1
|
Michielon E, Boninsegna M, Waaijman T, Fassini D, Spiekstra SW, Cramer J, Gaudriault P, Kodolányi J, de Gruijl TD, Homs-Corbera A, Gibbs S. Environmentally Controlled Microfluidic System Enabling Immune Cell Flow and Activation in an Endothelialised Skin-On-Chip. Adv Healthc Mater 2024:e2400750. [PMID: 39370595 DOI: 10.1002/adhm.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/17/2024] [Indexed: 10/08/2024]
Abstract
Integration of reconstructed human skin (RhS) into organ-on-chip (OoC) platforms addresses current limitations imposed by static culturing. This innovation, however, is not without challenges. Microfluidic devices, while powerful, often encounter usability, robustness, and gas bubble issues that hinder large-scale high-throughput setups. This study aims to develop a novel re-usable multi-well microfluidic adaptor (MMA) with the objective to provide a flexible tool for biologists implementing complex 3D biological models (e.g., skin) while enabling simultaneous user control over temperature, medium flow, oxigen (O2), nitrogen (N2), and carbon dioxide (CO2) without the need for an incubator. The presented MMA device is designed to be compatible with standard, commercially available 6-well multi-well plates (6MWPs) and 12-well transwells. This MMA-6MWP setup is employed to generate a skin-on-chip (SoC). RhS viability is maintained under flow for three days and their morphology closely resembles that of native human skin. A proof-of-concept study demonstrates the system's potential in toxicology applications by combining endothelialised RhS with flowing immune cells. This dynamic setting activates the monocyte-like MUTZ-3 cells (CD83 and CD86 upregulation) upon topical exposure of RhS to a sensitizer, revealing the MMA-6MWP's unique capabilities compared to static culturing, where such activation is absent.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam UMC, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands
| | - Matteo Boninsegna
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
- Department of Physics, Bielefeld University, Universitätsstr 25, 33615, Bielefeld, Germany
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Dario Fassini
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jeremy Cramer
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - Pierre Gaudriault
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - János Kodolányi
- Department of Dental Material Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, 1081 LA, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam UMC, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Antoni Homs-Corbera
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, 1081 LA, The Netherlands
| |
Collapse
|
2
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
3
|
Safarzadeh M, Richardson LS, Kammala AK, Mosebarger A, Bettayeb M, Kim S, Lam PY, Radnaa E, Han A, Menon R. A multi-organ, feto-maternal interface organ-on-chip, models pregnancy pathology and is a useful preclinical extracellular vesicle drug trial platform. EXTRACELLULAR VESICLE 2024; 3:100035. [PMID: 38872854 PMCID: PMC11175617 DOI: 10.1016/j.vesic.2024.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Pregnant women and their fetuses are often excluded from clinical trials due to missing drug-related pre-clinical trial information at the human feto-maternal interface (FMi). The two interfaces-placenta/decidua and fetal membranes/decidua are gatekeepers of drug transport; however, testing their functions is impractical during pregnancy. Limitations of current in-vivo/in-vitro models have hampered drug development and testing during pregnancy. Hence, major complications like preterm births and maternal and neonatal mortalities remain high. Advancements in organ-on-chip (OOC) platforms to test drug kinetics and efficacy and novel extracellular vesicle-based fetal drug delivery are expected to accelerate preclinical trials related to pregnancy complications. Here we report the development and testing of a humanized multi-organ fetal membrane/placenta (fetal)-decidua (maternal) interface OOC (FMi-PLA-OOC) that contains seven cell types interconnected through microchannels to maintain intercellular interactions as seen in-utero. Cytotoxicity, propagation, mechanism of action, and efficacy of engineered extracellular vesicles containing anti-inflammatory interleukin (IL)-10 (eIL-10) were evaluated to reduce FMi inflammation associated with preterm birth. A healthy and disease model (lipopolysaccharide-infectious inflammation) of the FMi-PLA-OOC was created and co-treated with eIL-10. eIL-10 propagated from the maternal to fetal side within 72-hours, localized in all cell types, showed no cytotoxicity, activated IL-10 signaling pathways, and reduced lipopolysaccharide-induced inflammation (minimized NF-kB activation and proinflammatory cytokine production). These data recapitulated eIL-10s' ability to reduce inflammation and delay infection-associated preterm birth in mouse models, suggesting FMi-PLA-OOC as an alternative approach to using animal models. Additionally, we report the utility of eIL-10 that can traverse through FMis to reduce inflammation-associated pregnancy complications.
Collapse
Affiliation(s)
- Melody Safarzadeh
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Angela Mosebarger
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Mohamed Bettayeb
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Biomedical Engineering and Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Biomedical Engineering and Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Arum Han
- Department of Biomedical Engineering and Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
4
|
Bhar B, Das E, Manikumar K, Mandal BB. 3D Bioprinted Human Skin Model Recapitulating Native-Like Tissue Maturation and Immunocompetence as an Advanced Platform for Skin Sensitization Assessment. Adv Healthc Mater 2024; 13:e2303312. [PMID: 38478847 DOI: 10.1002/adhm.202303312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Physiologically-relevant in vitro skin models hold the utmost importance for efficacy assessments of pharmaceutical and cosmeceutical formulations, offering valuable alternatives to animal testing. Here, an advanced immunocompetent 3D bioprinted human skin model is presented to assess skin sensitization. Initially, a photopolymerizable bioink is formulated using silk fibroin methacrylate, gelatin methacrylate, and photoactivated human platelet releasate. The developed bioink shows desirable physicochemical and rheological attributes for microextrusion bioprinting. The tunable physical and mechanical properties of bioink are modulated through variable photocuring time for optimization. Thereafter, the bioink is utilized to 3D bioprint "sandwich type" skin construct where an artificial basement membrane supports a biomimetic epidermal layer on one side and a printed pre-vascularized dermal layer on the other side within a transwell system. The printed construct is further cultured in the air-liquid interface for maturation. Immunofluorescence staining demonstrated a differentiated keratinocyte layer and dermal extracellular matrix (ECM)-remodeling by fibroblasts and endothelial cells. The biochemical estimations and gene-expression analysis validate the maturation of the printed model. The incorporation of macrophages further enhances the physiological relevance of the model. This model effectively classifies skin irritative and non-irritative substances, thus establishing itself as a suitable pre-clinical screening platform for sensitization tests.
Collapse
Affiliation(s)
- Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Eshani Das
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kodieswaran Manikumar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
5
|
Fernandez-Carro E, Remacha AR, Orera I, Lattanzio G, Garcia-Barrios A, del Barrio J, Alcaine C, Ciriza J. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int J Mol Sci 2024; 25:4020. [PMID: 38612828 PMCID: PMC11011913 DOI: 10.3390/ijms25074020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.
