1
|
Qi Q, Pang J, Chen Y, Tang Y, Wang H, Gul S, Sun Y, Tang W, Sheng M. Targeted Drug Screening Leveraging Senescence-Induced T-Cell Exhaustion Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:11232. [PMID: 39457014 PMCID: PMC11508728 DOI: 10.3390/ijms252011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and a leading cause of cancer-related mortality globally, with most patients diagnosed at advanced stages and facing limited early treatment options. This study aimed to identify characteristic genes associated with T-cell exhaustion due to senescence in hepatocellular carcinoma patients, elucidating the interplay between senescence and T-cell exhaustion. We constructed prognostic models based on five signature genes (ENO1, STMN1, PRDX1, RAN, and RANBP1) linked to T-cell exhaustion, utilizing elastic net regression. The findings indicate that increased expression of ENO1 in T cells may contribute to T-cell exhaustion and Treg infiltration in hepatocellular carcinoma. Furthermore, molecular docking was employed to screen small molecule compounds that target the anti-tumor effects of these exhaustion-related genes. This study provides crucial insights into the diagnosis and treatment of hepatocellular carcinoma, establishing a strong foundation for the development of predictive biomarkers and therapeutic targets for affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medicine School, Kunming University of Science and Technology, Kunming 650500, China; (Q.Q.); (J.P.); (Y.C.); (Y.T.); (H.W.); (S.G.); (Y.S.)
| |
Collapse
|
2
|
Rao AP, Patro D. The Intricate Dance of Infections and Autoimmunity: An Interesting Paradox. Indian J Pediatr 2024; 91:941-948. [PMID: 38085415 DOI: 10.1007/s12098-023-04928-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 08/22/2024]
Abstract
Besides genetic susceptibility, infections due to viruses, bacteria and protozoa have been implicated in the development of autoimmune diseases (AD). AD can be triggered in a genetically susceptible individual by infections that disrupt immunological tolerance towards self-antigens. Pathogens can initiate autoimmunity by way of molecular mimicry, bystander activation, epitope spreading or persistent infection with polyclonal activation. This review covers two main topics: (i) the mechanisms by which an infectious agent can trigger or worsen autoimmunity; and (ii) the correlation between specific infectious agents and AD in humans with special emphasis on multisystem inflammatory syndrome in children (MIS-C).
Collapse
Affiliation(s)
- Anand Prahalad Rao
- Department of Pediatric Rheumatology, Manipal Hospital, HAL Airport Road, Bengaluru, Karnataka, India.
| | - Debasis Patro
- Department of Pediatric Rheumatology, Manipal Hospital, HAL Airport Road, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Kosarek NN, Preston EV. Contributions of Synthetic Chemicals to Autoimmune Disease Development and Occurrence. Curr Environ Health Rep 2024; 11:128-144. [PMID: 38653907 DOI: 10.1007/s40572-024-00444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Exposure to many synthetic chemicals has been linked to a variety of adverse human health effects, including autoimmune diseases. In this scoping review, we summarize recent evidence detailing the effects of synthetic environmental chemicals on autoimmune diseases and highlight current research gaps and recommendations for future studies. RECENT FINDINGS We identified 68 recent publications related to environmental chemical exposures and autoimmune diseases. Most studies evaluated exposure to persistent environmental chemicals and autoimmune conditions including rheumatoid arthritis (RA), systemic lupus (SLE), systemic sclerosis (SSc), and ulcerative colitis (UC) and Crohn's disease. Results of recent original research studies were mixed, and available data for some exposure-outcome associations were particularly limited. PFAS and autoimmune inflammatory bowel diseases (UC and CD) and pesticides and RA appeared to be the most frequently studied exposure-outcome associations among recent publications, despite a historical research focus on solvents. Recent studies have provided additional evidence for the associations of exposure to synthetic chemicals with certain autoimmune conditions. However, impacts on other autoimmune outcomes, particularly less prevalent conditions, remain unclear. Owing to the ubiquitous nature of many of these exposures and their potential impacts on autoimmune risk, additional studies are needed to better evaluate these relationships, particularly for understudied autoimmune conditions. Future research should include larger longitudinal studies and studies among more diverse populations to elucidate the temporal relationships between exposure-outcome pairs and to identify potential population subgroups that may be more adversely impacted by immune modulation caused by exposure to these chemicals.
Collapse
Affiliation(s)
- Noelle N Kosarek
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Floor 14, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Xiong Y, Yu Q, Zhi H, Peng H, Xie M, Li R, Li K, Ma Y, Sun P. Advances in the study of the glymphatic system and aging. CNS Neurosci Ther 2024; 30:e14803. [PMID: 38887168 PMCID: PMC11183173 DOI: 10.1111/cns.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The glymphatic system is cerebrospinal fluid-brain tissue fluid exchange flow mediated by aquaporin-4 (AQP4) on the end feet of astrocytes for a system, which is capable of rapidly removing brain metabolites and thus maintaining brain homeostasis, and is known as the central immune system. Dysfunction of the glymphatic system causes accumulation of misfolded and highly phosphorylated proteins (amyloid-β and Tau proteins), which destabilizes the proteins, and the body's neuroinflammatory factors are altered causing aging of the immune system and leading to neurodegenerative diseases. Damage to the glymphatic system and aging share common manifestations, as well as unstudied biological mechanisms that are also linked, such as mitochondria, oxidative stress, chronic inflammation, and sleep. In this paper, we first summarize the structure, function, and research methods of the glymphatic system and the relationship between the glymphatic system and the peripheral immune system, and second, sort out and summarize the factors of the glymphatic system in removing metabolites and resolving aging-related diseases and factors affecting aging, to explore its related biological mechanisms, and moreover, to provide a new way of thinking for treating or intervening aging-related diseases.
