1
|
Makled S, Abbas H, Ali ME, Zewail M. Melatonin hyalurosomes in collagen thermosensitive gel as a potential repurposing approach for rheumatoid arthritis management via the intra-articular route. Int J Pharm 2024; 661:124449. [PMID: 38992734 DOI: 10.1016/j.ijpharm.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt.
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt
| |
Collapse
|
2
|
Liu Y, Qu Y, Liu C, Zhang D, Xu B, Wan Y, Jiang P. Neutrophil extracellular traps: Potential targets for the treatment of rheumatoid arthritis with traditional Chinese medicine and natural products. Phytother Res 2024. [PMID: 39105461 DOI: 10.1002/ptr.8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Abnormal formation of neutrophil extracellular traps (NETs) at the synovial membrane leads to the release of many inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Elastase, histone H3, and myeloperoxidase, which are carried by NETs, damage the soft tissues of the joints and aggravate the progression of RA. The balance of NET formation coordinates the pro-inflammatory and anti-inflammatory effects and plays a key role in the development of RA. Therefore, when NETs are used as effector targets, highly targeted drugs with fewer side effects can be developed to treat RA without damaging the host immune system. Currently, an increasing number of studies have shown that traditional Chinese medicines and natural products can regulate the formation of NETs through multiple pathways to counteract RA, which shows great potential for the treatment of RA and has a promising future for clinical application. In this article, we review the latest biological progress in understanding NET formation, the mechanism of NETs in RA, and the potential targets or pathways related to the modulation of NET formation by Chinese medicines and natural products. This review provides a relevant basis for the use of Chinese medicines and natural products as natural adjuvants in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Liu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Yuan Qu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yakun Wan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Liu W, Yu H, Gurbazar D, Rinchindorj D, Kang W, Qi C, Chen H, Chang X, You H, Han Y, Li Z, R. G. A, Dong W. Anti-inflammatory effects and beneficial effects of the feed additive Urtica cannabina L. in zebrafish. PLoS One 2024; 19:e0307269. [PMID: 39018284 PMCID: PMC11253947 DOI: 10.1371/journal.pone.0307269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Urtica cannabina L. (UL) has been used clinically for centuries because of its anti-inflammatory properties. This study aimed to investigate the underlying mechanisms and anti-inflammatory effects of different UL concentrations in zebrafish. To elucidate UL's anti-inflammatory properties, two inflammation zebrafish models were designed 1) by severing the zebrafish's caudal fin to assess the repairing effect of UL on the tail inflammation, and 2) by inducing lipopolysaccharides (LPS)-mediated intestinal inflammation to assess the protective and reparative effects of UL on intestinal inflammation at the histological and genetic levels. Furthermore, the effect of UL on the LPS-induced intestinal flora changes was also assessed. After caudal fin resection, a scar formed on the tail of the zebrafish, and the area of the caudal fin increased by 1.30 times as much as that of the control group (P < 0.01). Moreover, this tail scar was alleviated after 10 mg/g UL supplementation but not after 30 mg/g UL dose. LPS decreased the feed intake and body weight of the zebrafish; however, these effects were reversed after 10 and 30 mg/g doses of UL. In addition, the LPS treatment also reduced the intestinal goblet cells by 49% in the zebrafish when compared with the control, which was significantly restored after 10 and 30 mg/g UL treatments. At the genetics level, the expression of the pro-inflammatory cytokine genes (TNF-α, IL6, and IL8) showed that 10 and 30 mg/g UL doses could rescue LPS-induced expression. The gut microbiota analysis revealed changes in the abundance of four major bacterial phyla in the 10 and 30 mg/g UL-treated groups, with an increased probiotic Bacteroidota and decreased pathogenic bacteria. These results indicate that UL strongly inhibits inflammation caused by caudal fin removal and LPS-induced inflammatory changes in the zebrafish intensity, suggesting that UL is a feed additive that could be developed to improve resistance to inflammation in livestock.
Collapse
Affiliation(s)
- Wuyun Liu
- Key Laboratory of Ecological Agriculture in Horqin Sandy Land, State Ethnic Affairs Commission, Wuhan, China
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
- Mongolian University of Life Sciences, School of Animal science & Biotechnology, Ulaanbaatar, Mongolia
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huarong Yu
- Key Laboratory of Ecological Agriculture in Horqin Sandy Land, State Ethnic Affairs Commission, Wuhan, China
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - D. Gurbazar
- Mongolian University of Life Sciences, School of Animal science & Biotechnology, Ulaanbaatar, Mongolia
| | - D. Rinchindorj
- Mongolian University of Life Sciences, School of Animal science & Biotechnology, Ulaanbaatar, Mongolia
| | - Wei Kang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Hongsong Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan You
- Tongliao Animal Husbandry Development Center, Tongliao, Inner Mongolia, China
| | - Yongmei Han
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Zhigang Li
- Key Laboratory of Ecological Agriculture in Horqin Sandy Land, State Ethnic Affairs Commission, Wuhan, China
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Ahmed R. G.
- Faculty of Science, Zoology Department, Division of Anatomy and Embryology, Beni-Suef University, Beni-Suef, Egypt
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
4
|
Zhang H, Ouyang H, Zhang J, Lin L, Wei M, Lu B, Ji L. Exploring the efficacy and mechanism of Glycyrrhizae Radix et Rhizoma in improving collagen-induced arthritis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117554. [PMID: 38092318 DOI: 10.1016/j.jep.2023.117554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA), a chronic auto-immune disease, will cause serious joint damage and disability. Glycyrrhizae Radix et Rhizoma (GRR) is commonly included in many anti-RA formulas used in the clinical practice in China. AIM OF THE STUDY To elucidate the alleviation of GRR and its active compounds on RA and the possible engaged mechanism. MATERIALS AND METHODS The clinical score, paw swelling degree and pain threshold were detected in the collagen-induced arthritis (CIA) in DBA/1 mice. The ankle joints of mice were observed by using X-Ray, hematoxylin-eosin (H&E), masson's trichrome (Masson), and safranin O and fast green (Safranin O) staining. The potential targets of GRR were predicted by network pharmacology and further verified by using enzyme-linked immunosorbent assay (ELISA) and western-blot. Real-time polymerase chain reaction (Real-time PCR) and wound healing assay were conducted in synovial MH7A cells. The interaction between active compounds and potential targets predicted by molecular docking was confirmed by using cellular thermal shift assay (CETSA). RESULTS GRR (615 mg/kg) obviously alleviated CIA in mice. Network pharmacology implied that GRR might affect angiogenesis and inflammation, among which vascular endothelial growth factor-A (VEGF-A), tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), IL-6 and phosphorylated protein kinase B (AKT) might be the key targets involved in this process. GRR decreased AKT phosphorylation and reduced the elevated levels of TNFα, VEGF-A, IL-1β and IL-6. Next, in vitro results demonstrated that glycyrrhetinic acid (GA) and isoliquiritigenin (ISL) were two active compounds that inhibited TNFα-induced synovial cell angiogenesis and inflammation. Moreover, GA and ISL actually improved RA in CIA mice. The results of molecular docking and CETSA displayed that ISL and GA might interact with TNF receptor-1 (TNFR1), toll-like receptor-4 (TLR4) and VEGF receptor-2 (VEGFR2), thereby contributing to their inhibition on angiogenesis and inflammation. CONCLUSION GRR and two active compounds, including ISL and GA, alleviated RA via inhibiting angiogenesis and inflammation.
Collapse
Affiliation(s)
- Hong Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jinyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Lin
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Liu Y, Li H, Chen L, Zhao H, Liu J, Gong S, Ma D, Chen C, Zeng S, Long H, Ren W. Mechanism and Pharmacodynamic Substance Basis of Raw and Wine-Processed Evodia rutaecarpa on Smooth Muscle Cells of Dysmenorrhea Mice. Pain Res Manag 2023; 2023:7711988. [PMID: 37305097 PMCID: PMC10250099 DOI: 10.1155/2023/7711988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Objectives Evodia rutaecarpa (ER) is a well-known herbal Chinese medicine traditionally used for analgesia in dysmenorrhea, headaches, abdominal pain, etc. Notably, the analgesic effect of wine-processed Evodia rutaecarpa (PER) was more potent than that of raw ER. This research aimed to investigate the mechanism and pharmacodynamic substance basis of raw ER and PER on smooth muscle cells of dysmenorrhea mice. Methods Metabolomics methods based on UPLC-Q-TOF-MS were utilized to analyse the differential components of ER before and after wine processing. Afterwards, the uterine smooth muscle cells were isolated from the uterine tissue of dysmenorrhea and normal mice. The isolated dysmenorrhea uterine smooth muscle cells were randomly divided into four groups: model group, 7-hydroxycoumarin group (1 mmol/L), chlorogenic acid (1 mmol/L), and limonin (50 μmol/L). The normal group consisted of the isolated normal mouse uterine smooth muscle cells, which were repeated 3 times in each group. The cell contraction and the expression of P2X3 and Ca2+ in vitro were determined using immunofluorescence staining and laser confocal; ELISA was used for detection of PGE2, ET-1, and NO content after 7-hydroxycoumarin, chlorogenic acid, and limonin administered for 24 h. Results The metabolomics results suggested that seven differential compounds were identified in the extracts of raw ER and PER, including chlorogenic acid, 7-hydroxycoumarin, hydroxy evodiamine, laudanosine, evollionines A, limonin, and 1-methyl-2-[(z)-4-nonenyl]-4 (1H)-quinolone. The in vitro results showed that 7-hydroxycoumarin, chlorogenic acid, and limonin were able to inhibit cell contraction and PGE2, ET-1, P2X3, and Ca2+ in dysmenorrhea mouse uterine smooth muscle cells and increase the content of NO. Conclusion Our finding suggested that the compounds of the PER were different from those of the raw ER, and 7-hydroxycoumarin, chlorogenic acid, and limonin could improve dysmenorrhea in mice whose uterine smooth muscle cell contraction was closed with endocrine factors and P2X3-Ca2+ pathway.
