1
|
Kaisar MMM, Kristin H, Wijaya FA, Rachel C, Anggraini F, Ali S. Optimization and application of digital droplet PCR for the detection of SARS-CoV-2 in saliva specimen using commercially available kit. Biol Methods Protoc 2024; 9:bpae068. [PMID: 39355137 PMCID: PMC11444740 DOI: 10.1093/biomethods/bpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The coronavirus disease-19 pandemic has resulted in a significant global health crisis, causing hundreds of millions of cases and millions of deaths. Despite being declared endemic, SARS-CoV-2 infection continues to pose a significant risk, particularly for immunocompromised individuals, highlighting the need for a more sensitive and specific detection. Reverse transcription digital droplet polymerase chain reaction (RT-ddPCR) possesses a sensitive and absolute quantification compared to the gold standard. This study is the first to optimize RT-ddPCR for detecting SARS-CoV-2 in saliva specimens using a commercially available RT-qPCR kit. Optimization involved the assessment of the RT-ddPCR reaction mixture, annealing temperature adjustments, and validation using 40 stored saliva specimens. RT-qPCR was used as a reference method in this study. Compatibility assessment revealed that ddPCR Supermix for Probes (no dUTP) was preferable with an optimal annealing temperature of 57.6°C. Although a 25% higher primer/probe concentration provides a higher amplitude in droplet separation of positive control, the number of copy numbers decreased. An inverse correlation between Ct value and copy number concentration was displayed, presenting that the lower the Ct value, the higher the concentration, for the N and E genes with r2 values of 0.98 and 0.85, respectively. However, ORF1ab was poorly correlated (r2 of 0.34). The sensitivity of targeted and E genes was 100% and 93.3%, respectively; as for the specificity, the percentage ranged from 80.8% to 91.3%. This study implicates the applicability of a modified method in the ddPCR platform for similar types of pathogens using saliva specimens.
Collapse
Affiliation(s)
- Maria M M Kaisar
- Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | - Helen Kristin
- Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | | | - Clarissa Rachel
- Undergraduate Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | - Felicia Anggraini
- Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| | - Soegianto Ali
- Master in Biomedicine Study Program, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, 14440, Indonesia
| |
Collapse
|
2
|
Joly C, Desjardins D, Porcher R, Péré H, Bruneau T, Zhang Q, Bastard P, Cobat A, Resmini L, Lenoir O, Savale L, Lécuroux C, Verstuyft C, Roque-Afonso AM, Veyer D, Baron G, Resche-Rigon M, Ravaud P, Casanova JL, Le Grand R, Hermine O, Tharaux PL, Mariette X. More rapid blood interferon α2 decline in fatal versus surviving COVID-19 patients. Front Immunol 2023; 14:1250214. [PMID: 38077399 PMCID: PMC10703045 DOI: 10.3389/fimmu.2023.1250214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Background The clinical outcome of COVID-19 pneumonia is highly variable. Few biological predictive factors have been identified. Genetic and immunological studies suggest that type 1 interferons (IFN) are essential to control SARS-CoV-2 infection. Objective To study the link between change in blood IFN-α2 level and plasma SARS-Cov2 viral load over time and subsequent death in patients with severe and critical COVID-19. Methods One hundred and forty patients from the CORIMUNO-19 cohort hospitalized with severe or critical COVID-19 pneumonia, all requiring oxygen or ventilation, were prospectively studied. Blood IFN-α2 was evaluated using the Single Molecule Array technology. Anti-IFN-α2 auto-Abs were determined with a reporter luciferase activity. Plasma SARS-Cov2 viral load was measured using droplet digital PCR targeting the Nucleocapsid gene of the SARS-CoV-2 positive-strand RNA genome. Results Although the percentage of plasmacytoid dendritic cells was low, the blood IFN-α2 level was higher in patients than in healthy controls and was correlated to SARS-CoV-2 plasma viral load at entry. Neutralizing anti-IFN-α2 auto-antibodies were detected in 5% of patients, associated with a lower baseline level of blood IFN-α2. A longitudinal analysis found that a more rapid decline of blood IFN-α2 was observed in fatal versus surviving patients: mortality HR=3.15 (95% CI 1.14-8.66) in rapid versus slow decliners. Likewise, a high level of plasma SARS-CoV-2 RNA was associated with death risk in patients with severe COVID-19. Conclusion These findings could suggest an interest in evaluating type 1 IFN treatment in patients with severe COVID-19 and type 1 IFN decline, eventually combined with anti-inflammatory drugs. Clinical trial registration https://clinicaltrials.gov, identifiers NCT04324073, NCT04331808, NCT04341584.
