1
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
3
|
Gantier M, Rispal R, Fourrier A, Ménoret S, Delbos F, Anegon I, Nguyen TH. Cryopreserved cGMP-compliant human pluripotent stem cell-derived hepatic progenitors rescue mice from acute liver failure through rapid paracrine effects on liver cells. Stem Cell Res Ther 2024; 15:71. [PMID: 38475825 DOI: 10.1186/s13287-024-03673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Liver transplantation remains the only curative treatment for end-stage liver diseases. Unfortunately, there is a drastic organ donor shortage. Hepatocyte transplantation emerged as a viable alternative to liver transplantation. Considering their unique expansion capabilities and their potency to be driven toward a chosen cell fate, pluripotent stem cells are extensively studied as an unlimited cell source of hepatocytes for cell therapy. It has been previously shown that freshly prepared hepatocyte-like cells can cure mice from acute and chronic liver failure and restore liver function. METHODS Human PSC-derived immature hepatic progenitors (GStemHep) were generated using a new protocol with current good manufacturing practice compliant conditions from PSC amplification and hepatic differentiation to cell cryopreservation. The therapeutic potential of these cryopreserved cells was assessed in two clinically relevant models of acute liver failure, and the mode of action was studied by several analytical methods, including unbiased proteomic analyses. RESULTS GStemHep cells present an immature hepatic phenotype (alpha-fetoprotein positive, albumin negative), secrete hepatocyte growth factor and do not express major histocompatibility complex. A single dose of thawed GStemHep rescue mice from sudden death caused by acetaminophen and thioacetamide-induced acute liver failure, both in immunodeficient and immunocompetent animals in the absence of immunosuppression. Therapeutic biological effects were observed as soon as 3 h post-cell transplantation with a reduction in serum transaminases and in liver necrosis. The swiftness of the therapeutic effect suggests a paracrine mechanism of action of GStemHep leading to a rapid reduction of inflammation as well as a rapid cytoprotective effect with as a result a proteome reprograming of the host hepatocytes. The mode of action of GStemHep relie on the alleviation of inhibitory factors of liver regeneration, an increase in proliferation-promoting factors and a decrease in liver inflammation. CONCLUSIONS We generated cryopreserved and current good manufacturing practice-compliant human pluripotent stem cell-derived immature hepatic progenitors that were highly effective in treating acute liver failure through rapid paracrine effects reprogramming endogenous hepatocytes. This is also the first report highlighting that human allogeneic cells could be used as cryopreserved cells and in the absence of immunosuppression for human PSC-based regenerative medicine for acute liver failure.
Collapse
Affiliation(s)
- Malika Gantier
- GoLiver Therapeutics, 44007, Nantes, France.
- Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France.
| | - Raphaël Rispal
- Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | | | - Séverine Ménoret
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, 44000, Nantes, France
| | | | - Ignacio Anegon
- Nantes Université, Inserm, Center for Research in Transplantation and Translational Immunology, UMR 1064, 44000, Nantes, France
| | | |
Collapse
|
4
|
Song Y, Lu Z, Shu W, Xiang Z, Wang Z, Wei X, Xu X. Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases. CELL INSIGHT 2023; 2:100115. [PMID: 37719773 PMCID: PMC10502372 DOI: 10.1016/j.cellin.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
Collapse
Affiliation(s)
- Yisu Song
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University Shanghai, 200040, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
5
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Bio-Artificial Liver Support System: A Prospective Future Therapy. LIVERS 2023. [DOI: 10.3390/livers3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Whether acute or chronic, liver failure is a state of liver dysfunction that can progress to multiorgan failure. Mortality in liver failure patients is approximately 80–90% and is caused by detoxification failure, which triggers other immediate complications, such as encephalopathy, coagulopathy, jaundice, cholestasis, and acute kidney failure. The ideal treatment for liver failure is liver transplantation, but the long waiting period for the right donor match causes unavoidable deaths in most patients. Therefore, new therapies, such as tissue engineering, hepatocyte transplantation, and stem cells, are now being studied to anticipate the patient’s condition while waiting for liver transplantation. This literature review investigated the effectiveness of some bio-artificial liver support systems using review methods systematically from international publication sites, including PubMed, using keywords, such as bio-artificial liver, acute and chronic liver failure, extracorporeal liver support system (ECLS), MARS, single-pass albumin dialysis (SPAD). Artificial and bioartificial liver systems can show specific detoxification abilities and pathophysiological improvements in liver failure patients but cannot reach the ideal criteria for actual liver function. The liver support system must provide the metabolic and synthetic function as in the actual liver while reducing the pathophysiological changes in liver failure. Aspects of safety, cost efficiency, and practicality are also considered. Identifying the technology to produce high-quality hepatocytes on a big scale is essential as a medium to replace failing liver cells. An increase in detoxification capacity and therapeutic effectiveness must also focus on patient survival and the ability to perform liver transplantation.
Collapse
|
7
|
Development of a Scalable Three-Dimensional Culture of Human Induced Pluripotent Stem Cells-Derived Liver Organoids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2455:131-147. [PMID: 35212992 DOI: 10.1007/978-1-0716-2128-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a powerful tool for the generation of specialized cells to be used in regenerative medicine as well as hepatocellular repopulation tool to treat liver metabolic diseases such as nonalcoholic steatohepatitis (NASH). Here we describe a strategy to obtain fully functional liver organoids from hiPSCs in a scalable manner. Our approach uses a two-step process, with a first step involving the scalable formation of homogeneous and uniform-sized human embryoid bodies (hEBs), followed by the application of a four-step liver differentiation protocol for the derivation of liver organoids that possess all the features of primary human hepatocytes. This chapter will also illustrate the characterization of the liver organoids by directed biomolecular techniques.
Collapse
|
8
|
Yao J, Yu Y, Nyberg SL. Induced Pluripotent Stem Cells for the Treatment of Liver Diseases: Novel Concepts. Cells Tissues Organs 2022; 211:368-384. [PMID: 32615573 PMCID: PMC7775900 DOI: 10.1159/000508182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Millions of people worldwide with incurable liver disease die because of inadequate treatment options and limited availability of donor organs for liver transplantation. Regenerative medicine as an innovative approach to repairing and replacing cells, tissues, and organs is undergoing a major revolution due to the unprecedented need for organs for patients around the world. Induced pluripotent stem cells (iPSCs) have been widely studied in the field of liver regeneration and are considered to be the most promising candidate therapies. This review will conclude the current state of efforts to derive human iPSCs for potential use in the modeling and treatment of liver disease.
Collapse
Affiliation(s)
- Jia Yao
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Clinical Research and Project Management Office, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing, China
| | - Scott L. Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Corresponding Author: Scott L. Nyberg, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA, Tel: Rochester, MN 55905, USA, Fax: (507) 284-2511,
| |
Collapse
|
9
|
Pettinato G. Generation of Hepatocyte Organoids from Human iPS Cells. Methods Mol Biol 2022; 2544:51-70. [PMID: 36125709 DOI: 10.1007/978-1-0716-2557-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) constitute a great source to generate specialized cells that can be employed in cell replacement therapy for a number of degenerative diseases. In this chapter, I describe a strategy to mass-produce fully functional hepatocyte organoids using hiPSCs interlaced with human adipose microvascular endothelial cells (HAMEC). Our unique technology employs a two-step strategy, consisting of the scalable generation of nearly spherical uniform-sized human embryoid bodies (hEBs), and the subsequent employment of a four-step hepatocyte differentiation approach for the generation of hepatocyte organoids that display all the characteristics of human primary hepatocytes. In this chapter, we also describe methodologies to characterize the hepatocyte organoids by using different biomolecular assays.