Collapse
Affiliation(s)
- Yeqian Liu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hong Li
- Department of Pharmacy, The Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, Hefei, Anhui Province, China
| | - Lei Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongxia Zhao
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shan Gong
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Danfeng Ma
- Department of Pharmacy, The Children's Hospital of Hunan Province, No. 86 Ziyuan Road, Changsha, Hunan Province, China
| | - Chunming Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shuiqing Zeng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Weiqiong Ren
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Zhang Y, Shen J, Ma X, He Y, Zhang Y, Cao D. Anti-Inflammatory Activity of Phenylethanoids from Acanthus ilicifolius var. xiamenensis. J Med Food 2023; 26:135-145. [PMID: 36637805 DOI: 10.1089/jmf.2022.k.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acanthus ilicifolius var. xiamenensis is a traditional herbal medicine in China. In this study, the anti-inflammatory activities of active ingredients of A. ilicifolius var. xiamenensis were investigated in RAW 264.7 cells and Freund's complete adjuvant-induced arthritic rats. Results showed that n-butanol extract exerted antiarthritic potential by reducing paw edema, arthritis score, and altered hematological and biochemical parameters in experimental rats. Phytochemical studies on n-butanol extract resulted in the isolation of five alkaloids (1-5) and five phenylethanoids (6-10). The anti-inflammatory assay of compounds 1-10 on lipopolysaccharide (LPS)-treated RAW 264.7 cells indicated that phenylethanoids 9 and 10 exhibited notable inhibitory activities. The result indicated that compounds 9 and 10 attenuated inflammation by decreasing the production of nuclear factor kappa-B (NF-κB) p65, inhibitory subunit of NF kappa B alpha, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and inducible nitric oxide synthase in LPS-mediated RAW 264.7 macrophages. Phenylethanoids 9 and 10 increased the expression of interleukin-10 and endothelial nitric oxide synthase. Therefore, compounds 9 and 10 showed anti-inflammatory activity by regulation of NF-κB and JAK/STAT signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinhuang Shen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Ma
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yubin He
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yonghong Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Mohammadi G, Korani M, Nemati H, Nikpoor AR, Rashidi K, Varmira K, Abbasifard M, Kesharwani P, Korani S, Sahebkar A. Crocin-loaded nanoliposomes: Preparation, characterization, and evaluation of anti-inflammatory effects in an experimental model of adjuvant-induced arthritis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Samakar B, Mehri S, Hosseinzadeh H. A review of the effects of Urtica dioica (nettle) in metabolic syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:543-553. [PMID: 35911652 PMCID: PMC9282742 DOI: 10.22038/ijbms.2022.58892.13079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
Metabolic syndrome is a serious health condition, yet a common worldwide disorder. It includes several risk factors such as hypertension, dyslipidemia, and high glucose levels which lead the patients to higher risks of cardiovascular diseases, diabetes, and stroke. Phytotherapy plays an important role in treating components of metabolic syndrome. Nettle (Urtica dioica) is considered a valuable plant due to bioactive compounds such as formic acid and rich sources of flavonoids. To acknowledge the role of nettle in metabolic syndrome, several mechanisms have been suggested such as alterations in potassium and calcium channels which improve hypertension. Antihyperlipidemic properties of nettle are mediated by inhibition of HMGCoA reductase and amelioration of lipid peroxidation via antioxidant effects. Also, one of the flavonoids in nettle, quercetin, is responsible for decreasing total cholesterol. Moreover, nettle is responsible for anti-diabetic effects through processes such as increasing insulin secretion and proliferation of pancreatic β-cells. This review aims to gather different studies to confirm the potential efficacy of nettle in metabolic syndrome.
Collapse
Affiliation(s)
- Bahareh Samakar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Sahraei F, Rahemi Z, Sadat Z, Zamani B, Ajorpaz NM, Afshar M, Mianehsaz E. The effect of Swedish massage on pain in rheumatoid arthritis patients: A randomized controlled trial. Complement Ther Clin Pract 2021; 46:101524. [PMID: 34953451 DOI: 10.1016/j.ctcp.2021.101524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Joint pain is one of the most common symptoms in rheumatoid arthritis patients and require medical attention. The purpose of this study was to assess the effects of Swedish massage on pain and painkiller consumption in rheumatoid arthritis patients. MATERIALS AND METHODS A total of 60 patients participated in the experiment, with half assigned to the control group (n = 30) and half to the experimental (n = 30) group using the block randomization method. On patients in the experimental group, a 30-min Swedish massage was performed regularly for eight weeks: twice a week for the first four weeks, and three times a week for the last four weeks. The control group received routine care. The visual analogue scale-pain was used to measure pain in the two groups at three points of time: before the beginning of the experiment, immediately after the last session, and one month after the last session of the intervention. RESULTS The analysis of covariance showed that there were significant differences between the two groups' mean scores of pain and painkiller consumption immediately after and one month after the last session of the intervention (p = 0.01). Furthermore, in the experimental group, the mean scores of pain and painkiller consumption decreased over the three points of time (p < 0.05). CONCLUSION Swedish massage can be effective in reducing pain and the need to use painkillers in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Farideh Sahraei
- Trauma Nursing Research Center, Department of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Rahemi
- School of Nursing, Clemson University, South Carolina, 605 Grove Road, Greenville, SC, 29605, USA
| | - Zohreh Sadat
- Trauma Nursing Research Center, Department of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Batool Zamani
- Autoimmune Diseases Research Center, Department of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Mirbagher Ajorpaz
- Autoimmune Diseases Research Center, Department of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohamad Afshar
- Trauma Nursing Research Center, Department of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Elaheh Mianehsaz
- Clinical Research Center, Department of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Wei SJ, Zhang Q, Xiang YJ, Peng LY, Peng W, Ren Q, Gao YX. Guizhi-Shaoyao-Zhimu decoction attenuates bone erosion in rats that have collagen-induced arthritis via modulating NF-κB signalling to suppress osteoclastogenesis. PHARMACEUTICAL BIOLOGY 2021; 59:262-274. [PMID: 33626293 PMCID: PMC7906619 DOI: 10.1080/13880209.2021.1876100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Guizhi-Shaoyao-Zhimu decoction (GSZD) is commonly used to treat rheumatoid arthritis (RA), but its mechanism is unclear. OBJECTIVE To investigate the effect of GSZD on bone erosion in type II collagen (CII)-induced arthritis (CIA) in rats and to identify the underlying mechanism. MATERIALS AND METHODS The CIA model was prepared in male Wistar rats by two subcutaneous injections of CII, 1 mg/mL. Fifty CIA rats were randomized equally into the control group given saline daily, the positive group given saline daily and methotrexate 0.75 mg/kg once a week, and three GSZD-treated groups gavaged daily with 800, 1600 and 3200 mg/kg of GSZD for 21 days. GSZD effects were assessed by paw volume, arthritic severity index and histopathology. Cytokine levels were determined by ELISA. The effects of GSZD on RAW264.7 cells were evaluated by receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption assay. Expression of IκB-α and p65 was measured by Western blotting. Major components of GSZD were identified by HPLC. RESULTS Arthritis index score, paw volume and bone destruction score showed that GSZD improved inflammatory symptoms and reduced joint tissue erosion (p < 0.01). GSZD decreased RANKL, and the number of osteoclasts (OCs) in joint tissues (p < 0.01) and increased osteoprotegerin levels (p < 0.01). GSZD inhibited RANKL-induced RAW264.7 differentiation and reduced bone resorption by OCs. GSZD upregulated IκB (p < 0.01) and p65 (p < 0.01) in the cytoplasm and downregulated p65 (p < 0.01) in the cell nucleus. CONCLUSIONS Guizhi-Shaoyao-Zhimu decoction has an anti-RA effect, suggesting its possible use as a supplement and alternative drug therapy for RA.
Collapse
Affiliation(s)
- Shu-jun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-jing Xiang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan-yu Peng
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- CONTACT Wei Peng School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liu-tai Road, Chengdu611130, China
| | - Qiang Ren
- Hospital of Chengdu, University of Traditional Chinese Medicine, Chengdu, China
- Qiang Ren Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu610072, China
| | - Yong-xiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yong-xiang Gao International Education College, Chengdu University of Traditional Chinese Medicine, 37 Shi-er-qiao Rd., Jiuniu District, Chengdu610075, China
| |
Collapse
|
11
|
Yan J, Yan Y, Young A, Yan Z, Yan Z. Effectiveness and Safety of Chinese Medicine Decoctions for Behcet's Disease: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8202512. [PMID: 34335839 PMCID: PMC8313333 DOI: 10.1155/2021/8202512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Behcet's disease (BD) is an autoimmune disease of systemic vasculitis with an unclear pathogenesis. Although western medicines remain the mainstay interventions, effectiveness and safety are significant challenges. Complementary and alternative medicine, including herbal medicine, are gaining more attention. Chinese medicine decoctions, which have been used for centuries, are the most common form of traditional therapies. OBJECTIVE The purpose of the review was to evaluate the effectiveness and safety of Chinese medicine decoctions in the treatment of BD. METHODS Randomized controlled trials (RCTs) for BD treatment with Chinese medicine decoctions were searched in six electronic databases until March 2021. Primary outcomes were total effective rate, recovery rate, and recurrence rate. Secondary outcomes were clinical feature scores (oral ulcers, eye lesions, genital ulcers, skin lesions, arthropathies, fever, and pathergy reactions) and laboratory index levels (erythrocyte sedimentation rate, C-reactive protein, and immunoglobulin A). The risk of bias was assessed with the Cochrane Handbook, and a meta-analysis was performed with RevMan 5.4.1. RESULTS Sixteen RCTs with 924 patients were included in the review. The meta-analysis indicated that Chinese medicine decoctions were effective for BD when compared with control groups for all the primary outcomes and 7/10 of the secondary outcomes. Adverse events were reported in 11 of the 16 RCTs, with the Chinese medicine decoctions possibly having fewer adverse events than western drugs. This review included a range of classical prescriptions. An additional meta-analysis of modified Gancao Xiexin Decoction for BD treatment was conducted. Gancao Xiexin decoction is also discussed as a representative prescription, as well as high-frequency herbs, and warrants further exploration for individualized medicine and pharmacology. CONCLUSION Chinese medicine decoctions have the potential to be effective and safe for treating BD. However, additional well-designed RCTs are needed to confirm the findings because of the unsatisfactory quality of the included studies.
Collapse
Affiliation(s)
- Jingxian Yan
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Yan
- Xinglin College, Liaoning University of Traditional Chinese Medicine, Shenyang 110167, China
| | - Andrew Young
- Department of Diagnostic Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, Stockton, CA, USA
| | - Zhiyong Yan
- Department of Surgery, Handan First Hospital, Handan 056000, China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
12
|
Sharma D, Chaubey P, Suvarna V. Role of natural products in alleviation of rheumatoid arthritis-A review. J Food Biochem 2021; 45:e13673. [PMID: 33624882 DOI: 10.1111/jfbc.13673] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RHA) is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers. Prolonged administration of NSAIDs, steroids, and DMARDs, used in the treatment of RHA, is associated with deleterious side effects. This necessitates the urge of new and safe approaches for RHA management, based on the complementary and alternative system of medicine. Documented evidences have suggested that supplementation with nutritional, dietary, and herbal components; can play a crucial role as an adjuvant, in the alleviation of the RHA symptoms, through their influence on the pathological inflammatory processes. Dietary phenolic compounds, flavonoids, carotenoids, and alkaloids with their ability to modulate prooxidant and pro-inflammatory pathways, have been effective in delaying the arthritic disease progression. Moreover, in scientific explorations, herbs containing phenolic compounds, alkaloids, carotenoids flavonoids, spices such as ginger, turmeric, Ayurvedic formulations, different diets such as Mediterranean diet, vegan diet, beverages, and oils such as sesame oil, rice bran oil, vitamins, and probiotics are proven to modulate the action of inflammatory molecules, involved in RHA pathology. Subsequently, the purpose of this review article is to summarize various in vitro, in vivo, and clinical studies in RHA, which have documented remarkable insights into the anti-inflammatory, antioxidant, analgesic, and immunomodulatory, bone erosion preventing properties of dietary, nutritional, and herbal components with the focus on their molecular level mechanisms involved in RHA. Even though major findings were derived from in vitro studies, several in vivo and clinical studies have established the use of diet, herbal, and nutritional management in RHA treatment. PRACTICAL APPLICATIONS: Thickening of the synovial membrane, bone erosion, and cartilage destruction is known to trigger rheumatoid arthritis causing inflammation and pain in bone joints. Continuous intake of NSAIDs, steroids, and DMARD therapy are associated with detrimental side effects. These side effects can be overcome by the use of dietary, nutritional, and herbal interventions based on the complementary and alternative therapy. This concept portrays the food components and other natural components having the potential to promote health, improve general well-being, and reduce the risk of RHA.