Collapse
Affiliation(s)
- Candie Joly
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Delphine Desjardins
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Raphael Porcher
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Hélène Péré
- Sorbonne Université and Université de Paris, INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Paris, France
| | - Thomas Bruneau
- Service de Microbiologie (Unité de virologie), Assistance Publique Hôpitaux de Paris-Centre (AP-HP-Centre), Hôpital Européen Georges Pompidou, Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Léa Resmini
- Université de Paris, INSERM, Paris Cardiovascular Center (PARCC), Paris, France
| | - Olivia Lenoir
- Université de Paris, INSERM, Paris Cardiovascular Center (PARCC), Paris, France
| | - Laurent Savale
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Camille Lécuroux
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Centre de Ressource Biologique Paris-Saclay, Le Kremlin Bicêtre, France
| | - Anne-Marie Roque-Afonso
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Centre de Ressource Biologique Paris-Saclay, Le Kremlin Bicêtre, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Laboratoire de Virologie, Villejuif, France
| | - David Veyer
- Sorbonne Université and Université de Paris, INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Paris, France
- Service de Microbiologie (Unité de virologie), Assistance Publique Hôpitaux de Paris-Centre (AP-HP-Centre), Hôpital Européen Georges Pompidou, Paris, France
| | - Gabriel Baron
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Matthieu Resche-Rigon
- Centre of Research in Epidemiology and Statistics (CRESS), Université de Paris, INSERM, Hôpital Saint Louis, Paris, France
| | - Philippe Ravaud
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Howard Hughes Medical Institute, New York, NY, United States
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Olivier Hermine
- Université de Paris, Institut Imagine, INSERM UMR1183, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Département d’Hématologie, Paris, France
| | | | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Rhumatologie, Le Kremlin Bicêtre, France
| |
Collapse
|
3
|
Pons S, Uhel F, Frapy E, Sérémé Y, Zafrani L, Aschard H, Skurnik D. How Protective are Antibodies to SARS-CoV-2, the Main Weapon of the B-Cell Response? Stem Cell Rev Rep 2023; 19:585-600. [PMID: 36422774 PMCID: PMC9685122 DOI: 10.1007/s12015-022-10477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
Since the beginning of the Coronavirus disease (COVID)-19 pandemic in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for more than 600 million infections and 6.5 million deaths worldwide. Given the persistence of SARS-CoV-2 and its ability to develop new variants, the implementation of an effective and long-term herd immunity appears to be crucial to overcome the pandemic. While a vast field of research has focused on the role of humoral immunity against SARS-CoV-2, a growing body of evidence suggest that antibodies alone only confer a partial protection against infection of reinfection which could be of high importance regarding the strategic development goals (SDG) of the United Nations (UN) and in particular UN SDG3 that aims towards the realization of good health and well being on a global scale in the context of the COVID-19 pandemic.In this review, we highlight the role of humoral immunity in the host defense against SARS-CoV-2, with a focus on highly neutralizing antibodies. We summarize the results of the main clinical trials leading to an overall disappointing efficacy of convalescent plasma therapy, variable results of monoclonal neutralizing antibodies in patients with COVID-19 but outstanding results for the mRNA based vaccines against SARS-CoV-2. Finally, we advocate that beyond antibody responses, the development of a robust cellular immunity against SARS-CoV-2 after infection or vaccination is of utmost importance for promoting immune memory and limiting disease severity, especially in case of (re)-infection by variant viruses.
Collapse
Affiliation(s)
- Stéphanie Pons
- DMU DREAM, Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, Pitié-Salpêtrière, Paris, France
- Université de Paris Cité, INSERM U976- Human Immunology, Pathophysiology, Immunotherapy (HIPI), Paris, France
| | - Fabrice Uhel
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France
- DMU ESPRIT, Médecine Intensive Réanimation, AP-HP, Hôpital Louis Mourier, 92700, Colombes, France
| | - Eric Frapy
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France
| | - Youssouf Sérémé
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France
| | - Lara Zafrani
- Université de Paris Cité, INSERM U976- Human Immunology, Pathophysiology, Immunotherapy (HIPI), Paris, France
- Medical Intensive Care Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Hugues Aschard
- Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - David Skurnik
- INSERM, CNRS, Institut Necker Enfants Malades, Université de Paris Cité, Paris, France.
