to similar populations of small stem cells sorted from cell cultures of normal ovaries and were the predominant cells in ascites of recurrent ovarian cancer. The sorted populations of CD133+ VSEL-like stem cells were quiescent in vitro, except for ascites, and were highly activated after exposure to valproic acid and follicle-stimulating hormone (FSH), indicating a new tool to study these cells in vitro. These VSEL-like stem cells spontaneously formed clusters resembling tumour-like structures or grew into larger, oocyte-like cells and were differentiated in vitro into adipogenic, osteogenic and neural lineages after sorting. We propose the population of VSEL-like stem cells from hESC cultures as potential original embryonic stem cells, which are present in the human embryo, persist in adult human ovaries from the embryonic period of life and are involved in cancer manifestation.
Collapse
|
8
|
Kaushik A, Bhartiya D. Pluripotent Very Small Embryonic-Like Stem Cells in Adult Testes - An Alternate Premise to Explain Testicular Germ Cell Tumors. Stem Cell Rev Rep 2019; 14:793-800. [PMID: 30238242 DOI: 10.1007/s12015-018-9848-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Developmental exposure to endocrine disruptors has resulted in the increased incidence of infertility and testicular germ cell tumors (T2GCT) in young men residing in developed countries. Unlike T1GCT (infants and young children) and T3GCT (aged men), T2GCT arise from CIS/GCNIS that develops from pre-CIS. Pre-CIS represents undifferentiated, growth-arrested gonocytes that persist in fetal testes due to endocrine disruption. However, whether pre-CIS truly exist, do CIS develop into T2GCT, why no CIS in T1GCT/T3GCT, why germ cell tumors (GCT) also occur along midline at extra-gonadal sites, why T1GCT show partial erasure and T2GCT show complete erasure of genomic imprints are open questions that are awaiting answers. We propose that rather than pre-CIS, pluripotent, very small embryonic-like stem cells (VSELs) get affected by exposure to endocrine disruption. Since VSELs are developmentally equivalent to primordial germ cells (PGCs), T2GCT cells show complete erasure of genomic imprints and CIS represents growth-arrested clonally expanding stem/progenitor cells. PGCs/VSELs migrate along the midline to various organs and this explains why GCT occur along the midline, T1GCT show partial erasure of imprints as they develop from migrating PGCs. T3GCT possibly reflects effects of aging due to compromised differentiation and expansion of pre-meiotic spermatocytes. Absent spermatogenesis in pre-pubertal and aged testes explains absence of CIS in T1GCT and T3GCT. Endocrine disruptors possibly alter epigenetic state of VSELs and thus rather than maintaining normal tissue homeostasis, VSELs undergo increased proliferation and compromised differentiation resulting in reduced sperm count, infertility and TGCT. This newly emerging understanding offers alternate premise to explain TGCT and warrants further exploration.
Collapse
Affiliation(s)
- Ankita Kaushik
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
9
|
Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:355-388. [PMID: 31898793 DOI: 10.1007/978-3-030-31206-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is an inevitable consequence of life, and all multicellular organisms undergo a decline in tissue and organ functions as they age. Several well-known risk factors, such as obesity, diabetes, and lack of physical activity that lead to the cardiovascular system, decline and impede the function of vital organs, ultimately limit overall life span. Over recent years, aging research has experienced an unparalleled growth, particularly with the discovery and recognition of genetic pathways and biochemical processes that control to some extent the rate of aging.In this chapter, we focus on several aspects of stem cell biology and aging, beginning with major cellular hallmarks of aging, endocrine regulation of aging and its impact on stem cell compartment, and mechanisms of increased longevity. We then discuss the role of epigenetic modifications associated with aging and provide an overview on a most recent search of antiaging modalities.
Collapse
|
10
|
Ganguly R, Metkari S, Bhartiya D. Dynamics of Bone Marrow VSELs and HSCs in Response to Treatment with Gonadotropin and Steroid Hormones, during Pregnancy and Evidence to Support Their Asymmetric/Symmetric Cell Divisions. Stem Cell Rev Rep 2018; 14:110-124. [PMID: 29168113 DOI: 10.1007/s12015-017-9781-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gender plays an important role in the incidence of hematological malignancies and recently hematopoietic stem cells (HSCs) were found to proliferate more in females that gets further augmented during pregnancy. It was suggested that since basal numbers of HSCs remain the same in both sexes, possibly HSCs in females undergo increased self-renewal and apoptosis. Then how is self-renewal of stem cells regulated in males? More important, do HSCs undergo asymmetric cell divisions (ACD) or a more primitive population of pluripotent, very small embryonic-like stem cells (VSELs) undergo ACD to self-renew and specify into HSCs? Lot more clarity is required on the bone marrow stem cells biology. Present study was undertaken to evaluate whether similar dimorphism reported for HSCs also exists among VSELs. Bone marrow VSELs and HSCs were studied in bilaterally ovariectomized and castrated mice by flow cytometry after treating with gonadotropin (FSH) and sex steroid (estrogen & progesterone) hormones and during pregnancy. Differential expression of pluripotent (Oct-4A, Sox2, Nanog) and differentiation (Oct-4, Sca1, c-Kit, Ikaros) specific transcripts was studied. Basal BrdU uptake was more in both VSELs (p < 0.01) and HSCs (p < 0.05) in female bone marrow. FSH exerted a more profound effect compared to estradiol in both the sexes. Flow cytometry results showed ten-fold increase in spleen VSELs by mid-gestation associated with approximately two-fold increase in HSCs. These results point to a novel yet unreported role of spleen VSELs during pregnancy. Furthermore, VSELs underwent ACD to self-renew and give rise to slightly bigger HSCs based on unequal expression of NUMB, CD45 and OCT-4.
Collapse
Affiliation(s)
- Ranita Ganguly
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Sidhanath Metkari
- Experimental Animal Facility, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
11
|
Do Adult Somatic Cells Undergo Reprogramming or Endogenous Pluripotent Stem Cells get Activated to Account for Plasticity, Regeneration and Cancer Initiation? Stem Cell Rev Rep 2018. [PMID: 28631014 DOI: 10.1007/s12015-017-9749-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
James K, Bhartiya D, Ganguly R, Kaushik A, Gala K, Singh P, Metkari SM. Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. J Ovarian Res 2018; 11:83. [PMID: 30241552 PMCID: PMC6148988 DOI: 10.1186/s13048-018-0454-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Background Very small embryonic-like stem cells (VSELs) exist in adult organs, express pluripotent markers and have the ability to differentiate into three germ layers in vitro. Testicular, ovarian and hematopoietic stem/progenitor cells express receptors for follicle stimulating (FSH) and ovarian hormones and are activated by them to undergo proliferation/differentiation. VSELs exist in mouse uterus and are regulated by physiological dose of estradiol (E) & progesterone (P) during endometrial growth, differentiation and regeneration/remodeling. In the present study, effects of daily administration of E (2 μg/day), P (1 mg/Kg/day) or FSH (5 IU/day) for 7 days on the endometrium and stem/progenitor cells was studied in bilaterally ovariectomized mice. Results E treatment resulted in hypertrophy whereas P resulted in hyperplasia and overcrowding of epithelial cells. FSH also directly stimulated the endometrial cells. Nuclear OCT-4A positive VSELs were visualized in ovariectomized (atrophied) endometrium and cytoplasmic OCT-4B positive epithelial, stromal and endothelial cells were observed after treatment. FSH treated uterine tissue showed presence of 4 alternately spliced FSHR isoforms by Western blotting. 3–5 μm VSELs with a surface phenotype of LIN-/CD45-/SCA-1+ were enumerated by flow cytometry and were found to express ER, PR, FSHR1 and FSHR3 by RT-PCR analysis. Differential effects of treatment were observed on pluripotent (Oct4A, Sox2, Nanog), progenitors (Oct-4, Sca-1), primordial germ cells (Stella, Fragilis) and proliferation (Pcna) specific transcripts by qRT-PCR analysis. FSH and P (rather than E) exerted profound, direct stimulatory effects on uterine VSELs. Asymmetric, symmetric divisions and clonal expansion of stem/progenitor cells was confirmed by co-expression of OCT-4 and NUMB. Conclusions Results confirm presence of VSELs and their regulation by circulatory hormones in mouse uterus. Stem cell activation was more prominent after P and FSH compared to E treatment. The results question whether epithelial cells proliferation is regulated by paracrine influence of stromal cells or due to direct action of hormones on stem cells. VSELs expressing nuclear OCT-4A are the most primitive and pluripotent stem cells, undergo asymmetric cell division to self-renew and differentiate into epithelial, stromal and endothelial cells with cytoplasmic OCT-4B. Role of follicle stimulating and steroid hormones on the stem cells needs to be studied in various uterine pathologies.