Collapse
Affiliation(s)
- Estibaliz Fernandez-Carro
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Ana Rosa Remacha
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Giuseppe Lattanzio
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Alberto Garcia-Barrios
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jesús del Barrio
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
6
|
Wang M, Zhang L, Hao H, Yan M, Zhu Z. Applications of Engineered Skin Tissue for Cosmetic Component and Toxicology Detection. Cell Transplant 2024; 33:9636897241235464. [PMID: 38491929 PMCID: PMC10944590 DOI: 10.1177/09636897241235464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024] Open
Abstract
The scale of the cosmetic market is increasing every day. There are many safety risks to cosmetics, but they benefit people at the same time. The skin can become red, swollen, itchy, chronically toxic, and senescent due to the misuse of cosmetics, triggering skin injuries, with contact dermatitis being the most common. Therefore, there is an urgent need for a system that can scientifically and rationally detect the composition and perform a toxicological assessment of cosmetic products. Traditional detection methods rely on instrumentation and method selection, which are less sensitive and more complex to perform. Engineered skin tissue has emerged with the advent of tissue engineering technology as an emerging bioengineering technology. The ideal engineered skin tissue is the basis for building good in vitro structures and physiological functions in this field. This review introduces the existing cosmetic testing and toxicological evaluation methods, the current development status, and the types and characteristics of engineered skin tissue. The application of engineered skin tissue in the field of cosmetic composition detection and toxicological evaluation, as well as the different types of tissue engineering scaffold materials and three-dimensional (3D) organoid preparation approaches, is highlighted in this review to provide methods and ideas for constructing the next engineered skin tissue for cosmetic raw material component analysis and toxicological evaluation.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Linfeng Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Haojie Hao
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Muyang Yan
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ziying Zhu
- The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
7
|
Scheurer J, Sauer B, Focken J, Giampetraglia M, Jäger A, Schürch CM, Weigelin B, Schittek B. Histological and functional characterization of 3D human skin models mimicking the inflammatory skin diseases psoriasis and atopic dermatitis. Dis Model Mech 2024; 17:dmm050541. [PMID: 38251799 PMCID: PMC10846593 DOI: 10.1242/dmm.050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Three-dimensional (3D) human skin equivalents have emerged as valuable tools in skin research, replacing animal experimentation and precluding the need for patient biopsies. In this study, we advanced 3D skin equivalents to model the inflammatory skin diseases atopic dermatitis and psoriasis by cytokine stimulation, and were successful in integrating TH1 T cells into skin models to develop an immunocompetent 3D psoriasis model. We performed in-depth histological and functional characterization of 3D skin equivalents and validated them in terms of tissue architecture, pathological changes, expression of antimicrobial peptides and Staphylococcus aureus colonization using 3D reconstruction by multiphoton microscopy and phenotyping by highly multiplexed 'co-detection by indexing' (CODEX) microscopy. We show that our skin equivalents have a structural architecture with a well-developed dermis and epidermis, thus resembling human skin. In addition, the skin models of atopic dermatitis and psoriasis show several phenotypic features of inflammatory skin disease, including disturbed epidermal differentiation and alterations in the expression of epidermal barrier genes and antimicrobial peptides, and can be reliably used to test novel treatment strategies. Therefore, these 3D equivalents will be a valuable tool in experimental dermatological research.
Collapse
Affiliation(s)
- Jasmin Scheurer
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jule Focken
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martina Giampetraglia
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Annika Jäger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Mohamadali M, Ghiaseddin A, Irani S, Amirkhani MA, Dahmardehei M. Design and evaluation of a skin-on-a-chip pumpless microfluidic device. Sci Rep 2023; 13:8861. [PMID: 37258538 DOI: 10.1038/s41598-023-34796-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
The development of microfluidic culture technology facilitates the progress of study of cell and tissue biology. This technology expands the understanding of pathological and physiological changes. A skin chip, as in vitro model, consisting of normal skin tissue with epidermis and dermis layer (full thickness) was developed. Polydimethylsiloxane microchannels with a fed-batched controlled perfusion feeding system were used to create a full-thick ex-vivo human skin on-chip model. The design of a novel skin-on-a-chip model was reported, in which the microchannel structures mimic the architecture of the realistic vascular network as nutrients transporter to the skin layers. Viabilities of full-thick skin samples cultured on the microbioreactor and traditional tissue culture plate revealed that a precise controlled condition provided by the microfluidic enhanced tissue viability at least for seven days. Several advantages in skin sample features under micro-scale-controlled conditions were found such as skin mechanical strength, water adsorption, skin morphology, gene expression, and biopsy longevity. This model can provide an in vitro environment for localizing drug delivery and transdermal drug diffusion studies. The skin on the chip can be a valuable in vitro model for representing the interaction between drugs and skin tissue and a realistic platform for evaluating skin reaction to pharmaceutical materials and cosmetic products.
Collapse
Affiliation(s)
- Marjan Mohamadali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ghiaseddin
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
- Institute for Stem Cell Research and Regenerative Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mostafa Dahmardehei
- Department of Plastic and Reconstructive Surgery, Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Satta S, Rockwood SJ, Wang K, Wang S, Mozneb M, Arzt M, Hsiai TK, Sharma A. Microfluidic Organ-Chips and Stem Cell Models in the Fight Against COVID-19. Circ Res 2023; 132:1405-1424. [PMID: 37167356 PMCID: PMC10171291 DOI: 10.1161/circresaha.122.321877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Sandro Satta
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Sarah J. Rockwood
- Stanford University Medical Scientist Training Program, Palo Alto, CA (S.J.R.)
| | - Kaidong Wang
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Shaolei Wang
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tzung K. Hsiai
- Division of Cardiology and Department of Bioengineering, School of Engineering (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Division of Cardiology, Department of Medicine, School of Medicine (S.S., K.W., S.W., T.K.H.), University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, California (S.S., K.W., S.W., T.K.H.)
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Smidt Heart Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
- Cancer Institute (M.M., M.A., A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
10
|
Józsa L, Nemes D, Pető Á, Kósa D, Révész R, Bácskay I, Haimhoffer Á, Vasvári G. Recent Options and Techniques to Assess Improved Bioavailability: In Vitro and Ex Vivo Methods. Pharmaceutics 2023; 15:pharmaceutics15041146. [PMID: 37111632 PMCID: PMC10144798 DOI: 10.3390/pharmaceutics15041146] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Bioavailability assessment in the development phase of a drug product is vital to reveal the disadvantageous properties of the substance and the possible technological interventions. However, in vivo pharmacokinetic studies provide strong evidence for drug approval applications. Human and animal studies must be designed on the basis of preliminary biorelevant experiments in vitro and ex vivo. In this article, the authors have reviewed the recent methods and techniques from the last decade that are in use for assessing the bioavailability of drug molecules and the effects of technological modifications and drug delivery systems. Four main administration routes were selected: oral, transdermal, ocular, and nasal or inhalation. Three levels of methodologies were screened for each category: in vitro techniques with artificial membranes; cell culture, including monocultures and co-cultures; and finally, experiments where tissue or organ samples were used. Reproducibility, predictability, and level of acceptance by the regulatory organizations are summarized for the readers.
Collapse
Affiliation(s)
- Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Réka Révész
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
11
|
de Dios Andres P, Städler B. Micromotor-Assisted Keratinocytes Migration in a Floating Paper Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201251. [PMID: 35694770 DOI: 10.1002/smll.202201251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Indexed: 06/15/2023]
Abstract
In vitro epidermis models are important to evaluate and study disease progression and possible dermal drug delivery. An in vitro epidermis model using floating paper chips as a scaffold for proliferation and differentiation of primary human keratinocytes is reported. The formation of the four main layers of the epidermis (i.e., basal, spinosum, granulose, and cornified layers) is confirmed. The development of a cornified layer and the tight junction formation are evaluated as well as the alterations of organelles during the differentiation process. Further, this in vitro model is used to assess keratinocyte migration. Finally, magnetic micromotors are assembled, and their ability to aid cell migration on paper chips is confirmed when a static magnetic field is present. Taken together, this attempt to combine bottom-up synthetic biology with dermatology offers interesting opportunities for studying skin disease pathologies and evaluate possible treatments.
Collapse
Affiliation(s)
- Paula de Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
12
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
13
|
Mulder PPG, Raktoe RS, Vlig M, Elgersma A, Middelkoop E, Boekema BKHL. Full Skin Equivalent Models for Simulation of Burn Wound Healing, Exploring Skin Regeneration and Cytokine Response. J Funct Biomater 2023; 14:29. [PMID: 36662076 PMCID: PMC9864292 DOI: 10.3390/jfb14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Healing of burn injury is a complex process that often leads to the development of functional and aesthetic complications. To study skin regeneration in more detail, organotypic skin models, such as full skin equivalents (FSEs) generated from dermal matrices, can be used. Here, FSEs were generated using de-epidermalized dermis (DED) and collagen matrices MatriDerm® and Mucomaix®. Our aim was to validate the MatriDerm- and Mucomaix-based FSEs for the use as in vitro models of wound healing. Therefore, we first characterized the FSEs in terms of skin development and cell proliferation. Proper dermal and epidermal morphogenesis was established in all FSEs and was comparable to ex vivo human skin models. Extension of culture time improved the organization of the epidermal layers and the basement membrane in MatriDerm-based FSE but resulted in rapid degradation of the Mucomaix-based FSE. After applying a standardized burn injury to the models, re-epithelization occurred in the DED- and MatriDerm-based FSEs at 2 weeks after injury, similar to ex vivo human skin. High levels of pro-inflammatory cytokines were present in the culture media of all models, but no significant differences were observed between models. We anticipate that these animal-free in vitro models can facilitate research on skin regeneration and can be used to test therapeutic interventions in a preclinical setting to improve wound healing.