Collapse
Affiliation(s)
- Giuseppe Pettinato
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Hypoxia-Induced miR-210 Overexpression Promotes the Differentiation of Human-Induced Pluripotent Stem Cells to Hepatocyte-Like Cells on Random Nanofiber Poly-L-Lactic Acid/Poly ( ε-Caprolactone) Scaffolds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4229721. [PMID: 34858546 PMCID: PMC8630456 DOI: 10.1155/2021/4229721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
An alternative treatment to liver transplantation includes the use of differentiated stem cells. Hypoxia has been shown to endow human-induced pluripotent stem cells (hiPSCs) with enhanced hepatic differentiation. We have investigated a new strategy for hepatocyte differentiation from hiPSCs using a three-step differentiation protocol with lentiviral overexpression of hypoxia-microRNA-210 of cells grown on a hybrid scaffold. We analyzed the transduction of the miR-210 lentiviral and definitive endoderm and pluripotency gene markers, including SRY-box 17 (SOX17), forkhead box A2 (FOXA2), and octamer-binding transcription factor 4 (OCT-4) by Real-Time PCR and fluorescent microscope. The scanning electron microscopy (SEM) examined the 3D cell morphological changes. Immunocytochemistry staining was used together with assays for aspartate aminotransferase, alanine aminotransferase, and urea secretion to analyze hepatocyte biomarkers and functional markers consisting of α-fetoprotein (AFP), low-density lipoprotein (LDL) uptake, fat accumulation, and glycogen. The flow cytometry analyzed the generation of reactive oxygen species (ROS). Compared to cells transfected with the blank lentiviral vectors as a control, overexpressing miR-210 was at higher levels in hiPSCs. The expression of endodermal genes and glycogen synthesis significantly increased in the differentiated lentiviral miR-210 cells without any differences regarding lipid storage level. Additionally, cells containing miR-210 showed a greater expression of ALB, LDL, AST, ALT, urea, and insignificant lower AFP and ROS levels after 18 days. However, SEM showed no significant differences between cells under the differentiation process and controls. In conclusion, the differentiation of hiPSCs to hepatocyte-like cells under hypoxia miR-210 may be a suitable method for cell therapy and regenerative medicine.
Collapse
|
11
|
Tang S, Bai L, Duan Z, Zheng S. Stem cells treatment for wilson disease. Curr Stem Cell Res Ther 2021; 17:712-719. [PMID: 34615454 DOI: 10.2174/1574888x16666211006111556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
Wilson disease (WD) is a copper excretion disorder, mainly caused by mutations in the ATP7B gene. Pharmacological therapies and liver transplantation are currently the main treatment methods for WD, but they face problems such as drug treatment compliance, adverse reactions, and shortage of liver donors. Stem cell therapy of WD may correct abnormal copper metabolism permanently, which is the focus of current research. In this review, we summarized the latest research on stem cells treatment for WD, as well as current challenges and future expectations.
Collapse
Affiliation(s)
- Shan Tang
- The First Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing. China
| | - Li Bai
- The Fourth Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing. China
| | - Zhongping Duan
- The Fourth Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing. China
| | - Sujun Zheng
- The First Unit, Department of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing. China
| |
Collapse
|
12
|
Cell-Based Regeneration and Treatment of Liver Diseases. Int J Mol Sci 2021; 22:ijms221910276. [PMID: 34638617 PMCID: PMC8508969 DOI: 10.3390/ijms221910276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The liver, in combination with a functional biliary system, is responsible for maintaining a great number of vital body functions. However, acute and chronic liver diseases may lead to irreversible liver damage and, ultimately, liver failure. At the moment, the best curative option for patients suffering from end-stage liver disease is liver transplantation. However, the number of donor livers required by far surpasses the supply, leading to a significant organ shortage. Cellular therapies play an increasing role in the restoration of organ function and can be integrated into organ transplantation protocols. Different types and sources of stem cells are considered for this purpose, but highly specific immune cells are also the focus of attention when developing individualized therapies. In-depth knowledge of the underlying mechanisms governing cell differentiation and engraftment is crucial for clinical implementation. Additionally, novel technologies such as ex vivo machine perfusion and recent developments in tissue engineering may hold promising potential for the implementation of cell-based therapies to restore proper organ function.
Collapse
|
13
|
Zhang L, Pu K, Liu X, Bae SDW, Nguyen R, Bai S, Li Y, Qiao L. The Application of Induced Pluripotent Stem Cells Against Liver Diseases: An Update and a Review. Front Med (Lausanne) 2021; 8:644594. [PMID: 34277651 PMCID: PMC8280311 DOI: 10.3389/fmed.2021.644594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Liver diseases are a major health concern globally, and are associated with poor survival and prognosis of patients. This creates the need for patients to accept the main alternative treatment of liver transplantation to prevent progression to end-stage liver disease. Investigation of the molecular mechanisms underpinning complex liver diseases and their pathology is an emerging goal of stem cell scope. Human induced pluripotent stem cells (hiPSCs) derived from somatic cells are a promising alternative approach to the treatment of liver disease, and a prospective model for studying complex liver diseases. Here, we review hiPSC technology of cell reprogramming and differentiation, and discuss the potential application of hiPSC-derived liver cells, such as hepatocytes and cholangiocytes, in refractory liver-disease modeling and treatment, and drug screening and toxicity testing. We also consider hiPSC safety in clinical applications, based on genomic and epigenetic alterations, tumorigenicity, and immunogenicity.
Collapse
Affiliation(s)
- Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Xiaojun Liu
- Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| | - Suyang Bai
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yi Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Clinical School, Westmead, NSW, Australia
| |
Collapse
|
14
|
Ruiz-Estevez M, Crane AT, Rodriguez-Villamil P, Ongaratto FL, You Y, Steevens AR, Hill C, Goldsmith T, Webster DA, Sherry L, Lim S, Denman N, Low WC, Carlson DF, Dutton JR, Steer CJ, Gafni O. Liver development is restored by blastocyst complementation of HHEX knockout in mice and pigs. Stem Cell Res Ther 2021; 12:292. [PMID: 34011403 PMCID: PMC8132445 DOI: 10.1186/s13287-021-02348-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background There are over 17,000 patients in the US waiting to receive liver transplants, and these numbers are increasing dramatically. Significant effort is being made to obtain functional hepatocytes and liver tissue that can for therapeutic use in patients. Blastocyst complementation is a challenging, innovative technology that could fundamentally change the future of organ transplantation. It requires the knockout (KO) of genes essential for cell or organ development in early stage host embryos followed by injection of donor pluripotent stem cells (PSCs) into host blastocysts to generate chimeric offspring in which progeny of the donor cells populate the open niche to develop functional tissues and organs. Methods The HHEX gene is necessary for proper liver development. We engineered loss of HHEX gene expression in early mouse and pig embryos and performed intraspecies blastocyst complementation of HHEX KO embryos with eGFP-labeled PSCs in order to rescue the loss of liver development. Results Loss of HHEX gene expression resulted in embryonic lethality at day 10.5 in mice and produced characteristics of lethality at day 18 in pigs, with absence of liver tissue in both species. Analyses of mouse and pig HHEX KO fetuses confirmed significant loss of liver-specific gene and protein expression. Intraspecies blastocyst complementation restored liver formation and liver-specific proteins in both mouse and pig. Livers in complemented chimeric fetuses in both species were comprised of eGFP-labeled donor-derived cells and survived beyond the previously observed time of HHEX KO embryonic lethality. Conclusions This work demonstrates that loss of liver development in the HHEX KO can be rescued via blastocyst complementation in both mice and pigs. This complementation strategy is the first step towards generating interspecies chimeras for the goal of producing human liver cells, tissues, and potentially complete organs for clinical transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02348-z.
Collapse
Affiliation(s)
- M Ruiz-Estevez
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - A T Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - P Rodriguez-Villamil
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - F L Ongaratto
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - Yun You
- Mouse Genetics Laboratory, University of Minnesota, Minneapolis, USA
| | - A R Steevens
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - C Hill
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - T Goldsmith
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - D A Webster
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - L Sherry
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - S Lim
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - N Denman
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - W C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - D F Carlson
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | - J R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - C J Steer
- Stem Cell Institute, University of Minnesota, Minneapolis, USA. .,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA. .,Department of Medicine, University of Minnesota, 420 Delaware Street SE, MMC 36, Minneapolis, MN, 55455, USA.
| | - O Gafni
- Recombinetics Inc., Stem Cell Technologies, 3388 Mike Collins Drive, Eagan, MN, 55121, USA.