Collapse
Affiliation(s)
- Ying Xiong
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Qingying Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Haimei Zhi
- Qilu Hospital of Shandong UniversityJinanChina
| | - Huiyuan Peng
- Department of RehabilitationZhongshan Hospital of Traditional Chinese MedicineZhongshanChina
| | - Mingjun Xie
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Renjun Li
- Department of PsychiatryJinan Mental Health CenterJinanChina
| | - Kejian Li
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Yuexiang Ma
- School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Peng Sun
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
5
|
Ma D, Ma J, Zhao C, Tai W. Reasons why women are more likely to develop primary biliary cholangitis. Heliyon 2024; 10:e25634. [PMID: 38384574 PMCID: PMC10878884 DOI: 10.1016/j.heliyon.2024.e25634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune disease of biliary stasis in which immune factors cause the gradual destruction of small bile ducts, biliary stasis, and eventually the development of liver fibrosis, cirrhosis, and even liver failure. One of the main characteristics of PBC is that it primarily affects middle-aged women, but the precise cause is still unknown. This article analyzes the unique causes and mechanisms of the female predominance of PBC and summarizes the potential causes.The female domination of PBC is reported to be primarily caused by sex hormones, environmental circumstances, and epigenetic changes, each of which has a different subtle impact on patients' gender disparities.
Collapse
Affiliation(s)
- Di Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaxuan Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunmei Zhao
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Tai
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Shiffman ML. Autoimmune Hepatitis: Epidemiology, Subtypes, and Presentation. Clin Liver Dis 2024; 28:1-14. [PMID: 37945151 DOI: 10.1016/j.cld.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Autoimmune hepatitis (AIH) is a chronic immunologic disorder in which the immune system targets the liver. The disease has a genetic basis and this accounts for the epidemiologic variation observed in serologic testing and clinical presentation across different populations. The incidence of AIH increases with age into the 70s and seems to be increasing in prevalence. Most patients test positive for antinuclear antibody, ASMA, or anti-LKM but about 20% of patients do not have these serologic markers. At clinical presentation, patients may be asymptomatic, symptomatic, have acute liver failure, or decompensated cirrhosis.
Collapse
Affiliation(s)
- Mitchell L Shiffman
- Bon Secours Liver Institute of Richmond, Bon Secours Mercy Health, 5855 Bremo Road, Suite 509, Richmond, VA 23226, USA; Bon Secours Liver Institute of Hampton Roads, Bon Secours Mercy Health, 12720 Mc Manus Boulevard, Suite 313, Newport News, VA, 23602, USA.
| |
Collapse
|
7
|
Akiyama Y, Harada K, Miyakawa J, Kreder KJ, O’Donnell MA, Daichi M, Katoh H, Hori M, Owari K, Futami K, Ishikawa S, Ushiku T, Kume H, Homma Y, Luo Y. Th1/17 polarization and potential treatment by an anti-interferon-γ DNA aptamer in Hunner-type interstitial cystitis. iScience 2023; 26:108262. [PMID: 38026177 PMCID: PMC10663743 DOI: 10.1016/j.isci.2023.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Hunner-type interstitial cystitis (HIC) is a rare, enigmatic inflammatory disease of the urinary bladder with no curative treatments. In this study, we aimed to characterize the unique cellular and immunological factors specifically involved in HIC by comparing with cystitis induced by Mycobacterium bovis bacillus Calmette-Guérin, which presents similar clinicopathological features to HIC. Here, we show that T helper 1/17 +polarized immune responses accompanied by prominent overexpression of interferon (IFN)-γ, enhanced cGAS-STING cytosolic DNA sensing pathway, and increased plasma cell infiltration are the characteristic inflammatory features in HIC bladder. Further, we developed a mouse anti-IFN-γ DNA aptamer and observed that the intravesical instillation of the aptamer significantly ameliorated bladder inflammation, pelvic pain and voiding dysfunction in a recently developed murine HIC model with little migration into the blood. Our study provides the plausible basis for the clinical translation of the anti-IFN-γ DNA aptamer in the treatment of human HIC.
Collapse
Affiliation(s)
- Yoshiyuki Akiyama
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | | | - Jimpei Miyakawa
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Karl J. Kreder
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | | | - Maeda Daichi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Interstitial Cystitis Medicine, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Yi Luo
- Department of Urology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Liu PY, Xia D, McGonigle K, Carroll AB, Chiango J, Scavello H, Martins R, Mehta S, Krespan E, Lunde E, LeVine D, Fellman CL, Goggs R, Beiting DP, Garden OA. Immune-mediated hematological disease in dogs is associated with alterations of the fecal microbiota: a pilot study. Anim Microbiome 2023; 5:46. [PMID: 37770990 PMCID: PMC10540429 DOI: 10.1186/s42523-023-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The dog is the most popular companion animal and is a valuable large animal model for several human diseases. Canine immune-mediated hematological diseases, including immune-mediated hemolytic anemia (IMHA) and immune thrombocytopenia (ITP), share many features in common with autoimmune hematological diseases of humans. The gut microbiome has been linked to systemic illness, but few studies have evaluated its association with immune-mediated hematological disease. To address this knowledge gap, 16S rRNA gene sequencing was used to profile the fecal microbiota of dogs with spontaneous IMHA and ITP at presentation and following successful treatment. In total, 21 affected and 13 healthy control dogs were included in the study. RESULTS IMHA/ITP is associated with remodeling of fecal microbiota, marked by decreased relative abundance of the spirochete Treponema spp., increased relative abundance of the pathobionts Clostridium septicum and Escherichia coli, and increased overall microbial diversity. Logistic regression analysis demonstrated that Treponema spp. were associated with decreased risk of IMHA/ITP (odds ratio [OR] 0.24-0.34), while Ruminococcaceae UCG-009 and Christensenellaceae R-7 group were associated with increased risk of disease (OR = 6.84 [95% CI 2-32.74] and 8.36 [95% CI 1.85-71.88] respectively). CONCLUSIONS This study demonstrates an association of immune-mediated hematological diseases in dogs with fecal dysbiosis, and points to specific bacterial genera as biomarkers of disease. Microbes identified as positive or negative risk factors for IMHA/ITP represent an area for future research as potential targets for new diagnostic assays and/or therapeutic applications.
Collapse
Affiliation(s)
- P-Y Liu
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - D Xia
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - K McGonigle
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - A B Carroll
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - J Chiango
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - H Scavello
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - R Martins
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - S Mehta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Lunde
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
| | - D LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL, 36849, USA
| | - C L Fellman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - R Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Box 31, Ithaca, NY, 14853, USA
| | - D P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - O A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA.