Collapse
Affiliation(s)
- Kreema James
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Ranita Ganguly
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Kavita Gala
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
13
|
Bhartiya D, Patel H, Ganguly R, Shaikh A, Shukla Y, Sharma D, Singh P. Novel Insights into Adult and Cancer Stem Cell Biology. Stem Cells Dev 2018; 27:1527-1539. [PMID: 30051749 DOI: 10.1089/scd.2018.0118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adult tissues are thought to harbor two populations of "dormant" and "actively dividing" stem cells. Quiescent stem cells undergo rare asymmetric cell divisions (ACDs) through which they self-renew and give rise to tissue-committed "progenitors" of distinct fate and "progenitors" in turn undergo symmetric cell divisions (SCDs) and clonal expansion. However, quiescent stem cells have not been demonstrated in adult tissues such as skin, testis, liver, and brain. After surgical removal of part of liver and pancreas-adult differentiated cells divide and regenerate and a possible role of stem cells remains doubtful. Long-term repopulating hematopoietic stem cells are quiescent in nature but ACD has not been convincingly demonstrated even among them. Attempts by various groups to identify a common stemness program that ensures self-renewal among different kinds of stem cells have also remained futile. Uncontrolled self-renewal and compromised differentiation of stem cells possibly initiate leukemia/cancer, but the identity of leukemic stem cells and whether cancer stem cells arise by epithelial-mesenchymal transition (EMT) in solid tumors are all open-ended questions that need greater clarity. Acceptance of the presence of very small embryonic-like stem cells (VSELs) in adult tissues could clarify several of these existing dilemmas in the field. Data are compiled showing that VSELs undergo ACD in the hematopoietic system, testis, ovary, uterus, and pancreas, whereas tissue-committed progenitors undergo SCD and clonal expansion. VSELs possess similar overlapping stemness program as in embryonic stem cells, embryonic carcinoma cells, embryonic germ cells, induced pluripotent stem cells, and primordial germ cells. VSELs and leukemic and cancer cells express overlapping embryonic markers. Uncontrolled proliferation of VSELs and compromised differentiation possibly initiate leukemia. Process of EMT and initiation of solid tumor from VSELs (located among the epithelial cells) are indeed two distinct and parallel events. To conclude, VSELs provide explanation to several confounding aspects of adult stem cell biology.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Ranita Ganguly
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Yashvi Shukla
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| |
Collapse
|
14
|
Parte SC, Smolenkov A, Batra SK, Ratajczak MZ, Kakar SS. Ovarian Cancer Stem Cells: Unraveling a Germline Connection. Stem Cells Dev 2017; 26:1781-1803. [PMID: 29078734 PMCID: PMC5725638 DOI: 10.1089/scd.2017.0153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is most lethal among gynecological cancers with often fatal consequences due to lack of effective biomarkers and relapse, which propels ovarian cancer research into unique directions to establish solid targeted therapeutics. "Ovarian stem cells" expressing germline pluripotent markers serve as novel paradigm with potential to address infertility, menopause, and probably influence tumor initiation. Cancer stem cells (CSCs) pose vital role in tumor recurrence and hence it is extremely important to study them with respect to ovarian stem cells across various cancer stages and normal ovaries. Pluripotent (OCT4, NANOG, SOX2, SSEA1, and SSEA4), germline (IFITM3, VASA/DDX4), and cancer stem (CD44, LGR5) cell specific markers were characterized for protein and mRNA expression in tumor tissues to understand their distribution in the surface epithelium and ovarian cortex in benign, borderline, and high-grade malignant stages. To elucidate whether pluripotent ovarian germline stem cells and CSCs are common subset of stem cells in tumor tissues, VASA was colocalized with known pluripotent stem (OCT4, SSEA1, SSEA4) and CSC (CD44, LGR5) specific markers by confocal microscopy. Single, smaller spherical (≤5 μm), and larger elliptical fibroblast like (≥10 μm) cells (also in clusters or multiples) were detected implying probable functional behavioral significance of cells in tumor initiation and metastasis across various cancer stages. Cells revealed characteristic staining pattern in ovarian surface epithelium (OSE) and cortex regions exclusive for each marker. Co-expression studies revealed specific subpopulations existing simultaneously in OSE and cortex and that a dynamic hierarchy of (cancer) stem cells with germline properties prevails in normal ovaries and cancer stages. Novel insights into CSC biology with respect to ovarian and germline stem cell perspective were obtained. Understanding molecular signatures and distribution within ovarian tissue may enable identification of precise tumor-initiating CSC populations and signaling pathways thus improving their efficient targeting and strategies to prevent their dissemination causing fatal relapse.
Collapse
Affiliation(s)
- Seema C. Parte
- Department of Physiology, University of Louisville, Louisville, Kentucky
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Andrei Smolenkov
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mariusz Z. Ratajczak
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, Kentucky
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
15
|
Sellers ZP, Bujko K, Schneider G, Kucia M, Ratajczak MZ. Novel evidence that pituitary sex hormones regulate migration, adhesion, and proliferation of embryonic stem cells and teratocarcinoma cells. Oncol Rep 2017; 39:851-859. [PMID: 29207191 PMCID: PMC5783624 DOI: 10.3892/or.2017.6108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
The pituitary sex hormones (SexHs): follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL) regulate several functions crucial for reproduction, including oogenesis, spermatogenesis, and lactation. An important source of prolactin-like hormones, known as lactogens, is the placenta, and lactogens bind to the PRL receptor (PRLR) with high affinity and thereby mimic the actions of PRL. Recently, it has been demonstrated that pituitary SexHs were involved in metastatic lung cancer, certain sarcomas, and leukemia. In the present study we aimed to investigate whether FSH, LH, and PRL were able to stimulate stem cells involved in early development. To address this issue we employed a murine embryonic stem cell line (ES-D3) as well as two teratocarcinoma cell lines, P19 (murine) and NTera2 (human). We determined that all these cells expressed SexH receptors at the mRNA and protein levels and that stimulation of these receptors induced phosphorylation of p42/44 MAPK, p38 MAPK, and AKT. Moreover, ES-D3, P19, and NTera2 cells responded with increased migration and adhesion to physiological concentrations of pituitary SexHs. In view of these findings we proposed that maternal-derived pituitary SexHs regulate the biology of stem cells involved in early development.