| |
Collapse
|
15
|
Caires-Júnior LC, Goulart E, Telles-Silva KA, Araujo BHS, Musso CM, Kobayashi G, Oliveira D, Assoni A, Carvalho VM, Ribeiro-Jr AF, Ishiba R, Braga KAO, Nepomuceno N, Caldini E, Rangel T, Raia S, Lelkes PI, Zatz M. Pre-coating decellularized liver with HepG2-conditioned medium improves hepatic recellularization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111862. [PMID: 33579511 DOI: 10.1016/j.msec.2020.111862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Liver transplantation from compatible donors has been the main therapy available for patients with irreversible hepatic injuries. Due to the increasing shortage of organs suitable for transplantation, tissue engineering technologies are important alternatives or surrogate approaches for the future of human organ transplantations. New bioengineering tools have been designed to produce decellularized organs (i.e. scaffolds) which could be recellularized with human cells. Specifically, there is an unmet need for developing reproducible protocols for inducing better cellular spreading in decellularized liver scaffolds. The aim of the present work was to investigate the possibility to improve liver scaffold recellularization by pre-coating decellularized tissue scaffolds with HepG2-conditioned medium (CM). Furthermore, we evaluated the capability of commercial human liver cells (HepG2) to adhere to several types of extracellular matrices (ECM) as well as CM components. Wistar rat livers were decellularized and analyzed by histology, scanning electron microscopy (SEM), immunohistochemistry and residual DNA-content analysis. Human induced pluripotent stem cells (hiPSCs)-derived mesenchymal cells (hiMSCs), and human commercial hepatic (HepG2) and endothelial (HAEC) cells were used for liver scaffold recellularization with or without CM pre-coating. Recellularization occurred for up to 5 weeks. Hepatic tissues and CM were analyzed by proteomic assays. We show that integrity and anatomical organization of the hepatic ECM were maintained after decellularization, and proteomic analysis suggested that pre-coating with CM enriched the decellularized liver ECM. Pre-coating with HepG2-CM highly improved liver recellularization and revealed the positive effects of liver ECM and CM components association.
Collapse
Affiliation(s)
- Luiz Carlos Caires-Júnior
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 13083-100 Campinas, Brazil
| | | | - Gerson Kobayashi
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Danyllo Oliveira
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Amanda Assoni
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | | | - Antônio Fernando Ribeiro-Jr
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Renata Ishiba
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil
| | - Karina Andrighetti Oliveira Braga
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Natalia Nepomuceno
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elia Caldini
- Cellular Biology Laboratory, Pathology Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Thadeu Rangel
- Liver Unit, Surgery Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Silvano Raia
- Liver Unit, Surgery Department, Faculty of Medicine, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Peter I Lelkes
- Department of Bioengineering, Temple University, 19122 Philadelphia, United States
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center (HUG-CEL), Institute of Biosciences, University of São Paulo (USP), R. do Matão 106, 05508-900 São Paulo, Brazil.
| |
Collapse
|
16
|
Hu C, Zhao L, Li L. Genetic modification by overexpression of target gene in mesenchymal stromal cell for treating liver diseases. J Mol Med (Berl) 2021; 99:179-192. [PMID: 33388882 DOI: 10.1007/s00109-020-02031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Different hepatoxic factors cause irreversible liver injury, leading to liver failure, cirrhosis, and cancer in mammals. Liver transplantation is the only effective strategy, which can improve the prognosis of patients with end-stage liver diseases, but it is limited by liver donor shortage, expensive costs, liver graft rejection and dysfunction, and recurring liver failure. Recently, mesenchymal stromal cells (MSCs) isolated from various tissues are regarded as the main stem cell type with therapeutic effects in liver diseases because of their hepatogenic differentiation, anti-inflammatory, immuoregulatory, anti-apoptotic, antifibrotic, and antitumor capacities. To further improve the therapeutic effects of MSCs, multiple studies showed that genetically engineered MSCs have increased regenerative capacities and are able to more effectively inhibit cell death. Moreover, they are able to secrete therapeutic proteins for attenuating liver injury in liver diseases. In this review, we mainly focus on gene overexpression for reprogramming MSCs to increase their therapeutic effects in treating various liver diseases. We described the potential mechanisms of MSCs with gene overexpression in attenuating liver injury, and we recommend further expansion of experiments to discover more gene targets and optimized gene delivery methods for MSC-based regenerative medicine. We also discussed the potential hurdles in genetic engineering MSCs. In conclusion, we highlight that we need to overcome all scientific hurdles before genetically modified MSC therapy can be translated into clinical practices for patients with liver diseases.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Deguchi S, Takayama K, Mizuguchi H. Generation of Human Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells for Cellular Medicine. Biol Pharm Bull 2020; 43:608-615. [PMID: 32238703 DOI: 10.1248/bpb.b19-00740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver transplantation and hepatocyte transplantation are effective treatments for severe liver injuries, but the donor shortage is a serious problem. Therefore, hepatocyte-like cells generated from human induced pluripotent stem (iPS) cells with unlimited proliferative ability are expected to be a promising new transplantation resource. The technology for hepatic differentiation from human iPS cells has made great progress in this decade. The efficiency of hepatic differentiation now exceeds 90%, making it possible to produce nearly homogeneous hepatocyte-like cells from human iPS cells. Because there is little contamination of undifferentiated cells, there is a lower risk of teratoma formation. To date, the transplantation of human iPS cell-derived hepatocyte-like cells has been shown to have therapeutic effects using various liver injury model mice. Currently, studies are underway using model animals larger than mice. The day when human iPS cell-derived hepatocyte-like cells can be used as cellular medicine is surely approaching. In this review, we introduce the forefront of regenerative medicine applications using human iPS cell-derived hepatocyte-like cells.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University.,PRESTO, Japan Science and Technology Agency.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition.,Global Center for Medical Engineering and Informatics, Osaka University.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University
| |
Collapse
|
18
|
Rajalekshmi R, Kaladevi Shaji A, Joseph R, Bhatt A. Scaffold for liver tissue engineering: Exploring the potential of fibrin incorporated alginate dialdehyde-gelatin hydrogel. Int J Biol Macromol 2020; 166:999-1008. [PMID: 33166555 DOI: 10.1016/j.ijbiomac.2020.10.256] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Development of a tissue-engineered construct for hepatic regeneration remains a challenging task due to the lack of an optimum environment that support the growth of hepatocytes. Hydrogel systems possess many similarities with tissues and have the potential to provide the microenvironment essential for the cells to grow, proliferate, and remain functionally active. METHODS In this work, fibrin (FIB) incorporated injectable alginate dialdehyde (ADA) - gelatin (G) hydrogel was explored as a matrix for liver tissue engineering. ADA was prepared by periodate oxidation of sodium alginate. An injectable formulation of ADA-G-FIB hydrogel was prepared and characterized by FTIR spectroscopy, Scanning Electron Microscopy, and Micro-Computed Tomography. HepG2 cells were cultured on the hydrogel system; cellular growth and functions were analyzed using various functional markers. RESULTS FTIR spectra of ADA-G-FIB depicted the formation of Schiff's base at 1608.53 cm-1 with a gelation time of 3 min. ADA-G-FIB depicted a 3D surface topography with a pore size in the range of 100-200 μm. The non-cytotoxic nature of the scaffold was demonstrated using L929 cells and more than 80 % cell viability was observed. Functional analysis of cultured HepG2 cells demonstrated ICG uptake, albumin synthesis, CYP-P450 expression, and ammonia clearance. CONCLUSION ADA-G-FIB hydrogel can be used as an effective 3D scaffold system for liver tissue engineering.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Division of Polymeric Medical Devices, Department of Medical Device Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - Anusree Kaladevi Shaji
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - Roy Joseph
- Division of Polymeric Medical Devices, Department of Medical Device Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India.
| |
Collapse
|
19
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
20
|
Saito Y, Ikemoto T, Morine Y, Shimada M. Current status of hepatocyte-like cell therapy from stem cells. Surg Today 2020; 51:340-349. [PMID: 32754843 DOI: 10.1007/s00595-020-02092-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Abstract
Organ liver transplantation and hepatocyte transplantation are not performed to their full potential because of donor shortage, which could be resolved by identifying new donor sources for the development of hepatocyte-like cells (HLCs). HLCs have been differentiated from some stem cell sources as alternative primary hepatocytes throughout the world; however, the currently available techniques cannot differentiate HLCs to the level of normal adult primary hepatocytes. The outstanding questions are as follows: which stem cells are the best cell sources? which protocol is the best way to differentiate them into HLCs? what is the definition of differentiated HLCs? how can we enforce the function of HLCs? what is the difference between HLCs and primary hepatocytes? what are the problems with HLC transplantation? This review summarizes the current status of HLCs, focusing on stem cell sources, the differentiation protocol for HLCs, the general characterization of HLCs, the generation of more functional HLCs, comparison with primary hepatocytes, and HLCs in cell-transplantation-based liver regeneration.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
21
|
Tricot T, De Boeck J, Verfaillie C. Alternative Cell Sources for Liver Parenchyma Repopulation: Where Do We Stand? Cells 2020; 9:E566. [PMID: 32121068 PMCID: PMC7140465 DOI: 10.3390/cells9030566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic liver failure is a highly prevalent medical condition with high morbidity and mortality. Currently, the therapy is orthotopic liver transplantation. However, in some instances, chiefly in the setting of metabolic diseases, transplantation of individual cells, specifically functional hepatocytes, can be an acceptable alternative. The gold standard for this therapy is the use of primary human hepatocytes, isolated from livers that are not suitable for whole organ transplantations. Unfortunately, primary human hepatocytes are scarcely available, which has led to the evaluation of alternative sources of functional hepatocytes. In this review, we will compare the ability of most of these candidate alternative cell sources to engraft and repopulate the liver of preclinical animal models with the repopulation ability found with primary human hepatocytes. We will discuss the current shortcomings of the different cell types, and some of the next steps that we believe need to be taken to create alternative hepatocyte progeny capable of regenerating the failing liver.