Collapse
Affiliation(s)
- Patrick P. G. Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rajiv S. Raktoe
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Tissue Function and Regeneration, Amsterdam Movement Sciences, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Bouke K. H. L. Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), P.O. Box 1015, 1940 AE Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Li Q, Wang C, Li X, Zhang J, Zhang Z, Yang K, Ouyang J, Zha S, Sha L, Ge J, Chen Z, Gu Z. Epidermis-on-a-chip system to develop skin barrier and melanin mimicking model. J Tissue Eng 2023; 14:20417314231168529. [PMID: 37114033 PMCID: PMC10126702 DOI: 10.1177/20417314231168529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
In vitro skin models are rapidly developing and have been widely used in various fields as an alternative to traditional animal experiments. However, most traditional static skin models are constructed on Transwell plates without a dynamic three-dimensional (3D) culture microenvironment. Compared with native human and animal skin, such in vitro skin models are not completely biomimetic, especially regarding their thickness and permeability. Therefore, there is an urgent need to develop an automated biomimetic human microphysiological system (MPS), which can be used to construct in vitro skin models and improve bionic performance. In this work, we describe the development of a triple-well microfluidic-based epidermis-on-a-chip (EoC) system, possessing epidermis barrier and melanin-mimicking functions, as well as being semi-solid specimen friendly. The special design of our EoC system allows pasty and semi-solid substances to be effectively utilized in testing, as well as allowing for long-term culturing and imaging. The epidermis in this EoC system is well-differentiated, including basal, spinous, granular, and cornified layers with appropriate epidermis marker (e.g. keratin-10, keratin-14, involucrin, loricrin, and filaggrin) expression levels in corresponding layers. We further demonstrate that this organotypic chip can prevent permeation of over 99.83% of cascade blue (a 607 Da fluorescent molecule), and prednisone acetate (PA) was applied to test percutaneous penetration in the EoC. Finally, we tested the whitening effect of a cosmetic on the proposed EoC, thus demonstrating its efficacy. In summary, we developed a biomimetic EoC system for epidermis recreation, which could potentially serve as a useful tool for skin irritation, permeability, cosmetic evaluation, and drug safety tests.
Collapse
Affiliation(s)
- Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Xiaoran Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Zilin Zhang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Keyu Yang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jun Ouyang
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Shaohui Zha
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Lifeng Sha
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Jianjun Ge
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Jiangsu Avatarget Biotechnology Co., Ltd. Suzhou, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- Zaozao Chen, State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou #2, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
| |
Collapse
|
15
|
Michielon E, de Gruijl TD, Gibbs S. From simplicity to complexity in current melanoma models. Exp Dermatol 2022; 31:1818-1836. [PMID: 36103206 PMCID: PMC10092692 DOI: 10.1111/exd.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Despite the recent impressive clinical success of immunotherapy against melanoma, development of primary and adaptive resistance against immune checkpoint inhibitors remains a major issue in a large number of treated patients. This highlights the need for melanoma models that replicate the tumor's intricate dynamics in the tumor microenvironment (TME) and associated immune suppression to study possible resistance mechanisms in order to improve current and test novel therapeutics. While two-dimensional melanoma cell cultures have been widely used to perform functional genomics screens in a high-throughput fashion, they are not suitable to answer more complex scientific questions. Melanoma models have also been established in a variety of experimental (humanized) animals. However, due to differences in physiology, such models do not fully represent human melanoma development. Therefore, fully human three-dimensional in vitro models mimicking melanoma cell interactions with the TME are being developed to address this need for more physiologically relevant models. Such models include melanoma organoids, spheroids, and reconstructed human melanoma-in-skin cultures. Still, while major advances have been made to complement and replace animals, these in vitro systems have yet to fully recapitulate human tumor complexity. Lastly, technical advancements have been made in the organ-on-chip field to replicate functions and microstructures of in vivo human tissues and organs. This review summarizes advancements made in understanding and treating melanoma and specifically aims to discuss the progress made towards developing melanoma models, their applications, limitations, and the advances still needed to further facilitate the development of therapeutics.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Sharma P, Kumar A, Dey AD. Cellular Therapeutics for Chronic Wound Healing: Future for Regenerative Medicine. Curr Drug Targets 2022; 23:1489-1504. [PMID: 35748548 DOI: 10.2174/138945012309220623144620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 01/25/2023]
Abstract
Chronic wounds are associated with significant morbidity and mortality, which demand long-term effective treatment and represent a tremendous financial strain on the global healthcare systems. Regenerative medicines using stem cells have recently become apparent as a promising approach and are an active zone of investigation. They hold the potential to differentiate into specific types of cells and thus possess self-renewable, regenerative, and immune-modulatory effects. Furthermore, with the rise of technology, various cell therapies and cell types such as Bone Marrow and Adipose-derived Mesenchymal Cell (ADMSC), Endothelial Progenitor Cells (EPCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cell (MSCs), and Pluripotent Stem Cells (PSCs) are studied for their therapeutic impact on reparative processes and tissue regeneration. Cell therapy has proven to have substantial control over enhancing the quality and rate of skin regeneration and wound restoration. The literature review brings to light the mechanics of wound healing, abnormalities resulting in chronic wounds, and the obstacles wound care researchers face, thus exploring the multitude of opportunities for potential improvement. Also, the review is focused on providing particulars on the possible cell-derived therapeutic choices and their associated challenges in healing, in the context of clinical trials, as solutions to these challenges will provide fresh and better future opportunities for improved study design and therefore yield a substantial amount of data for the development of more specialized treatments.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Masri S, Fauzi FAM, Hasnizam SB, Azhari AS, Lim JEA, Hao LQ, Maarof M, Motta A, Fauzi MB. Engineered-Skin of Single Dermal Layer Containing Printed Hybrid Gelatin-Polyvinyl Alcohol Bioink via 3D-Bioprinting: In Vitro Assessment under Submerged vs. Air-Lifting Models. Pharmaceuticals (Basel) 2022; 15:1328. [PMID: 36355501 PMCID: PMC9692267 DOI: 10.3390/ph15111328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 03/20/2024] Open
Abstract
Three-dimensional (3D) in vitro skin models are frequently employed in cosmetic and pharmaceutical research to minimize the demand for animal testing. Hence, three-dimensional (3D) bioprinting was introduced to fabricate layer-by-layer bioink made up of cells and improve the ability to develop a rapid manufacturing process, while maintaining bio-mechanical scaffolds and microstructural properties. Briefly, gelatin-polyvinyl alcohol (GPVA) was mixed with 1.5 × 106 and 3.0 × 106 human dermal fibroblast (HDF) cell density, together with 0.1% genipin (GNP), as a crosslinking agent, using 3D-bioprinting. Then, it was cultured under submerged and air-lifting conditions. The gross appearance of the hydrogel's surface and cross-section were captured and evaluated. The biocompatibility testing of HDFs and cell-bioink interaction towards the GPVA was analyzed by using live/dead assay, cell migration activity, cell proliferation assay, cell morphology (SEM) and protein expression via immunocytochemistry. The crosslinked hydrogels significantly demonstrated optimum average pore size (100-199 μm). The GPVA crosslinked with GNP (GPVA_GNP) hydrogels with 3.0 × 106 HDFs was proven to be outstanding, compared to the other hydrogels, in biocompatibility testing to promote cellular interaction. Moreover, GPVA-GNP hydrogels, encapsulated with 3.0 × 106 HDFs under submerged cultivation, had a better outcome than air-lifting with an excellent surface cell viability rate of 96 ± 0.02%, demonstrated by 91.3 ± 4.1% positively expressed Ki67 marker at day 14 that represented active proliferative cells, an average of 503.3 ± 15.2 μm for migration distance, and maintained the HDFs' phenotypic profiles with the presence of collagen type I expression. It also presented with an absence of alpha-smooth muscle actin positive staining. In conclusion, 3.0 × 106 of hybrid GPVA hydrogel crosslinked with GNP, produced by submerged cultivation, was proven to have the excellent biocompatibility properties required to be a potential bioinks for the rapid manufacturing of 3D in vitro of a single dermal layer for future use in cosmetic, pharmaceutic and toxicologic applications.