Collapse
Affiliation(s)
- Zachariah Payne Sellers
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Magdalena Kucia
- Department of Regenerative Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
16
|
Bhartiya D, James K. Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J Ovarian Res 2017; 10:29. [PMID: 28438190 PMCID: PMC5404303 DOI: 10.1186/s13048-017-0324-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
We have earlier reported the presence of very small embryonic-like stem cells (VSELs) in adult mouse uterus along with slightly bigger progenitors termed endometrial stem cells (EnSCs) and their regulation by ovarian hormones thus demonstrating a crucial role played by them during proliferation, differentiation and remodeling of the endometrium. Present study is a brief communication wherein we have examined the effect of higher dose of estrogen (E, 2 μg/day), progesterone (P, 1 mg/day) and follicle stimulating hormone (FSH, 5 IU/day for 5 days) specifically on the myometrium and perimetrium surrounding the endometrium in bilaterally ovariectomized mice. Similar treatment with E & P was recently used in a study published in the journal Nature to study the effect of steroid hormones on hematopoietic stem cells and this treatment regimen helps achieve hormone levels observed during pregnancy. Quiescent spherical stem cells (lacking PCNA expression) with high nucleo-cytoplasmic ratio and nuclear OCT-4A were detected in the perimetrium of atrophied (bilaterally ovariectomized) uterus. PCNA expression was observed after treatment and cells with cytoplasmic OCT-4B were invariably observed in the myometrium. VSELs were clearly visualized after treatment and the effect of P and FSH was more prominent compared to E on the development of myometrium. It is speculated that stem cells with nuclear OCT-4A located in the perimetrium differentiate to give rise to endothelial and myometrial cells with cytoplasmic OCT-4B. Based on the results of present study and published reports showing the presence of pluripotent markers (OCT-4, NANOG and SOX2) in human myometrial side population and expression of particularly OCT-4A in human leiomyomas, we speculate that these nuclear OCT-4 positive stem cells located in the perimetrium are the possible tumor initiating cells leading to the development of leiomyomas rather than the mesenchymal cells which express cytoplasmic OCT-4B.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Kreema James
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
17
|
Abdelbaset-Ismail A, Pedziwiatr D, Schneider G, Niklinski J, Charkiewicz R, Moniuszko M, Kucia M, Ratajczak MZ. Pituitary sex hormones enhance the pro‑metastatic potential of human lung cancer cells by downregulating the intracellular expression of heme oxygenase‑1. Int J Oncol 2016; 50:317-328. [PMID: 27922667 PMCID: PMC5182010 DOI: 10.3892/ijo.2016.3787] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
We report that human lung cancer cell lines express functional receptors for pituitary sex hormones (SexHs) and respond to stimulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL). Expression of these receptors has also been confirmed in patient lung cancer samples at the mRNA level. Stimulation of human lung cancer cell lines with FSH, LH, or PRL stimulated migration and chemotaxis, and some cell lines responded by enhanced proliferation. Moreover, priming of human lung cancer cells by exposing them to pituitary SexHs resulted in enhanced seeding efficiency of injected human lung cancer cells into bone marrow, liver, and lungs in an immunodeficient mouse model. The chemotaxis of lung cancer cell lines corresponded with the activity of heme oxygenase-1 (HO-1), as stimulation of these cells by FSH, LH, and PRL downregulated its expression in a p38 MAPK-dependent manner. Moreover, while downregulation of HO-1 by the small-molecule inhibitor tin protoporphyrin (SnPP) promoted migration, upregulation of HO-1 by the small-molecule activator cobalt protoporphyrin (CoPP) showed the opposite effect. Based on this finding, we propose that pituitary SexHs play a significant role in the pathogenesis of lung cancer, particularly when the blood level of FSH increases due to gonadal dysfunction with advanced age. Finally, we propose that upregulation of HO-1 expression by a small-molecule activator may be effective in controlling SexH-induced cell migration in lung cancer.
Collapse
Affiliation(s)
- Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Daniel Pedziwiatr
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
18
|
Virant-Klun I, Stimpfel M. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Sci Rep 2016; 6:34730. [PMID: 27703207 PMCID: PMC5050448 DOI: 10.1038/srep34730] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in "healthy" ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from "healthy" ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
20
|
Ratajczak MZ, Suszynska M, Kucia M. Does it make sense to target one tumor cell chemotactic factor or its receptor when several chemotactic axes are involved in metastasis of the same cancer? Clin Transl Med 2016; 5:28. [PMID: 27510263 PMCID: PMC4980325 DOI: 10.1186/s40169-016-0113-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
The major problem with cancer progression and anti-cancer therapy is the inherent ability of cancer cells to migrate and establish distant metastases. This ability to metastasize correlates with the presence in a growing tumor of cells with a more malignant phenotype, which express certain cancer stem cell markers. The propensity of malignant cells to migrate and their resistance to radio-chemotherapy somewhat mimics the properties of normal developmentally early stem cells that migrate during organogenesis in the developing embryo. In the past, several factors, including cell migration-promoting cytokines, chemokines, growth factors, bioactive lipids, extracellular nucleotides, and even H(+) ions, were found to influence the metastasis of cancer cells. This plethora of pro-migratory factors demonstrates the existence of significant redundancy in the chemoattractants for cancer cells. In spite of this obvious fact, significant research effort has been dedicated to demonstrating the crucial involvement of particular pro-metastatic factor-receptor axes and the development of new drugs targeting one receptor or one chemoattractant. Based on our own experience working with a model of metastatic rhabdomyosarcoma as well as the work of others, in this review we conclude that targeting a single receptor-ligand pro-metastatic axis will not effectively prevent metastasis and that we should seek other more effective therapeutic options.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA. .,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA.,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA.,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Reprogramming bladder cancer cells for studying cancer initiation and progression. Tumour Biol 2016; 37:13237-13245. [DOI: 10.1007/s13277-016-5226-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
|
22
|
Abdelbaset-Ismail A, Pedziwiatr D, Suszyńska E, Sluczanowska-Glabowska S, Schneider G, Kakar SS, Ratajczak MZ. Vitamin D3 stimulates embryonic stem cells but inhibits migration and growth of ovarian cancer and teratocarcinoma cell lines. J Ovarian Res 2016; 9:26. [PMID: 27091127 PMCID: PMC4835879 DOI: 10.1186/s13048-016-0235-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
Background Deficiency in Vitamin D3 (cholecalciferol) may predispose to some malignancies, including gonadal tumors and in experimental models vitamin D3 has been proven to inhibit the growth of cancer cells. To learn more about the potential role of vitamin D3 in cancerogenesis, we evaluated the expression and functionality of the vitamin D receptor (VDR) and its role in metastasis of ovarian cancer cells and of murine and human teratocarcinoma cell lines. Methods In our studies we employed murine embrynic stem cells (ESD3), murine (P19) and human (NTERA-2) teratocarcimona cells lines, human ovarian cancer cells (A2780) as well as purified murine and human purified very small embryonic like stem cells (VSELs). We evaluated expression of Vitamin D3 receptor (VDR) in these cells as well as effect of vitamin D3 exposure on cell proliferation and migration. Results We here provide also more evidence for the role of vitamin D3 in germline-derived malignancies, and this evidence supports the proposal that vitamin D3 treatment inhibits growth and metastatic potential of several germline-derived malignancies. We also found that the ESD3 murine immortalized embryonic stem cell line and normal, pluripotent, germline-marker-positive very small embryonic-like stem cells (VSELs) isolated from adult tissues are stimulated by vitamin D3, which suggests that vitamin D3 affects the earliest stages of embryogenesis. Conclusions We found that however all normal and malignant germ-line derived cells express functional VDR, Vitamin D3 differently affects their proliferation and migration. We postulate that while Vitamin D3 as anticancer drug inhibits proliferation of malignant cells, it may protect normal stem cells that play an important role in development and tissue/organ regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0235-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Daniel Pedziwiatr
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Ewa Suszyńska