Collapse
|
22
|
Ashmore-Harris C, Blackford SJ, Grimsdell B, Kurtys E, Glatz MC, Rashid TS, Fruhwirth GO. Reporter gene-engineering of human induced pluripotent stem cells during differentiation renders in vivo traceable hepatocyte-like cells accessible. Stem Cell Res 2019; 41:101599. [PMID: 31707210 PMCID: PMC6905152 DOI: 10.1016/j.scr.2019.101599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Primary hepatocyte transplantation (HTx) is a safe cell therapy for patients with liver disease, but wider application is circumvented by poor cell engraftment due to limitations in hepatocyte quality and transplantation strategies. Hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (hiPSC) are considered a promising alternative but also require optimisation of transplantation and are often transplanted prior to full maturation. Whole-body in vivo imaging would be highly beneficial to assess engraftment non-invasively and monitor the transplanted cells in the short and long-term. Here we report a lentiviral transduction approach designed to engineer hiPSC-derived HLCs during differentiation. This strategy resulted in the successful production of sodium iodide symporter (NIS)-expressing HLCs that were functionally characterised, transplanted into mice, and subsequently imaged using radionuclide tomography.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London SE1 9RT, UK
| | - Samuel Ji Blackford
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London SE1 9RT, UK
| | - Benjamin Grimsdell
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK; Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Shepherd's House, King's College London, SE1 1UL, UK
| | - Ewelina Kurtys
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK
| | - Marlies C Glatz
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK
| | - Tamir S Rashid
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London SE1 9RT, UK; Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK.
| |
Collapse
|
23
|
Yap L, Tay HG, Nguyen MT, Tjin MS, Tryggvason K. Laminins in Cellular Differentiation. Trends Cell Biol 2019; 29:987-1000. [DOI: 10.1016/j.tcb.2019.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022]
|
24
|
Li S, Huang SQ, Zhao YX, Ding YJ, Ma DJ, Ding QR. Derivation and applications of human hepatocyte-like cells. World J Stem Cells 2019; 11:535-547. [PMID: 31523372 PMCID: PMC6716086 DOI: 10.4252/wjsc.v11.i8.535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. With over 10 years’ efforts in this field, great achievements have been made. HLCs have been successfully derived and applied in disease modeling, toxicity testing and drug discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have been recently applied in studying population genetics and functional outputs of common genetic variants in vitro. This has offered a new paradigm for genome-wide association studies and possibly in vitro pharmacogenomics in the nearly future. However, HLCs have not yet been successfully applied in bioartificial liver devices and have only displayed limited success in cell transplantation. HLCs still have an immature hepatocyte phenotype and exist as a population with great heterogeneity, and HLCs derived from different hPSC lines display variable differentiation efficiency. Therefore, continuous improvement to the quality of HLCs, deeper investigation of relevant biological processes, and proper adaptation of recent advances in cell culture platforms, genome editing technology, and bioengineering systems are required before HLCs can fulfill the needs in basic and translational research. In this review, we summarize the discoveries, achievements, and challenges in the derivation and applications of HLCs.
Collapse
Affiliation(s)
- Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi-Qian Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Xu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong Province, China
| | - Yu-Jie Ding
- Department of Pharmacy, Mudanjiang Kang’an Hospital, Mudanjiang 157011, Heilongjiang Province, China
| | - Dan-Jun Ma
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong Province, China
| | - Qiu-Rong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Yovchev MI, Lee EJ, Rodriguez‐Silva W, Locker J, Oertel M. Biliary Obstruction Promotes Multilineage Differentiation of Hepatic Stem Cells. Hepatol Commun 2019; 3:1137-1150. [PMID: 31388633 PMCID: PMC6672331 DOI: 10.1002/hep4.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Because of their high regenerative potential, stem cells are an ideal resource for development of therapies that replace injured tissue mass and restore function in patients with end-stage liver diseases. Using a rat model of bile duct ligation (BDL) and biliary fibrosis, we investigated cell engraftment, liver repopulation, and ectopic tissue formation after intrasplenic transplantation of epithelial stem/progenitor cells. Fetal liver cells were infused into the spleens of Fisher 344 rats with progressing biliary fibrosis induced by common BDL or rats without BDL. Cell delivery was well tolerated. After migration to the liver, donor-derived stem/progenitor cells engrafted, differentiated into hepatocytes and cholangiocytes, and formed large cell clusters at 2 months in BDL rats but not controls. Substantial numbers of donor cells were also detected at the splenic injection site where they generated hepatic and nonhepatic tissue. Transplanted cells differentiated into phenotypes other than hepato/cholangiocytic cells only in rats that underwent BDL. Quantitative reverse-transcription polymerase chain reaction analyses demonstrated marked up-regulation of tissue-specific genes of nonhepatic endodermal lineages (e.g., caudal type homeobox 2 [Cdx2], pancreatic and duodenal homeobox 1 [Pdx1], keratin 13 [CK-13]), confirmed by immunohistochemistry. Conclusion: BDL and its induced fibrosis promote liver repopulation by ectopically transplanted fetal liver-derived cells. These cell fractions contain multipotent stem cells that colonize the spleen of BDL rats and differentiate into multiple gastrointestinal tissues, including liver, pancreas, intestine, and esophagus. The splenic microenvironment, therefore, represents an ideal niche to assess the differentiation of these stem cells, while BDL provides a stimulus that induces their differentiation.
Collapse
Affiliation(s)
- Mladen I. Yovchev
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | - Edward J. Lee
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | | | - Joseph Locker
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
| | - Michael Oertel
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA
| |
Collapse
|
26
|
Fourrier A, Delbos F, Menoret S, Collet C, Thi Thuy LT, Myara A, Petit F, Tolosa L, Laplanche S, Gómez‐Lechón MJ, Labrune P, Anegon I, Vallier L, Garnier D, Nguyen TH. Regenerative cell therapy for the treatment of hyperbilirubinemic Gunn rats with fresh and frozen human induced pluripotent stem cells‐derived hepatic stem cells. Xenotransplantation 2019; 27:e12544. [DOI: 10.1111/xen.12544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Angélique Fourrier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Frédéric Delbos
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Séverine Menoret
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Camille Collet
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Linh Trinh Thi Thuy
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Anne Myara
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - François Petit
- Laboratoire de génétique moléculaire Hôpital Antoine Béclère Clamart France
| | - Laia Tolosa
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Sophie Laplanche
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - María José Gómez‐Lechón
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Philippe Labrune
- APHP, CRMR Maladies Héréditaires du Métabolisme Hépatique Hôpital Antoine Béclère Clamart France
- UFR Kremlin Bicêtre Université paris Sud Paris Saclay Le Kremlin‐Bicêtre France
- INSERM U1169 Le Kremlin‐Bicêtre France
| | - Ignacio Anegon
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Ludovic Vallier
- Department of Surgery, Anne McLaren Laboratory for Regenerative Medicine, Wellcome–Medical Research Council Cambridge Stem Cell Institute University of Cambridge Cambridge UK
| | - Delphine Garnier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- CRCINA INSERM U1232 Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Tuan Huy Nguyen
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| |
Collapse
|
27
|
Abstract
Introduction: Liver disease is an increasing cause of worldwide mortality, and currently the only curative treatment for end-stage liver disease is whole organ allograft transplantation. Whilst this is an effective treatment, there is a shortage of suitable grafts and consequently some patients die whilst on the waiting list. Cell therapy provides an alternative treatment to increase liver function and potentially ameliorate fibrosis. Areas covered: In this review, we discuss the different cellular sources for therapy investigated to date in humans including mature hepatocytes, hematopoietic stem cells, mesenchymal stromal cells and hepatic progenitor cells. Cells investigated in animals include embryonic stem cells, induced pluripotent stem cells and directly reprogrammed cells. We then appraise the experience and evidence base underlying each cell type. Expert opinion: We discuss how this field may evolve in the years to come focusing on opportunities to enhance the intrinsic regenerative response with therapeutic targets and cell therapies. Growing expertise in tissue engineering will likely lead to increasingly complex bio-reactors and bio-artificial livers, which open a further avenue to restore liver function and delay or prevent the need for transplantation.