- Dean's Office, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
9
|
Shin DS, Ratnapriya S, Cashin CN, Kuhn LF, Rahimi RA, Anthony RM, Moon JJ. Lung injury induces a polarized immune response by self-antigen-specific CD4 + Foxp3 + regulatory T cells. Cell Rep 2023; 42:112839. [PMID: 37471223 PMCID: PMC10529088 DOI: 10.1016/j.celrep.2023.112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Self-antigen-specific T cells are prevalent in the mature adaptive immune system but are regulated through multiple mechanisms of tolerance. However, inflammatory conditions such as tissue injury may allow these T cells to break tolerance and trigger autoimmunity. To understand how the T cell repertoire responds to the presentation of self-antigen under highly stimulatory conditions, we use peptide:major histocompatibility complex (MHC) class II tetramers to track the behavior of endogenous CD4+ T cells with specificity to a lung-expressed self-antigen in mouse models of immune-mediated lung injury. Acute injury results in the exclusive expansion of CD4+ regulatory T cells (Tregs) that is dependent on self-antigen recognition and interleukin-2 (IL-2). Conversely, conventional CD4+ T cells of the same self-antigen specificity remain unresponsive even following Treg ablation. Thus, the self-antigen-specific CD4+ T cell repertoire is poised to serve a regulatory function during acute tissue damage to limit further damage and the possibility of autoimmunity.
Collapse
Affiliation(s)
- Daniel S Shin
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sneha Ratnapriya
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Creel Ng Cashin
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lucy F Kuhn
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Floreani A, Gabbia D, De Martin S. Primary biliary cholangitis: primary autoimmune disease or primary secretory defect. Expert Rev Gastroenterol Hepatol 2023; 17:863-870. [PMID: 37515436 DOI: 10.1080/17474124.2023.2242771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease characterized by the immune-mediated destruction of small and medium intrahepatic bile ducts, involving predominantly females. PBC has long been described as an autoimmune liver disease, also because it is very often associated with many autoimmune conditions. More recently, another pathogenic mechanism exploring the damage of cholangiocytes has been hypothesized, i.e. a defect in the biliary umbrella which is physiologically responsible for the exchange of the ions Cl- and HCO3- and maintains the integrity of glycocalyx. To provide a state-of-the-art analysis of this topic, a systematic review of literature in PubMed, Scopus, and Science Direct was conducted (inclusive dates: 1986-2023). AREA COVERED Although the etiology remains unknown, pathogenesis consists of a complex immune-mediated process resulting from a genetic susceptibility. PBC can be triggered by an immune-mediated response to an autoantigen, which leads to a progressive destruction of bile ducts and eventually to a progressive fibrosis with cirrhosis. The defect in the 'bicarbonate umbrella' acts as a protection against the toxic hydrophobic bile acids, leading to a toxic composition of bile. EXPERT OPINION This review offers a summary of the current knowledge about the pathogenesis of PBC, indicating that this is probably based on the mutual relationship between the immune insult and the unbalanced secretory mechanisms.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Institute for Research, Hospitalization and Healthcare, Negrar, Verona, Italy
- University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
12
|
Şahin N, Kısaarslan AP, Çiçek SÖ, Pınarbaşı AS, Günay N, Yel S, Dursun İ, Poyrazoğlu MH, Düşünsel R. Clinical usefulness of anti-nuclear antibody in childhood: real-world experience at a tertiary care center : Usefulness of ANA in pediatric autoimmune diseases. Eur J Pediatr 2023:10.1007/s00431-023-05017-w. [PMID: 37171519 DOI: 10.1007/s00431-023-05017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
We evaluated the reasons for requesting anti-nuclear antibody (ANA) analysis in clinical practice at a tertiary center and the performance of ANA in pediatric autoimmune diseases. Patients under 18 years of age who underwent ANA testing for various symptoms between 2013 and 2017 were included. We retrieved data from medical records, including demographic and clinical characteristics, diagnoses, ANA results, titers, and staining patterns. The performance assessment tools were calculated according to the ANA titer for autoimmune diseases. Risk factors for autoimmune diseases in ANA-positive patients were evaluated using logistic regression analysis. Changes in ANA titer and seroconversion were evaluated using repeated ANA analyses. A total of 3812 patients underwent ANA. Medical records of 3320 patients were obtained. The rate of ANA positivity was 27.4%. ANA was requested most frequently because of musculoskeletal findings in 1355 patients (40.8%). Juvenile idiopathic arthritis (n = 174, 20.2%) was the most common diagnosis in ANA-positive patients, followed by systemic lupus erythematosus (n = 52, 6%). For autoimmune diseases, a titer of ≥ 1:100, a sensitivity of 40.1%, and a specificity of 77.1% were observed. At a titer ≥ 1:1000, the sensitivity and specificity were 24.1% and 89%, respectively. Homogeneous staining was an additional risk factor for autoimmune diseases in ANA-positive patients by multivariate logistic regression analysis (OR [95% CI]: 4.562 [3.076-6.766], p < 0.001). Conclusion: Our results revealed that the performance of the ANA test in diagnosing autoimmune diseases in pediatric clinical practice was poor. Therefore, clinical findings should be carefully evaluated before ANA testing is performed. What is Known: • ANA can be detected in systemic autoimmune rheumatic diseases. • The diagnostic role of ANA is controversial, especially in childhood. What is New: • One in four patients who requested the ANA test had an autoimmune disease. • Less than half of patients with an autoimmune disease had ANA positivity.