Collapse
Affiliation(s)
- Dhvani Sharma
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
13
|
A two-herb formula inhibits hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes. Sci Rep 2021; 11:3850. [PMID: 33594167 PMCID: PMC7886911 DOI: 10.1038/s41598-021-83435-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Fibroblast-like synoviocytes (FLS) play a pathogenic role in rheumatoid arthritis (RA). STAT3 signaling is activated in FLS of RA patients (RA-FLS), which in turn causes RA-FLS hyperproliferation. RL is a traditional remedy for treating inflammatory diseases in China. It comprises Rosae Multiflorae Fructus and Lonicerae Japonicae Flos. A standardized ethanolic extract of RL (RLE) has been shown to exert anti-arthritic effects in collagen-induced arthritis (CIA) rats. Some constituents of RLE were reported to inhibit JAK2/STAT3 signaling in rat FLS. Here, we determined whether RLE inhibits FLS hyperproliferation, and explored the involvement of STAT3 signaling in this inhibition. In joints of CIA rats, RLE increased apoptotic FLS. In IL-6/sIL-6R-stimulated RA-FLS, RLE reduced cell viability and evoked cell apoptosis. In synovial tissues of CIA rats, RLE lowered the protein level of phospho-STAT3. In IL-6/sIL-6R-stimulated RA-FLS, RLE inhibited activation/phosphorylation of STAT3 and JAK2, decreased the nuclear localization of STAT3, and downregulated protein levels of Bcl-2 and Mcl-1. Over-activation of STAT3 diminished RLE’s anti-proliferative effects in IL-6/sIL-6R-stimulated RA-FLS. In summary, RLE inhibits hyperproliferation of FLS in rat and cell models, and suppression of STAT3 signaling contributes to the underlying mechanisms. This study provides further pharmacological groundwork for developing RLE as a modern anti-arthritic drug.
Collapse
|
14
|
Shin SA, Joo BJ, Lee JS, Ryu G, Han M, Kim WY, Park HH, Lee JH, Lee CS. Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases. Molecules 2020; 25:E5932. [PMID: 33333788 PMCID: PMC7765227 DOI: 10.3390/molecules25245932] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals are known to have anti-inflammatory effects in vitro and in vivo, such as in inflammatory disease model systems. Inflammation is an essential immune response to exogenous stimuli such as infection and injury. Although inflammation is a necessary host-defense mechanism, chronic inflammation is associated with the continuous local or systemic release of inflammatory mediators, non-cytokine mediators, such as ROS and NO, and inflammatory cytokines are strongly implicated in the pathogenesis of various inflammatory disorders. Phytochemicals that exhibit anti-inflammatory mechanisms that reduce sustained inflammation could be therapeutic candidates for various inflammatory diseases. These phytochemicals act by modulating several main inflammatory signaling pathways, including NF-κB, MAPKs, STAT, and Nrf-2 signaling. Here, we discuss the characteristics of phytochemicals that possess anti-inflammatory activities in various chronic inflammatory diseases and review the molecular signaling pathways altered by these anti-inflammatory phytochemicals, with a focus on transcription factor pathways. Furthermore, to evaluate the phytochemicals as drug candidates, we translate the effective doses of phytochemicals in mice or rat disease models into the human-relevant equivalent and compare the human-relevant equivalent doses of several phytochemicals with current anti-inflammatory drugs doses used in different types of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Seong Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Byeong Jun Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Jun Seob Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Gyoungah Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Minjoo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| |
Collapse
|
15
|
Bagdas D, Gul Z, Meade JA, Cam B, Cinkilic N, Gurun MS. Pharmacologic Overview of Chlorogenic Acid and its Metabolites in Chronic Pain and Inflammation. Curr Neuropharmacol 2020; 18:216-228. [PMID: 31631820 PMCID: PMC7327949 DOI: 10.2174/1570159x17666191021111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Natural phenolic compounds in medicinal herbs and dietary plants are antioxidants which play therapeutic or preventive roles in different pathological situations, such as oxidative stress and inflammation. One of the most studied phenolic compounds in the last decade is chlorogenic acid (CGA), which is a potent antioxidant found in certain foods and drinks. OBJECTIVE This review focuses on the anti-inflammatory and antinociceptive bioactivities of CGA, and the putative mechanisms of action are described. Ethnopharmacological reports related to these bioactivities are also reviewed. MATERIALS AND METHODS An electronic literature search was conducted by authors up to October 2019. Original articles were selected. RESULTS CGA has been shown to reduce inflammation and modulate inflammatory and neuropathic pain in animal models. CONCLUSION The consensus of the literature search was that systemic CGA may facilitate pain management via bolstering antioxidant defenses against inflammatory insults.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States.,Yale Tobacco Center of Regulatory Science, Yale University, New Haven, CT, United States
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Julie A Meade
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Betul Cam
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Nilufer Cinkilic
- Department of Biology, Faculty of Science and Arts, Uludag University, Bursa, Turkey
| | - Mine Sibel Gurun
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
16
|
Castelo-Branco C, Gambacciani M, Cano A, Minkin MJ, Rachoń D, Ruan X, Beer AM, Schnitker J, Henneicke-von Zepelin HH, Pickartz S. Review & meta-analysis: isopropanolic black cohosh extract iCR for menopausal symptoms – an update on the evidence. Climacteric 2020; 24:109-119. [DOI: 10.1080/13697137.2020.1820477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C. Castelo-Branco
- Clinic Institute of Gnyecology, Obstetrics and Neonatology, Faculty of Medicine, University of Barcelona, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M. Gambacciani
- Menopause Center, Department of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - A. Cano
- Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - M. J. Minkin
- Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - D. Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - X. Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - A.-M. Beer
- Hospital for True Naturopathy, Katholisches Klinikum Bochum, Blankenstein Hospital, Hattingen, Germany
| | - J. Schnitker
- Institut für Angewandte Statistik (IAS) GmbH, Bielefeld, Germany
| | | | - S. Pickartz
- Medical Service, Schaper & Brümmer GmbH & Co. KG, Salzgitter, Germany
| |
Collapse
|
17
|
Xu C, Zhou X, Tong Z, Ma J, Ye J, Xu J, Mo W. A randomized, double-blind, placebo-controlled trial for Yi-Qi Hua-Yu tong-sui granule in the treatment of mild or moderate cervical spondylotic myelopathy. Medicine (Baltimore) 2020; 99:e21776. [PMID: 32872078 PMCID: PMC7437772 DOI: 10.1097/md.0000000000021776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Neck pain, sensory disturbance and motor dysfunction in most patients suffered cervical spondylotic myelopathy (CSM). However, some conservative treatments are limited by their modest effectiveness. In the other hand, surgical treatment is necessary when symptoms are refractory to conservative treatments and neurological function of the patients has deteriorated. Many patients use complementary and alternative medicine, including traditional Chinese medicine, to address their symptoms. The purpose of the present study is to examine effectiveness and safety of Yiqi-Huayu-Tongsui (YQHYTS) granule, a compound traditional Chinese herbal medicine, on symptoms in patients with mild or moderate CSM. METHODS/DESIGN A randomized, double blinded, placebo-controlled clinical trial to evaluate the efficacy and safety of YQHYTS granule is proposed. 72 patients in Longhua Hospital with the diagnosis of mild or moderate CSM will be randomly allocated into 2 groups, and treated with YQHYTS granule or placebo. The prescription of the trial drugs (YQHYTS granule/placebo) is 20 grams twice a day for 3 months. The primary outcome measurements include visual analog scale, Japanese Orthopedic Association, and Neck Disability Index score. The secondary outcome measurements are electromyogram and Pfirrmann classification. DISCUSSION YQHYTS granule has been established and applied in Longhua Hospital for many years. As it has a potential benefit in treating mild or moderate CSM, we designed a double-blind, prospective, randomized controlled trial and would like to publish the results and conclusions later. If YQHYTS granule can alleviate neck pain, sensory disturbance, and even motor dysfunction without adverse effects, it may be a unique strategy for the treatment of mild or moderate CSM. TRIAL REGISTRATION Chinese Clinical Trial Registry ID: ChiCTR1900028192. Registered 15 December 2019, Available at: http://www.chictr.org.cn/edit.aspx?pid=46913&htm=4.
Collapse
|
18
|
Feng Z, Liu W, Jiang HX, Dai H, Gao C, Dong Z, Gao Y, Liu F, Zhang Z, Zhao Q, Zhang L, Liu B. How Does Herbal Medicine Treat Idiopathic Membranous Nephropathy? Front Pharmacol 2020; 11:994. [PMID: 32719601 PMCID: PMC7350518 DOI: 10.3389/fphar.2020.00994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) has made increasing progress in mechanism and treatment research. Herbal medicine is gradually being accepted as an alternative therapy in treating IMN. However, the intervention mechanism of herbal medicine in the treatment of membranous nephropathy is still unclear. In this review, we summarize some achievements of herb medicine in treating IMN and discuss the research direction of herb in IMN. Finally, we propose the dilemma about the study on the treatment of IMN with herb medicine. We hope that this article can bring some thoughts for clinical and scientific researchers on the treatment of IMN with herb medicine.