Collapse
Affiliation(s)
- Alexander Boyd
- a NIHR Birmingham Biomedical Research Centre , University Hospitals Birmingham NHS Foundation Trust and University of Birmingham , Birmingham , UK.,b Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy , University of Birmingham , Birmingham , UK.,c Liver Unit , University Hospitals Birmingham NHS Foundation Trust , Birmingham , UK
| | - Philip Newsome
- a NIHR Birmingham Biomedical Research Centre , University Hospitals Birmingham NHS Foundation Trust and University of Birmingham , Birmingham , UK.,b Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy , University of Birmingham , Birmingham , UK.,c Liver Unit , University Hospitals Birmingham NHS Foundation Trust , Birmingham , UK
| | - Wei-Yu Lu
- b Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy , University of Birmingham , Birmingham , UK
| |
Collapse
|
28
|
Zhou W, Nelson ED, Abu Rmilah AA, Amiot BP, Nyberg SL. Stem Cell-Related Studies and Stem Cell-Based Therapies in Liver Diseases. Cell Transplant 2019; 28:1116-1122. [PMID: 31240944 PMCID: PMC6767888 DOI: 10.1177/0963689719859262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Owing to the increasing worldwide burden of liver diseases, the crucial need for safe and
effective interventions for treating end-stage liver failure has been a very productive
line of inquiry in the discipline of hepatology for many years. Liver transplantation is
recognized as the most effective treatment for end-stage liver disease; however, the
shortage of donor organs, high medical costs, and lifelong use of immunosuppressive agents
represent major drawbacks and demand exploration for alternative treatments. Stem
cell-based therapies have been widely studied in the field of liver diseases and are
considered to be among the most promising therapies. Herein, we review recent advances in
the application of stem cell-related therapies in liver disease with the aim of providing
readers with relevant knowledge in this field and inspiration to spur further inquiry.
Collapse
Affiliation(s)
- Wei Zhou
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA.,The First Affiliated Hospital of China Medical University, Hepatobiliary Surgery, Shenyang, China
| | - Erek D Nelson
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| | - Anan A Abu Rmilah
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| | - Bruce P Amiot
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| | - Scott L Nyberg
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| |
Collapse
|
29
|
Pettinato G, Lehoux S, Ramanathan R, Salem MM, He LX, Muse O, Flaumenhaft R, Thompson MT, Rouse EA, Cummings RD, Wen X, Fisher RA. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with Endothelial Cells. Sci Rep 2019; 9:8920. [PMID: 31222080 PMCID: PMC6586904 DOI: 10.1038/s41598-019-45514-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
Despite advances in stem cell research, cell transplantation therapy for liver failure is impeded by a shortage of human primary hepatocytes (HPH), along with current differentiation protocol limitations. Several studies have examined the concept of co-culture of human induced pluripotent cells (hiPSCs) with various types of supporting non-parenchymal cells to attain a higher differentiation yield and to improve hepatocyte-like cell functions both in vitro and in vivo. Co-culturing hiPSCs with human endothelial cells (hECs) is a relatively new technique that requires more detailed studies. Using our 3D human embryoid bodies (hEBs) formation technology, we interlaced Human Adipose Microvascular Endothelial Cells (HAMEC) with hiPSCs, leading to a higher differentiation yield and notable improvements across a wide range of hepatic functions. We conducted a comprehensive gene and protein secretion analysis of our HLCs coagulation factors profile, showing promising results in comparison with HPH. Furthermore, a stage-specific glycomic analysis revealed that the differentiated hepatocyte-like clusters (HLCs) resemble the glycan features of a mature tissue rather than cells in culture. We tested our HLCs in animal models, where the presence of HAMEC in the clusters showed a consistently better performance compared to the hiPSCs only group in regard to persistent albumin secretion post-transplantation.
Collapse
Affiliation(s)
- Giuseppe Pettinato
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Glycomics Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajesh Ramanathan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mohamed M Salem
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li-Xia He
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oluwatoyosi Muse
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert Flaumenhaft
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Melissa T Thompson
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emily A Rouse
- Glycomics Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert A Fisher
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Cisneros T, Dillard DW, Qu X, Arredondo-Guerrero J, Castro M, Schaffert S, Martin R, Esquivel CO, Krams SM, Martinez OM. Differential role of natural killer group 2D in recognition and cytotoxicity of hepatocyte-like cells derived from embryonic stem cells and induced pluripotent stem cells. Am J Transplant 2019; 19:1652-1662. [PMID: 30549427 PMCID: PMC6543818 DOI: 10.1111/ajt.15217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023]
Abstract
Stem cell-based approaches have the potential to address the organ shortage in transplantation. Whereas both embryonic stem cells and induced pluripotent stem cells have been utilized as cellular sources for differentiation and lineage specification, their relative ability to be recognized by immune effector cells is unclear. We determined the expression of immune recognition molecules on hepatocyte-like cells (HLC) generated from murine embryonic stem cells and induced pluripotent stem cells, compared to adult hepatocytes, and we evaluated the impact on recognition by natural killer (NK) cells. We report that HLC lack MHC class I expression, and that embryonic stem cell-derived HLC have higher expression of the NK cell activating ligands Rae1, H60, and Mult1 than induced pluripotent stem cell-derived HLC and adult hepatocytes. Moreover, the lack of MHC class I renders embryonic stem cell-derived HLC, and induced pluripotent stem cell-derived HLC, susceptible to killing by syngeneic and allogeneic NK cells. Both embryonic stem cell-derived HLC, and induced pluripotent stem cell-derived HLC, are killed by NK cells at higher levels than adult hepatocytes. Finally, we demonstrate that the NK cell activation receptor, NKG2D, plays a key role in NK cell cytotoxicity of embryonic stem cell-derived HLC, but not induced pluripotent stem cell-derived HLC.
Collapse
Affiliation(s)
- Trinidad Cisneros
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA,Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle W. Dillard
- Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiumei Qu
- Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Martha Castro
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA
| | - Steven Schaffert
- Stanford Center for Biomedical Informatics Research,
Stanford University School of Medicine, Stanford, CA, USA
| | - Renata Martin
- Department of Biology, Stanford University School of
Medicine, Stanford, CA, USA
| | - Carlos O. Esquivel
- Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M. Krams
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA,Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M. Martinez
- Stanford Immunology, Stanford University School of
Medicine, Stanford, CA, USA,Department of Surgery/Division of Abdominal
Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
31
|
Azandeh S, Nejad DB, Bayati V, Shakoor F, Varaa N, Cheraghian B. High mannoronic acid containing alginate affects the differentiation of Wharton's jelly-derived stem cells to hepatocyte-like cell. J Adv Pharm Technol Res 2019; 10:9-15. [PMID: 30815382 PMCID: PMC6383346 DOI: 10.4103/japtr.japtr_312_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For transplantation of cell into injured tissues, cells should be transferred to the damaged site through an adequate carrier. Nevertheless, the nutrient-limited and hypoxic condition in the carrier can bring about broad cell death. This study set to assess the impact of alginate concentrations on the differentiation and the proliferation of cells encapsulated in alginate hydrogels. Human Wharton's Jelly-derived Mesenchymal Stem Cells (HWJ-MSCs) were encapsulated in two concentrations of alginate hydrogel. Then, the proliferation and the hepatic differentiation were evaluated with an MTT assay and the enzyme-linked immunosorbent assay software and urea production. The results demonstrated that the proliferation of cell and urea production in 1.5% alginate concentration was higher than in 2.5% alginate concentration in the hydrogels of alginate. We deduce that the optimized alginate hydrogel concentration is necessary for achieving comparable cell activities in three-dimensional culture.