Collapse
Affiliation(s)
- Nihal Şahin
- Department of Pediatrics, Division of Pediatric Rheumatology, Kocaeli University, Kocaeli University Research and Application Hospital Umuttepe, Campus 41380, İzmit, Kocaeli, Turkey.
| | - Ayşenur Paç Kısaarslan
- Department of Pediatrics, Division of Pediatric Rheumatology, Erciyes University, Kayseri, Turkey
| | | | - Ayşe Seda Pınarbaşı
- Department of Pediatric Nephrology, Diyarbakır Pediatric Hospital, Diyarbakır, Turkey
| | - Neslihan Günay
- Department of Pediatric Nephrology, Kayseri City Hospital, Kayseri, Turkey
| | - Sibel Yel
- Department of Pediatrics, Division of Pediatric Nephrology, Erciyes University, Kayseri, Turkey
| | - İsmail Dursun
- Department of Pediatrics, Division of Pediatric Nephrology, Erciyes University, Kayseri, Turkey
| | - Muammer Hakan Poyrazoğlu
- Department of Pediatrics, Division of Pediatric Nephrology and Division of Pediatric Rheumatology, Erciyes University, Kayseri, Turkey
| | - Ruhan Düşünsel
- Department of Pediatrics, Division of Pediatric Nephrology and Rheumatology, Yeditepe Univesity, Istanbul, Turkey
| |
Collapse
|
13
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
14
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
15
|
Shin DS, Ratnapriya S, Cashin CN, Kuhn LF, Rahimi RA, Anthony RM, Moon JJ. Lung injury induces a polarized immune response by self antigen-specific Foxp3 + regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527896. [PMID: 36798259 PMCID: PMC9934659 DOI: 10.1101/2023.02.09.527896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Self antigen-specific T cells are prevalent in the mature adaptive immune system, but are regulated through multiple mechanisms of tolerance. However, inflammatory conditions such as tissue injury may provide these T cells with an opportunity to break tolerance and trigger autoimmunity. To understand how the T cell repertoire responds to the presentation of self antigen under highly stimulatory conditions, we used peptide:MHCII tetramers to track the behavior of endogenous CD4 + T cells with specificity to a lung-expressed self antigen in mouse models of immune-mediated lung injury. Acute injury resulted in the exclusive expansion of regulatory T cells (Tregs) that was dependent on self antigen recognition and IL-2. Conversely, conventional T cells of the same self antigen specificity remained unresponsive, even following Treg ablation. Thus, the self antigen-specific T cell repertoire is poised to serve a regulatory function during acute tissue damage to limit further damage and the possibility of autoimmunity.
Collapse
|
16
|
Miller FW. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr Opin Immunol 2023; 80:102266. [PMID: 36446151 PMCID: PMC9918670 DOI: 10.1016/j.coi.2022.102266] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
Autoimmunity is characterized by self-reactive immune components and autoimmune disease by autoimmunity plus pathology. Both autoimmunity and autoimmune diseases are dramatically increasing in many parts of the world, likely as a result of changes in our exposures to environmental factors. Current evidence implicates the momentous alterations in our foods, xenobiotics, air pollution, infections, personal lifestyles, stress, and climate change as causes for these increases. Autoimmune diseases have a major impact on the individuals and families they affect, as well as on our society and healthcare costs, and current projections suggest they may soon take their place among the predominant medical disorders. This necessitates that we increase the scope and scale of our efforts, and coordinate our resources and studies, to understand autoimmune disease risk factors and pathogeneses and improve our diagnostic, therapeutic, and preventive approaches, as the costs of inaction will be profound and far greater without such investments.
Collapse
Affiliation(s)
- Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bldg. 101, Maildrop A2-03, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
17
|
Liang W, Wang X, Xie N, Yan H, Ma H, Liu M, Kong W, Zhu Z, Bai W, Xiang H. Short-term associations of PM 2.5 and PM 2.5 constituents with immune biomarkers: A panel study in people living with HIV/AIDS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120743. [PMID: 36442818 DOI: 10.1016/j.envpol.2022.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Studies on associations of fine particulate matter (PM2.5) with immunity in people living with HIV/AIDS (PLWHA) were absent. We aimed to explore whether changes of immune biomarkers were associated with short-term exposure to PM2.5 in PLWHA. Based on a panel study in Wuhan, we selected 163 PLWHA as participants with up to 4 repeated visits from March 2020 to January 2021. Immune biomarkers, including CD4+T cell count, CD8+T cell count, HIV viral load (VL) and CD4+T/CD8+T ratio were tested for all participants at each visit. Residential exposures of PM2.5 and PM2.5 constituents for each participant were assessed using spatial-temporal models. Linear mixed-effect models and general linear mixed models were applied to evaluate the associations between PM2.5 and immune biomarkers. To estimate the combined effect of PM2.5 constituents, weighted quantile sum regression and Bayesian kernel machine regression were employed. Each 10 μg/m3 increase of 7-day average PM2.5 concentrations was associated with an 8.75 cells/mm3 (95%CI: -15.55, -1.98) decrease in CD4+T cell count and a 92% (OR: 1.92, 95%CI: 1.43, 2.58) increased odds ratio of detectable HIV VL. However, the odds ratio of inverted CD4+T/CD8+T was only positively associated with PM2.5 concentrations at lag2 day (OR:1.27, 95%CI:1.02, 1.57). CD4+T may be a potential mediator between PM2.5 and detectable HIV VL with 3.83% mediated proportion. Besides, the combined effect of PM2.5 chemical constituents indicated that NO3- and SO42- were the main constituents in reducing CD4+T cell count and increasing odds ratio of detectable HIV VL. Our finding revealed that short-term exposure to PM2.5 was negatively associated with CD4+T cell count but positively related to the odds ratio of detectable HIV VL in PLWHA. This research may provide new evidence in associations between PM2.5 and immune biomarkers as well as improving prognosis of PLWHA.