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | | | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Sham S Kakar
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA. .,Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Virant-Klun I, Kenda-Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res 2016; 9:12. [PMID: 26940129 PMCID: PMC4778328 DOI: 10.1186/s13048-016-0221-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/22/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In previous studies it has been found that in cell cultures of human adult ovaries there is a population of small stem cells with diameters of 2-4 μm, which are present mainly in the ovarian surface epithelium and are comparable to very small embryonic-like stem cells (VSELs) from bone marrow. These cells are not observed by histopathologists in the ovarian tissue due to their small size and unknown clinical significance. Because these cells express a degree of pluripotency, they might be involved in the manifestation of ovarian cancer. Therefore we studied the ovarian tissue sections in women with borderline ovarian cancer and serous ovarian carcinoma to perhaps identify the small putative stem cells in situ. METHODS In 27 women with borderline ovarian cancer and 20 women with high-grade serous ovarian carcinoma the ovarian tissue sections were stained, per standard practice, with eosin and hematoxylin staining and on NANOG, SSEA-4 and SOX2 markers, related to pluripotency, using immunohistochemistry. We focused on the presence and localization of small putative stem cells with diameters of up to 5 μm and with the nuclei spread over nearly the full cell volume. RESULTS In ovarian sections of both borderline ovarian cancer and serous ovarian carcinoma patients we were able to identify the presence of small round cells complying with the above criteria. Some of these small cells were NANOG-positive, were located among epithelial cells in the ovarian surface epithelium and as a single cell or groups of cells/clusters in typical "chambers", were found only in the presence of ovarian cancer and not in healthy ovaries and are comparable to those in fetal ovaries. We envision that these small cells could be related to NANOG-positive tumor-like structures and oocyte-like cells in similar "chambers" found in sections of cancerous ovaries, which could support their stemness and pluripotency. Further immunohistochemistry revealed a similar population of SSEA-4 and SOX2-positive cells. CONCLUSIONS We may conclude that putative small stem cells expressing markers, related to pluripotency, are present in the ovarian tissue sections of women with borderline ovarian cancer and high-grade serous ovarian carcinoma thus indicating their potential involvement in ovarian cancer.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Natasa Kenda-Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, Maharashtra, India
| |
Collapse
|
25
|
Bhartiya D. Ubiquitous expression of FSH/LH/hCG receptors, OCT-4, and CD133 in adult organs and cancers reflects novel VSELs biology. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jrhm.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Virant-Klun I. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans. Stem Cells Dev 2015; 25:101-13. [PMID: 26494182 DOI: 10.1089/scd.2015.0275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Center Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
27
|
Shaikh A, Nagvenkar P, Pethe P, Hinduja I, Bhartiya D. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia 2015; 29:1909-17. [PMID: 25882698 DOI: 10.1038/leu.2015.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are immature primitive cells residing in adult and fetal tissues. This study describes enrichment strategy and molecular and phenotypic characterization of human cord blood VSELs. Flow cytometry analysis revealed that a majority of VSELs (LIN(-)/CD45(-)/CD34(+)) were present in the red blood cell (RBC) pellet after Ficoll-Hypaque centrifugation in contrast to the hematopoietic stem cells (LIN(-)/CD45(+)/CD34(+)) in the interphase layer. Thus, after lyses of RBCs, VSELs were enriched using CD133 and SSEA4 antibodies. These enriched cells were small in size (4-6 μm), spherical, exhibited telomerase activity and expressed pluripotent stem cell (OCT4A, OCT4, SSEA4, NANOG, SOX2, REX1), primordial germ cell (STELLA, FRAGILIS) as well as primitive hematopoietic (CD133, CD34) markers at protein and transcript levels. Heterogeneity was noted among VSELs based on subtle differences in expression of various markers studied. DNA analysis and cell cycle studies revealed that a majority of enriched VSELs were diploid, non-apoptotic and in G0/G1 phase, reflecting their quiescent state. VSELs also survived 5-fluorouracil treatment in vitro and treated cells entered into cell cycle. This study provides further support for the existence of pluripotent, diploid and relatively quiescent VSELs in cord blood and suggests further exploration of the subpopulations among them.
Collapse
Affiliation(s)
- A Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Nagvenkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - I Hinduja
- Jaslok Hospital & Research Centre, Mumbai, India
| | - D Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
28
|
Abstract
Pluripotent stem cells have the potential to differentiate into 200 odd cell types present in adult body. Pluripotent stem cells available for regenerative medicine include embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and very small ES-like stem (VSELs) cells. Nuclear OCT-4 is one of the crucial factors that dictate pluripotent state. Compared to ES/iPS cells grown in Petri dish, VSELs exist in adult body organs and results are emerging to suggest that they may have better potential to regenerate adult organs. This is because of their distinct epigenetic status as they are closer to the primordial germ cells from the epiblast-stage embryo compared to inner cell mass from which ES cells are obtained in vitro. We need to make special efforts to study them as they are very small in size and tend to get lost during processing. VSELs exist in adult organs, get mobilized in response to stress, undergo asymmetric cell divisions to give rise to tissue specific progenitors which further differentiate into various cell types and are possibly better candidates for regenerative medicine because they have no associated risk of tumor formation or immunological rejection. They are possibly also the ‘embryonic remnants’ in adult organs responsible for initiating cancer. Thus, rather than not accepting VSELs because they neither form teratoma nor divide in vitro like ES cells, it is time that scientific community should think of revising the definition of the term ‘pluripotency’.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, INDIA
| |
Collapse
|
29
|
Bhartiya D, Patel H. Very small embryonic-like stem cells are involved in pancreatic regeneration and their dysfunction with age may lead to diabetes and cancer. Stem Cell Res Ther 2015; 6:96. [PMID: 25976079 PMCID: PMC4432983 DOI: 10.1186/s13287-015-0084-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mouse pancreas has a remarkable ability to regenerate after partial pancreatectomy, and several investigators have studied the underlying mechanisms involved in this regeneration process; however, the field remains contentious. Elegant lineage-tracing studies undertaken over a decade have generated strong evidence against neogenesis from stem cells and in favor of reduplication of pre-existing islets. Ductal epithelium has also been implicated during regeneration. We recently provided direct evidence for the possible involvement of very small embryonic-like stem cells (VSELs) during regeneration after partial pancreatectomy in mice. VSELs were first reported in pancreas in 2008 and are mobilized in large numbers after treating mice with streptozotocin and in patients with pancreatic cancer. VSELs can be detected in mouse pancreas as small-sized LIN−/CD45−/SCA-1+ cells (3 to 5 μm), present in small numbers (0.6%), which express nuclear Oct-4 (octamer-binding transcription factor 4) and other pluripotent markers along with their immediate descendant ‘progenitors’, which are slightly bigger and co-express Oct-4 and PDX-1. VSELs and the progenitors get mobilized in large numbers after partial pancreatectomy and regenerate both pancreatic islets and acinar cells. In this review, we deliberate upon possible reasons why VSELs have eluded scientists so far. Because of their small size, VSELs are probably unknowingly and inadvertently discarded during processing. Similar to menopause and related loss of ovarian function, type 2 diabetes mellitus occurs because of a decline in beta-cell function possibly resulting from an age-related compromised niche which does not allow VSELs to maintain normal homeostasis. As suggested earlier for ovarian cancers, the presence of Oct-4 and other pluripotent markers in pancreatic cancers is suggestive of VSELs as the possible cancer-initiating stem cells. Several issues raised in the review require urgent confirmation and thus provide scope for further research before arriving at a consensus on the fundamental role played by VSELs in normal pancreas biology and during regeneration, aging, and cancer. In the future, such understanding may allow manipulation of endogenous VSELs to our advantage in patients with diabetes and also to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, India.