Collapse
Affiliation(s)
- Zhendong Feng
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Department of Nephropathy, Beijing Traditional Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Wenbin Liu
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Han Xue Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chang Gao
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gao
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fei Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Nephropathy, Beijing Traditional Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Baoli Liu
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Zhang Q, Zhang JH, He YQ, Zhang QL, Zhu B, Shen Y, Liu MQ, Zhu LL, Xin HL, Qin LP, Zhang QY. Iridoid glycosides from Morinda officinalis How. exert anti-inflammatory and anti-arthritic effects through inactivating MAPK and NF-κB signaling pathways. BMC Complement Med Ther 2020; 20:172. [PMID: 32503513 PMCID: PMC7275542 DOI: 10.1186/s12906-020-02895-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background The root of Morinda officinalis How. (MO, the family of Rubiaceae) has long been used to treat inflammatory diseases in China and other eastern Asian countries, and iridoid glycosides extracted from MO (MOIG) are believed to contribute to this anti-inflammatory effect. However, the mechanism underlying the anti-inflammatory and anti-arthritic activities of MOIG has not been elucidated. The aim of the present study was to determine how MOIG exerted anti-inflammatory and anti-arthritic effects in vivo and in RAW 264.7 macrophages. Methods MOIG were enriched by XDA-1 macroporous resin. The maximum feasible dose method was adopted to evaluate its acute toxicity. The analgesic effect of MOIG was evaluated by acetic acid writhing test and the anti-inflammatory effect was evaluated by cotton-pellet granuloma test in rats and air pouch granuloma test in mice. The anti-arthritic effect was evaluated by establishing an adjuvant arthritis model induced by Complete Freund’s Adjuvant (CFA). The viability of the cultured RAW 264.7 macrophages was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The anti-inflammatory activity was evaluated by measuring NO, IL-1β, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 cells. The protein level of inflammatory responsive genes was evaluated by Western blot analysis. Results MOIG had no significant toxicity at maximum feasible dose of 22.5 g/kg. MO extracts and MOIG (50,100 and 200 mg/kg) all evoked a significantly inhibitory effects on the frequency of twisting induced by acetic acid in mice compared with the model control group. Administration of MO extracts and MOIG markedly decreased the dry and wet weight of cotton pellet granuloma in rats and air pouch granuloma in mice. MOIG significantly attenuated the paw swelling and decreased the arthritic score, weight loss, spleen index, and the serum level of inflammatory factors IL-1β, IL-6 and IL-17a in CFA-induced arthritic rats. MOIG inhibited the production of inflammatory cytokines in LPS-stimulated RAW264.7 cells, and the expressions of iNOS, COX-2 and proteins related to MAPK and NF-κB signaling pathways in LPS-stimulated RAW 264.7 macrophages. Conclusion MOIG exerted anti-inflammatory and anti-arthritic activities through inactivating MAPK and NF-κB signaling pathways, and this finding may provide a sound experimental basis for the clinical treatment of rheumatoid arthritis with MOIG.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jian-Hua Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Qiong He
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Quan-Long Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Bo Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Yi Shen
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Meng-Qin Liu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lu-Lin Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China
| | - Hai-Liang Xin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Lu-Ping Qin
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Qiao-Yan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Gaoke Road, Fuyang District, Hangzhou, 310053, People's Republic of China. .,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Chen YJ, Wu JY, Leung WC, Liu YX, Fu XQ, Zhu JQ, Wu Y, Chou JY, Yin CL, Wang YP, Wang XQ, Bai JX, Wu ZZ, Yu ZL. An herbal formula inhibits STAT3 signaling and attenuates bone erosion in collagen-induced arthritis rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153254. [PMID: 32531698 DOI: 10.1016/j.phymed.2020.153254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Receptor activator of NF-κB ligand (RANKL) facilitates differentiation of osteoclast precursors into osteoclasts, resulting in bone erosion in rheumatoid arthritis (RA) patients. Fibroblast-like synoviocytes (FLS) are the main cells for producing RANKL. Signal transducer and activator of transcription 3 (STAT3) signaling is activated in FLS of RA patients (RA-FLS), which has been linked to RANKL production. A two-herb formula (RL) comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos is traditionally used for treating RA in China. We have found that a standardized ethanolic extract of RL (RLE for short) alleviates bone erosion in collagen-induced arthritis (CIA) rats. PURPOSE This study aimed to determine whether RLE inhibits RANKL production and osteoclastogenesis in cell and rat models, and to explore the involvement of the STAT3 pathway in this inhibition. STUDY DESIGN AND METHODS A CIA rat model, interleukin-6/soluble interleukin-6 receptor (IL-6/sIL-6R)-stimulated RA-FLS and a co-culture system (IL-6/sIL-6R-stimulated RA-FLS/peripheral blood mononuclear cells) were used to evaluate the effects of RLE. Micro-computed tomography analysis was used to observe bone erosion in CIA rats. Tartrate-resistant acid phosphatase staining was used to evaluate osteoclastogenesis. Western blotting and ELISA assays were employed to examine protein levels. RT-qPCR was used to detect mRNA levels. STAT3-over-activated RA-FLS were used to investigate the involvement of STAT3 signaling in the anti-osteoclastogenic effects of RLE. RESULTS RLE alleviated bone erosion in joints of CIA rats. In both synovial tissues of CIA rats and IL-6/sIL-6R-stimulated RA-FLS, RLE downregulated the protein level of RANKL. In the co-culture system, RLE significantly and dose-dependently inhibited IL-6/sIL-6R-induced osteoclastogenesis. Mechanistic studies revealed that RLE lowered the protein level of phospho-STAT3 (Tyr705) in synovial tissues of CIA rats. In IL-6/sIL-6R-stimulated RA-FLS, RLE inhibited the activation/phosphorylation of a STAT3 upstream kinase Janus kinase 2 (Tyr1007/1008) and STAT3 (Tyr705), decreased the nuclear localization of STAT3, lowered mRNA levels of STAT3-transcriptionally regulated genes IL-1β and TNF-α. RLE's inhibitory effects on RANKL production in RA-FLS gradually decreased when IL-6/sIL-6R doses increased. Over-activation of STAT3 diminished the inhibitory effects of RLE on RANKL production in IL-6/sIL-6R-stimulated RA-FLS, and attenuated the anti-osteoclastogenic effects of RLE in the co-culture system. CONCLUSION We, for the first time, demonstrated that suppressing STAT3 signaling contributes to the inhibition of RANKL production and osteoclastogenesis, and thereby supports the mechanisms responsible for the reduction in bone erosion in RLE-treated CIA rats. This study provides further pharmacological groundwork for developing RLE as a modern anti-arthritic drug, and supports the notion that targeting STAT3 signaling is a viable strategy for managing bone erosion.
Collapse
Affiliation(s)
- Ying-Jie Chen
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jia-Ying Wu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wai-Chung Leung
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yu-Xi Liu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jia-Qian Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying Wu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ji-Yao Chou
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Cheng-Le Yin
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ya-Ping Wang
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiao-Qi Wang
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jing-Xuan Bai
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zheng-Zhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zhi-Ling Yu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
21
|
Chinese Herbal Medicines for Rheumatoid Arthritis: Text-Mining the Classical Literature for Potentially Effective Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7531967. [PMID: 32419824 PMCID: PMC7206865 DOI: 10.1155/2020/7531967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by multijoint swelling, pain, and destruction of the synovial joints. Treatments are available but new therapies are still required. One source of new therapies is natural products, including herbs used in traditional medicines. In China and neighbouring countries, natural products have been used throughout recorded history and are still in use for RA and its symptoms. This study used text-mining of a database of classical Chinese medical books to identify candidates for future clinical and experimental investigations of therapeutics for RA. Methods The database Encyclopaedia of Traditional Chinese Medicine (Zhong Hua Yi Dian) includes the full texts of over 1,150 classical books. Eight traditional terms were searched. All citations were assessed for relevance to RA. Results and Conclusions. After removal of duplications, 3,174 citations were considered. After applying the exclusion and inclusion criteria, 548 citations of traditional formulas were included. These derived from 138 books written from 206 CE to 1948. These formulas included 5,018 ingredients (mean, 9 ingredients/formula) comprising 243 different natural products. When these text-mining results were compared to the 18 formulas recommended in a modern Chinese Medicine clinical practice guideline, 44% of the herbal formulas were the same. This suggests considerable continuity in the clinical application of these herbs between classical and modern Chinese medicine practice. Of the 15 herbs most frequently used as ingredients of the classical formulas, all have received research attention, and all have been reported to have anti-inflammatory effects. Two of these 15 herbs have already been developed into new anti-RA therapeutics—sinomenine from Sinomenium acutum (Thunb.) Rehd. & Wils and total glucosides of peony from Paeonia lactiflora Pall. Nevertheless, there remains considerable scope for further research. This text-mining approach was effective in identifying multiple natural product candidates for future research.
Collapse
|
22
|
Chen YJ, Bai L, Wu JY, Liu YX, Fu XQ, Zhu PL, Li JK, Yin CL, Chou JY, Wang YP, Wu Y, Bai JX, Yu ZL. A two-herb formula inhibits osteoclastogenesis and suppresses NF-kB and MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112625. [PMID: 31991200 DOI: 10.1016/j.jep.2020.112625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Ying-Jie Chen
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Lu Bai
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jia-Ying Wu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yu-Xi Liu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Xiu-Qiong Fu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Pei-Li Zhu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun-Kui Li
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Cheng-Le Yin
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ji-Yao Chou
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ya-Ping Wang
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ying Wu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jing-Xuan Bai
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhi-Ling Yu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
23
|
Zhang Z, Wang S, Wang M, Shahzad K, Zhang X, Qi R, Shi L. Effects of Urtica cannabina to Leymus chinensis Ratios on Ruminal Microorganisms and Fiber Degradation In Vitro. Animals (Basel) 2020; 10:ani10020335. [PMID: 32093262 PMCID: PMC7070357 DOI: 10.3390/ani10020335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
The study was conducted in vitro to investigate the effects of different ratios of Urtica cannabina and Leymus chinensis on fiber microstructure and digestibility in ruminal fluid. The experiment was divided into five groups based on the U. cannabina/L. chinensis ratios: A (0:100), B (30:70), C (50:50), D (70:30), and E (100:0). The culture medium was collected at 0, 1, 3, 6, 12, and 24 h. The results showed that: (1) in vitro crude protein degradability (IVCPD) was higher in group A, whereas in vitro neutral detergent fiber degradability (IVNDFD) was higher in group C (p < 0.05); (2) protozoa count was increased from 1 h to 3 h and decreased afterwards, with significant differences observed in several genera (p < 0.05); (3) microbial crude protein (MCP) contents at 1, 3, 6, and 24 h were higher in groups A and C (p < 0.05); (4) the basic tissue of U. cannabina was gradually degraded. At 24h, the secondary xylem vessel structure was observed in groups B and C, but not in groups D and E. In summary, there was higher neutral detergent fiber (NDF) digestibility, higher rumen MCP contents, and lower protozoa count, showing the significance of the 50:50 ratio for microbial growth and fiber digestibility.
Collapse
Affiliation(s)
- Zhenbin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
- Correspondence: ; Tel.: +86-151-5273-4991
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan;
| | - Xiaoqing Zhang
- Institute of Grassland Science, Chinese Academy of Agricultural Sciences, Huhehote 010010, Inner Mongolia, China;
| | - Ruxin Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Liangfeng Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| |
Collapse
|
24
|
Yang YX, Shen HH, Cao F, Xie LY, Zhu GL, Sam NB, Wang DG, Pan HF. Therapeutic potential of enhancer of zeste homolog 2 in autoimmune diseases. Expert Opin Ther Targets 2019; 23:1015-1030. [PMID: 31747802 DOI: 10.1080/14728222.2019.1696309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Autoimmune diseases (ADs) are idiopathic and heterogeneous disorders with contentious pathophysiology. Great strides have been made in epigenetics and its involvement in ADs. Zeste homolog 2 (EZH2) has sparked extensive interest because of its pleiotropic roles in distinct pathologic contexts.Areas covered: This review summarizes the epigenetic functions and the biological significance of EZH2 in the etiology of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), inflammatory bowel disease (IBD), multiple sclerosis (MS), and systemic sclerosis (SSc). A brief recapitulation of the therapeutic potential of EZH2 targeting is provided.Expert opinion: There are questions marks and controversies surrounding the feasibility and safety of EZH2 targeting; it is recommended in RA and SLE, but queried in T1D, IBD, MS, and SSc. Future work should focus on contrast studies, systematic analyses and preclinical studies with optimizing methodologies. Selective research studies conducted in a stage-dependent manner are necessary because of the relapsing-remitting clinical paradigms.