Collapse
Affiliation(s)
- Syafira Masri
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Faraheda Amilia Mohd Fauzi
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sarah Batrisyia Hasnizam
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Aizzaty Sulha Azhari
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Juliana Edora Amin Lim
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn. Bhd., Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering and Biotech Research Center, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
18
|
Sun S, Jin L, Zheng Y, Zhu J. Modeling human HSV infection via a vascularized immune-competent skin-on-chip platform. Nat Commun 2022; 13:5481. [PMID: 36123328 PMCID: PMC9485166 DOI: 10.1038/s41467-022-33114-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus (HSV) naturally infects skin and mucosal surfaces, causing lifelong recurrent disease worldwide, with no cure or vaccine. Biomimetic human tissue and organ platforms provide attractive alternatives over animal models to recapitulate human diseases. Combining prevascularization and microfluidic approaches, we present a vascularized, three-dimensional skin-on-chip that mimics human skin architecture and is competent to immune-cell and drug perfusion. The endothelialized microvasculature embedded in a fibroblast-containing dermis responds to biological stimulation, while the cornified epidermis functions as a protective barrier. HSV infection of the skin-on-chip displays tissue-level key morphological and pathophysiological features typical of genital herpes infection in humans, including the production of proinflammatory cytokine IL-8, which triggers rapid neutrophil trans-endothelial extravasation and directional migration. Importantly, perfusion with the antiviral drug acyclovir inhibits HSV infection in a dose-dependent and time-sensitive manner. Thus, our vascularized skin-on-chip represents a promising platform for human HSV disease modeling and preclinical therapeutic evaluation.
Collapse
Affiliation(s)
- Sijie Sun
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA.
| |
Collapse
|
19
|
Akbari Kenari M, Rezvani Ghomi E, Akbari Kenari A, Arabi SMS, Deylami J, Ramakrishna S. Biomedical applications of microfluidic devices: Achievements and challenges. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahsa Akbari Kenari
- Department of Chemical Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | | | | | - Javad Deylami
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
20
|
Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022; 14:pharmaceutics14071417. [PMID: 35890312 PMCID: PMC9316928 DOI: 10.3390/pharmaceutics14071417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical research remains hampered by an inadequate representation of human tissue environments which results in inaccurate predictions of a drug candidate’s effects and target’s suitability. While human 2D and 3D cell cultures and organoids have been extensively improved to mimic the precise structure and function of human tissues, major challenges persist since only few of these models adequately represent the complexity of human tissues. The development of skin-on-chip technology has allowed the transition from static 3D cultures to dynamic 3D cultures resembling human physiology. The integration of vasculature, immune system, or the resident microbiome in the next generation of SoC, with continuous detection of changes in metabolism, would potentially overcome the current limitations, providing reliable and robust results and mimicking the complex human skin. This review aims to provide an overview of the biological skin constituents and mechanical requirements that should be incorporated in a human skin-on-chip, permitting pharmacological, toxicological, and cosmetic tests closer to reality.
Collapse
|
21
|
Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022; 14:pharmaceutics14030682. [PMID: 35336056 PMCID: PMC8955316 DOI: 10.3390/pharmaceutics14030682] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The increased demand for physiologically relevant in vitro human skin models for testing pharmaceutical drugs has led to significant advancements in skin engineering. One of the most promising approaches is the use of in vitro microfluidic systems to generate advanced skin models, commonly known as skin-on-a-chip (SoC) devices. These devices allow the simulation of key mechanical, functional and structural features of the human skin, better mimicking the native microenvironment. Importantly, contrary to conventional cell culture techniques, SoC devices can perfuse the skin tissue, either by the inclusion of perfusable lumens or by the use of microfluidic channels acting as engineered vasculature. Moreover, integrating sensors on the SoC device allows real-time, non-destructive monitoring of skin function and the effect of topically and systemically applied drugs. In this Review, the major challenges and key prerequisites for the creation of physiologically relevant SoC devices for drug testing are considered. Technical (e.g., SoC fabrication and sensor integration) and biological (e.g., cell sourcing and scaffold materials) aspects are discussed. Recent advancements in SoC devices are here presented, and their main achievements and drawbacks are compared and discussed. Finally, this review highlights the current challenges that need to be overcome for the clinical translation of SoC devices.
Collapse
Affiliation(s)
- Patrícia Zoio
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
22
|
Koning JJ, Rodrigues Neves CT, Schimek K, Thon M, Spiekstra SW, Waaijman T, de Gruijl TD, Gibbs S. A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin. FRONTIERS IN TOXICOLOGY 2022; 3:824825. [PMID: 35295125 PMCID: PMC8915798 DOI: 10.3389/ftox.2021.824825] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Investigating systemic toxicity in vitro is still a huge challenge. Here, a multi-organ-on-chip approach is presented as a typical case of topical exposure of oral mucosa to metals, which are known to activate the immune system and in turn may result in skin inflammation. Reconstructed human gingiva (RHG) and reconstructed human skin containing MUTZ-3–derived Langerhans cells (MUTZ-LC) in the epidermis (RHS-LC) were incorporated into a HUMIMIC Chip3plus, connected by dynamic flow and cultured for a total period of 72 h. Three independent experiments were performed each with an intra-experiment replicate in order to assess the donor and technical variations. After an initial culture period of 24 h to achieve stable dynamic culture conditions, nickel sulfate was applied topically to RHG for 24 h, and LC activation (maturation and migration) was determined in RHS-LC after an additional 24 h incubation time. A stable dynamic culture of RHG and RHS-LC was achieved as indicated by the assessment of glucose uptake, lactate production, and lactate dehydrogenase release into the microfluidics compartment. Nickel exposure resulted in no major histological changes within RHG or RHS-LC, or cytokine release into the microfluidics compartment, but did result in an increased activation of LC as observed by the increased mRNA levels of CD1a, CD207, HLA-DR, and CD86 in the dermal compartment (hydrogel of RHS-LC (PCR)). This is the first study to describe systemic toxicity and immune cell activation in a multi-organ setting and can provide a framework for studying other organoids in the future.
Collapse
Affiliation(s)
- Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte T Rodrigues Neves
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
24
|
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Evaluation of in vitro human skin models for studying effects of external stressors and stimuli and developing treatment modalities. VIEW 2022. [DOI: 10.1002/viw.20210012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Emily Sutterby
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Peter Thurgood
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences RMIT University Bundoora Victoria Australia
| | | | - Elena Pirogova
- School of Engineering RMIT University Melbourne Victoria Australia
| |
Collapse
|
25
|
Sarama R, Matharu PK, Abduldaiem Y, Corrêa MP, Gil CD, Greco KV. In Vitro Disease Models for Understanding Psoriasis and Atopic Dermatitis. Front Bioeng Biotechnol 2022; 10:803218. [PMID: 35265594 PMCID: PMC8899215 DOI: 10.3389/fbioe.2022.803218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Psoriasis (PS) and Atopic Dermatitis (AD) are two of the most prevalent inflammatory skin diseases. Dysregulations in the immune response are believed to play a crucial role in the pathogenesis of these conditions. Various parallels can be drawn between the two disorders, as they are both genetically mediated, and characterised by dry, scaly skin caused by abnormal proliferation of epidermal keratinocytes. The use of in vitro disease models has become an increasingly popular method to study PS and AD due to the high reproducibility and accuracy in recapitulating the pathogenesis of these conditions. However, due to the extensive range of in vitro models available and the majority of these being at early stages of production, areas of development are needed. This review summarises the key features of PS and AD, the different types of in vitro models available to study their pathophysiology and evaluating their efficacy in addition to discussing future research opportunities.
Collapse
Affiliation(s)
- Roudin Sarama
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
| | - Priya K. Matharu
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
| | - Yousef Abduldaiem
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Mab P. Corrêa
- Programa de Pós-Graduação Em Biociências, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José, Brazil
| | - Cristiane D. Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São José, Brazil
| | - Karin V. Greco
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
- *Correspondence: Karin V. Greco,
| |
Collapse
|
26
|
From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:41-91. [PMID: 35094781 DOI: 10.1016/bs.pmbts.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.