Collapse
Affiliation(s)
- Saeed Azandeh
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Bijan Nejad
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Foroug Shakoor
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Varaa
- Department of Anatomical Science, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Yokoyama T, Yagi Mendoza H, Tanaka T, Ii H, Takano R, Yaegaki K, Ishikawa H. Regulation of CCl 4-induced liver cirrhosis by hepatically differentiated human dental pulp stem cells. Hum Cell 2019; 32:125-140. [PMID: 30637566 DOI: 10.1007/s13577-018-00234-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
Abstract
Liver transplantation is the most effective treatment for treating liver cirrhosis. However, a limited number of donors, graft rejection, and other complications can undermine transplant success. It is considered that cell transplantation is an alternative approach of liver transplantation. We previously developed a protocol for hepatic differentiation of cluster of differentiation 117+ stem cells isolated from human exfoliated deciduous tooth pulp (SHEDs) under hydrogen sulfide exposure. These cells showed excellent hepatic function. Here, we investigated whether hepatocyte-like cell transplantation is effective for treating carbon tetrachloride (CCl4)-induced liver cirrhosis. SHEDs were hepatically differentiated, which was confirmed via immunological analyses and albumin concentration determination in the medium. Rats were intraperitoneally injected with CCl4 for and the differentiated cells were injected into rat spleen. Histopathological and immunohistochemical analyses were performed. Liver functions were serologically and pathologically determined. Quantitative real-time-polymerase chain reaction was implemented to clarify the treatment procedure of liver cirrhosis. In vitro-differentiated hepatocyte-like cells were positive for all examined hepatic markers. SHED-derived hepatocyte transplantation eliminated liver fibrosis and restored liver structure in rats. Liver immunohistochemical analyses showed the presence of human-specific hepatic markers, i.e., a large amount of human hepatic cells were very active in the liver and spleen. Serological tests revealed significant liver function recovery in the transplantation group. Expression of genes promoting fibrosis increased after cirrhosis induction but was suppressed after transplantation. Our results suggest that xenotransplantation of hepatocyte-like cells of human origin can treat cirrhosis. Moreover, cell-based therapy of chronic liver conditions may be an effective option.
Collapse
Affiliation(s)
- Tomomi Yokoyama
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Hiromi Yagi Mendoza
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Tomoko Tanaka
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Hisataka Ii
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Riya Takano
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan
| | - Ken Yaegaki
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Hiroshi Ishikawa
- Department of Oral Health, The Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.,Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Laboratory of Advanced Research D # 326, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
33
|
Aimaiti Y, Jin X, Shao Y, Wang W, Li D. Hepatic stellate cells regulate hepatic progenitor cells differentiation via the TGF-β1/Jagged1 signaling axis. J Cell Physiol 2018; 234:9283-9296. [PMID: 30317614 DOI: 10.1002/jcp.27609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Hepatic stellate cells (HSCs) play an important microenvironmental role in hepatic progenitor cells (HPCs) differentiation fate. To reveal the specific mechanism of HSCs induced by transforming growth factor β1 (TGF-β1) signaling in HPCs differentiation process, we used Knockin and knockdown technologies induced by lentivirus to upregulate or downregulate TGF-β1 level in mouse HSCs (mHSCs) (mHSCs-TGF-β1 or mHSCs-TGF-βR1sih3). Primary mouse HPCs (mHPCs) were isolated and were cocultured with mHSCs-TGF-β1 and mHSCs-TGF-βR1sih3 for 7 days. Differentiation of mHPCs was detected by quantitative reverse transcriptase polymerase chain reaction analysis and immunofluorence in vitro. mHPCs-E14.5 cell lines and differently treated mHSCs were cotransplanted into mice spleens immediately after establishment of acute liver injury model for animal studies. Engraftment and differentiation of transplanted cells as well as liver function recovery were measured at the seventh day via different methods. mHSCs-TGF-β1 were transformed into myofibroblasts and highly expressed Jagged1, but that expression was reduced after blockage of TGF-β1 signaling. mHPCs highly expressed downstream markers of Jagged1/Notch signaling and cholangiocyte markers (CK19, SOX9, and Hes1) after coculture with mHSCs-TGF-β1 in vitro. In contrast, mature hepatocyte marker (ALB) was upregulated in mHPCs in coculture conditions with mHSCs-TGF-βR1sih3. At the seventh day of cell transplantation assay, mHPCs-E 14.5 engrafted and differentiated into cholangiocytes after cotransplanting with TGF-β1-knockin mHSCs, but the cells had a tendency to differentiate into hepatocytes when transplanted with TGF-βR1-knockdown mHSCs, which corresponded to in vitro studies. HSCs play an important role in regulating HPCs differentiation into cholangiocytes via the TGF-β1/Jagged1 signaling axis. However, HPCs have a tendency to differentiate into hepatocytes after blockage of TGF-β1 signaling in HSCs.
Collapse
Affiliation(s)
- Yasen Aimaiti
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory on Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Xin Jin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Shao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dewei Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Varaa N, Azandeh S, Khorsandi L, Bijan Nejad D, Bayati V, Bahreini A. Ameliorating effect of encapsulated hepatocyte-like cells derived from umbilical cord in high mannuronic alginate scaffolds on acute liver failure in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:928-935. [PMID: 30524693 PMCID: PMC6272072 DOI: 10.22038/ijbms.2018.27928.6847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/18/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES In this study, effects of encapsulated umbilical cord stem cells (UCSCs)-derived hepatocyte-like cells (HLCs) in high mannuronic alginate scaffolds was investigated on CCl4-induced acute liver failure (ALF) in rats. MATERIAL AND METHODS UCSCs were encapsulated in high mannuronic alginate scaffolds. Then the UCSCs differentiated into HLCs for treatment of CCl4-induced ALF in rats. Thirty rats randomly divided into 5 groups: Intoxicated group received only CCl4 to induce ALF. In other groups including cell-free, UCSCs and HLCs, alginate scaffolds were transplanted into the liver 4 days after CCl4 injection. Biochemical markers including albumin (ALB), blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated. Histological changes and gene expression of ALB, alpha-fetoprotein (AFP), and cytokeratin 18 (CK-18) were also assessed. RESULTS Expression of CK-18 significantly increased in HLCs compared to the UCSCs in vitro. This indicates that UCSCs can effectively differentiate into the HLCs. In CCl4-intoxicated group, BUN, AST and ALT levels, and histological criteria, such as infiltration of inflammatory cells, accumulation of reticulocytes, nuclear pyknosis of hepatocyte and sinusoidal dilation, significantly increased. In this group, ALB secretion significantly decreased, while AFP expression significantly increased. Both UCSCs and HLCs encapsulated in alginate scaffolds effectively attenuated biochemical tests, improved liver cytoarchitecture, increased expression of ALB and reduced AFP expression. CONCLUSION Finding of the present study indicated that encapsulation of UCSCs or HLCs in alginate mannuronic scaffolds effectively improve CCl4-induced ALF.
Collapse
Affiliation(s)
- Negar Varaa
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Azandeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Bijan Nejad
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Bahreini
- Transplantation Ward, Ahvaz Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
35
|
Azhdari Tafti Z, Mahmoodi M, Hajizadeh MR, Ezzatizadeh V, Baharvand H, Vosough M, Piryaei A. Conditioned Media Derived from Human Adipose Tissue Mesenchymal Stromal Cells Improves Primary Hepatocyte Maintenance. CELL JOURNAL 2018; 20:377-387. [PMID: 29845792 PMCID: PMC6004997 DOI: 10.22074/cellj.2018.5288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Objective Recent advances in cell therapy have encouraged researchers to provide an alternative for treatment and
restoration of damaged liver through using hepatocytes. However, these cells quickly lose their functional capabilities in vitro.
Here, we aim to use the secretome of mesenchymal stromal cells (MSCs) to improve in vitro maintenance conditions for
hepatocytes.
Materials and Methods In this experimental study, following serum deprivation, human adipose tissue-derived MSCs
(hAT-MSCs) were cultured for 24 hours under normoxic (N) and hypoxic (H) conditions. Their conditioned media (CM)
were subsequently collected and labeled as N-CM (normoxia) and H-CM (hypoxia). Murine hepatocytes were isolated
by perfusion of mouse liver with collagenase, and were cultured in hepatocyte basal (William’s) medium supplemented
with 4% N-CM or H-CM. Untreated William’s and hepatocyte-specific media (HepZYM) were used as controls. Finally,
we evaluated the survival and proliferation rates, as well as functionality and hepatocyte-specific gene expressions of
the cells.