Collapse
Affiliation(s)
- Yue-Xin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Yu Xie
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Guang-Lin Zhu
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Napoleon Bellua Sam
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
25
|
Jesionek A, Kokotkiewicz A, Mikosik-Roczynska A, Ciesielska-Figlon K, Luczkiewicz P, Bucinski A, Daca A, Witkowski JM, Bryl E, Zabiegala B, Luczkiewicz M. Chemical variability of Rhododendron tomentosum (Ledum palustre) essential oils and their pro-apoptotic effect on lymphocytes and rheumatoid arthritis synoviocytes. Fitoterapia 2019; 139:104402. [PMID: 31672661 DOI: 10.1016/j.fitote.2019.104402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
Rhododendron tomentosum (Ledum palustre) is an aromatic plant traditionally used for alleviating rheumatic complaints which makes it a potential candidate for a natural drug in rheumatoid arthritis (RA) treatment. However, the effects of plants' volatiles on apoptosis of synovial fibroblasts and infiltrating leucocytes of RA synovia, have not been reported. Volatile fraction of R. tomentosum is chemically variable and chemotypes of the plants need to be defined if the oil is to be used for therapeutic purposes. In the presented work, cluster analysis of literature data enabled to define 10 chemotypes of the plant. The volatile fractions of known composition were then tested for bioactivity using a RA-specific in vitro models. Essential oils of two wild types (γ-terpineol and palustrol/ledol type) and one in vitro chemotype (ledene oxide type) were obtained by hydrodistillation and their bioactivity was tested in two in vitro models: I - peripheral blood lymphocytes of healthy volunteers and II - synoviocytes and immune cells isolated from synovia of RA patients. The influence of oils on blood lymphocytes' proliferation and apoptosis rates of synovia-derived cells was determined by flow cytometry. Dose-dependent inhibitory effect of the serial dilutions of R. tomentosum oils on proliferation rates of blood lymphocytes was found. At 1:400 dilutions, all the tested oils increased the number of necrotic cells in synovial fibroblasts from RA synovia. Additionally, increased proportions of late apoptotic cells were observed in leucocyte populations subjected to oils at 1:400 dilution.
Collapse
Affiliation(s)
- Anna Jesionek
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Anna Mikosik-Roczynska
- Department of Pathophysiology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | | | - Piotr Luczkiewicz
- II Clinic of Orthopaedics and Kinetic Organ Traumatology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Adam Bucinski
- Department of Biopharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Bozena Zabiegala
- Department of Analytical Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Maria Luczkiewicz
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland.
| |
Collapse
|
26
|
Kim R, Kim P, Lee CY, Lee S, Yun H, Lee MY, Kim J, Baek K, Chang W. Multiple Combination of Angelica gigas Extract and Mesenchymal Stem Cells Enhances Therapeutic Effect. Biol Pharm Bull 2019; 41:1748-1756. [PMID: 30504677 DOI: 10.1248/bpb.b18-00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alternative medicines attract attention because stroke is rarely expected to make a full recovery with the most advanced medical technology. Angelica gigas (AG) is a well-known herbal medicine as a neuroprotective agent. The present study introduced mesenchymal stem cells (MSCs) to identify for the advanced treatment of the cerebrovascular disease. The objective of this research is validation of the enhanced effects of multiple combined treatment of AG extract with MSCs on stroke through angiogenesis. Our results confirmed that AG extract with MSCs improved the neovascularization increasing expression of angiogenesis-regulated molecules. The changes of brain and the behavioral ability showed the increased effects of AG extract with MSCs. As a result, AG extract and MSCs may synergistically increase the therapeutic potential by enhancing neovascularization. This mixed approach provides a new experimental protocol of herbal medicine therapy for the treatment of a variety of diseases including stroke, trauma, and spinal cord injury.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University
| | - Pilseog Kim
- Department of Biology Education, College of Education, Pusan National University
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University
| | - Seokyeon Lee
- Department of Biology Education, College of Education, Pusan National University
| | | | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University
| | - Kyungmin Baek
- Department of Cardiovascular and Neurologic Disease, College of Oriental Medicine, Daegu Hanny University
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University
| |
Collapse
|
27
|
Meng Q, Du X, Wang H, Gu H, Zhan J, Zhou Z. Astragalus polysaccharides inhibits cell growth and pro-inflammatory response in IL-1β-stimulated fibroblast-like synoviocytes by enhancement of autophagy via PI3K/AKT/mTOR inhibition. Apoptosis 2018; 22:1138-1146. [PMID: 28660311 DOI: 10.1007/s10495-017-1387-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hyperplastic growth of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) and inflammatory response are pathological hallmarks of RA. It has been reported that Astragalus polysaccharides (APS) possess appreciable anti-inflammatory activity against adjuvant-induced arthritis. Nevertheless, little is known about the role and detailed mechanism underlying the therapeutic effects of APS in RA. This study demonstrated that administration of APS dose-dependently impaired cell viability, increased cell apoptosis by decreasing Bcl-2 expression, increasing Bax expression and Caspase3 activity in IL-1β-stimulated RSC-364 cells and RA-FLS. Simultaneously, IL-1β-induced production of pro-inflammatory cytokines IL-6 and TNF-α was significantly decreased after APS treatment. Furthermore, preconditioning with APS dramatically enhanced autophagy activity by increasing Beclin-1 and LC3II/LC3I expression coupled with decreasing p62 expression and augmenting the number of LC3 puncta in IL-1β-stimulated RSC-364 cells. More importantly, autophagy inhibitor 3-methyladenine (3-MA) partly abolished APS-triggered inhibitory effects on cell growth and production of pro-inflammatory cytokines. APS also repressed the activation of PI3K/Akt/mTOR signaling pathway in IL-1β-stimulated RSC-364 cells. Moreover, treatment with insulin-like growth factor-1 (IGF-1), an activator of PI3K/Akt signaling, partly reversed the therapeutic effects of APS in IL-1β-stimulated RSC-364 cells. Collectively, we concluded that APS might attenuate the pathological progression of RA by exerting the pro-apoptotic and anti-inflammatory effects in IL-1β-stimulated FLSs by regulating the PI3K/AKT/mTOR-autophagy pathway.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Xuzhao Du
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Huilian Wang
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Huimin Gu
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| | - Junping Zhan
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China.
| | - Zipeng Zhou
- Department of Rheumatism Branch, Henan Province Hospital of Traditional Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou City, 450002, Henan Province, People's Republic of China
| |
Collapse
|
28
|
Li X, Zhao L, Han JJ, Zhang F, Liu S, Zhu L, Wang ZZ, Zhang GX, Zhang Y. Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:1807. [PMID: 30150982 PMCID: PMC6100297 DOI: 10.3389/fimmu.2018.01807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35-55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17 cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Li Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan-Juan Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuai Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lin Zhu
- Department of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Gul A, Kunwar B, Mazhar M, Faizi S, Ahmed D, Shah MR, Simjee SU. Rutin and rutin-conjugated gold nanoparticles ameliorate collagen-induced arthritis in rats through inhibition of NF-κB and iNOS activation. Int Immunopharmacol 2018; 59:310-317. [PMID: 29679855 DOI: 10.1016/j.intimp.2018.04.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Numerous studies have suggested that nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) are important mediators of inflammatory response in human and animal models of arthritis. Besides, oxidative stress markers, nitric oxide (NO) and peroxide (PO) are also major contributors in the pathogenesis of rheumatoid arthritis (RA). Over expression of these inflammatory mediators leads to the extracellular matrix degradation, and excessive cartilage and bone resorption, ultimately leading to the irreversible damage to joints. The aim of the present study was to investigate the anti-arthritic mechanism of bioflavonoids, rutin and rutin-conjugated gold nanoparticles (R-AuNPs) by determining their role in the modulation of NF-κB and iNOS expression in collagen-induced arthritis (CIA) model of rats. Arthritis was induced by the subcutaneous administration of bovine type II collagen. Treatment was started with rutin, indomethacin + rutin (I + R) and R-AuNPs on the day of CIA induction. The severity of arthritis was determined by measuring the arthritic score on alternate days until mean arthritic score of 4 was observed. The NO and PO levels were also analyzed in serum samples. NF-κB and iNOS expression levels were determined in spleen tissue samples by real time RT-PCR and immunohistochemistry. Marked reduction in the arthritic score as well as in the NO and PO levels was observed in the treated groups. A significant downregulation in the NF-κB and iNOS expression levels was also observed in the treatment groups compared to the arthritic control group. Collectively, the findings suggest potential clinical role of rutin and R-AuNPs in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Anum Gul
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Bimal Kunwar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maryam Mazhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Dania Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shabana U Simjee
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
30
|
Chi K, Fu RH, Huang YC, Chen SY, Hsu CJ, Lin SZ, Tu CT, Chang LH, Wu PA, Liu SP. Adipose-derived Stem Cells Stimulated with n-Butylidenephthalide Exhibit Therapeutic Effects in a Mouse Model of Parkinson's Disease. Cell Transplant 2018; 27:456-470. [PMID: 29756519 PMCID: PMC6038049 DOI: 10.1177/0963689718757408] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) causes motor dysfunction and dopaminergic cell death. Drug treatments can effectively reduce symptoms but often cause unwanted side effects. Stem cell therapies using cell replacement or indirect beneficial secretomes have recently emerged as potential therapeutic strategies. Although various types of stem cells have been proposed as possible candidates, adipose-derived stem cells (ADSCs) are easily obtainable, more abundant, less ethically disputed, and able to differentiate into multiple cell lineages. However, treatment of PD using adult stem cells is known to be less efficacious than neuron or embryonic stem cell transplantation. Therefore, improved therapies are urgently needed. n-Butylidenephthalide (BP), which is extracted from Angelica sinensis, has been shown to have anti-inflammatory and neuroprotective effects. Indeed, we previously demonstrated that BP treatment of ADSCs enhances the expression of neurogenesis and homing factors such as nuclear receptor related 1 protein, stromal-derived factor 1, and brain-derived neurotrophic factor. In the present study, we examined the ability of BP-pretreated ADSC transplantation to improve PD motor symptoms and protect dopamine neurons in a mouse model of PD. We evaluated the results using neuronal behavior tests such as beam walking, rotarod, and locomotor activity tests. ADSCs with or without BP pretreatment were transplanted into the striatum. Our findings demonstrated that ADSC transplantation improved motor abilities with varied efficacies and that BP stimulation improved the therapeutic effects of transplantation. Dopaminergic cell numbers returned to normal in ADSC-transplanted mice after 22 d. In summary, stimulating ADSCs with BP improved PD recovery efficiency. Thus, our results provide important new strategies to improve stem cell therapies for neurodegenerative diseases in future studies.
Collapse
Affiliation(s)
- Kang Chi
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
| | - Ru-Huei Fu
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University,
Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, Genetics Center, China Medical University
Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical
University, Taichung, Taiwan
| | - Shih-Yin Chen
- Department of Medical Research, Genetics Center, China Medical University
Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical
University, Taichung, Taiwan
| | - Ching-Ju Hsu
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation,
Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Chi-Tang Tu
- Taiwan Mitochondrion Applied Technology Co., Ltd, Hsinchu, Taiwan
| | - Li-Hsun Chang
- Taiwan Mitochondrion Applied Technology Co., Ltd, Hsinchu, Taiwan
| | - Ping-An Wu
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi Foundation,
Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Shih-Ping Liu
- Center for Translational Medicine, China Medical University Hospital,
Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University,
Taichung, Taiwan
- Department of Social Work, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Kramlich D. Strategies for Acute and Critical Care Nurses Implementing Complementary Therapies Requested by Patients and Their Families. Crit Care Nurse 2018; 36:52-58. [PMID: 27908946 DOI: 10.4037/ccn2016974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
As consumer use of complementary and alternative medicine or modalities continues to increase in the United States, requests for these therapies in the acute and critical care setting will probably continue to expand in scope and frequency. Incorporation of complementary therapies in the plan of care is consistent with principles of patient- and family-centered care and collaborative decision-making and may provide a measure of relief for the distress of admission to an acute or critical care setting. An earlier article provided an overview of complementary and alternative therapies that nurses may encounter in their practices, with specific attention to implications for acute and critical care nurses. This article provides key information on the legal, ethical, safety, quality, and financial challenges that acute and critical care nurses should consider when implementing patient and family requests for complementary therapies.