Collapse
|
27
|
Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2021; 6:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/03/2021] [Indexed: 01/09/2023]
Abstract
New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mojtaba Nasiri Nezhad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, 51335-1996, Iran
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14395-1179, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
28
|
Cui M, Wiraja C, Zheng M, Singh G, Yong K, Xu C. Recent Progress in Skin‐on‐a‐Chip Platforms. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Continental‐NTU Corporate Lab Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Mengjia Zheng
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 00000 China
| | - Gurvinder Singh
- School of Biomedical Engineering The University of Sydney Sydney New South Wales 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
- The Biophotonics and MechanoBioengineering Lab The University of Sydney Sydney New South Wales 2006 Australia
| | - Ken‐Tye Yong
- School of Biomedical Engineering The University of Sydney Sydney New South Wales 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
- The Biophotonics and MechanoBioengineering Lab The University of Sydney Sydney New South Wales 2006 Australia
| | - Chenjie Xu
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 00000 China
| |
Collapse
|
29
|
Zhang J, Chen Z, Zhang Y, Wang X, Ouyang J, Zhu J, Yan Y, Sun X, Wang F, Li X, Ye H, Sun S, Yu Q, Sun J, Ge J, Li Q, Han Q, Pu Y, Gu Z. Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. LAB ON A CHIP 2021; 21:3804-3818. [PMID: 34581381 DOI: 10.1039/d1lc00099c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
3D skin equivalents have been increasingly used in the pharmaceutical and cosmetic industries, but the troublesome operation procedure and low throughput restricted their applications as in vitro safety evaluation models. Organ-on-a-chip, an emerging powerful tool in tissue/organ modeling, could be utilized to improve the function of the skin model compared with that of traditional static skin models, as well as innovate an automatic and modular way for construction or detection. In this research, we grew and differentiated human keratinocytes within a microfluidic chip to construct an integrated epidermis-on-a-chip (iEOC) system, which is specially designed to integrate multi-culture units with integrated bubble removal structures as well as trans-epithelial electrical resistance (TEER) electrodes for barrier function detection in situ. After 14 days of culture at the air-liquid interface (ALI), the constructed epidermis-on-a-chip demonstrated histological features similar to those observed in normal human epidermis: a proliferating basal layer and differentiating spinous, granular, and cornified layers, especially the TEER value reached 3 kΩ cm2 and prevented more than 99% of Cascade Blue-607 Da permeation owing to the enhanced barrier function. Further immunofluorescence analysis also indicated typical keratin expression including keratin-14, keratin-10, loricrin, involucrin, and filaggrin. With the TEER monitoring integration in the chip, it could be convenient for scale-up high-quality epidermis-on-chip fabrication and correlated investigation. Additionally, the iEOC can distinguish all the 10 known toxins and non-toxins in irritation measurement by MTT assay, which is consistent with animal testing according to the OECD. Preliminarily detection of irritation responses like inflammatory cytokines also predicted different irritation reactions. This high fidelity epidermis-on-a-chip could be a potential alternative in in vitro skin irritation evaluation. This microchip and automated microfluidic systems also pave the way for scalable testing in multidisciplinary industrial applications.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yaoyao Zhang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xingchi Wang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jun Ouyang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jianfeng Zhu
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yuchuan Yan
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiaowei Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Fei Wang
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Xiaoran Li
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Huan Ye
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Shiqi Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Qingdong Yu
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jiawei Sun
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Jianjun Ge
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215163, China
| |
Collapse
|
30
|
Elalouf A. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol 2021; 69:101446. [PMID: 34389430 DOI: 10.1016/j.trim.2021.101446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/26/2022]
Abstract
Regenerative medicine has developed promising approaches for healing and replacing defective and damaged organs or tissues with functional ones. Three-dimensional (3D) bioprinting innovation has integrated a potential to design organs or tissues specific to the patient with the capability of rapid construction to fulfill the storage of organs and the need for transplantation. 3D bioprinting of organs has the main goal to develop a structural and functional organ or tissue mimic to the original one. The highly complex fabrication of tissue engineering scaffolds containing biomaterials, tissue models, and biomedical devices has made it possible to print small blood vessels to mimic organs to reduce organ or tissue rejection. 3D bioprinting has the concept of bioinks containing biomaterials that may trigger the immune responses in the body. Nevertheless, foreign body response (FBR) is mediated by various cell types such as B-cells, dendritic cells, macrophages, natural killer cells, neutrophils, and T-cells, and molecular signals such as antibodies (Abs), cytokines, and reactive radical species. Typically, the biomaterial is shielded by the fibrous encapsulation that is regulated by molecular signals. This review explored the progress in 3D bioprinting of vital organs and basic immune response against the biomaterials used in this approach. Thus, evaluating immune response against biomaterials used in 3D printed organs is necessary to mitigate tissue rejection after the transplantation.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| |
Collapse
|
31
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
32
|
Mieremet A, Helder RWJ, Nadaban A, Boiten WA, Gooris GS, El Ghalbzouri A, Bouwstra JA. Multitargeted Approach for the Optimization of Morphogenesis and Barrier Formation in Human Skin Equivalents. Int J Mol Sci 2021; 22:ijms22115790. [PMID: 34071405 PMCID: PMC8198964 DOI: 10.3390/ijms22115790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro skin tissue engineering is challenging due to the manifold differences between the in vivo and in vitro conditions. Yet, three-dimensional (3D) human skin equivalents (HSEs) are able to mimic native human skin in many fundamental aspects. However, the epidermal lipid barrier formation, which is essential for the functionality of the skin barrier, remains compromised. Recently, HSEs with an improved lipid barrier formation were generated by (i) incorporating chitosan in the dermal collagen matrix, (ii) reducing the external oxygen level to 3%, and (iii) inhibiting the liver X receptor (LXR). In this study, we aimed to determine the synergic effects in full-thickness models (FTMs) with combinations of these factors as single-, double-, and triple-targeted optimization approaches. The collagen–chitosan FTM supplemented with the LXR inhibitor showed improved epidermal morphogenesis, an enhanced lipid composition, and a better lipid organization. Importantly, barrier functionality was improved in the corresponding approach. In conclusion, our leading optimization approach substantially improved the epidermal morphogenesis, barrier formation, and functionality in the FTM, which therefore better resembled native human skin.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (A.E.G.)
| | - Richard W. J. Helder
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Andreea Nadaban
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Walter A. Boiten
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Gert S. Gooris
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Abdoelwaheb El Ghalbzouri
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (A.E.G.)
| | - Joke A. Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
- Correspondence: ; Tel.: +31-71-527-4208
| |
Collapse
|
33
|
Rodrigues Neves C, Gibbs S. Progress on Reconstructed Human Skin Models for Allergy Research and Identifying Contact Sensitizers. Curr Top Microbiol Immunol 2021; 430:103-129. [PMID: 29934708 DOI: 10.1007/82_2018_88] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Contact with the skin is inevitable or desirable for daily life products such as cosmetics, hair dyes, perfumes, drugs, household products, and industrial and agricultural products. Whereas the majority of these products are harmless, a number can become metabolized and/or activate the immunological defense via innate and adaptive mechanisms resulting in sensitization and allergic contact dermatitis upon following exposures to the same substance. Therefore, strict safety (hazard) assessment of actives and ingredients in products and drugs applied to the skin is essential to determine I) whether the chemical is a potential sensitizer and if so II) what is the safe concentration for human exposure to prevent sensitization from occurring. Ex vivo skin is a valuable model for skin penetration studies but due to logistical and viability limitations the development of in vitro alternatives is required. The aim of this review is to give a clear overview of the organotypic in vitro skin models (reconstructed human epidermis, reconstructed human skin, immune competent skin models incorporating Langerhans Cells and T-cells, skin-on-chip) that are currently commercially available or which are being used in a laboratory research setting for hazard assessment of potential sensitizers and for investigating the mechanisms (sensitization key events 1-4) related to allergic contact dermatitis. The limitations of the models, their current applications, and their future potential in replacing animals in allergy-related science are discussed.
Collapse
Affiliation(s)
| | - Susan Gibbs
- Department of Dermatology, VU Medical Center, Amsterdam, The Netherlands. .,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Dermatology Lab, 0/2 Building, de Boelelaan 1108, 1081 Hz, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Mechanical and Immunological Regulation in Wound Healing and Skin Reconstruction. Int J Mol Sci 2021; 22:ijms22115474. [PMID: 34067386 PMCID: PMC8197020 DOI: 10.3390/ijms22115474] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, a new frontier in scarless wound healing has arisen because of significant advances in the field of wound healing realised by incorporating emerging concepts from mechanobiology and immunology. The complete integumentary organ system (IOS) regeneration and scarless wound healing mechanism, which occurs in specific species, body sites and developmental stages, clearly shows that mechanical stress signals and immune responses play important roles in determining the wound healing mode. Advances in tissue engineering technology have led to the production of novel human skin equivalents and organoids that reproduce cell–cell interactions with tissue-scale tensional homeostasis, and enable us to evaluate skin tissue morphology, functionality, drug response and wound healing. This breakthrough in tissue engineering has the potential to accelerate the understanding of wound healing control mechanisms through complex mechanobiological and immunological interactions. In this review, we present an overview of recent studies of biomechanical and immunological wound healing and tissue remodelling mechanisms through comparisons of species- and developmental stage-dependent wound healing mechanisms. We also discuss the possibility of elucidating the control mechanism of wound healing involving mechanobiological and immunological interaction by using next-generation human skin equivalents.