Results We observed a significant increase in viability of hepatocytes in the presence of N-CM and H-CM compared
to HepZYM on day 5, as indicated by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium) assay. Indocyanine green (ICG) uptake of hepatocytes in the H-CM and HepZYM groups on days 3 and
5 also suggested that H-CM maintained the hepatocytes at about the same level as the hepatocyte-specific medium.
The HepZYM group had significantly higher levels of albumin (Alb) and urea secretion compared to the other groups
(P<0.0001). However, there were no significant differences in cytochrome activity and cytochrome gene expression
profiles among these groups. Finally, we found a slightly, but not significantly higher concentration of vascular endothelial
growth factor (VEGF) in the H-CM group compared to the N-CM group (P=0.063).
Conclusion The enrichment of William’s basal medium with 4% hAT-MSC-H-CM improved some physiologic
parameters in a primary hepatocyte culture.
Collapse
Affiliation(s)
- Zahra Azhdari Tafti
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohamad Reza Hajizadeh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Medical Genetics, Medical Laboratory Center, Royesh Medical Group, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
36
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
37
|
Fagg WS, Liu N, Yang MJ, Cheng K, Chung E, Kim JS, Wu G, Fair J. Magnetic Targeting of Stem Cell Derivatives Enhances Hepatic Engraftment into Structurally Normal Liver. Cell Transplant 2017; 26:1868-1877. [PMID: 29390880 PMCID: PMC5802632 DOI: 10.1177/0963689717737320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Attaining consistent robust engraftment in the structurally normal liver is an obstacle for cellular transplantation. Most experimental approaches to increase transplanted cells' engraftment involve recipient-centered deleterious methods such as partial hepatectomy or irradiation which may be unsuitable in the clinic. Here, we present a cell-based strategy that increases engraftment into the structurally normal liver using a combination of magnetic targeting and proliferative endoderm progenitor (EPs) cells. Magnetic labeling has little effect on cell viability and differentiation, but in the presence of magnetic targeting, it increases the initial dwell time of transplanted EPs into the undamaged liver parenchyma. Consequently, greater cell retention in the liver is observed concomitantly with fewer transplanted cells in the lungs. These highly proliferative cells then significantly increase their biomass over time in the liver parenchyma, approaching nearly 4% of total liver cells 30 d after transplant. Therefore, the cell-based mechanisms of increased initial dwell time through magnetic targeting combined with high rate of proliferation in situ yield significant engraftment in the undamaged liver.
Collapse
Affiliation(s)
- W. Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch Galveston, TX, USA
- Shriners Hospital for Children, University of Texas Medical Branch, Galveston, TX, USA
| | - Naiyou Liu
- Transplant Division, Department of Surgery, University of Texas Medical Branch Galveston, TX, USA
- Shriners Hospital for Children, University of Texas Medical Branch, Galveston, TX, USA
| | - Ming-Jim Yang
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Ke Cheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric Chung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae-Sung Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gordon Wu
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey Fair
- Transplant Division, Department of Surgery, University of Texas Medical Branch Galveston, TX, USA
- Shriners Hospital for Children, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
38
|
Takayama K, Akita N, Mimura N, Akahira R, Taniguchi Y, Ikeda M, Sakurai F, Ohara O, Morio T, Sekiguchi K, Mizuguchi H. Generation of safe and therapeutically effective human induced pluripotent stem cell-derived hepatocyte-like cells for regenerative medicine. Hepatol Commun 2017; 1:1058-1069. [PMID: 29404442 PMCID: PMC5721405 DOI: 10.1002/hep4.1111] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022] Open
Abstract
Hepatocyte‐like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells are expected to be applied for regenerative medicine. In this study, we attempted to generate safe and therapeutically effective human iPS‐HLCs for hepatocyte transplantation. First, human iPS‐HLCs were generated from a human leukocyte antigen‐homozygous donor on the assumption that the allogenic transplantation might be carried out. Highly efficient hepatocyte differentiation was performed under a feeder‐free condition using human recombinant laminin 111, laminin 511, and type IV collagen. The percentage of asialoglycoprotein receptor 1‐positive cells was greater than 80%, while the percentage of residual undifferentiated cells was approximately 0.003%. In addition, no teratoma formation was observed even at 16 weeks after human iPS‐HLC transplantation. Furthermore, harmful genetic somatic single‐nucleotide substitutions were not observed during the hepatocyte differentiation process. We also developed a cryopreservation protocol for hepatoblast‐like cells without negatively affecting their hepatocyte differentiation potential by programming the freezing temperature. To evaluate the therapeutic potential of human iPS‐HLCs, these cells (1 × 106 cells/mouse) were intrasplenically transplanted into acute liver injury mice treated with 3 mL/kg CCl4 only once and chronic liver injury mice treated with 0.6 mL/kg CCl4 twice weekly for 8 weeks. By human iPS‐HLC transplantation, the survival rate of the acute liver injury mice was significantly increased and the liver fibrosis level of chronic liver injury mice was significantly decreased. Conclusion: We were able to generate safe and therapeutically effective human iPS‐HLCs for hepatocyte transplantation. (Hepatology Communications 2017;1:1058–1069)
Collapse
Affiliation(s)
- Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan.,PRESTO, Japan Science and Technology Agency Saitama Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition Osaka Japan
| | - Naoki Akita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition Osaka Japan
| | - Natsumi Mimura
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition Osaka Japan
| | | | | | - Makoto Ikeda
- Department of Technology Development Kazusa DNA Research Institute Chiba Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Project, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Osamu Ohara
- Department of Technology Development Kazusa DNA Research Institute Chiba Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology Tokyo Medical and Dental University Tokyo Japan
| | | | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan.,Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition Osaka Japan.,Global Center for Medical Engineering and Informatics Osaka University Osaka Japan
| |
Collapse
|
39
|
Kuo YC, Rajesh R. Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Cayo MA, Mallanna SK, Di Furio F, Jing R, Tolliver LB, Bures M, Urick A, Noto FK, Pashos EE, Greseth MD, Czarnecki M, Traktman P, Yang W, Morrisey EE, Grompe M, Rader DJ, Duncan SA. A Drug Screen using Human iPSC-Derived Hepatocyte-like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia. Cell Stem Cell 2017; 20:478-489.e5. [PMID: 28388428 DOI: 10.1016/j.stem.2017.01.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Efforts to identify pharmaceuticals to treat heritable metabolic liver diseases have been hampered by the lack of models. However, cells with hepatocyte characteristics can be produced from induced pluripotent stem cells (iPSCs). Here, we have used hepatocyte-like cells generated from homozygous familial hypercholesterolemia (hoFH) iPSCs to identify drugs that can potentially be repurposed to lower serum LDL-C. We found that cardiac glycosides reduce the production of apolipoprotein B (apoB) from human hepatocytes in culture and the serum of avatar mice harboring humanized livers. The drugs act by increasing the turnover of apoB protein. Analyses of patient medical records revealed that the treatment of patients with cardiac glycosides reduced serum LDL-C levels. These studies highlight the effectiveness of using iPSCs to screen for potential treatments for inborn errors of hepatic metabolism and suggest that cardiac glycosides could provide an approach for reducing hepatocyte production of apoB and treating hypercholesterolemia.
Collapse
Affiliation(s)
- Max A Cayo
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Sunil K Mallanna
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Francesca Di Furio
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ran Jing
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Lauren B Tolliver
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Matthew Bures
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Amanda Urick
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Fallon K Noto
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Evanthia E Pashos
- Departments of Medicine and Genetics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew D Greseth
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Maciej Czarnecki
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Paula Traktman
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425, USA
| | - Wenli Yang
- Department of Medicine and Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine and Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 South West Sam Jackson Park Road/L321, Portland, OR 97239, USA
| | - Daniel J Rader
- Departments of Medicine and Genetics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425, USA.
| |
Collapse
|
41
|
Clinical Application of Pluripotent Stem Cells: An Alternative Cell-Based Therapy for Treating Liver Diseases? Transplantation 2017; 100:2548-2557. [PMID: 27495745 DOI: 10.1097/tp.0000000000001426] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The worldwide shortage of donor livers for organ and hepatocyte transplantation has prompted the search for alternative therapies for intractable liver diseases. Cell-based therapy is envisaged as a useful therapeutic option to recover and stabilize the lost metabolic function for acute liver failure, end-stage and congenital liver diseases, or for those patients who are not considered eligible for organ transplantation. In recent years, research to identify alternative and reliable cell sources for transplantation that can be derived by reproducible methods has been encouraged. Human pluripotent stem cells (PSCs), which comprise both embryonic and induced PSCs, may offer many advantages as an alternative to hepatocytes for liver cell therapy. Their capacity for expansion, hepatic differentiation and self-renewal make them a promising source of unlimited numbers of hepatocyte-like cells for treating and repairing damaged livers. Immunogenicity and tumorigenicity of human PSCs remain the bottleneck for successful clinical application. However, recent advances made to develop disease-corrected hepatocyte-like cells from patients' human-induced PSCs by gene editing have opened up many potential gateways for the autologous treatment of hereditary liver diseases, which may likely reduce the risk of rejection and the need for lifelong immunosuppression. Well-defined methods to reduce the expression of oncogenic genes in induced PSCs, including protocols for their complete and safe hepatic differentiation, should be established to minimize the tumorigenicity of transplanted cells. On top of this, such new strategies are currently being rigorously tested and validated in preclinical studies before they can be safely transferred to clinical practice with patients.