Collapse
Affiliation(s)
- Debra Kramlich
- Debra Kramlich is an assistant professor of nursing, University of New England, Portland, Maine. She is also a traditional Usui Reiki master/teacher with more than 10 years of experience.
| |
Collapse
|
32
|
Han YK, Kim SY, Ahn JY, Baek JU. An analysis of the combination frequencies of constituent medicinal herbs in prescriptions for the treatment of bone and joint disorder in Korean medicine: determination of a group of candidate prescriptions for universal use. Integr Med Res 2018; 6:344-353. [PMID: 29296561 PMCID: PMC5741390 DOI: 10.1016/j.imr.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
Background This study aimed to select prescriptions (mixtures of medicinal herbs) used in the treatment of bone and joint disorders in Korean medicine, and through the analysis of medicinal herb combination frequencies, select a high-frequency medicinal herb combination group for further experimental and clinical research. Methods We systematically searched for terms related to bone and joint disorder in the “Dongeuibogam (Dong yibaojian)”, a seminal Korean medicine book. We reviewed the results of published papers regarding the effects in bone and joint disorders (especially in osteoporosis, osteomalacia, osteopenia, rheumatoid arthritis, and degenerative arthritis). Results In total, 34 candidates of a medicinal herb combination for the treatment of bone and joint disorders(CMHCTBJDs) and nine candidates of a medicinal herb for the treatment of bone and joint disorders(CMHTBJDs) were selected. Conclusion : The candidates of a medicinal herb combination for the treatment of bone and joint disorders (CMHCTBJDs) and candidates of a medicinal herb for the treatment of bone and joint disorders(CMHTBJDs) proposed in this study can be useful material for text mining to develop natural products with the effects in BJDs and also it has the potential to reduce the experimental and developmental time period.
Collapse
Affiliation(s)
- Yoo Kyoung Han
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| | - Seo Yul Kim
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| | - Jae Young Ahn
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| | - Jin Ung Baek
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan Korea
| |
Collapse
|
33
|
Wang QH, Lv SW, Guo YY, Duan JX, Dong SY, Wang QS, Yu FM, Su H, Kuang HX. Pharmacological Effect of Caulophyllum robustum on Collagen-Induced Arthritis and Regulation of Nitric Oxide, NF- κB, and Proinflammatory Cytokines In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8134321. [PMID: 29456573 PMCID: PMC5804361 DOI: 10.1155/2017/8134321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/08/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022]
Abstract
Caulophyllum robustum Maxim (C. robustum) has commonly been used as traditional Chinese medicine for the treatment of rheumatic pain and rheumatoid arthritis (RA) in China. This paper first investigated the anti-inflammation effect of C. robustum extraction (CRME) on RAW264.7 cells stimulated by lipopolysaccharide (LPS) and gene expression levels of inflammatory factors. Moreover, we first evaluated the anti-RA effects of CRME using collagen-induced arthritis (CIA) in DBA/1J mice, and the incidence, clinical score, and joint histopathology were evaluated. The levels of IL-1, IL-6, TNF-α, and PGE2 inflammatory factors in sera of mice were detected by enzyme-linked immunosorbent assay. The expression of NF-κB p65 in the joint was tested by immune histochemical technique. The results showed that, compared with the model group, CRME significantly improved symptoms of the arthritis index, limb swelling, and histological findings by decreasing synovial membrane damage, the extent of inflammatory cell infiltration, and the expansion of capillaries in CIA mice. The results also showed that CRME can reduce the levels of IL-1, IL-6, TNF-α, and PGE2 and inhibit the expression of NF-κB p65. All these results indicated the anti-inflammatory efficacy of CRME as a novel botanical extraction for the treatment of RA.
Collapse
Affiliation(s)
- Qiu-hong Wang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shao-wa Lv
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yu-yan Guo
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ji-xin Duan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shu-yu Dong
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qiu-shi Wang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng-ming Yu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hong Su
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-xue Kuang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
34
|
Ontology-based systematic representation and analysis of traditional Chinese drugs against rheumatism. BMC SYSTEMS BIOLOGY 2017; 11:130. [PMID: 29322929 PMCID: PMC5763303 DOI: 10.1186/s12918-017-0510-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Rheumatism represents any disease condition marked with inflammation and pain in the joints, muscles, or connective tissues. Many traditional Chinese drugs have been used for a long time to treat rheumatism. However, a comprehensive information source for these drugs is still missing, and their anti-rheumatism mechanisms remain unclear. An ontology for anti-rheumatism traditional Chinese drugs would strongly support the representation, analysis, and understanding of these drugs. Results In this study, we first systematically collected reported information about 26 traditional Chinese decoction pieces drugs, including their chemical ingredients and adverse events (AEs). By mostly reusing terms from existing ontologies (e.g., TCMDPO for traditional Chinese medicines, NCBITaxon for taxonomy, ChEBI for chemical elements, and OAE for adverse events) and making semantic axioms linking different entities, we developed the Ontology of Chinese Medicine for Rheumatism (OCMR) that includes over 3000 class terms. Our OCMR analysis found that these 26 traditional Chinese decoction pieces are made from anatomic entities (e.g., root and stem) from 3 Bilateria animals and 23 Mesangiospermae plants. Anti-inflammatory and antineoplastic roles are important for anti-rheumatism drugs. Using the total of 555 unique ChEBI chemical entities identified from these drugs, our ChEBI-based classification analysis identified 18 anti-inflammatory, 33 antineoplastic chemicals, and 9 chemicals (including 3 diterpenoids and 3 triterpenoids) having both anti-inflammatory and antineoplastic roles. Furthermore, our study detected 22 diterpenoids and 23 triterpenoids, including 16 pentacyclic triterpenoids that are likely bioactive against rheumatism. Six drugs were found to be associated with 184 unique AEs, including three AEs (i.e., dizziness, nausea and vomiting, and anorexia) each associated with 5 drugs. Several chemical entities are classified as neurotoxins (e.g., diethyl phthalate) and allergens (e.g., eugenol), which may explain the formation of some TCD AEs. The OCMR could be efficiently queried for useful information using SPARQL scripts. Conclusions The OCMR ontology was developed to systematically represent 26 traditional anti-rheumatism Chinese drugs and their related information. The OCMR analysis identified possible anti-rheumatism and AE mechanisms of these drugs. Our novel ontology-based approach can also be applied to systematic representation and analysis of other traditional Chinese drugs. Electronic supplementary material The online version of this article (10.1186/s12918-017-0510-5) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. PHARMACEUTICAL BIOLOGY 2017; 55:5-18. [PMID: 27650551 PMCID: PMC7012004 DOI: 10.1080/13880209.2016.1225775] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 06/13/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Increasing incidence and impact of inflammatory diseases have encouraged the search of new pharmacological strategies to face them. Licorice has been used to treat inflammatory diseases since ancient times in China. OBJECTIVE To summarize the current knowledge on anti-inflammatory properties and mechanisms of compounds isolated from licorice, to introduce the traditional use, modern clinical trials and officially approved drugs, to evaluate the safety and to obtain new insights for further research of licorice. METHODS PubMed, Web of Science, Science Direct and ResearchGate were information sources for the search terms 'licorice', 'licorice metabolites', 'anti-inflammatory', 'triterpenoids', 'flavonoids' and their combinations, mainly from year 2010 to 2016 without language restriction. Studies were selected from Science Citation Index journals, in vitro studies with Jadad score less than 2 points and in vivo and clinical studies with experimental flaws were excluded. RESULTS Two hundred and ninety-five papers were searched and 93 papers were reviewed. Licorice extract, 3 triterpenes and 13 flavonoids exhibit evident anti-inflammatory properties mainly by decreasing TNF, MMPs, PGE2 and free radicals, which also explained its traditional applications in stimulating digestive system functions, eliminating phlegm, relieving coughing, nourishing qi and alleviating pain in TCM. Five hundred and fifty-four drugs containing licorice have been approved by CFDA. The side effect may due to the cortical hormone like action. CONCLUSION Licorice and its natural compounds have demonstrated anti-inflammatory activities. More pharmacokinetic studies using different models with different dosages should be carried out, and the maximum tolerated dose is also critical for clinical use of licorice extract and purified compounds.
Collapse
Affiliation(s)
- Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Chuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yong-Sheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Spectrum-Effect Relationships between Fingerprints of Caulophyllum robustum Maxim and Inhabited Pro-Inflammation Cytokine Effects. Molecules 2017; 22:molecules22111826. [PMID: 29072610 PMCID: PMC6150361 DOI: 10.3390/molecules22111826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 11/17/2022] Open
Abstract
Caulophyllum robustum Maxim (CRM) is a Chinese folk medicine with significant effect on treatment of rheumatoid arthritis (RA). This study was designed to explore the spectrum-effect relationships between high-performance liquid chromatography (HPLC) fingerprints and the anti-inflammatory effects of CRM. Seventeen common peaks were detected by fingerprint similarity evaluation software. Among them, 15 peaks were identified by Liquid Chromatography-Mass Spectrometry (LC-MS). Pharmacodynamics experiments were conducted in collagen-induced arthritis (CIA) mice to obtain the anti-inflammatory effects of different batches of CRM with four pro-inflammation cytokines (TNF-α, IL-β, IL-6, and IL-17) as indicators. These cytokines were suppressed at different levels according to the different batches of CRM treatment. The spectrum-effect relationships between chemical fingerprints and the pro-inflammation effects of CRM were established by multiple linear regression (MLR) and gray relational analysis (GRA). The spectrum-effect relationships revealed that the alkaloids (N-methylcytisine, magnoflorine), saponins (leiyemudanoside C, leiyemudanoside D, leiyemudanoside G, leiyemudanoside B, cauloside H, leonticin D, cauloside G, cauloside D, cauloside B, cauloside C, and cauloside A), sapogenins (oleanolic acid), β-sitosterols, and unknown compounds (X3, X17) together showed anti-inflammatory efficacy. The results also showed that the correlation between saponins and inflammatory factors was significantly closer than that of alkaloids, and saponins linked with less sugar may have higher inhibition effect on pro-inflammatory cytokines in CIA mice. This work provided a general model of the combination of HPLC and anti-inflammatory effects to study the spectrum-effect relationships of CRM, which can be used to discover the active substance and to control the quality of this treatment.
Collapse
|
37
|
Bu X, Fan J, Hu X, Bi X, Peng B, Zhang D. Norwegian scabies in a patient treated with Tripterygium glycoside for rheumatoid arthritis. An Bras Dermatol 2017; 92:556-558. [PMID: 28954112 PMCID: PMC5595610 DOI: 10.1590/abd1806-4841.20174946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/27/2015] [Indexed: 11/22/2022] Open
Abstract
We report an 80-year-old male patient with severe rheumatoid arthritis who was
treated with tripterygium glycoside, an immunosuppressive agent made from the
extract of a Chinese medicinal herb called Tripterygium
wilfordii Hook F. The patient had no apparent skin lesions before
the treatment, but he developed aggressive hyperkeratotic lesions with rapid
progression after using tripterygium glycoside. He was repeatedly diagnosed with
eczema, but treatment failed to achieve efficacy. Interestingly, a microscopic
examination of the lesions revealed numerous scabies mites and eggs. Thus, we
confirmed the diagnosis of Norwegian scabies infection. Treated with crotamiton
10% cream and 10% sulfur ointment for one month, the patient's clinical symptoms
disappeared.