Collapse
|
35
|
Kohl Y, Biehl M, Spring S, Hesler M, Ogourtsov V, Todorovic M, Owen J, Elje E, Kopecka K, Moriones OH, Bastús NG, Simon P, Dubaj T, Rundén-Pran E, Puntes V, William N, von Briesen H, Wagner S, Kapur N, Mariussen E, Nelson A, Gabelova A, Dusinska M, Velten T, Knoll T. Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006012. [PMID: 33458959 DOI: 10.1002/smll.202006012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Margit Biehl
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Sarah Spring
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Vladimir Ogourtsov
- Tyndall National Institute, University College Cork, Dyke Parade, Cork, T12 R5CP, Ireland
| | - Miomir Todorovic
- Tyndall National Institute, University College Cork, Dyke Parade, Cork, T12 R5CP, Ireland
| | - Joshua Owen
- Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Elisabeth Elje
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
- Faculty of Medicine, Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo, 0372, Norway
| | - Kristina Kopecka
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 84505, Slovakia
| | - Oscar Hernando Moriones
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Peter Simon
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology SUT, Radlinskeho 9, Bratislava, 812 37, Slovakia
| | - Tibor Dubaj
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology SUT, Radlinskeho 9, Bratislava, 812 37, Slovakia
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08193, Spain
| | - Nicola William
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Nikil Kapur
- Institute of Thermofluids, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Andrew Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 84505, Slovakia
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Department for Environmental Chemistry, Health Effects Laboratory, Instituttveien 18, Kjeller, 2007, Norway
| | - Thomas Velten
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| | - Thorsten Knoll
- Fraunhofer Institute for Biomedical Engineering IBMT, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Joseph-von-Fraunhofer-Weg 1, Sulzbach, 66280, Germany
| |
Collapse
|
36
|
Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, Fónagy K, Bors LA, Iván K, Erdő F. Development of Skin-On-A-Chip Platforms for Different Utilizations: Factors to Be Considered. MICROMACHINES 2021; 12:mi12030294. [PMID: 33802208 PMCID: PMC8001759 DOI: 10.3390/mi12030294] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in miniaturized technologies in diagnostics, therapeutic testing, and biomedicinal fundamental research. The same is true for the dermal studies in topical drug development, dermatological disease pathology testing, and cosmetic science. This review aims to collect the recent scientific literature and knowledge about the application of skin-on-a-chip technology in drug diffusion studies, in pharmacological and toxicological experiments, in wound healing, and in fields of cosmetic science (ageing or repair). The basic mathematical models are also presented in the article to predict physical phenomena, such as fluid movement, drug diffusion, and heat transfer taking place across the dermal layers in the chip using Computational Fluid Dynamics techniques. Soon, it can be envisioned that animal studies might be at least in part replaced with skin-on-a-chip technology leading to more reliable results close to study on humans. The new technology is a cost-effective alternative to traditional methods used in research institutes, university labs, and industry. With this article, the authors would like to call attention to a new investigational family of platforms to refresh the researchers’ theranostics and preclinical, experimental toolbox.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore 452012, India;
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore 453552, India;
| | - Zsófia Varga-Medveczky
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Katalin Fónagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Luca Anna Bors
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Heart and Vascular Centre, Faculty of Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a., 1083 Budapest, Hungary; (Z.V.-M.); (K.F.); (L.A.B.); (K.I.)
- Correspondence:
| |
Collapse
|
37
|
Abstract
The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 3D human skin models and their main applications. Finally, we review the available models for domestic animals and discuss the current and potential applications.
Collapse
Affiliation(s)
- Laurent Souci
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
38
|
Picollet-D'hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-Chip: A Systemic Approach To Model and Decipher Inter-Organ Communication. Trends Biotechnol 2021; 39:788-810. [PMID: 33541718 DOI: 10.1016/j.tibtech.2020.11.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Multiorgan-on-a-chip (multi-OoC) platforms have great potential to redefine the way in which human health research is conducted. After briefly reviewing the need for comprehensive multiorgan models with a systemic dimension, we highlight scenarios in which multiorgan models are advantageous. We next overview existing multi-OoC platforms, including integrated body-on-a-chip devices and modular approaches involving interconnected organ-specific modules. We highlight how multi-OoC models can provide unique information that is not accessible using single-OoC models. Finally, we discuss remaining challenges for the realization of multi-OoC platforms and their worldwide adoption. We anticipate that multi-OoC technology will metamorphose research in biology and medicine by providing holistic and personalized models for understanding and treating multisystem diseases.
Collapse
Affiliation(s)
- Nathalie Picollet-D'hahan
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale (INSERM), Commissariat à l'Energie Atomique (CEA) Interdisciplinary Research Institute of Grenoble (IRIG) Biomicrotechnology and Functional Genomics (BIOMICS), Grenoble, France.
| | - Agnieszka Zuchowska
- Applied Microfluidics for Bioengineering Research (AMBER), MESA+ Institute for Nanotechnology, TechMed Center, University of Twente, 7500AE Enschede, The Netherlands
| | - Iris Lemeunier
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale (INSERM), Commissariat à l'Energie Atomique (CEA) Interdisciplinary Research Institute of Grenoble (IRIG) Biomicrotechnology and Functional Genomics (BIOMICS), Grenoble, France
| | - Séverine Le Gac
- Applied Microfluidics for Bioengineering Research (AMBER), MESA+ Institute for Nanotechnology, TechMed Center, University of Twente, 7500AE Enschede, The Netherlands.
| |
Collapse
|
39
|
Vurat MT, Şeker Ş, Lalegül-Ülker Ö, Parmaksiz M, Elçin AE, Elçin YM. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: Towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes Dis 2020; 9:1008-1023. [PMID: 35685479 PMCID: PMC9170773 DOI: 10.1016/j.gendis.2020.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022] Open
Abstract
While periodontal (PD) disease is among principal causes of tooth loss worldwide, regulation of concomitant soft and mineralized PD tissues, and PD pathogenesis have not been completely clarified yet. Besides, relevant pre-clinical models and in vitro platforms have limitations in simulating human physiology. Here, we have harnessed three-dimensional bioprinting (3DBP) technology for developing a multi-cellular microtissue model resembling PD ligament-alveolar bone (PDL-AB) biointerface for the first time. 3DBP parameters were optimized; the physical, chemical, rheological, mechanical, and thermal properties of the constructs were assessed. Constructs containing gelatin methacryloyl (Gel-MA) and hydroxyapatite-magnetic iron oxide nanoparticles showed higher level of compressive strength when compared with that of Gel-MA constructs. Bioprinted self-supporting microtissue was cultured under flow in a microfluidic platform for >10 days without significant loss of shape fidelity. Confocal microscopy analysis indicated that encapsulated cells were homogenously distributed inside the matrix and preserved their viability for >7 days under microfluidic conditions. Immunofluorescence analysis showed the cohesion of stromal cell surface marker-1+ human PDL fibroblasts containing PDL layer with the osteocalcin+ human osteoblasts containing mineralized layer in time, demonstrating some permeability of the printed constructs to cell migration. Preliminary tetracycline interaction study indicated the uptake of model drug by the cells inside the 3D-microtissue. Also, the non-toxic levels of tetracycline were determined for the encapsulated cells. Thus, the effects of tetracyclines on PDL-AB have clinical significance for treating PD diseases. This 3D-bioprinted multi-cellular periodontal/osteoblastic microtissue model has potential as an in vitro platform for studying processes of the human PDL.