Collapse
|
42
|
Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In Vitro Generated Hepatocyte-Like Cells: A Novel Tool in Regenerative Medicine and Drug Discovery. CELL JOURNAL 2017; 19:204-217. [PMID: 28670513 PMCID: PMC5412779 DOI: 10.22074/cellj.2016.4362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
Abstract
Hepatocyte-like cells (HLCs) are generated from either various human pluripotent stem
cells (hPSCs) including induced pluripotent stem cells (iPSCs) and embryonic stem cells
(ESCs), or direct cell conversion, mesenchymal stem cells as well as other stem cells like
gestational tissues. They provide potential cell sources for biomedical applications. Liver
transplantation is the gold standard treatment for the patients with end stage liver disease,
but there are many obstacles limiting this process, like insufficient number of donated
healthy livers. Meanwhile, the number of patients receiving a liver organ transplant for
a better life is increasing. In this regard, HLCs may provide an adequate cell source to
overcome these shortages. New molecular engineering approaches such as CRISPR/
Cas system applying in iPSCs technology provide the basic principles of gene correction
for monogenic inherited metabolic liver diseases, as another application of HLCs. It has
been shown that HLCs could replace primary human hepatocytes in drug discovery and
hepatotoxicity tests. However, generation of fully functional HLCs is still a big challenge;
several research groups have been trying to improve current differentiation protocols to
achieve better HLCs according to morphology and function of cells. Large-scale generation
of functional HLCs in bioreactors could make a new opportunity in producing enough
hepatocytes for treating end-stage liver patients as well as other biomedical applications
such as drug studies. In this review, regarding the biomedical value of HLCs, we focus
on the current and efficient approaches for generating hepatocyte-like cells in vitro and
discuss about their applications in regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Kobra Zakikhan
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behshad Pournasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.,Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
43
|
Shiota G, Itaba N. Progress in stem cell-based therapy for liver disease. Hepatol Res 2017; 47:127-141. [PMID: 27188253 DOI: 10.1111/hepr.12747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
Liver transplantation has been accepted as a useful therapeutic approach for patients with end-stage liver disease. However, the mismatch between the great demand for liver transplants and the number of available donor organs underscores the urgent need for alternative therapeutic strategies for patients with acute and chronic liver failure. The rapidly growing knowledge on stem cell biology has opened new avenues toward stem cell-based therapy for liver disease. As stem cells have capacity for high proliferation and multipotent differentiation, the characteristics of stem cells fit the cell therapy. Several types of cells have been investigated as possible sources of liver regeneration: mesenchymal stem cells, hematopoietic stem cells, liver progenitor cells, induced pluripotent stem cells, and bone marrow mononuclear cells. In vitro and in vivo experiments revealed that these cells have great potential as candidates of stem cell therapy. We reviewed the reports on clinical trials of cell therapy for liver disease that have been recently undertaken using mesenchymal stem cells, hematopoietic stem cells, bone marrow mononuclear cells, and liver progenitor cells. These reports have heterogeneity of description of trial design, types of infused cells, patient population, and efficacy of therapies. We addressed these reports from these viewpoints and clarified their significance. We hope that this review article will provide a perspective on the available approaches based on stem cell-based therapy for liver disease.
Collapse
Affiliation(s)
- Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Noriko Itaba
- Departments of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
44
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Goya T, Suzuki A. Novel methods for the treatment of liver fibrosis using in vivo direct reprogramming technology. Stem Cell Investig 2016; 3:92. [PMID: 28078272 DOI: 10.21037/sci.2016.11.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Takeshi Goya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;; Core Research for Evolutional Science and Technology, The Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
46
|
Novo E, Cannito S, Parola M. In vivo reprogramming of hepatic myofibroblasts into hepatocytes attenuates liver fibrosis: back to the future? Stem Cell Investig 2016; 3:53. [PMID: 27777942 DOI: 10.21037/sci.2016.09.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, School of Medicine, University of Torino, Torino, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, School of Medicine, University of Torino, Torino, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, School of Medicine, University of Torino, Torino, Italy
| |
Collapse
|
47
|
Pettinato G, Ramanathan R, Fisher RA, Mangino MJ, Zhang N, Wen X. Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition. Sci Rep 2016; 6:32888. [PMID: 27616299 PMCID: PMC5018737 DOI: 10.1038/srep32888] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of acute liver failure by cell transplantation is hindered by a shortage of human hepatocytes. Current protocols for hepatic differentiation of human induced pluripotent stem cells (hiPSCs) result in low yields, cellular heterogeneity, and limited scalability. In the present study, we have developed a novel multicellular spheroid-based hepatic differentiation protocol starting from embryoid bodies of hiPSCs (hiPSC-EBs) for robust mass production of human hepatocyte-like cells (HLCs) using two novel inhibitors of the Wnt pathway. The resultant hiPSC-EB-HLCs expressed liver-specific genes, secreted hepatic proteins such as Albumin, Alpha Fetoprotein, and Fibrinogen, metabolized ammonia, and displayed cytochrome P450 activities and functional activities typical of mature primary hepatocytes, such as LDL storage and uptake, ICG uptake and release, and glycogen storage. Cell transplantation of hiPSC-EB-HLC in a rat model of acute liver failure significantly prolonged the mean survival time and resolved the liver injury when compared to the no-transplantation control animals. The transplanted hiPSC-EB-HLCs secreted human albumin into the host plasma throughout the examination period (2 weeks). Transplantation successfully bridged the animals through the critical period for survival after acute liver failure, providing promising clues of integration and full in vivo functionality of these cells after treatment with WIF-1 and DKK-1.
Collapse
Affiliation(s)
- Giuseppe Pettinato
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rajesh Ramanathan
- Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Robert A Fisher
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Martin J. Mangino
- Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Ning Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200120, People’s Republic of China
| |
Collapse
|
48
|
Hepatocyte-like cells derived from induced pluripotent stem cells. Hepatol Int 2016; 11:54-69. [PMID: 27530815 DOI: 10.1007/s12072-016-9757-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
Abstract
The discovery that coordinated expression of a limited number of genes can reprogram differentiated somatic cells to induced pluripotent stem cells (iPSC) has opened novel possibilities for developing cell-based models of diseases and regenerative medicine utilizing cell reprogramming or cell transplantation. Directed differentiation of iPSCs can potentially generate differentiated cells belonging to any germ layer, including cells with hepatocyte-like morphology and function. Such cells, termed iHeps, can be derived by sequential cell signaling using available information on embryological development or by forced expression of hepatocyte-enriched transcription factors. In addition to the translational aspects of iHeps, the experimental findings have provided insights into the mechanisms of cell plasticity that permit one cell type to transition to another. However, iHeps generated by current methods do not fully exhibit all characteristics of mature hepatocytes, highlighting the need for additional research in this area. Here we summarize the current approaches and achievements in this field and discuss some existing hurdles and emerging approaches for improving iPSC differentiation, as well as maintaining such cells in culture for increasing their utility in disease modeling and drug development.
Collapse
|
49
|
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Clara Steichen
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Noushin Dianat
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Weber
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France.
| |
Collapse
|
50
|
Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. ACTA ACUST UNITED AC 2016; 67:14.13.1-14.13.27. [PMID: 26828329 DOI: 10.1002/0471140856.tx1413s67] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Julio C Davila
- Department of Biochemistry, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Massoud Vosough
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristen J Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Experimental Pathology, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut
| | - Stephen C Strom
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|