Collapse
Affiliation(s)
- Xiaolin Bu
- Department of Dermatology at Shanghai Gongli Hospital - Second Military Medical University - Shanghai, China
| | - Juan Fan
- Department of Dermatology at Shanghai Gongli Hospital - Second Military Medical University - Shanghai, China
| | - Xiaoli Hu
- Department of Dermatology at Shanghai Gongli Hospital - Second Military Medical University - Shanghai, China
| | - Xinling Bi
- Department of Dermatology at Changhai Hospital - Second Military Medical University - Shanghai, China
| | - Bin Peng
- Sino-French Cooperative Central Lab at Shanghai Gongli Hospital - Second Military Medical University - Shanghai, China
| | - Denghai Zhang
- Sino-French Cooperative Central Lab at Shanghai Gongli Hospital - Second Military Medical University - Shanghai, China
| |
Collapse
|
38
|
Hwang JH, Jung HW, Oh SY, Kang JS, Kim JP, Park YK. Effects of Zingiber officinale extract on collagen-induced arthritis in mice and IL-1β-induced inflammation in human synovial fibroblasts. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17727997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ginger ( Zingiber officinale Roscoe) is one of the most commonly used medicinal plants and is extensively used for the treatment of arthritic patients in Traditional Korean Medicine (TKM) due to its various pharmacological properties. In this study, we evaluated the therapeutic effects of ginger on rheumatoid arthritis (RA), particularly focusing on the regulation of Th1, Th2, and Th17 cytokines and the inhibition of matrix metalloproteinase (MMP) release in mice with collagen-induced arthritis (CIA) and primary synovial fibroblasts. RA was induced in male DBA/1J mice via immunization with type II collagen (CII). A ginger extract was prepared in water. The ginger extract (100 and 200 mg/kg) or Mobic (50 mg/kg), as a reference drug, was orally administered to CIA mice once daily for 14 days after arthritis induction. Primary fibroblasts were isolated from the synovial tissues of osteoarthritis patients and then were stimulated with IL-1β and treated with the ginger extract at different concentrations. IL-4, IFN- γ, and IL-17 levels were measured in the serum or spleen and paw tissues of CIA mice and culture media via enzyme-linked immunosorbent assay (ELISA). The mRNA expression of IL-17, MMP-1, MMP-3, and MMP-13 was also detected in paw tissues and synovial fibroblasts through reverse transcription polymerase chain reaction (RT-PCR). Histological changes in the knee joints were observed via hematoxylin and eosin (H&E) and safranin-O staining. The major compounds in the ginger extract were analyzed using high-performance liquid chromatography (HPLC). Treatment with the ginger extract at 100 or 200 mg/kg significantly decreased the levels of IL-4, IFN-γ, and IL-17 and inhibited the expression of IL-17 in the spleen and paw tissues of CIA mice. Ginger extract inhibited the expression of MMP-1, MMP-3, and MMP-13 in the paw tissues of CIA mice and reduced inflammatory bone destruction in joint tissues. In IL-1β-stimulated synovial fibroblasts, the ginger extract significantly decreased the production of IFN-γ and IL-17 via inhibition of mRNA expression. The ginger extract also suppressed the expression of MMP-1, MMP-3, and MMP-13 mRNA. Vanillylacetone, 6-gingerol, 6-shogaol, and 1,4-cineol were identified as the main compounds in the ginger extract. These results indicate that ginger can prevent RA progression by inhibiting the secretion of Th1/Th2 and Th17 cytokines and MMPs, which are involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Ji Hye Hwang
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| | | | - Jong-Seong Kang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Pil Kim
- Department of Orthopedic Surgery, College of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
39
|
Isoegomaketone Alleviates the Development of Collagen Antibody-Induced Arthritis in Male Balb/c Mice. Molecules 2017; 22:molecules22071209. [PMID: 28753954 PMCID: PMC6152219 DOI: 10.3390/molecules22071209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
In this study, we attempted to identify and assess effects of isoegomaketone (IK) isolated from Perilla frutescens var. crispa on the development of rheumatoid arthritis (RA). RA was induced in male Balb/c mice by collagen antibody injection. Experimental animals were randomly divided into five groups: normal, collagen antibody-induced arthritis (CAIA), CAIA + IK (5 mg/kg/day), CAIA + IK (10 mg/kg/day), and CAIA + apigenin (16 mg/kg/day) and respective treatments were administered via oral gavage once per day for four days. Mice treated with IK (10 mg/kg/day) developed less severe arthritis than the control CAIA mice. Arthritic score, paw volume, and paw thickness were less significant compared to the control CAIA mice at day seven (73%, 15%, and 14% lower, respectively). Furthermore, histopathological examination of ankle for inflammation showed that infiltration of inflammatory cells and edema formation were reduced by IK treatment. Similarly, neutrophil to lymphocyte ratio (NLR) in whole blood was lower in mice treated with IK (10 mg/kg/day) by 85% when compared to CAIA mice. Taken together, treatment with IK delays the onset of the arthritis and alleviates the manifestations of arthritis in CAIA mice.
Collapse
|
40
|
Henc I, Kokotkiewicz A, Łuczkiewicz P, Bryl E, Łuczkiewicz M, Witkowski JM. Naturally occurring xanthone and benzophenone derivatives exert significant anti-proliferative and proapoptotic effects in vitro on synovial fibroblasts and macrophages from rheumatoid arthritis patients. Int Immunopharmacol 2017; 49:148-154. [PMID: 28587985 DOI: 10.1016/j.intimp.2017.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 05/10/2017] [Accepted: 05/27/2017] [Indexed: 11/15/2022]
Abstract
There is a need for novel, safer and cheaper drugs for the therapy of rheumatoid arthritis (RA), better targeted against the cellular processes involved in the disease pathogenesis. Using advanced analysis of microscopic images and flow cytometry, we demonstrate that naturally occurring xanthone and benzophenone derivatives exert strong, dose- and O2 concentration-dependent anti-proliferative and pro-apoptotic effects on RA patients' fibroblast-like synoviocytes (FLS) and macrophages. Suspensions containing fibroblasts, macrophages and other infiltrating cells were obtained from inflamed synovial tissue collected from female RA patients. Cells were grown in the presence of xanthone (mangiferin, isomangiferin, neomangiferin, norathyriol) or benzophenone (iriflophenone 3-C-glucoside, maclurin) derivatives for 48h or 7days, at 5% or 21% O2. Proportions of macrophages, FLS and infiltrating T cells undergoing apoptosis (annexin- or annexin and 7-AAD-positive) were determined by flow cytometry. The extent of late apoptosis (DNA degradation) was assessed by fluorescent microscopy and image analysis in cultures where DNA was stained with Hoechst 33342. Majority of tested compounds exert anti-proliferative and pro-apoptotic, O2-dependent effects on T cells, FLS and macrophages. The results indicate that xanthone- and benzophenone-rich plant products provide a basis for the development of dietary strategy for rheumatoid arthritis management.
Collapse
Affiliation(s)
- Izabella Henc
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Piotr Łuczkiewicz
- II Clinic of Orthopaedics and Kinetic Organ Traumatology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Maria Łuczkiewicz
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdansk, Poland.
| |
Collapse
|
41
|
Ye Z, Xu J, Li S, Cai C, Li T, Sun L. Lnc‑IL7R promotes the growth of fibroblast‑like synoviocytes through interaction with enhancer of zeste homolog 2 in rheumatoid arthritis. Mol Med Rep 2017; 15:1412-1418. [PMID: 28138707 DOI: 10.3892/mmr.2017.6150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/25/2016] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory and autoimmune disease that affects ~1% of the world's population. Although the precise mechanism of RA has yet to be elucidated, accumulating evidence suggests that fibroblast‑like synoviocytes (FLSs) serve critical roles in the initiation and progression of RA. However, the underlying molecular mechanisms of FLS proliferation have yet to be elucidated. Long noncoding‑interleukin‑7 receptor (lnc‑IL7R) has been recently identified, which is activated by lipopolysaccharide (LPS) stimulation and diminishes the LPS‑induced inflammatory response. In the present study, gain‑ and loss‑of‑function assays were performed in order to investigate the role of lnc‑IL7R in FLS. It is demonstrated, to the best of the authors' knowledge for the first time, that lnc‑IL7R promotes cell proliferation, cell cycle progression and inhibits apoptosis in FLS. Further investigation identified that lnc‑IL7 interacts with enhancer of zeste homolog 2 (EZH2) and is required for polycomb repressive complex 2 (PRC2)‑mediated suppression, including cyclin‑dependent kinase inhibitor 1A and cyclin‑dependent kinase inhibitor 2A. Lnc‑IL7R may be a promising therapeutic target for the treatment of RA.
Collapse
Affiliation(s)
- Zhao Ye
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Juan Xu
- Department of Ultrasound, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shukui Li
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Cheng Cai
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Tiejun Li
- Department of Teaching, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Lishan Sun
- Department of Orthopedics, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
42
|
Phytomedicine in Joint Disorders. Nutrients 2017; 9:nu9010070. [PMID: 28275210 PMCID: PMC5295114 DOI: 10.3390/nu9010070] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents) is potent, but frequently associated with serious, even life-threatening side effects. Used for millennia in traditional herbalism, medicinal plants are a promising alternative, with lower rate of adverse events and efficiency frequently comparable with that of conventional drugs. Nevertheless, their mechanism of action is in many cases elusive and/or uncertain. Even though many of them have been proven effective in studies done in vitro or on animal models, there is a scarcity of human clinical evidence. The purpose of this review is to summarize the available scientific information on the following joint-friendly medicinal plants, which have been tested in human studies: Arnica montana, Boswellia spp., Curcuma spp., Equisetum arvense, Harpagophytum procumbens, Salix spp., Sesamum indicum, Symphytum officinalis, Zingiber officinalis, Panax notoginseng, and Whitania somnifera.
Collapse
|
43
|
Huang QC, Wang MJ, Chen XM, Yu WL, Chu YL, He XH, Huang RY. Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis? Oncotarget 2016; 7:1193-202. [PMID: 26498361 PMCID: PMC4811453 DOI: 10.18632/oncotarget.6200] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review stated the possible application of the active components of licorice, glycyrrhizin (GL) and glycyrrhetinic acid (GA), in rheumatoid arthritis (RA) treatment based on the cyclooxygenase (COX)-2/thromboxane A2 (TxA2) pathway. METHODS The extensive literature from inception to July 2015 was searched in PubMed central, and relevant reports were identified according to the purpose of this study. RESULTS The active components of licorice GL and GA exert the potential anti-inflammatory effects through, at least in part, suppressing COX-2 and its downstream product TxA2. Additionally, the COX-2/TxA2 pathway, an auto-regulatory feedback loop, has been recently found to be a crucial mechanism underlying the pathogenesis of RA. However, TxA2 is neither the pharmacological target of non-steroidal anti-inflammatory drugs (NSAIDs) nor the target of disease modifying anti-rheumatic drugs (DMARDs), and the limitations and side effects of those drugs may be, at least in part, attributable to lack of the effects on the COX-2/TxA2 pathway. Therefore, GL and GA capable of targeting this pathway hold the potential as a novel add-on therapy in therapeutic strategy, which is supported by several bench experiments. CONCLUSIONS The active components of licorice, GL and GA, could not only potentiate the therapeutic effects but also decrease the adverse effects of NSAIDs or DMARDs through suppressing the COX-2/TxA2 pathway during treatment course of RA.