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
30
|
Anand S, Patel H, Bhartiya D. Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reprod Biol Endocrinol 2015; 13:33. [PMID: 25903688 PMCID: PMC4407302 DOI: 10.1186/s12958-015-0031-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Extensive research is ongoing to empower cancer survivors to have biological parenthood. For this, sperm are cryopreserved prior to therapy and in younger children testicular biopsies are cryopreserved with a hope to mature the germ cells into sperm later on for assisted reproduction. In addition, lot of hope was bestowed on pluripotent embryonic and induced pluripotent stem cells to differentiate into sperm and oocytes. However, obtaining functional gametes from pluripotent stem cells still remains a distant dream and major bottle-neck appears to be their inefficient differentiation into primordial germ cells (PGCs). There exists yet another population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) in adult body organs including gonads. We have earlier reported that busulphan (25 mg/Kg) treatment to 4 weeks old mice destroys actively dividing cells and sperm but VSELs survive and differentiate into sperm when a healthy niche is provided in vivo. METHODS Mouse testicular VSELs that survived busulphan treatment were cultured for 3 weeks. A mix of surviving cells in seminiferous tubules (VSELs, possibly few spermatogonial stem cells and Sertoli cells) were cultured using Sertoli cells conditioned medium containing fetal bovine serum, follicle stimulating hormone and with no additional growth factors. RESULTS Stem cells underwent proliferation and clonal expansion in culture and spontaneously differentiated into sperm whereas Sertoli cells attached and provided a somatic support. Transcripts specific for various stages of spermatogenesis were up-regulated by qRT-PCR studies on day 7 suggesting VSELs (Sca1) and SSCs (Gfra) proliferate (Pcna), undergo spermatogenesis (spermatocyte specific marker prohibitin), meiosis (Scp3) and differentiate into sperm (post-meiotic marker protamine). CONCLUSIONS Process of spermatogenesis and spermiogenesis was replicated in vitro starting with testicular cells that survived busulphan treatment. We have earlier reported similar ability of ovarian VSELs enriched in the ovary surface epithelial cells to form oocyte-like structures in vitro. This striking potential of spontaneous differentiation of primitive testicular cells including VSELs that survive chemotherapy is being described for the first time in the present study.
Collapse
Affiliation(s)
- Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| |
Collapse
|
31
|
Gunjal P, Bhartiya D, Metkari S, Manjramkar D, Patel H. Very small embryonic-like stem cells are the elusive mouse endometrial stem cells--a pilot study. J Ovarian Res 2015; 8:9. [PMID: 25824685 PMCID: PMC4369871 DOI: 10.1186/s13048-015-0138-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/23/2015] [Indexed: 01/17/2023] Open
Abstract
Background Endometrium undergoes dramatic growth, breakdown and regeneration throughout reproductive period in mammals. Stem cells have been implicated in the process however their origin, nature, anatomical localization and characterization still remain obscure. Classical concept of presence of stem cells in the basal layer of endometrium was recently challenged when side population and label retaining cells were found to be distributed throughout endometrium. We have earlier reported very small embryonic-like stem cells (VSELs) in adult mammalian ovary and testis as a small population of cells with nuclear OCT-4 along with progenitors (spermatogonial stem cells and ovarian germ stem cells) with cytoplasmic OCT-4. Present study was undertaken to gauge presence of VSELs in bilaterally ovariectomized mouse uterus and their modulation by hormones. Methods Bilaterally ovariectomized mice were subjected to sequential estradiol and progesterone treatment in order to induce proliferation, differentiation and remodeling (regeneration). Stem cells were studied in tissue smears after H & E staining and after sorting using SCA-1 by immuno-localization and qRT-PCR studies (Oct-4A, Nanog and Sca-1). Flow cytometry studies were also undertaken to confirm the presence of VSELs in mouse uterus. Results Two distinct populations of stem cells with dark stained nucleus and high nucleo-cytoplasmic ratio were detected in ovariectomized mouse uterus. These cells were sorted using SCA-1 and comprised smaller VSELs with nuclear expression of OCT-4 and slightly bigger, more abundant progenitors termed as endometrial stem cells (EnSCs) with cytoplasmic OCT-4. RT-PCR studies showed presence of pluripotent transcripts (Oct-4, Sca-1) and flow cytometry confirmed the presence of 0.069% of LIN-/CD45-/SCA-1+ VSELs. These stem cells were distinctly regulated during endometrial growth, differentiation and regeneration as evidenced by qRT-PCR results. Conclusions VSELs are present in normal uterus and also under conditions of atrophy induced by bilateral ovariectomy. Marked increase in EnSCs is associated with endometrial growth and regeneration. Further studies are warranted to define the niche for these stem cells and whether EnSCs arising from the pluripotent VSELs are common progenitors for epithelial and stromal cells or not remains to be addressed. Results of the present study will help in better understanding of endometrial pathologies and their management in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13048-015-0138-2) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Bhartiya D, Hinduja I, Patel H, Bhilawadikar R. Making gametes from pluripotent stem cells--a promising role for very small embryonic-like stem cells. Reprod Biol Endocrinol 2014; 12:114. [PMID: 25421462 PMCID: PMC4255929 DOI: 10.1186/1477-7827-12-114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/01/2014] [Indexed: 01/15/2023] Open
Abstract
The urge to have one's own biological child supersedes any desire in life. Several options have been used to obtain gametes including pluripotent stem cells (embryonic ES and induced pluripotent iPS stem cells); gonadal stem cells (spermatogonial SSCs, ovarian OSCs stem cells), bone marrow, mesenchymal cells and fetal skin. However, the field poses a huge challenge including inefficient existing protocols for differentiation, epigenetic and genetic changes associated with extensive in vitro manipulation and also ethical/regulatory constraints. A tremendous leap in the field occurred using mouse ES and iPS cells wherein they were first differentiated into epiblast-like cells and then primordial germ cell-like cells. These on further development produced sperm, oocytes and live offspring (had associated genetic problems). Evidently differentiating pluripotent stem cells into primordial germ cells (PGCs) remains a major bottleneck. Against this backdrop, we propose that a novel population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) may serve as an alternative, potential source of autologus gametes, keeping in mind that they are indeed PGCs surviving in adult mammalian ovaries and testes. Both VSELs and PGCs are pluripotent, relatively quiescent because of epigenetic modifications of parentally imprinted genes loci like Igf2-H19 and KCNQ1p57, share several markers like Stella, Fragilis, Mvh, Dppa2, Dppa4, Sall4, Blimp1 and functional receptors. VSELs are localized in the basement membrane of seminiferous tubules in testis and in the ovary surface epithelium. Ovarian stem cells from mouse, rabbit, sheep, marmoset and humans (menopausal women and those with premature ovarian failure) spontaneously differentiate into oocyte-like structures in vitro with no additional requirement of growth factors. Thus a more pragmatic option to obtain autologus gametes may be the pluripotent VSELs and if we could manipulate them in vivo - existing ethical and epigenetic/genetic concerns associated with in vitro culture may also be minimized. The field of oncofertility may undergo a sea-change and existing strategies of cryopreservation of gametes and gonadal tissue for fertility preservation in cancer patients will necessitate a revision. However, first the scientific community needs to arrive at a consensus about VSELs in the gonads and then work towards exploiting their potential.