Collapse
Affiliation(s)
- Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Nianhua Xie
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Han Yan
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Hongfei Ma
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Manqing Liu
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Wenhua Kong
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Zerong Zhu
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Wenjuan Bai
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
18
|
Blanchard R, Skorska MN. New Data on Birth Order in Homosexual Men and Women and a Reply to Vilsmeier et al. (2021a, 2021b). ARCHIVES OF SEXUAL BEHAVIOR 2022; 51:3319-3349. [PMID: 35713755 DOI: 10.1007/s10508-022-02362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The fraternal birth order effect (FBOE) is the repeated finding that older brothers increase the odds of homosexuality in later-born males. It has been our working assumption, based on the majority of previous studies, that a similar FBOE does not occur in females. In an elaborate quantitative review posted last year to a preprint server, Vilsmeier et al. (2021a) concluded that there is no valid evidence for an FBOE in men or women. Ablaza et al. (2022) subsequently published a study of population-level data from the Netherlands with conclusions completely opposite to those of Vilsmeier et al., namely, that there is robust evidence of an FBOE in both men and women. The present research was initially undertaken to refute the assertion of Vilsmeier et al. that there is no proof of an FBOE in men and to investigate how they obtained such a discrepant conclusion. We found evidence that the discrepancy may relate to Vilsmeier et al.'s use of the large and demonstrably unreliable sample published by Frisch and Hviid (2006). After the publication by Ablaza et al., we expanded our article to address their finding of an FBOE in women. We argue that our preferred explanation of the FBOE in men-that it reflects the progressive immunization of some mothers to Y-linked antigen by each succeeding male fetus and the concomitantly increasing effects of anti-male antibody on sexual differentiation in the brain in each succeeding male fetus-could plausibly be extended to female homosexuality.
Collapse
Affiliation(s)
- Ray Blanchard
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| | - Malvina N Skorska
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
19
|
Niedziela M, Szydlowski J, Dopierala M, Maldyk J, Klimecka I, Kurzawa P. Autoimmune Thyroiditis Induced by <b><i>Bartonella henselae</i></b> (Cat-Scratch Disease) Might Be Reversible. Pathobiology 2022; 90:131-137. [PMID: 35871515 DOI: 10.1159/000525399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
<b><i>Introduction:</i></b> <i>Bartonella henselae</i> infection leads to development of cat-scratch disease (CSD) but may also trigger of autoimmune thyroiditis (AIT). <b><i>Case Presentation:</i></b> We describe a 4-year-old boy with a severe fever of unknown etiology, disseminated neck lymphadenopathy, and a headache. Treatment with antibiotics was employed, but finally a left tonsillectomy, selective left lymphadenectomy, and immunophenotyping were performed to exclude lymphoma. Histologic examination excluded lymphoma but revealed CSD. IgG against <i>B</i>. <i>henselae</i> and <i>Bartonella quintana</i> was positive. A goiter was also found and positive anti-thyroid antibodies confirmed AIT. Two months later, the thyroid was not palpable, normal on ultrasound, and both anti-thyroid antibodies were negative. The full reversibility was documented, and 6-year follow-up showed that the patient remains disease free. <b><i>Conclusion:</i></b> This is the first report that AIT triggered by <i>B</i>. <i>henselae</i>/<i>B</i>. <i>qunitana</i> might be reversible if the pathogenetic factor is eliminated at an early stage of disease.
Collapse
Affiliation(s)
- Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Jarosław Szydlowski
- Department of Pediatric Otolaryngology, Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Dopierala
- Department of Pathology, Karol Jonscher's Clinical Hospital, Poznan, Poland
- Department of Clinical Pathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jadwiga Maldyk
- Division of Pathomorphology, Children's Clinical Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Klimecka
- Department of Pediatric Endocrinology and Rheumatology, Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Pawel Kurzawa
- Department of Pathology, Karol Jonscher's Clinical Hospital, Poznan, Poland
- Department of Clinical Pathology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Li N, Aoki V, Liu Z, Prisayanh P, Valenzuela JG, Diaz LA. From Insect Bites to a Skin Autoimmune Disease: A Conceivable Pathway to Endemic Pemphigus Foliaceus. Front Immunol 2022; 13:907424. [PMID: 35693761 PMCID: PMC9186141 DOI: 10.3389/fimmu.2022.907424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
In the endemic variants of pemphigus foliaceus (PF), in Brazil and Tunisia, patients generate pathogenic IgG4 anti-desmoglein 1 autoantibodies. Additionally, these patients possess antibodies against salivary proteins from sand flies that react with Dsg1, which may lead to skin disease in susceptible individuals living in endemic areas. This minireview focuses on recent studies highlighting the possible role of salivary proteins from Lutzomyia longipalpis (L. longipalpis) in EPF from Brazil and Phlebotomus papatasi (P. papatasi) in EPF from Tunisia. We will briefly discuss the potential mechanisms of molecular mimicry and epitope spreading in the initiation and development of endemic PF (EPF) in Brazil and Tunisia.
Collapse
Affiliation(s)
- Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Valeria Aoki
- Department of Dermatology, Faculdade de Medicina Facultade de Medicina, Universidade de Sao Paulo (FMUSP), Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Luis A. Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Luis A. Diaz,
| |
Collapse
|
21
|
Duclos-Vallée JC, Debray D, De Martin E, Beux EL, Louvet A. Best practice guidelines for France regarding the diagnosis and management of autoimmune hepatitis. Clin Res Hepatol Gastroenterol 2022; 46:101871. [PMID: 35108657 DOI: 10.1016/j.clinre.2022.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Jean-Charles Duclos-Vallée
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Inserm Unité 1193, Université Paris-Saclay, FHU Hépatinov, Centre de Référence Maladies Inflammatoires des Voies Biliaires et Hépatites Auto-Immunes, Villejuif, France.