Collapse
Affiliation(s)
- Qing-Chun Huang
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Mao-Jie Wang
- Central Laboratory, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiu-Min Chen
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Wan-Lin Yu
- Central Laboratory, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Yong-Liang Chu
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiao-Hong He
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Run-Yue Huang
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| |
Collapse
|
44
|
Complementary and alternative medicine for rheumatic diseases. HONG KONG BULLETIN ON RHEUMATIC DISEASES 2016. [DOI: 10.1515/hkbrd-2016-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The use of complementary and alternative medicine is not uncommonly encountered in our patients. This manuscript reviewed the latest evidence on other modalities in treating rheumatic diseases. Treatments that are found to be helpful for rheumatoid arthritis include herbs, fish oil, and acupuncture. Fish oil, vitamin D, N-acetylcysteine, and cognitive behavior treatments are helpful for systemic lupus erythematosus. Hydrotherapy and massage are potentially beneficial for fibromyalgia patients. Diet supplement is not found to be beneficial for osteoarthritis. CAM modalities will need further studies.
Collapse
|
45
|
Liang Q, Ju Y, Chen Y, Wang W, Li J, Zhang L, Xu H, Wood RW, Schwarz EM, Boyce BF, Wang Y, Xing L. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res Ther 2016; 18:62. [PMID: 26970913 PMCID: PMC4789262 DOI: 10.1186/s13075-016-0963-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022] Open
Abstract
Background In this study, we sought to determine the cellular source of inducible nitric oxide synthase (iNOS) induced in lymphatic endothelial cells (LECs) in response to tumor necrosis factor (TNF), the effects of iNOS on lymphatic smooth muscle cell (LSMC) function and on the development of arthritis in TNF-transgenic (TNF-Tg) mice, and whether iNOS inhibitors improve lymphatic function and reduce joint destruction in inflammatory erosive arthritis. Methods We used quantitative polymerase chain reactions, immunohistochemistry, histology, and near-infrared imaging to examine (1) iNOS expression in podoplanin + LECs and lymphatic vessels from wild-type (WT) and TNF-Tg mice, (2) iNOS induction by TNF in WT LECs, (3) the effects of iNOS inhibitors on expression of functional muscle genes in LSMCs, and (4) the effects of iNOS inhibitors on lymphatic vessel contraction and drainage, as well as the severity of arthritis, in TNF-Tg mice. Results LECs from TNF-Tg mice had eight fold higher iNOS messenger RNA levels than WT cells, and iNOS expression was confirmed immunohistochemically in podoplanin + LECs in lymphatic vessels from inflamed joints. TNF (0.1 ng/ml) increased iNOS levels 40-fold in LECs. LSMCs cocultured with LECs pretreated with TNF had reduced expression of functional muscle genes. This reduction was prevented by ferulic acid, which blocked nitric oxide production. Local injection of L-N6-(1-iminoethyl)lysine 5-tetrazole-amide into inflamed paws of TNF-Tg mice resulted in recovery of lymphatic vessel contractions and drainage. Treatment of TNF-Tg mice with ferulic acid reduced synovial inflammation as well as cartilage and bone erosion, and it also restored lymphatic contraction and drainage. Conclusions iNOS is produced primarily by LECs in lymphatic vessel efferent from inflamed joints of TNF-Tg mice in response to TNF and inhibits LSMC contraction and lymph drainage. Ferulic acid represents a potential new therapy to restore lymphatic function and thus improve inflammatory arthritis by inhibiting local production of nitric oxide by LSMCs. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0963-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianqian Liang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yawen Ju
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yan Chen
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Wensheng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Jinlong Li
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Li Zhang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Hao Xu
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ronald W Wood
- Departments of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Edward M Schwarz
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yongjun Wang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China. .,Institute of Spine, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA. .,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA. .,Departments of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
46
|
A herbal formula comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos, attenuates collagen-induced arthritis and inhibits TLR4 signalling in rats. Sci Rep 2016; 6:20042. [PMID: 26860973 PMCID: PMC4748217 DOI: 10.1038/srep20042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022] Open
Abstract
RL, a traditional remedy for Rheumatoid arthritis (RA), comprises two edible herbs, Rosae Multiflorae Fructus and Lonicerae Japonicae Flos. We have reported that RL could inhibit the production of inflammatory mediators in immune cells. Here we investigated the effects and the mechanism of action of RL in collagen-induced arthritis (CIA) rats. RL significantly increased food intake and weight gain of CIA rats without any observable adverse effect; ameliorated joint erythema and swelling; inhibited immune cell infiltration, bone erosion and osteophyte formation in joints; reduced joint protein expression levels of TLR4, phospho-TAK1, phospho-NF-κB p65, phospho-c-Jun and phospho-IRF3; lowered levels of inflammatory factors (TNF-α, IL-6, IL-1β, IL-17A and MCP-1 in sera and TNF-α, IL-6, IL-1β and IL-17A in joints); elevated serum IL-10 level; reinvigorated activities of antioxidant SOD, CAT and GSH-Px in the liver and serum; reduced Th17 cell proportions in splenocytes; inhibited splenocyte proliferation and activation; and lowered serum IgG level. In conclusion, RL at nontoxic doses inhibited TLR4 signaling and potently improved clinical conditions of CIA rats. These findings provide further pharmacological justifications for the traditional use of RL in RA management.
Collapse
|
47
|
Chi K, Fu RH, Huang YC, Chen SY, Lin SZ, Huang PC, Lin PC, Chang FK, Liu SP. Therapeutic Effect of Ligustilide-Stimulated Adipose-Derived Stem Cells in a Mouse Thromboembolic Stroke Model. Cell Transplant 2016; 25:899-912. [PMID: 26787228 DOI: 10.3727/096368916x690539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stroke is a result of cerebral ischemia that triggers a cascade of both physiological and biochemical events. No effective treatment is available for stroke; however, stem cells have the potential to rescue tissue from the effects of stroke. Adipose-derived stem cells (ADSCs) are an abundant source of adult stem cells; therefore, ADSC therapy can be considered as a future strategy for regenerative medicine. However, more research is required to improve the effectiveness of transplanted ADSCs as a treatment for stroke in the mouse stroke model. Ligustilide, isolated from the herb Angelica sinensis, exhibits a protective effect on neurons and inhibits inflammation. We also demonstrated that ligustilide treatment increases the expression levels of homing factors such as SDF-1 and CXCR4. In the present study, we evaluated the therapeutic effects of ADSC transplantation and ligustilide treatment in a mouse thromboembolic stroke model by behavioral tests, including beam walking, locomotor activity, and rotarod analysis. ADSCs pretreated with ligustilide were transplanted into the brains of stroke mice. The results showed that the therapeutic effect of ADSCs pretreated with ligustilide was better than that of ADSCs without ligustilide pretreatment. There was no difference between the recovery of mice treated by ADSC transplantation combined with subcutaneous ligustilide injection and that of mice treated only with ADSCs. The TUNEL assay showed fewer apoptotic cells in the brains of mice transplanted with ADSCs pretreated with ligustilide as well as in those without pretreatment. In summary, pretreatment of ADSCs with ligustilide improves the therapeutic efficacy of ADSC transplantation. The results of this study will help improve stem cell therapies being developed for future clinical applications.
Collapse
Affiliation(s)
- Kang Chi
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bobade V, Bodhankar SL, Aswar U, Vishwaraman M, Thakurdesai P. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors. Chin J Nat Med 2016; 13:274-82. [PMID: 25908624 DOI: 10.1016/s1875-5364(15)30014-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 11/25/2022]
Abstract
The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action.
Collapse
Affiliation(s)
- Vijeta Bobade
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune-411038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune-411038, India.
| | - Urmila Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India
| | - Mohan Vishwaraman
- Indus Biotech Private Limited, 1, Rahul residency, Kondhwa, Pune-411026, India
| | - Prasad Thakurdesai
- Indus Biotech Private Limited, 1, Rahul residency, Kondhwa, Pune-411026, India
| |
Collapse
|
49
|
Lü S, Wang Q, Li G, Sun S, Guo Y, Kuang H. The treatment of rheumatoid arthritis using Chinese medicinal plants: From pharmacology to potential molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:177-206. [PMID: 26471289 DOI: 10.1016/j.jep.2015.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a common worldwide public health problem. Traditional Chinese Medicine (TCM) achieved some results to some extent in the treatment of rheumatoid arthritis (RA). Especially in China, TCM formulas are used in the clinic because of their advantages. Some of these TCM formulas have been used for thousands of years in ancient China, they pays much attention to strengthening healthy qi, cleaning heat, and wet, activating blood, etc. So TCM in anti-RA drug is considered as a simple and effective method. In addition, TCM are also traditionally used as extracts and many Chinese herbs which are considered to be effective for RA. With the advancement of technologies and research methods, researchers have devoted themselves to exploring new therapeutic materials from troves of TCM. The components of TCM are identified and purified, which include alkaloids, coumarins, flavonoids, saponins and so on. However, little or no review works are found in the research literature on the anti-RA drugs from TCM. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of TCM used traditionally against RA. The information recorded in this review will provide new directions for researchers in the future. MATERIALS AND METHODS Relevant scientific literatures were collected from Chinese traditional books and Chinese Pharmacopoeia. Several important pharmacology data, clinical observations, animal experiments on effects of anti-RA drugs from TCM and their mechanisms were extracted from a library and electric search (Pubmed, PubChem Compound, Science Direct, Spring Link, Elsevier, Web of Science, CNKI, Wan Fang, Bai du, The Plant List, etc.). We collected information published between 2002 and 2015 on Chinese medicine in the treatment of RA. Information was also acquired from local classic herbal literature, conference papers, government reports, and PhD and MSc dissertations. RESULTS This review mainly introduces the current research on anti-RA TCM formulas, extracts and compounds from TCM, pharmacological data and potential mechanisms (inhibit osteoclast proliferation, suppress fibroblast-like synoviocytes (FLSs) growth, decrease the expression of inflammatory cytokines, blocking signal pathways, etc.). CONCLUSIONS TCM, as a multi-component and multi-target approach, which is a perfect match with the holistic concept of systems biology, is applicable in the treatment of RA. The synergistic connections of Chinese herbs and mechanisms of related active compounds on RA increase the trust for TCM. TCM as alternative remedies for RA not only has an important position in the world market, but also has an irreplaceable role in the treatment of RA in future.
Collapse
Affiliation(s)
- Shaowa Lü
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Qiushi Wang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Guoyu Li
- College of Pharmacy, Harbin Medical University, Harbin 150040, China
| | - Shuang Sun
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuyan Guo
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
50
|
Fernández-Llanio Comella N, Fernández Matilla M, Castellano Cuesta JA. Have complementary therapies demonstrated effectiveness in rheumatoid arthritis? ACTA ACUST UNITED AC 2015; 12:151-7. [PMID: 26711840 DOI: 10.1016/j.reuma.2015.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/22/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
Abstract
In recent decades the treatment of rheumatoid arthritis (RA) has improved thanks to the use of highly effective drugs. However, patients usually require long term therapy, which is not free of side effects. Therefore RA patients often demand complementary medicine, they seek additional sources of relief and/or less side effects. In fact 30-60% of rheumatic patients use some form of complementary medicine. Therefore, from conventional medicine, if we want to optimally treat our patients facilitating communication with them we must know the most commonly used complementary medicines. The aim of this review is to assess, based on published scientific research, what complementary therapies commonly used by patients with RA are effective and safe.
Collapse
|