- Department of Clinical Microbiology, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Université de Paris Cité, Paris, France.
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M, Gorman EK, Focosi D, Casadevall A, Joyner MJ. COVID-19 Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-analysis. JAMA Netw Open 2023; 6:e2250647. [PMID: 36633846 PMCID: PMC9857047 DOI: 10.1001/jamanetworkopen.2022.50647] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023] Open
Abstract
Importance Patients who are immunocompromised have increased risk for morbidity and mortality associated with coronavirus disease 2019 (COVID-19) because they less frequently mount antibody responses to vaccines. Although neutralizing anti-spike monoclonal-antibody treatment has been widely used to treat COVID-19, evolutions of SARS-CoV-2 have been associated with monoclonal antibody-resistant SARS-CoV-2 variants and greater virulence and transmissibility of SARS-CoV-2. Thus, the therapeutic use of COVID-19 convalescent plasma has increased on the presumption that such plasma contains potentially therapeutic antibodies to SARS-CoV-2 that can be passively transferred to the plasma recipient. Objective To assess the growing number of reports of clinical experiences of patients with COVID-19 who are immunocompromised and treated with specific neutralizing antibodies via COVID-19 convalescent plasma transfusion. Data Sources On August 12, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma use in patients who are immunocompromised. Study Selection Randomized clinical trials, matched cohort studies, and case report or series on COVID-19 convalescent plasma use in patients who are immunocompromised were included. The electronic search yielded 462 unique records, of which 199 were considered for full-text screening. Data Extraction and Synthesis The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 3 independent reviewers in duplicate and pooled. Main Outcomes and Meaures The prespecified end point was all-cause mortality after COVID-19 convalescent plasma transfusion; exploratory subgroup analyses were performed based on putative factors associated with the potential mortality benefit of convalescent plasma. Results This systematic review and meta-analysis included 3 randomized clinical trials enrolling 1487 participants and 5 controlled studies. Additionally, 125 case series or reports enrolling 265 participants and 13 uncontrolled large case series enrolling 358 participants were included. Separate meta-analyses, using models both stratified and pooled by study type (ie, randomized clinical trials and matched cohort studies), demonstrated that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for the amalgam of both randomized clinical trials and matched cohort studies (risk ratio [RR], 0.63 [95% CI, 0.50-0.79]). Conclusions and Relevance These findings suggest that transfusion of COVID-19 convalescent plasma is associated with mortality benefit for patients who are immunocompromised and have COVID-19.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Mario Cruciani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Matteo Zani
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Shibeeb S, Ajaj I, Al-Jighefee H, Abdallah AM. Effectiveness of Convalescent Plasma Therapy in COVID-19 Patients with Hematological Malignancies: A Systematic Review. Hematol Rep 2022; 14:377-388. [PMID: 36547236 PMCID: PMC9778836 DOI: 10.3390/hematolrep14040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Immunocompromised patients, including those with hematological malignancies, are at a high risk of developing severe coronavirus disease 2019 (COVID-19) complications. Currently, there is a limited number of systematic reviews into the efficacy of convalescent plasma therapy (CPT) use in the treatment of COVID-19 patients with hematological malignancies. Therefore, the aim of this review was to systematically appraise the current evidence for the clinical benefits of this therapy in COVID-19 patients with hematological malignancies. Methods: A comprehensive search was conducted up to April 2022, using four databases: PubMed, Web of Science, Science Direct, and Scopus. Two reviewers independently assessed the quality of the included studies. Data collection analysis was performed using Microsoft Excel 365 and GraphPad Prism software. Results: 18 studies met the inclusion criteria; these records included 258 COVID-19 patients who had hematological malignancies and were treated with CPT. The main findings from the reviewed data suggest that CPT may be associated with improved clinical outcomes, including (a) higher survival rate, (b) improved SARS-CoV-2 clearance and presence of detectable anti-SARS-CoV-2 antibodies post CP transfusion, and (c) improved hospital discharge time and recovery after 1 month of CPT. Furthermore, treatment with convalescent plasma was not associated with the development of adverse events. Conclusions: CPT appears to be an effective supportive therapeutic option for hematological malignancy patients infected with COVID-19. To our knowledge, this is one of the first systematic reviews of the clinical benefits of CPT in COVID-19 patients with hematological malignancies.