Collapse
Affiliation(s)
- Deepa Bhartiya
- />Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400 012 India
| | - Indira Hinduja
- />Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Centre, Veer Savarkar Marg, Mumbai, 400 016 India
| | - Hiren Patel
- />Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400 012 India
| | - Rashmi Bhilawadikar
- />Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Centre, Veer Savarkar Marg, Mumbai, 400 016 India
| |
Collapse
|
33
|
Bhartiya D, Singh J. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction 2014; 149:R35-48. [PMID: 25269615 DOI: 10.1530/rep-14-0220] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology DepartmentNational Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| | - Jarnail Singh
- Stem Cell Biology DepartmentNational Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| |
Collapse
|
34
|
Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Res Ther 2014; 5:106. [PMID: 25182166 PMCID: PMC4355147 DOI: 10.1186/scrt494] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Despite numerous research efforts, mechanisms underlying regeneration of pancreas remains controversial. Views are divided whether stem cells are involved during pancreatic regeneration or it involves duplication of pre-existing islets or ductal cells or whether pancreatic islet numbers are fixed by birth or they renew throughout life. Pluripotent embryonic stem (ES) and induced pluripotent stem (iPS) cells have been used by several groups to regenerate diabetic mouse pancreas but the beneficial effects are short-lived. It has been suggested that cells obtained after directed differentiation of ES/iPS cells resemble fetal and not their adult counterparts; thus are functionally different and may be of little use to regenerate adult pancreas. A novel population of pluripotent very small embryonic-like stem cells (VSELs) exists in several adult body tissues in both mice and humans. VSELs have been reported in the mouse pancreas, and nuclear octamer-binding transcription factor 4 (OCT-4) positive, small-sized cells have also been detected in human pancreas. VSELs are mobilized into peripheral blood in streptozotocin treated diabetic mice and also in patients with pancreatic cancer. This study aimed to evaluate whether VSELs are involved during regeneration of adult mouse pancreas after partial pancreatectomy. Methods Mice were subjected to partial pancreatectomy wherein almost 70% of pancreas was surgically removed and residual pancreas was studied on Days 1, 3 and 5 post-surgery. Results VSELs were detected in Hematoxylin and Eosin stained smears of pancreatic tissue as spherical, small sized cells with a large nucleus surrounded by a thin rim of cytoplasm and could be sorted as LIN-/CD45-/SCA-1+ cells by flow cytometry. Results reveal that although neutrophils with multi-lobed nuclei are mobilized into the pancreas on day 1 after pancreatectomy, by day 5 VSELs with spherical nuclei, high nucleo-cytoplasmic ratio and nuclear OCT-4 are mobilized into the residual pancreas. VSELs undergo differentiation and give rise to PDX-1 and OCT-4 positive progenitors which possibly regenerate both acinar cells and islets. Conclusions Results provide direct evidence supporting the presence of VSELs in adult mouse pancreas and their role during regeneration. VSELs are an interesting alternative to ES/iPS cells to regenerate a diabetic pancreas in future.
Collapse
|
35
|
Ratajczak MZ, Marycz K, Poniewierska-Baran A, Fiedorowicz K, Zbucka-Kretowska M, Moniuszko M. Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv Med Sci 2014; 59:273-80. [PMID: 25170822 DOI: 10.1016/j.advms.2014.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/06/2014] [Accepted: 08/04/2014] [Indexed: 01/14/2023]
Abstract
Our current understanding of stem cells suffers from a lack of precision, as the stem cell compartment is a broad continuum between early stages of development and adult postnatal tissues, and it is not fully understood how this transition occurs. The definition of stem cell pluripotency is adapted from embryology and excludes the possibility that some early-development stem cells with pluri- and/or multipotential differentiation potential may reside in postnatal tissues in a dormant state in which they are protected from uncontrolled proliferation and thus do not form teratomas or have the ability to complement blastocyst development. We will discuss the concept that a population of very small embryonic-like stem cells (VSELs) could be a link between early-development stages and adult stem cell compartments and reside in a quiescent state in adult tissues. The epigenetic mechanism identified that changes expression of certain genes involved in insulin/insulin-like growth factor signaling (IIS) in VSELs, on the one hand, keeps these cells quiescent in adult tissues and, on the other hand, provides a novel view of the stem cell compartment, IIS, tissue/organ rejuvenation, aging, and cancerogenesis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| | - Krzysztof Marycz
- University of Environmental and Life Sciences, Electron Microscopy Laboratory, Wroclaw, Poland; Wroclaw Research Centre EIT+, Wroclaw, Poland
| | - Agata Poniewierska-Baran
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Monika Zbucka-Kretowska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
36
|
Liu C, Ma Z, Xu S, Hou J, Hu Y, Yu Y, Liu R, Chen Z, Lu Y. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen. Sci Rep 2014; 4:5564. [PMID: 24998261 PMCID: PMC4083294 DOI: 10.1038/srep05564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/17/2014] [Indexed: 01/06/2023] Open
Abstract
Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy.
Collapse
Affiliation(s)
- Chunfang Liu
- 1] Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China [2]
| | - Zhan Ma
- 1] Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China [2] Department of Laboratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China [3]
| | - Songtao Xu
- 1] Department of Thoracic Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China [2]
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yinglu Yu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Ruilai Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| |
Collapse
|
37
|
An expression signature at diagnosis to estimate prostate cancer patients' overall survival. Prostate Cancer Prostatic Dis 2014; 17:81-90. [PMID: 24394557 PMCID: PMC3921673 DOI: 10.1038/pcan.2013.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022]
Abstract
Background: This study aimed to identify biomarkers for estimating the overall and prostate cancer (PCa)-specific survival in PCa patients at diagnosis. Methods: To explore the importance of embryonic stem cell (ESC) gene signatures, we identified 641 ESC gene predictors (ESCGPs) using published microarray data sets. ESCGPs were selected in a stepwise manner, and were combined with reported genes. Selected genes were analyzed by multiplex quantitative polymerase chain reaction using prostate fine-needle aspiration samples taken at diagnosis from a Swedish cohort of 189 PCa patients diagnosed between 1986 and 2001. Of these patients, there was overall and PCa-specific survival data available for 97.9%, and 77.9% were primarily treated by hormone therapy only. Univariate and multivariate Cox proportional hazard ratios and Kaplan–Meier plots were used for the survival analysis, and a k-nearest neighbor (kNN) algorithm for estimating overall survival. Results: An expression signature of VGLL3, IGFBP3 and F3 was shown sufficient to categorize the patients into high-, intermediate- and low-risk subtypes. The median overall survival times of the subtypes were 3.23, 4.00 and 9.85 years, respectively. The difference corresponded to hazard ratios of 5.86 (95% confidence interval (CI): 2.91–11.78, P<0.001) for the high-risk subtype and 3.45 (95% CI: 1.79–6.66, P<0.001) for the intermediate-risk compared with the low-risk subtype. The kNN models that included the gene expression signature outperformed the one designed on clinical parameters alone. Conclusions: The expression signature can potentially be used to estimate overall survival time. When validated in future studies, it could be integrated in the routine clinical diagnostic and prognostic procedure of PCa for an optimal treatment decision based on the estimated survival benefit.
Collapse
|
38
|
Shin DM, Suszynska M, Mierzejewska K, Ratajczak J, Ratajczak MZ. Very small embryonic-like stem-cell optimization of isolation protocols: an update of molecular signatures and a review of current in vivo applications. Exp Mol Med 2013; 45:e56. [PMID: 24232255 PMCID: PMC3849570 DOI: 10.1038/emm.2013.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023] Open
Abstract
As the theory of stem cell plasticity was first proposed, we have explored an alternative hypothesis for this phenomenon: namely that adult bone marrow (BM) and umbilical cord blood (UCB) contain more developmentally primitive cells than hematopoietic stem cells (HSCs). In support of this notion, using multiparameter sorting we were able to isolate small Sca1(+)Lin(-)CD45(-) cells and CD133(+)Lin(-)CD45(-) cells from murine BM and human UCB, respectively, which were further enriched for the detection of various early developmental markers such as the SSEA antigen on the surface and the Oct4 and Nanog transcription factors in the nucleus. Similar populations of cells have been found in various organs by our team and others, including the heart, brain and gonads. Owing to their primitive cellular features, such as the high nuclear/cytoplasm ratio and the presence of euchromatin, they are called very small embryonic-like stem cells (VSELs). In the appropriate in vivo models, VSELs differentiate into long-term repopulating HSCs, mesenchymal stem cells (MSCs), lung epithelial cells, cardiomyocytes and gametes. In this review, we discuss the most recent data from our laboratory and other groups regarding the optimal isolation procedures and describe the updated molecular characteristics of VSELs.