| | - Dominique Debray
- Assistance Publique-Hôpitaux de Paris, University de Paris, Pediatric Liver Unit, Necker Hospital, Expert Center for Bile Duct Inflammatory Diseases and Autoimmune Hepatitis (FilFoie)
| | - Eleonora De Martin
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Inserm Unité 1193, Université Paris-Saclay, FHU Hépatinov, Centre de Référence Maladies Inflammatoires des Voies Biliaires et Hépatites Auto-Immunes, Villejuif, France
| | - Emilie Le Beux
- Centre de Référence Maladies Inflammatoires des Voies Biliaires et Hépatites Auto-Immunes, Saint-Antoine Hospital, Paris, France
| | - Alexandre Louvet
- Service des Maladies de l'Appareil Digestif, Hôpital Claude-Huriez, Lille University Hospital, France, Centre de Référence Maladies Inflammatoires des Voies Biliaires et Hépatites Auto-Immunes (FilFoie)
| |
Collapse
|
22
|
Sacks HS, Smirnoff M, Carson D, Cooney ML, Shapiro MZ, Hahn CJ, Dasaro CR, Crowson C, Tassiulas I, Hirten RP, Cohen BL, Haber RS, Davies TF, Simpson DM, Crane MA, Harrison DJ, Luft BJ, Moline JM, Udasin IG, Todd AC, Sloan NL, Teitelbaum SL. Autoimmune conditions in the World Trade Center general responder cohort: A nested case-control and standardized incidence ratio analysis. Am J Ind Med 2022; 65:117-131. [PMID: 34825393 DOI: 10.1002/ajim.23313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The World Trade Center (WTC) general responder cohort (GRC) was exposed to environmental toxins possibly associated with increased risk of developing autoimmune conditions. OBJECTIVES Two study designs were used to assess incidence and risks of autoimmune conditions in the GRC. METHODS Three clinically trained professionals established the status of possible GRC cases of autoimmune disorders adhering to diagnostic criteria, supplemented, as needed, by specialists' review of consenting responders' medical records. Nested case-control analyses using conditional logistic regression estimated the risk associated with high WTC exposure (being in the 9/11/2001 dust cloud or ≥median days' response worked) compared with low WTC exposure (all other GRC members'). Four controls were matched to each case on age at case diagnosis (±2 years), sex, race/ethnicity, and year of program enrollment. Sex-specific and sensitivity analyses were performed. GRC age- and sex-adjusted standardized incidence ratios (SIRs) were compared with the Rochester Epidemiology Project (REP). Complete REP inpatient and outpatient medical records were reviewed by specialists. Conditions meeting standardized criteria on ≥2 visits were classified as REP confirmed cases. RESULTS Six hundred and twenty-eight responders were diagnosed with autoimmune conditions between 2002 and 2017. In the nested case-control analyses, high WTC exposure was not associated with autoimmune domains and conditions (rheumatologic domain odds ratio [OR] = 1.03, 95% confidence interval [CI] = 0.77, 1.37; rheumatoid arthritis OR = 1.12, 95% CI = 0.70, 1.77). GRC members had lower SIR than REP. Women's risks were generally greater than men's. CONCLUSIONS The study found no statistically significant increased risk of autoimmune conditions with WTC exposures.
Collapse
Affiliation(s)
- Henry S. Sacks
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Margaret Smirnoff
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Deborah Carson
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Michael L. Cooney
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Moshe Z. Shapiro
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Christopher J. Hahn
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Christopher R. Dasaro
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Cynthia Crowson
- Division of Biomedical Statistics and Informatics Mayo Clinic College of Medicine Rochester Minnesota USA
| | - Ioannis Tassiulas
- Rheumatology Department Icahn School of Medicine at Mount Sinai New York New York USA
| | - Robert P. Hirten
- Rheumatology Department Icahn School of Medicine at Mount Sinai New York New York USA
| | - Benjamin L. Cohen
- Rheumatology Department Icahn School of Medicine at Mount Sinai New York New York USA
- Department of Gastroenterology, Hepatology, and Nutrition Cleveland Clinic Foundation Cleveland Ohio USA
| | - Richard S. Haber
- Rheumatology Department Icahn School of Medicine at Mount Sinai New York New York USA
| | - Terry F. Davies
- Rheumatology Department Icahn School of Medicine at Mount Sinai New York New York USA
| | - David M. Simpson
- Rheumatology Department Icahn School of Medicine at Mount Sinai New York New York USA
| | - Michael A. Crane
- Department of Environmental Medicine and Public Health, World Trade Center Health Program Clinical Center of Excellence Icahn School of Medicine at Mount Sinai New York New York USA
| | - Denise J. Harrison
- Department of Medicine, Department of Environmental Medicine, World Trade Center Health Program Clinical Center of Excellence, NYU Langone Medical Center New York University School of Medicine New York New York USA
| | - Benjamin J. Luft
- Department of Medicine, World Trade Center Health Program Clinical Center of Excellence Stony Brook University Medical Center Stony Brook New York USA
| | - Jacqueline M. Moline
- Department of Occupational Medicine, Epidemiology and Prevention, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell World Trade Center Health Program Clinical Center of Excellence Hempstead New York USA
| | - Iris G. Udasin
- Department of Environmental and Occupational Medicine, World Trade Center Health Program Clinical Center of Excellence, Environmental and Occupational Health Sciences Institute Rutgers University Biomedical Sciences Piscataway New Jersey USA
| | - Andrew C. Todd
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Nancy L. Sloan
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - Susan L. Teitelbaum
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| |
Collapse
|
23
|
Yang Y, Choi J, Chen Y, Invernizzi P, Yang G, Zhang W, Shao TH, Jordan F, Nemeria NS, Coppel RL, Ridgway WM, Kurth M, Ansari AA, Leung PSC, Gershwin ME. E. coli and the etiology of human PBC: Antimitochondrial antibodies and spreading determinants. Hepatology 2022; 75:266-279. [PMID: 34608663 DOI: 10.1002/hep.32172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The increased frequency of urinary tract infections in patients with primary biliary cholangitis (PBC) and the cross-reactivity between the lipoyl domains (LD) of human pyruvate dehydrogenase complex (hPDC-E2) and Escherichia coli PDC-E2 (ePDC-E2) have long suggested a role of E. coli in causality of PBC. This issue, however, has remained speculative. We hypothesized that by generating specific constructs of human and E. coli PDC-E2, we would be able to assess the specificity of autoantibody responses and define whether exposure to E. coli in susceptible hosts is the basis for the antimitochondrial antibody (AMA) response. APPROACH AND RESULTS Importantly, the reactivity of hPDC-E2 LD (hPDC-E2LD) affinity-purified antibodies against hPDC-E2LD could only be removed by prior absorption with hPDC-E2LD and not ePDC-E2, suggesting the presence of unique human PDC-E2 epitopes distinct from E. coli PDC-E2. To identify the autoepitope(s) present in hPDC-E2LD, a more detailed study using a variety of PDC-E2 constructs was tested, including the effect of lipoic acid (LA) on ePDC-E2 conformation and AMA recognition. Individual recombinant ePDCE2 LD domains LD1, LD2 and LD3 did not react with either AMA or antibodies to LA (anti-LA), but in contrast, anti-LA was readily reactive against purified recombinant LD1, LD2, and LD3 expressed in tandem (LP); such reactivity increased when LP was precultured with LA. Moreover, when the three LD (LD1, LD2, LD3) domains were expressed in tandem in pET28a or when LD1 was expressed in another plasmid pGEX, they were lipoylated and reactive to PBC sera. CONCLUSIONS In conclusion, our data are consistent with an exposure to E. coli that elicits specific antibody to ePDC-E2 resulting in determinant spreading and the classic autoantibody to hPDC-E2LD. We argue this is the first step to development of human PBC.