Collapse
Affiliation(s)
- Sapha Shibeeb
- La Trobe College Australia, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Ilham Ajaj
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Hadeel Al-Jighefee
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Atiyeh M. Abdallah
- La Trobe College Australia, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: ; Tel.: +61-974-4403-6551
| |
Collapse
|
6
|
Signore A, Lauri C, Bianchi MP, Pelliccia S, Lenza A, Tetti S, Martini ML, Franchi G, Trapasso F, De Biase L, Aceti A, Tafuri A. [ 18F]FDG PET/CT in Patients Affected by SARS-CoV-2 and Lymphoproliferative Disorders and Treated with Tocilizumab. J Pers Med 2022; 12:1839. [PMID: 36579547 PMCID: PMC9692335 DOI: 10.3390/jpm12111839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Interstitial pneumonia is a severe complication induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Several treatments have been proposed alone or, more often, in combination, depending, also, on the presence of other organ disfunction. The most frequently related, well-described, and associated phenomenon is pan-lymphopenia with circulating, high levels of cytokines. We report, here, on two patients with COVID-19 and lymphoproliferative disorders treated with Tocilizumab (a humanized monoclonal antibody against the interleukin-6 receptor) and followed by an [18F]FDG PET/CT to early evaluate the therapy's efficacy. METHODS One patient with angioimmunoblastic T-lymphoma (A), one with Hodgkin lymphoma (A), and both with positive RT-PCR for SARS-CoV-2 and with similar clinical findings of interstitial pneumonia at the CT scan, were imaged by [18F]FDG PET/CT before and 14 days after a single dose of Tocilizumab. RESULTS In both patients, the basal [18F]FDG PET/CT showed a diffused lung parenchyma uptake, corresponding to the hyperdense areas at the CT scan. After 2 weeks of a Tocilizumab infusion, patient B had an improvement of symptoms, with normalization of the [18F]FDG uptake. By contrast, patient A, who was still symptomatic, showed a persisting and abnormal distribution of [18F]FDG. Interestingly, both patients showed a low bone marrow uptake of [18F]FDG at the diagnosis and after 15 days, while the spleen uptake was low only in lymphopenic patient A; both are indirect signs of an immune deficiency. CONCLUSIONS In conclusion, in these two patients, interstitial pneumonia was efficiently treated with Tocilizumab, as demonstrated by the [18F]FDG PET/CT. Our results confirm that interleukin-6 (IL6) has a role in the COVID-19 disease and that anti-cytokine treatment can also be performed in patients with lymphoproliferative disorders.
Collapse
Affiliation(s)
- Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Paola Bianchi
- Haematology, "Sant'Andrea" University Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Sabrina Pelliccia
- Haematology, "Sant'Andrea" University Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Andrea Lenza
- Nuclear Medicine Unit, AOU Sant'Andrea, 00189 Rome, Italy
| | - Simone Tetti
- Nuclear Medicine Unit, AOU Sant'Andrea, 00189 Rome, Italy
| | | | | | - Fabio Trapasso
- Nuclear Medicine Unit, AOU Sant'Andrea, 00189 Rome, Italy
| | - Luciano De Biase
- Heart Failure Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Aceti
- Infection Unit, Department NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Agostino Tafuri
- Haematology, "Sant'Andrea" University Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
7
|
Delgado-Fernández M, García-Gemar GM, Fuentes-López A, Muñoz-Pérez MI, Oyonarte-Gómez S, Ruíz-García I, Martín-Carmona J, Sanz-Cánovas J, Castaño-Carracedo MÁ, Reguera-Iglesias JM, Ruíz-Mesa JD. Treatment of COVID-19 with convalescent plasma in patients with humoral immunodeficiency - Three consecutive cases and review of the literature. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:507-516. [PMID: 36336380 PMCID: PMC9631336 DOI: 10.1016/j.eimce.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/20/2021] [Indexed: 06/16/2023]
Abstract
Patients lacking humoral response have been suggested to develop a less severe COVID-19, but there are some reports with a prolonged, relapsing or deadly course. From April 2020, there is growing evidence on the benefits of COVID-19 convalescent plasma (CCP) for patients with humoral immunodeficiency. Most of them had a congenital primary immunodeficiency or were on treatment with anti CD20 antibodies. We report on three patients treated in our hospital and review thirty-one more cases described in the literature. All patients but three resolved clinical picture with CCP. A dose from 200 to 800ml was enough in most cases. Antibody levels after transfusion were negative or low, suggesting consumption of them in SARS-CoV-2 neutralization. These patients have a protracted clinical course shortened after CCP. CCP could be helpful for patients with humoral immunodeficiency. It avoid relapses and chronification. CCP should be transfused as early as possible in patients with COVID-19 and humoral immunodeficiency.