Collapse
Affiliation(s)
- Dong-Myung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kasia Mierzejewska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 South Floyd Street, Room 107, Louisville, KY 40202, USA. E-mail:
| |
Collapse
|
39
|
Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells Int 2013; 2013:547501. [PMID: 24187558 PMCID: PMC3800663 DOI: 10.1155/2013/547501] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 12/24/2022] Open
Abstract
Stem cells have excited researchers because of their potential to regenerate. However, which stem cells will be the best candidate for regenerative medicine remains an enigma. Compared to pluripotent stem cells with associated risks of immune rejection and teratoma formation, adult stem cells especially the mesenchymal stem cells (MSCs) are hyped to be a suitable alternate since they also exhibit pluripotent properties. This review shows that there is a subpopulation of pluripotent very small embryonic-like stem cells (VSELs) among MSCs culture. The two populations differ from each other in expression pattern of OCT-4. VSELs exhibit nuclear OCT-4A, whereas the MSCs have cytoplasmic OCT-4B, similar to our earlier findings in testis and ovary. Pluripotent VSELs with nuclear OCT-4A exist in various adult body organs, and the immediate progenitors express cytoplasmic OCT-4B which is eventually lost as the cell differentiates further. To conclude it is essential to discriminate between nuclear and cytoplasmic OCT-4 expression and also to acknowledge the presence of VSELs.
Collapse
|
40
|
Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia 2013; 28:473-84. [PMID: 24018851 PMCID: PMC3948156 DOI: 10.1038/leu.2013.255] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.
Collapse
|
41
|
Patel H, Bhartiya D, Parte S, Gunjal P, Yedurkar S, Bhatt M. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res 2013; 6:52. [PMID: 23870332 PMCID: PMC3728228 DOI: 10.1186/1757-2215-6-52] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/12/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We have earlier reported that follicle stimulating hormone (FSH) modulates ovarian stem cells which include pluripotent, very small embryonic-like stem cells (VSELs) and their immediate descendants 'progenitors' termed ovarian germ stem cells (OGSCs), lodged in adult mammalian ovarian surface epithelium (OSE). FSH may exert pleiotropic actions through its alternatively spliced receptor isoforms. Four isoforms of FSH receptors (FSHR) are reported in literature of which FSH-R1 and FSH-R3 have biological activity. Present study was undertaken to identify FSHR isoforms mediating FSH action on ovarian stem cells, using sheep OSE cells culture as the study model. METHODS Cultures of sheep OSE cells (a mix of epithelial cells, VSELs, OGSCs and few contaminating red blood cells) were established with and without FSH 5IU/ml treatment. Effect of FSH treatment on self-renewal of VSELs and their differentiation into OGSCs was studied after 15 hrs by qRT-PCR using markers specific for VSELs (Oct-4A, Sox-2) and OGSCs (Oct-4). FSH receptors and its specific transcripts (R1 and R3) were studied after 3 and 15 hrs of FSH treatment by immunolocalization, in situ hybridization and qRT-PCR. FSHR and OCT-4 were also immuno-localized on sheep ovarian sections, in vitro matured follicles and early embryos. RESULTS FSH treatment resulted in increased stem cells self-renewal and clonal expansion evident by the appearance of stem cell clusters. FSH receptors were expressed on ovarian stem cells whereas the epithelial cells were distinctly negative. An increase in R3 mRNA transcripts was noted after 3 hrs of FSH treatment and was reduced to basal levels by 15 hrs, whereas R1 transcript expression remained unaffected. Both FSHR and OCT-4 were immuno-localized in nuclei of stem cells, showed nuclear or ooplasmic localization in oocytes of primordial follicles and in cytoplasm of granulosa cells in growing follicles. CONCLUSIONS FSH modulates ovarian stem cells via FSH-R3 to undergo potential self-renewal, clonal expansion as 'cysts' and differentiation into oocytes. OCT-4 and FSHR proteins (required initially to maintain pluripotent state of VSELs and for FSH action respectively) gradually shift from nuclei to cytoplasm of developing oocytes and are later possibly removed by surrounding granulosa cells as the oocyte prepares itself for fertilization.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Pranesh Gunjal
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Snehal Yedurkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Mithun Bhatt
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| |
Collapse
|
42
|
Degen KE, Gourdie RG. Embryonic wound healing: a primer for engineering novel therapies for tissue repair. ACTA ACUST UNITED AC 2013; 96:258-70. [PMID: 23109321 DOI: 10.1002/bdrc.21019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Scar is the default tissue repair used by the body in response to most injuries-a response that occurs in wounds ranging in seriousness from minor skin cuts to complete severance of the spinal cord. By contrast, before the third trimester of pregnancy embryonic mammals tend to heal without scarring due to a variety of mechanisms and factors that are uniquely in operation during development in utero. The goal of tissue engineering is to develop safe and clinically effective biological substitutes that restore, maintain, or improve tissue function in patients. This review provides a comparative overview of wound healing during development and maturation and seeks to provide a perspective on just how much the embryo may be able teach us in the engineering of new therapies for tissue repair.
Collapse
Affiliation(s)
- Katherine E Degen
- School of Biomedical Engineering Science, Virginia Tech, Blacksburg, USA
| | | |
Collapse
|
43
|
Taniguchi M, Nishihara M, Sasayama T, Takahashi Y, Kohmura E. A rapidly expanding immature teratoma originating from a neurohypophyseal germinoma. Neuropathol Appl Neurobiol 2013; 39:445-8. [DOI: 10.1111/nan.12000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Affiliation(s)
- M. Taniguchi
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| | - M. Nishihara
- Department of Neurosurgery; Nishi-Kobe Medical Center; Nishi-ku; Kobe; Hyogo; Japan
| | - T. Sasayama
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| | - Y. Takahashi
- Division of Diabetes, Metabolism and Endocrinology; Department of Internal Medicine; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| | - E. Kohmura
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Chuo-ku; Japan
| |
Collapse
|
44
|
Very small embryonic-like stem cells: implications in reproductive biology. BIOMED RESEARCH INTERNATIONAL 2013; 2013:682326. [PMID: 23509758 PMCID: PMC3586435 DOI: 10.1155/2013/682326] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/12/2012] [Indexed: 01/17/2023]
Abstract
The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.
Collapse
|
45
|
Samardzija C, Quinn M, Findlay JK, Ahmed N. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary. J Ovarian Res 2012; 5:37. [PMID: 23171809 PMCID: PMC3536609 DOI: 10.1186/1757-2215-5-37] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/30/2012] [Indexed: 01/05/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed 'cancer initiating cells' or 'cancer stem cells (CSCs)' have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.
Collapse
Affiliation(s)
- Chantel Samardzija
- Women's Cancer Research Centre, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC, 3052, Australia.