Collapse
|
40
|
Tissue-scale tensional homeostasis in skin regulates structure and physiological function. Commun Biol 2020; 3:637. [PMID: 33127987 PMCID: PMC7603398 DOI: 10.1038/s42003-020-01365-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Tensional homeostasis is crucial for organ and tissue development, including the establishment of morphological and functional properties. Skin plays essential roles in waterproofing, cushioning and protecting deeper tissues by forming internal tension-distribution patterns, which involves aligning various cells, appendages and extracellular matrices (ECMs). The balance of traction force is thought to contribute to the formation of strong and pliable physical structures that maintain their integrity and flexibility. Here, by using a human skin equivalent (HSE), the horizontal tension-force balance of the dermal layer was found to clearly improve HSE characteristics, such as the physical relationship between cells and the ECM. The tension also promoted skin homeostasis through the activation of mechano-sensitive molecules such as ROCK and MRTF-A, and these results compared favourably to what was observed in tension-released models. Tension-induced HSE will contribute to analyze skin physiological functions regulated by tensional homeostasis as an alternative animal model.
Collapse
|
41
|
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Microfluidic Skin-on-a-Chip Models: Toward Biomimetic Artificial Skin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002515. [PMID: 33460277 DOI: 10.1002/smll.202002515] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Indexed: 06/12/2023]
Abstract
The role of skin in the human body is indispensable, serving as a barrier, moderating homeostatic balance, and representing a pronounced endpoint for cosmetics and pharmaceuticals. Despite the extensive achievements of in vitro skin models, they do not recapitulate the complexity of human skin; thus, there remains a dependence on animal models during preclinical drug trials, resulting in expensive drug development with high failure rates. By imparting a fine control over the microenvironment and inducing relevant mechanical cues, skin-on-a-chip (SoC) models have circumvented the limitations of conventional cell studies. Enhanced barrier properties, vascularization, and improved phenotypic differentiation have been achieved by SoC models; however, the successful inclusion of appendages such as hair follicles and sweat glands and pigmentation relevance have yet to be realized. The present Review collates the progress of SoC platforms with a focus on their fabrication and the incorporation of mechanical cues, sensors, and blood vessels.
Collapse
Affiliation(s)
- Emily Sutterby
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Sara Baratchi
- School of Health and Medical Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | | | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
42
|
Barros N, Kim H, Goudie MJ, Lee K, Bandaru P, Banton EA, Sarikhani E, Sun W, Zhang S, Cho HJ, Hartel MC, Ostrovidov S, Ahadian S, Hussain S, Ashammakhi N, Dokmeci MR, Herculano RD, Lee J, Khademhosseini A. Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication 2020; 13. [PMID: 32650324 DOI: 10.1088/1758-5090/aba503] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
The skin serves a substantial number of physiological purposes and is exposed to numerous biological and chemical agents owing to its large surface area and accessibility. Yet, current skin models are limited in emulating the multifaceted functions of skin tissues due to a lack of effort on the optimization of biomaterials and techniques at different skin layers for building skin frameworks. Here, we use biomaterial-based approaches and bioengineered techniques to develop a 3D skin model with layers of endothelial cell networks, dermal fibroblasts, and multilayered keratinocytes. Analysis of mechanical properties of gelatin methacryloyl (GelMA)-based bioinks mixed with different portions of alginate revealed bioprinted endothelium could be better modeled to optimize endothelial cell viability with a mixture of 7.5% GelMA and 2% alginate. Matrix stiffness plays a crucial role in modulating produced levels of Pro-Collagen I alpha-1 and matrix metalloproteinase-1 in human dermal fibroblasts and affecting their viability, proliferation, and spreading. Moreover, seeding human keratinocytes with gelatin-coating multiple times proves helpful in reducing culture time to create multilayered keratinocytes while maintaining their viability. The ability to fabricate selected biomaterials for each layer of skin tissues has implications in the biofabrication of skin systems for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Natan Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Hanjun Kim
- University of California Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Marcus J Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - KangJu Lee
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Praveen Bandaru
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Ethan A Banton
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | | | - Wujin Sun
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Shiming Zhang
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | - Hyun-Jong Cho
- Pharmacy, Kangwon National University, Chuncheon, Gangwon-do, Korea (the Republic of)
| | - Martin C Hartel
- Bioengineering, UCLA, Los Angeles, California, UNITED STATES
| | | | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Saber Hussain
- , Molecular Bioeffects Branch, Wright Patterson AFB, Ohio, UNITED STATES
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, UNITED STATES
| | - Mehmet R Dokmeci
- Radiology, UCLA, CNSI 4528, 570 Westwood Plaza, Los Angeles, California, 90095, UNITED STATES
| | | | - Junmin Lee
- Terasaki Institute, Los Angeles, California, UNITED STATES
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, UCLA, Los Angeles, California, UNITED STATES
| |
Collapse
|
43
|
Richardson L, Kim S, Menon R, Han A. Organ-On-Chip Technology: The Future of Feto-Maternal Interface Research? Front Physiol 2020; 11:715. [PMID: 32695021 PMCID: PMC7338764 DOI: 10.3389/fphys.2020.00715] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
The placenta and fetal membrane act as a protective barrier throughout pregnancy while maintaining communication and nutrient exchange between the baby and the mother. Disruption of this barrier leads to various pregnancy complications, including preterm birth, which can have lasting negative consequences. Thus, understanding the role of the feto-maternal interface during pregnancy and parturition is vital to advancing basic and clinical research in the field of obstetrics. However, human subject studies are inherently difficult, and appropriate animal models are lacking. Due to these challenges, in vitro cell culture-based studies are most commonly utilized. However, the structure and functions of conventionally used in vitro 2D and 3D models are vastly different from the in vivo environment, making it difficult to fully understand the various factors affecting pregnancy as well as pathways and mechanisms contributing to term and preterm births. This limitation also makes it difficult to develop new therapeutics. The emergence of in vivo-like in vitro models such as organ-on-chip (OOC) platforms can better recapitulate in vivo functions and responses and has the potential to move this field forward significantly. OOC technology brings together two distinct fields, microfluidic engineering and cell/tissue biology, through which diverse human organ structures and functionalities can be built into a laboratory model that better mimics functions and responses of in vivo tissues and organs. In this review, we first provide an overview of the OOC technology, highlight two major designs commonly used in achieving multi-layer co-cultivation of cells, and introduce recently developed OOC models of the feto-maternal interface. As a vital component of this review, we aim to outline progress on the practicality and effectiveness of feto-maternal interface OOC (FM-OOC) models currently used and the advances they have fostered in obstetrics research. Lastly, we provide a perspective on the future basic research and clinical applications of FM-OOC models, and even those that integrate multiple organ systems into a single OOC system that may recreate intrauterine architecture in its entirety, which will accelerate our understanding of feto-maternal communication, induction of preterm labor, drug or toxicant permeability at this vital interface, and development of new therapeutic strategies.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Electrical and Computer Engineering, College of Engineering, Texas A&M University, College Station, TX, United States.,Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, College of Engineering, Texas A&M University, College Station, TX, United States.,Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, College of Engineering, Texas A&M University, College Station, TX, United States.,Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
44
|
Di Blasio S, van Wigcheren GF, Becker A, van Duffelen A, Gorris M, Verrijp K, Stefanini I, Bakker GJ, Bloemendal M, Halilovic A, Vasaturo A, Bakdash G, Hato SV, de Wilt JHW, Schalkwijk J, de Vries IJM, Textor JC, van den Bogaard EH, Tazzari M, Figdor CG. The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture. Nat Commun 2020; 11:2749. [PMID: 32488012 PMCID: PMC7265463 DOI: 10.1038/s41467-020-16583-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The tumour microenvironment (TME) forms a major obstacle in effective cancer treatment and for clinical success of immunotherapy. Conventional co-cultures have shed light onto multiple aspects of cancer immunobiology, but they are limited by the lack of physiological complexity. We develop a human organotypic skin melanoma culture (OMC) that allows real-time study of host-malignant cell interactions within a multicellular tissue architecture. By co-culturing decellularized dermis with keratinocytes, fibroblasts and immune cells in the presence of melanoma cells, we generate a reconstructed TME that closely resembles tumour growth as observed in human lesions and supports cell survival and function. We demonstrate that the OMC is suitable and outperforms conventional 2D co-cultures for the study of TME-imprinting mechanisms. Within the OMC, we observe the tumour-driven conversion of cDC2s into CD14+ DCs, characterized by an immunosuppressive phenotype. The OMC provides a valuable approach to study how a TME affects the immune system.