Collapse
Affiliation(s)
| | | | - Ana Fuentes-López
- Microbiology Department, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | | | - Salvador Oyonarte-Gómez
- Director of "Red andaluza de Medicina transfusional, tejidos y células" del Sistema Sanitario Público de Andalucía, Spain
| | | | | | - Jaime Sanz-Cánovas
- Internal Medicine Department, Hospital Regional Universitario de Málaga, Spain
| | | | | | - Juan Diego Ruíz-Mesa
- Infectious Diseases Department, Hospital Regional Universitario de Málaga, Spain
| |
Collapse
|
8
|
Long S. Digital PCR: Methods and applications in infectious diseases. Methods 2022; 201:1-4. [DOI: 10.1016/j.ymeth.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Vierbaum L, Wojtalewicz N, Grunert HP, Lindig V, Duehring U, Drosten C, Corman V, Niemeyer D, Ciesek S, Rabenau HF, Berger A, Obermeier M, Nitsche A, Michel J, Mielke M, Huggett J, O’Sullivan D, Busby E, Cowen S, Vallone PM, Cleveland MH, Falak S, Kummrow A, Keller T, Schellenberg I, Zeichhardt H, Kammel M. RNA reference materials with defined viral RNA loads of SARS-CoV-2-A useful tool towards a better PCR assay harmonization. PLoS One 2022; 17:e0262656. [PMID: 35051208 PMCID: PMC8775330 DOI: 10.1371/journal.pone.0262656] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2, the cause of COVID-19, requires reliable diagnostic methods to track the circulation of this virus. Following the development of RT-qPCR methods to meet this diagnostic need in January 2020, it became clear from interlaboratory studies that the reported Ct values obtained for the different laboratories showed high variability. Despite this the Ct values were explored as a quantitative cut off to aid clinical decisions based on viral load. Consequently, there was a need to introduce standards to support estimation of SARS-CoV-2 viral load in diagnostic specimens. In a collaborative study, INSTAND established two reference materials (RMs) containing heat-inactivated SARS-CoV-2 with SARS-CoV-2 RNA loads of ~107 copies/mL (RM 1) and ~106 copies/mL (RM 2), respectively. Quantification was performed by RT-qPCR using synthetic SARS-CoV-2 RNA standards and digital PCR. Between November 2020 and February 2021, German laboratories were invited to use the two RMs to anchor their Ct values measured in routine diagnostic specimens, with the Ct values of the two RMs. A total of 305 laboratories in Germany were supplied with RM 1 and RM 2. The laboratories were requested to report their measured Ct values together with details on the PCR method they used to INSTAND. This resultant 1,109 data sets were differentiated by test system and targeted gene region. Our findings demonstrate that an indispensable prerequisite for linking Ct values to SARS-CoV-2 viral loads is that they are treated as being unique to an individual laboratory. For this reason, clinical guidance based on viral loads should not cite Ct values. The RMs described were a suitable tool to determine the specific laboratory Ct for a given viral load. Furthermore, as Ct values can also vary between runs when using the same instrument, such RMs could be used as run controls to ensure reproducibility of the quantitative measurements.