Collapse
Affiliation(s)
- Yao Yang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA.,School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| | - Jinjung Choi
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA.,Division of RheumatologyCHA University Medical CenterBundangKorea
| | - Ying Chen
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| | - Pietro Invernizzi
- International Center for Digestive HealthDepartment of Medicine and SurgeryUniversity of Milan-BicoccaMilanItaly
| | - Guoxiang Yang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - Ti-Hong Shao
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - Frank Jordan
- Department of ChemistryRutgers UniversityNewarkNew JerseyUSA
| | | | - Ross L Coppel
- Department of Microbiology, Nursing and Health SciencesMonash UniversityClaytonVictoriaAustralia
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - Mark Kurth
- Department of ChemisrtyUniversity of California DavisDavisCaliforniaUSA
| | - Aftab A Ansari
- Department of PathologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
24
|
A unified model of the pathophysiology of bipolar disorder. Mol Psychiatry 2022; 27:202-211. [PMID: 33859358 DOI: 10.1038/s41380-021-01091-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
This work provides an overview of the most consistent alterations in bipolar disorder (BD), attempting to unify them in an internally coherent working model of the pathophysiology of BD. Data on immune-inflammatory changes, structural brain abnormalities (in gray and white matter), and functional brain alterations (from neurotransmitter signaling to intrinsic brain activity) in BD were reviewed. Based on the reported data, (1) we hypothesized that the core pathological alteration in BD is a damage of the limbic network that results in alterations of neurotransmitter signaling. Although heterogeneous conditions can lead to such damage, we supposed that the main pathophysiological mechanism is traceable to an immune/inflammatory-mediated alteration of white matter involving the limbic network connections, which destabilizes the neurotransmitter signaling, such as dopamine and serotonin signaling. Then, (2) we suggested that changes in such neurotransmitter signaling (potentially triggered by heterogeneous stressors onto a structurally-damaged limbic network) lead to phasic (and often recurrent) reconfigurations of intrinsic brain activity, from abnormal subcortical-cortical coupling to changes in network activity. We suggested that the resulting dysbalance between networks, such as sensorimotor networks, salience network, and default-mode network, clinically manifest in combined alterations of psychomotricity, affectivity, and thought during the manic and depressive phases of BD. Finally, (3) we supposed that an additional contribution of gray matter alterations and related cognitive deterioration characterize a clinical-biological subgroup of BD. This model may provide a general framework for integrating the current data on BD and suggests novel specific hypotheses, prompting for a better understanding of the pathophysiology of BD.
Collapse
|
25
|
Autoimmune hepatitis after SARS-CoV-2 vaccine: New-onset or flare-up? J Autoimmun 2021; 125:102745. [PMID: 34781161 PMCID: PMC8580815 DOI: 10.1016/j.jaut.2021.102745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been reported to trigger several autoimmune diseases. There are also recent reports of autoimmune diseases that develop after SARS-CoV-2 vaccines. Autoimmune hepatitis is a polygenic multifactorial disease, which is diagnosed using a scoring system. A 61-year-old woman presented with malaise, fatigue, loss of appetite, nausea and yellow eyes. She had a Pfizer/BioNTech BNT162b2 mRNA vaccine a month ago. Her physical examination revealed jaundice all over the body, especially in the sclera. The laboratory tests showed elevated liver enzymes and bilirubin levels. Antinuclear antibody and anti-smooth muscle antibody were positive and immunoglobulin G was markedly elevated. The liver biopsy revealed histopathological findings consistent with autoimmune hepatitis (AIH). The patient was diagnosed with AIH and initiated on steroid therapy. She rapidly responded to steroid therapy. A few cases of AIH have been reported after the COVID-19 vaccine so far. Although the exact cause of autoimmune reactions is unknown, an abnormal immune response and bystander activation induced by molecular mimicry is considered a potential mechanism, especially in susceptible individuals. As intensive vaccination against SARS-CoV-2 continues, we would like to emphasize that clinicians should be cautious and consider AIH in patients presenting with similar signs and symptoms.