Collapse
Affiliation(s)
- S Di Blasio
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Tumour-Host Interaction Lab, The Francis Crick Institute, London, UK
| | - G F van Wigcheren
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - A Becker
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A van Duffelen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Gorris
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K Verrijp
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Stefanini
- Division of Biomedical Sciences, The University of Warwick, Coventry, UK
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - G J Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Bloemendal
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Halilovic
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Vasaturo
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Bakdash
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S V Hato
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J H W de Wilt
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Schalkwijk
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I J M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J C Textor
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Tazzari
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Immunotherapy-Cell Therapy and Biobank Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - C G Figdor
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Liu X, Michael S, Bharti K, Ferrer M, Song MJ. A biofabricated vascularized skin model of atopic dermatitis for preclinical studies. Biofabrication 2020; 12:035002. [PMID: 32059197 DOI: 10.1088/1758-5090/ab76a1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) biofabrication techniques enable the production of multicellular tissue models as assay platforms for drug screening. The increased cellular and physiological complexity in these 3D tissue models should recapitulate the relevant biological environment found in the body. Here we describe the use of 3D bioprinting techniques to fabricate skin equivalent tissues of varying physiological complexity, including human epidermis, non-vascularized and vascularized full-thickness skin tissue equivalents, in a multi-well platform to enable drug screening. Human keratinocytes, fibroblasts, and pericytes, and induced pluripotent stem cell-derived endothelial cells were used in the biofabrication process to produce the varying complexity. The skin equivalents exhibit the correct structural markers of dermis and epidermis stratification, with physiological functions of the skin barrier. The robustness, versatility and reproducibility of the biofabrication techniques are further highlighted by the generation of atopic dermatitis (AD)-disease like tissues. These AD models demonstrate several clinical hallmarks of the disease, including: (i) spongiosis and hyperplasia; (ii) early and terminal expression of differentiation proteins; and (iii) increases in levels of pro-inflammatory cytokines. We show the pre-clinical relevance of the biofabricated AD tissue models to correct disease phenotype by testing the effects of dexamethasone, an anti-inflammatory corticosteroid, and three Janus Kinase inhibitors from clinical trials for AD. This study demonstrates the development of a versatile and reproducible bioprinting approach to create human skin equivalents with a range of cellular complexity for disease modeling. In addition, we establish several assay readouts that are quantifiable, robust, AD relevant, and can be scaled up for compound screening. The results show that the cellular complexity of the tissues develops a more physiologically relevant AD disease model. Thus, the skin models in this study offer an in vitro approach for the rapid understanding of pathological mechanisms, and testing for efficacy of action and toxic effects of drugs.
Collapse
Affiliation(s)
- Xue Liu
- National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD, United States of America
| | | | | | | | | |
Collapse
|
46
|
Pires de Mello CP, Carmona-Moran C, McAleer CW, Perez J, Coln EA, Long CJ, Oleaga C, Riu A, Note R, Teissier S, Langer J, Hickman JJ. Microphysiological heart-liver body-on-a-chip system with a skin mimic for evaluating topical drug delivery. LAB ON A CHIP 2020; 20:749-759. [PMID: 31970354 PMCID: PMC7123528 DOI: 10.1039/c9lc00861f] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Body-on-a-chip in vitro systems are a promising technology that aims to increase the predictive power of drug efficacy and toxicity in humans when compared to traditional animal models. Here, we developed a new heart-liver body-on-a-chip system with a skin surrogate to assess the toxicity of drugs that are topically administered. In order to test the utility of the system, diclofenac, ketoconazole, hydrocortisone and acetaminophen were applied topically through a synthetic skin surrogate (Strat-M membrane) and the toxicity results were compared to those of acute drug exposure from systemically applying the compounds. The heart-liver system was successful in predicting the effects for both cardiac and liver functions changes due to the compounds. The difference in the concentrations of drugs applied topically compared to systemically indicates that the barrier properties of the skin surrogate were efficient. One important advantage of this heart-liver system was the capability of showing differential effects of acute and chronic drug exposure which is necessary as part of the International Conference in Harmonisation (ICH) tri-partate guidelines. In conclusion, this work indicates a promising heart-liver body-on-a-chip system that can be used for the assessment of potential drug toxicity from dermal absorption as well as evaluate transport dynamics through the skin in the same system.
Collapse
Affiliation(s)
| | - Carlos Carmona-Moran
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | | | - Julian Perez
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Elizabeth A Coln
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | | | - Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Anne Riu
- L'Oreal Research, and Innovation Division, Aulnay-sous-Bois, France
| | - Reine Note
- L'Oreal Research, and Innovation Division, Aulnay-sous-Bois, France
| | - Silvia Teissier
- L'Oreal Research, and Innovation Division, Aulnay-sous-Bois, France
| | - Jessica Langer
- L'Oreal Research, and Innovation Division, Clark, NJ, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA. and Hesperos, Inc., Orlando, FL 32826, USA
| |
Collapse
|
47
|
Jeon HM, Kim K, Choi KC, Sung GY. Side-effect test of sorafenib using 3-D skin equivalent based on microfluidic skin-on-a-chip. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Thélu A, Catoire S, Kerdine-Römer S. Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicol In Vitro 2020; 62:104691. [DOI: 10.1016/j.tiv.2019.104691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
|
49
|
[Use of 2D and 3D cell cultures in dermatology]. Hautarzt 2020; 71:91-100. [PMID: 31965205 DOI: 10.1007/s00105-019-04537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The skin is a complex organ that performs a number of vital functions, including forming a physical barrier that protects our body from the penetration of pathogens and irritants and from excessive transepidermal water loss. In addition to its passive properties, the skin is also actively involved in the immune process. A complex structure of different cell types and structures allows the skin to fulfil these functions. In vitro research often faces the problem that simple 2D cell cultures are not able to adequately map these functions. Here 3D skin models offer a possible solution. In recent years, there has been significant development in this field; the reproducibility of the method as well as the physiological structure and tissue architecture of the 3D skin models have been improved. Depending on the research question, protocols for 3D skin models have been published, ranging from simple multilayer epidermis models to highly complex vascularized 3D full skin models.
Collapse
|
50
|
Hardwick RN, Betts CJ, Whritenour J, Sura R, Thamsen M, Kaufman EH, Fabre K. Drug-induced skin toxicity: gaps in preclinical testing cascade as opportunities for complex in vitro models and assays. LAB ON A CHIP 2020; 20:199-214. [PMID: 31598618 DOI: 10.1039/c9lc00519f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Skin is the largest organ of the body and serves as the principle barrier to the environment. Composed of multiple cell types arranged in stratified layers with highly specialized appendages, it serves sensory and immune surveillance roles in addition to its primary mechanical function. Several complex in vitro models of skin (i.e. microphysiological systems (MPS) including but not limited to 3D tissues, organ-on-a-chip, organoids), have been developed and assays validated for regulatory purposes. As such, skin is arguably the most advanced organ with respect to model development and adoption across industries including chemical, cosmetic, and to a somewhat lesser extent, pharmaceutical. Early adoption of complex skin models and associated assays for assessment of irritation and corrosion spurred research into other areas such as sensitization, absorption, phototoxicity, and genotoxicity. Despite such considerable advancements, opportunities remain for immune capabilities, inclusion of appendages such as hair follicles, fluidics, and innervation, among others. Herein, we provide an overview of current complex skin model capabilities and limitations within the drug development scheme, and recommendations for future model development and assay qualification and/or validation with the intent to facilitate wider adoption of use within the pharmaceutical industry.
Collapse
Affiliation(s)
- Rhiannon N Hardwick
- Translational Safety Sciences, Theravance Biopharma, US, Inc., South San Francisco, CA, USA.
| | - Catherine J Betts
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Jessica Whritenour
- Pfizer, Inc., Drug Safety Research and Development, Eastern Point Rd, Groton, CT 06340, USA
| | | | - Maike Thamsen
- Pharmacology, Theravance Biopharma, US, Inc., South San Francisco, CA, USA
| | - Elad H Kaufman
- Biology, Theravance Biopharma, US, Inc., South San Francisco, CA, USA
| | - Kristin Fabre
- MPS Center of Excellence, Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA, USA
| |
Collapse
|