Collapse
Affiliation(s)
- Laura Vierbaum
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, North Rhine-Westphalia, Germany
| | - Nathalie Wojtalewicz
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, North Rhine-Westphalia, Germany
| | | | - Vanessa Lindig
- IQVD GmbH, Institut fuer Qualitaetssicherung in der Virusdiagnostik, Berlin, Germany
| | - Ulf Duehring
- GBD Gesellschaft fuer Biotechnologische Diagnostik mbH, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - University Medicine Berlin; National Consultant Laboratory for Coronaviruses; German Centre for Infection Research, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité - University Medicine Berlin; National Consultant Laboratory for Coronaviruses; German Centre for Infection Research, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - University Medicine Berlin; National Consultant Laboratory for Coronaviruses; German Centre for Infection Research, Berlin, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, Frankfurt, Hesse, Germany
- German Centre for Infection Research, External partner site Frankfurt, Hesse, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmacology, Frankfurt, Hesse, Germany
| | - Holger F. Rabenau
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, Frankfurt, Hesse, Germany
| | - Annemarie Berger
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, Frankfurt, Hesse, Germany
| | | | - Andreas Nitsche
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Janine Michel
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Martin Mielke
- Robert Koch-Institute, Department for Infectious Diseases, Berlin, Germany
| | - Jim Huggett
- National Measurement Laboratory, LGC, Teddington, Middlesex, United Kingdom
- Faculty of Health & Medical Science, School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Denise O’Sullivan
- National Measurement Laboratory, LGC, Teddington, Middlesex, United Kingdom
| | - Eloise Busby
- National Measurement Laboratory, LGC, Teddington, Middlesex, United Kingdom
| | - Simon Cowen
- National Measurement Laboratory, LGC, Teddington, Middlesex, United Kingdom
| | - Peter M. Vallone
- Materials Measurement Laboratory, Biomolecular Measurement Division, NIST, National Institute of Standards and Technology, Applied Genetics Group, Gaithersburg, Massachusetts, United States of America
| | - Megan H. Cleveland
- Materials Measurement Laboratory, Biomolecular Measurement Division, NIST, National Institute of Standards and Technology, Applied Genetics Group, Gaithersburg, Massachusetts, United States of America
| | - Samreen Falak
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | | | - Ingo Schellenberg
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, North Rhine-Westphalia, Germany
- Institute of Bioanalytical Sciences, Center of Life Sciences, Anhalt University of Applied Sciences, Bernburg, Saxony-Anhalt, Germany
| | - Heinz Zeichhardt
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, North Rhine-Westphalia, Germany
- GBD Gesellschaft fuer Biotechnologische Diagnostik mbH, Berlin, Germany
- IQVD GmbH, Institut fuer Qualitaetssicherung in der Virusdiagnostik, Berlin, Germany
| | - Martin Kammel
- INSTAND e.V., Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, North Rhine-Westphalia, Germany
- IQVD GmbH, Institut fuer Qualitaetssicherung in der Virusdiagnostik, Berlin, Germany
| |
Collapse
|
10
|
Gentilini F, Turba ME, Taddei F, Gritti T, Fantini M, Dirani G, Sambri V. Modelling RT-qPCR cycle-threshold using digital PCR data for implementing SARS-CoV-2 viral load studies. PLoS One 2021; 16:e0260884. [PMID: 34928966 PMCID: PMC8687578 DOI: 10.1371/journal.pone.0260884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To exploit the features of digital PCR for implementing SARS-CoV-2 observational studies by reliably including the viral load factor expressed as copies/μL. METHODS A small cohort of 51 Covid-19 positive samples was assessed by both RT-qPCR and digital PCR assays. A linear regression model was built using a training subset, and its accuracy was assessed in the remaining evaluation subset. The model was then used to convert the stored cycle threshold values of a large dataset of 6208 diagnostic samples into copies/μL of SARS-CoV-2. The calculated viral load was used for a single cohort retrospective study. Finally, the cohort was randomly divided into a training set (n = 3095) and an evaluation set (n = 3113) to establish a logistic regression model for predicting case-fatality and to assess its accuracy. RESULTS The model for converting the Ct values into copies/μL was suitably accurate. The calculated viral load over time in the cohort of Covid-19 positive samples showed very low viral loads during the summer inter-epidemic waves in Italy. The calculated viral load along with gender and age allowed building a predictive model of case-fatality probability which showed high specificity (99.0%) and low sensitivity (21.7%) at the optimal threshold which varied by modifying the threshold (i.e. 75% sensitivity and 83.7% specificity). Alternative models including categorised cVL or raw cycle thresholds obtained by the same diagnostic method also gave the same performance. CONCLUSION The modelling of the cycle threshold values using digital PCR had the potential of fostering studies addressing issues regarding Sars-CoV-2; furthermore, it may allow setting up predictive tools capable of early identifying those patients at high risk of case-fatality already at diagnosis, irrespective of the diagnostic RT-qPCR platform in use. Depending upon the epidemiological situation, public health authority policies/aims, the resources available and the thresholds used, adequate sensitivity could be achieved with acceptable low specificity.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | - Francesca Taddei
- Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Tommaso Gritti
- Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Michela Fantini
- Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Giorgio Dirani
- Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, Pievesestina, Italy
- Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Ishak A, AlRawashdeh MM, Esagian SM, Nikas IP. Diagnostic, Prognostic, and Therapeutic Value of Droplet Digital PCR (ddPCR) in COVID-19 Patients: A Systematic Review. J Clin Med 2021; 10:5712. [PMID: 34884414 PMCID: PMC8658157 DOI: 10.3390/jcm10235712] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Accurate detection of SARS-CoV-2, the pathogen causing the global pandemic of COVID-19, is essential for disease surveillance and control. Quantitative reverse transcription PCR (RT-qPCR) is considered the reference standard test for the diagnosis of SARS-CoV-2 by the World Health Organization and Centers for Disease Control and Prevention. However, its limitations are a prompt for a more accurate assay to detect SARS-CoV-2, quantify its levels, and assess the prognosis. This article aimed to systematically review the literature and assess the diagnostic performance of droplet digital PCR (ddPCR), also to evaluate its potential role in prognosis and management of COVID-19 patients. PubMed and Scopus databases were searched to identify relevant articles published until 13 July 2021. An additional PubMed search was performed on 21 October 2021. Data from the 39 eligible studies were extracted and an overall 3651 samples from 2825 patients and 145 controls were used for our qualitative analysis. Most studies reported ddPCR was more accurate than RT-qPCR in detecting and quantifying SARS-CoV-2 levels, especially in patients with low viral loads. ddPCR was also found highly effective in quantifying SARS-CoV-2 RNAemia levels in hospitalized patients, monitoring their disease course, and predicting their response to therapy. These findings suggest ddPCR could serve as a complement or alternative SARS-CoV-2 tool with emerging diagnostic, prognostic, and therapeutic value, especially in hospital settings. Additional research is still needed to standardize its laboratory protocols, also to accurately assess its role in monitoring COVID-19 therapy response and in identifying SARS-CoV-2 emerging variants.
Collapse
Affiliation(s)
- Angela Ishak
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Mousa M. AlRawashdeh
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Stepan M. Esagian
- Jacobi Medical Center, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, USA;
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| |
Collapse
|
12
|
Senefeld JW, Klassen SA, Ford SK, Senese KA, Wiggins CC, Bostrom BC, Thompson MA, Baker SE, Nicholson WT, Johnson PW, Carter RE, Henderson JP, Hartman WR, Pirofski L, Wright RS, Fairweather DL, Bruno KA, Paneth NS, Casadevall A, Joyner MJ. Use of convalescent plasma in COVID-19 patients with immunosuppression. Transfusion 2021; 61:2503-2511. [PMID: 34036587 PMCID: PMC8242637 DOI: 10.1111/trf.16525] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
In the absence of effective countermeasures, human convalescent plasma has been widely used to treat severe acute respiratory syndrome coronavirus 2, the causative agent of novel coronavirus disease 19 (COVID-19), including among patients with innate or acquired immunosuppression. However, the association between COVID-19-associated mortality in patients with immunosuppression and therapeutic use of convalescent plasma is unknown. We review 75 reports, including one large matched-control registry study of 143 COVID-19 patients with hematological malignancies, and 51 case reports and 23 case series representing 238 COVID-19 patients with immunosuppression. We review clinical features and treatment protocols of COVID-19 patients with immunosuppression after treatment with human convalescent plasma. We also discuss the time course and clinical features of recovery. The available data from case reports and case series provide evidence suggesting a mortality benefit and rapid clinical improvement in patients with several forms of immunosuppression following COVID-19 convalescent plasma transfusion. The utility of convalescent plasma or other forms of antibody therapy in immune-deficient and immune-suppressed patients with COVID-19 warrants further investigation.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Shane K. Ford
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Katherine A. Senese
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Bruce C. Bostrom
- Pediatric Oncology and Hematology, Children's Hospital of MinnesotaMinneapolisMinnesotaUSA
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Wayne T. Nicholson
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Patrick W. Johnson
- Department of Health Sciences Research, Mayo ClinicJacksonvilleFloridaUSA
| | - Rickey E. Carter
- Department of Health Sciences Research, Mayo ClinicJacksonvilleFloridaUSA
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - William R. Hartman
- Department of AnesthesiologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
| | - Liise‐anne Pirofski
- Division of Infectious Diseases, Department of MedicineAlbert Einstein College of MedicineBronxNew YorkUSA
| | - R. Scott Wright
- Department of Cardiovascular Medicine and Director Human Research Protection ProgramMayo ClinicRochesterMinnesotaUSA
| | | | - Katelyn A. Bruno
- Department of Cardiovascular MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human DevelopmentMichigan State UniversityEast LansingMichiganUSA
| | - Arturo Casadevall
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
13
|
COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis 2021; 24:755-788. [PMID: 34184164 PMCID: PMC8238037 DOI: 10.1007/s10456-021-09805-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 β [IL-1β] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.