| | | | | | | |
Collapse
|
46
|
Ratajczak MZ, Shin DM, Schneider G, Ratajczak J, Kucia M. Parental imprinting regulates insulin-like growth factor signaling: a Rosetta Stone for understanding the biology of pluripotent stem cells, aging and cancerogenesis. Leukemia 2012; 27:773-9. [PMID: 23135355 DOI: 10.1038/leu.2012.322] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, solid evidence has accumulated that insulin-like growth factor-1 (IGF-1) and 2 (IGF-2) regulate many biological processes in normal and malignant cells. Recently, more light has been shed on the epigenetic mechanisms regulating expression of genes involved in IGF signaling (IFS) and it has become evident that these mechanisms are crucial for initiation of embryogenesis, maintaining the quiescence of pluripotent stem cells deposited in adult tissues (for example, very-small embryonic-like stem cells), the aging process, and the malignant transformation of cells. The expression of several genes involved in IFS is regulated at the epigenetic level by imprinting/methylation within differentially methylated regions (DMRs), which regulate their expression from paternal or maternal chromosomes. The most important role in the regulation of IFS gene expression is played by the Igf-2-H19 locus, which encodes the autocrine/paracrine mitogen IGF-2 and the H19 gene, which gives rise to a non-coding RNA precursor of several microRNAs that negatively affect cell proliferation. Among these, miR-675 has recently been demonstrated to downregulate expression of the IGF-1 receptor. The proper imprinting of DMRs at the Igf-2-H19 locus, with methylation of the paternal chromosome and a lack of methylation on the maternal chromosome, regulates expression of these genes so that Igf-2 is transcribed only from the paternal chromosome and H19 (including miR-675) only from the maternal chromosome. In this review, we will discuss the relevance of (i) proper somatic imprinting, (ii) erasure of imprinting and (iii) loss of imprinting within the DMRs at the Igf-2-H19 locus to the expression of genes involved in IFS, and the consequences of these alternative patterns of imprinting for stem cell biology.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
47
|
Bhartiya D, Sriraman K, Gunjal P, Modak H. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J Ovarian Res 2012; 5:32. [PMID: 23134576 PMCID: PMC3616927 DOI: 10.1186/1757-2215-5-32] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Follicle stimulating hormone (FSH) exerts action on both germline and somatic compartment in both ovary and testis although FSH receptors (FSHR) are localized only on the somatic cells namely granulosa cells of growing follicles and Sertoli cells in the seminiferous tubules. High levels of FSH in females are associated with poor ovarian reserve, ovarian hyper stimulation syndrome etc. and at the same time FSH acts as a survival factor during in vitro organotypic culture of ovarian cortical strips. Thus a further understanding of FSH action on the ovary is essential. We have earlier reported presence of pluripotent very small embryonic-like stem cells (VSELs express Oct-4A in addition to other pluripotent markers) and their immediate descendants 'progenitors' ovarian germ stem cells (OGSCs express Oct-4B in addition to other germ cell markers) in ovarian surface epithelium (OSE) in various mammalian species including mice, rabbit, monkey, sheep and human. Present study was undertaken to investigate the effect of pregnant mare serum gonadotropin (PMSG) on adult mice ovaries with a focus on VSELs, OGSCs, postnatal oogenesis and primordial follicle assembly. METHODS Ovaries were collected from adult mice during different stages of estrus cycle and after 2 and 7 days of PMSG (5 IU) treatment to study histo-architecture and expression for FSHR, pluripotent stem cells , meiosis and germ cell specific markers. RESULTS PMSG treatment resulted in increased FSHR and proliferation as indicated by increased FSHR and PCNA immunostaining in OSE and oocytes of primordial follicles (PF) besides the granulosa cells of large antral follicles. Small 1-2 regions of multilayered OSE invariably associated with a cohort of PF during estrus stage in control ovary were increased to 5-8 regions after PMSG treatment. This was associated with an increase in pluripotent transcripts (Oct-4A, Nanog), meiosis (Scp-3) and germ cells (Oct-4B, Mvh) specific markers. MVH showed positive immuno staining on germ cell nest-like clusters and at places primordial follicles appeared connected through oocytes. CONCLUSIONS The results of the present study show that gonadotropin (PMSG) treatment to adult mouse leads to increased pluripotent stem cell activity in the ovaries, associated with increased meiosis, appearance of several cohorts of PF and their assembly in close proximity of OSE. This was found associated with the presence of germ cell nests and cytoplasmic continuity of oocytes in PF. We have earlier reported that pluripotent ovarian stem cells in the adult mammalian ovary are the VSELs which give rise to slightly differentiated OGSCs. Thus we propose that gonadotropin through its action on pluripotent VSELs augments neo-oogenesis and PF assembly in adult mouse ovaries.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | | | | | | |
Collapse
|
48
|
Al-Marzoqee FY, Khoder G, Al-Awadhi H, John R, Beg A, Vincze A, Branicki F, Karam SM. Upregulation and inhibition of the nuclear translocation of Oct4 during multistep gastric carcinogenesis. Int J Oncol 2012; 41:1733-43. [PMID: 22922943 DOI: 10.3892/ijo.2012.1608] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the fourth most commonly diagnosed malignancy and the second leading cause of cancer-related mortality worldwide. Recent research suggests that tissue stem cells and the self renewal transcription factor, octamer-binding transcription factor 4 (Oct4), could be involved in the development of certain tumors. The aim of this study was to investigate the expression pattern of Oct4 in normal human stomach and during multistep gastric carcinogenesis. Pyloric antral mucosal tissues were obtained from consenting individuals undergoing endoscopy (due to upper gastrointestinal symptoms) and gastrectomy (due to pyloric antral adenocarcinoma). Some tissue samples were processed to assemble an array of tissue sections representing multistep carcinogenesis and probed using anti-Oct4 antibodies and lectins specific for α-L-fucose or N-acetyl-D-glucosamine. Some tissue samples were processed for subcellular fractionation and western blot analysis using the same antibodies. The results revealed that Oct4-expressing cells were found in the proliferative cell compartment of the pit-gland units of microscopically normal gastric mucosal biopsies. Mucosal tissues with evidence of severe gastritis, metaplastic/dysplastic transformation and gastric cancer showed a significant increase in the expression of Oct4 (the labeled area increased from 2% in the control to 6 and 16% in the gastritis and cancerous tissues, respectively), suggesting a role for Oct4 in the early stages of cancer development. Furthermore, the data revealed an alteration in the subcellular distribution of Oct4, possibly due to the inhibition of cytoplasm-to-nucleus translocation during carcinogenesis. In conclusion, this study demonstrates an alteration in the expression pattern and nuclear translocation of Oct4 during gastric carcinogenesis and may be helpful in designing new modalities for the early detection and/or therapy of gastric cancer.
Collapse
Affiliation(s)
- Fathyia Y Al-Marzoqee
- Department of Anatomy, Faculty of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ma Z, Hu Y, Jiang G, Hou J, Liu R, Lu Y, Liu C. Spontaneous generation of germline characteristics in mouse fibrosarcoma cells. Sci Rep 2012; 2:743. [PMID: 23077727 PMCID: PMC3473365 DOI: 10.1038/srep00743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/19/2012] [Indexed: 12/02/2022] Open
Abstract
Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Zhan Ma
- Department of Labratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Tarnowski M, Schneider G, Amann G, Clark G, Houghton P, Barr FG, Kenner L, Ratajczak MZ, Kucia M. RasGRF1 regulates proliferation and metastatic behavior of human alveolar rhabdomyosarcomas. Int J Oncol 2012; 41:995-1004. [PMID: 22752028 PMCID: PMC3582851 DOI: 10.3892/ijo.2012.1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/25/2012] [Indexed: 11/05/2022] Open
Abstract
The involvement of the Ras superfamily of GTPases in the pathogenesis of rhabdomysarcoma (RMS) is not well understood. While mutant H-Ras leads to embryonal RMS (ERMS) formation in experimental animals and in Costello syndrome patients, no data exists on the potential role of Ras GTPases in the pathogenesis of alveolar RMS (ARMS). To address this issue better, we focused on the role of the GTP exchange factor RasGRF1 in this process. We observed that, in comparison to normal skeletal muscle cells, RasGRF1 mRNA is upregulated in the majority of human ARMS cell lines and subsequently confirmed its high expression in patient samples. By employing confocal microscopy analysis, we observed RasGRF1 accumulation in cell filopodia, which suggests its involvement in ARMS cell migration. Furthermore, we observed that RasGRF1 becomes phosphorylated in ARMS after stimulation by several pro-metastatic factors, such as SDF-1 and HGF/SF, as well as after exposure to growth-promoting Igf-2 and insulin. More importantly, activation of RasGRF1 expression correlated with activation of p42/44 MAPK and AKT. When the expression of RasGRF1 was down-regulated in ARMS cells by an shRNA strategy, these RasGRF1-kd RMS cells did not respond to stimulation by SDF-1, HGF/SF, Igf-2 or insulin by phosphorylation of p42/44 MAPK and AKT and lost their chemotactic responsiveness; however, their adhesion was not affected. We also observed that RasGRF1-kd ARMS cells proliferated at a very low rate in vitro, and, more importantly, after inoculation into immunodeficient SCID/beige inbred mice they formed significantly smaller tumors. We conclude that RasGRF1 plays an important role in ARMS pathogenesis and is a new potential therapeutic target to inhibit ARMS growth.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|