Collapse
|
14
|
Klassen SA, Senefeld JW, Johnson PW, Carter RE, Wiggins CC, Shoham S, Grossman BJ, Henderson JP, Musser J, Salazar E, Hartman WR, Bouvier NM, Liu STH, Pirofski LA, Baker SE, van Helmond N, Wright RS, Fairweather D, Bruno KA, Wang Z, Paneth NS, Casadevall A, Joyner MJ. The Effect of Convalescent Plasma Therapy on Mortality Among Patients With COVID-19: Systematic Review and Meta-analysis. Mayo Clin Proc 2021; 96:1262-1275. [PMID: 33958057 PMCID: PMC7888247 DOI: 10.1016/j.mayocp.2021.02.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from 10 randomized clinical trials, 20 matched control studies, 2 dose-response studies, and 96 case reports or case series. Studies published between January 1, 2020, and January 16, 2021, were identified through a systematic search of online PubMed and MEDLINE databases. Random effects analyses of randomized clinical trials and matched control data demonstrated that patients with COVID-19 transfused with convalescent plasma exhibited a lower mortality rate compared with patients receiving standard treatments. Additional analyses showed that early transfusion (within 3 days of hospital admission) of higher titer plasma is associated with lower patient mortality. These data provide evidence favoring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W Johnson
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brenda J Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - James Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX; Center for Molecular and Translational Human Infectious Diseases, Houston Methodist Research Institute, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Eric Salazar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - William R Hartman
- Department of Anesthesiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole M Bouvier
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sean T H Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Noud van Helmond
- Department of Anesthesiology, Cooper Medical School of Rowan University, Cooper University Health Care, Camden, NJ
| | - R Scott Wright
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Director, Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Zhen Wang
- Evidence-Based Practice Center, Robert D. and Patricia E. Kern Center for Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Nigel S Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing; Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
15
|
Delgado-Fernández M, García-Gemar GM, Fuentes-López A, Muñoz-Pérez MI, Oyonarte-Gómez S, Ruíz-García I, Martín-Carmona J, Sanz-Cánovas J, Castaño-Carracedo MÁ, Reguera-Iglesias JM, Ruíz-Mesa JD. Treatment of COVID-19 with convalescent plasma in patients with humoral immunodeficiency - Three consecutive cases and review of the literature. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(21)00035-5. [PMID: 33741148 PMCID: PMC7877207 DOI: 10.1016/j.eimc.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Patients lacking humoral response have been suggested to develop a less severe COVID-19, but there are some reports with a prolonged, relapsing or deadly course. From April 2020, there is growing evidence on the benefits of COVID-19 convalescent plasma (CCP) for patients with humoral immunodeficiency. Most of them had a congenital primary immunodeficiency or were on treatment with anti CD20 antibodies. We report on three patients treated in our hospital and review thirty-one more cases described in the literature. All patients but three resolved clinical picture with CCP. A dose from 200 to 800ml was enough in most cases. Antibody levels after transfusion were negative or low, suggesting consumption of them in SARS-CoV-2 neutralization. These patients have a protracted clinical course shortened after CCP. CCP could be helpful for patients with humoral immunodeficiency. It avoid relapses and chronification. CCP should be transfused as early as possible in patients with COVID-19 and humoral immunodeficiency.
Collapse
Affiliation(s)
| | | | - Ana Fuentes-López
- Microbiology Department, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | | | - Salvador Oyonarte-Gómez
- Director of "Red andaluza de Medicina transfusional, tejidos y células" del Sistema Sanitario Público de Andalucía, Spain
| | | | | | - Jaime Sanz-Cánovas
- Internal Medicine Department, Hospital Regional Universitario de Málaga, Spain
| | | | | | - Juan Diego Ruíz-Mesa
- Infectious Diseases Department, Hospital Regional Universitario de Málaga, Spain
| |
Collapse
|