Collapse
|
26
|
Montano-Loza AJ, Allegretti JR, Cheung A, Ebadi M, Jones D, Kerkar N, Levy C, Rizvi S, Vierling JM, Alvarez F, Bai W, Gilmour S, Gulamhusein A, Guttman O, Hansen BE, MacParland S, Mason A, Onofrio F, Santamaria P, Stueck A, Swain M, Vincent C, Ricciuto A, Hirschfield G. Single Topic Conference on Autoimmune Liver Disease from the Canadian Association for the Study of the Liver. CANADIAN LIVER JOURNAL 2021; 4:401-425. [PMID: 35989897 PMCID: PMC9235119 DOI: 10.3138/canlivj-2021-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/20/2022]
Abstract
Autoimmune liver disease (AILD) spans a spectrum of chronic disorders affecting the liver parenchyma and biliary system. Three main categories of AILD are autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), and primary sclerosing cholangitis (PSC). This review condenses the presentation and discussions of the Single Topic Conference (STC) on AILD that was held in Ottawa, Ontario, in November 2019. We cover generalities regarding disease presentation and clinical diagnosis; mechanistic themes; treatment paradigms; clinical trials, including approaches and challenges to new therapies; and looking beyond traditional disease boundaries. Although these diseases are considered autoimmune, the etiology and role of environmental triggers are poorly understood. AILDs are progressive and chronic conditions that affect survival and quality of life. Advances have been made in PBC treatment because second-line treatments are now available (obeticholic acid, bezafibrate); however, a significant proportion still present suboptimal response. AIH treatment has remained unchanged for several decades, and data suggest that fewer than 50% of patients achieve a complete response and as many as 80% develop treatment-related side effects. B-cell depletion therapy to treat AIH is in an early stage of development and has shown promising results. An effective treatment for PSC is urgently needed. Liver transplant remains the best option for patients who develop decompensated cirrhosis or hepatocellular carcinoma within specific criteria, but recurrent AILD might occur. Continued efforts are warranted to develop networks for AILD aimed at assessing geo-epidemiological, clinical, and biochemical differences to capture the new treatment era in Canada.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica R Allegretti
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Cheung
- Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Maryam Ebadi
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| | - David Jones
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nanda Kerkar
- Division of Gastroenterology, Hepatology and Nutrition, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, New York, USA
| | - Cynthia Levy
- Schiff Center for Liver Diseases, University of Miami, Miami, Florida, USA
| | - Sumera Rizvi
- Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | | | - Fernando Alvarez
- Department of Pediatrics, Hôpital Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Wayne Bai
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Gilmour
- Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya Gulamhusein
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Orlee Guttman
- Division of Gastroenterology, Hepatology and Nutrition, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Bettina E Hansen
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sonya MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Mason
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Fernanda Onofrio
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Pere Santamaria
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ashley Stueck
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark Swain
- Calgary Liver Unit, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Vincent
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Amanda Ricciuto
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network & Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Contribution of Dysregulated DNA Methylation to Autoimmunity. Int J Mol Sci 2021; 22:ijms222111892. [PMID: 34769338 PMCID: PMC8584328 DOI: 10.3390/ijms222111892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5′-C-phosphate-G-3′ (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.
Collapse
|
28
|
Karami Fath M, Jahangiri A, Ganji M, Sefid F, Payandeh Z, Hashemi ZS, Pourzardosht N, Hessami A, Mard-Soltani M, Zakeri A, Rahbar MR, Khalili S. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Front Immunol 2021; 12:705772. [PMID: 34447375 PMCID: PMC8383889 DOI: 10.3389/fimmu.2021.705772] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sefid
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sadat Hashemi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
29
|
A role for pathogen risk factors and autoimmunity in encephalitis lethargica? Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110276. [PMID: 33549696 DOI: 10.1016/j.pnpbp.2021.110276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/17/2023]
Abstract
The encephalitis lethargica (EL) epidemic swept the world from 1916 to 1926 and is estimated to have afflicted between 80,000 to one million people. EL is an unusual neurological illness that causes profound sleep disorders, devastating neurological sequalae and, in many cases, death. Though uncommon, EL is still occasionally diagnosed today when a patient presents with an acute or subacute encephalitic illness, where all other known causes of encephalitis have been excluded and criteria for EL are met. However, it is impossible to know whether recent cases of EL-like syndromes result from the same disease that caused the epidemic. After more than 100 years of research into potential pathogen triggers and the role of autoimmune processes, the aetiology of EL remains unknown. The epidemic approximately coincided with the 1918 H1N1 influenza pandemic but the evidence of a causal link is inconclusive. This article reviews the literature on the causes of EL with a focus on autoimmune mechanisms. In light of the current pandemic, we also consider the parallels between the EL epidemic and neurological manifestations of COVID-19. Understanding how pathogens and autoimmune processes can affect the brain may well help us understand the conundrum of EL and, more importantly, will guide the treatment of patients with suspected COVID-19-related neurological disease, as well as prepare us for any future epidemic of a neurological illness.
Collapse
|
30
|
Zheng X, Wang J, Bi F, Li Y, Xiao J, Chai Z, Li Y, Miao Z, Wang Y. Protective effects of Lycium barbarum polysaccharide on ovariectomy‑induced cognition reduction in aging mice. Int J Mol Med 2021; 48:121. [PMID: 33955518 PMCID: PMC8121556 DOI: 10.3892/ijmm.2021.4954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Women experience cognitive decline as they age due to the decrease in estrogen levels following menopause. Currently, effective pharmaceutical treatments for age‑related cognitive decline are lacking; however, several Traditional Chinese medicines have shown promising effects. Lycium barbarum polysaccharides (LBPs) were found to exert a wide variety of biological activities, including anti‑inflammatory, antioxidant and anti‑aging effects. However, to the best of our knowledge, the neuroprotective actions of LBP on cognitive impairment induced by decreased levels of estrogen have not yet been determined. To evaluate the effects of LBP on learning and memory impairment in an animal model of menopause, 45 female ICR mice were randomly divided into the following three groups: i) Sham; ii) ovariectomy (OVX); and iii) OVX + LBP treatment. The results of open‑field and novel object recognition tests revealed that mice in the OVX group had learning and memory impairments, and lacked the ability to recognize and remember new objects. Notably, these deficits were attenuated following LBP treatment. Immunohistochemical staining confirmed the protective effects of LBP on hippocampal neurons following OVX. To further investigate the underlying mechanism of OVX in mice, mRNA sequencing of the hippocampal tissue was performed, which revealed that the Toll‑like receptor 4 (TLR4) inflammatory signaling pathway was significantly upregulated in the OVX group. Moreover, reverse transcription‑quantitative PCR and immunohistochemical staining demonstrated that OVX induced hippocampal injury, upregulated the expression levels of TLR4, myeloid differentiation factor 88 and NF‑κB, and increased the expression of TNF‑α, IL‑6 and IL‑1β inflammatory factors. Conversely, LBP treatment downregulated the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, decreased the inflammatory response and reduced neuronal injury in mice that underwent OVX. In conclusion, the findings of the present study indicated that oral LBP treatment may alleviate OVX‑induced cognitive impairments by downregulating the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, thereby reducing neuroinflammation and damage to the hippocampal neurons. Thus, LBP may represent a potential agent for the prevention of learning and memory impairments in patients with accelerated aging caused by estrogen deficiency.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Department of Pediatrics, General Hospital of Ningxia Medical University, 750004, P.R. China
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Junyan Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Fengchen Bi
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yilu Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jingjing Xiao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhi Chai
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yunhong Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhenhua Miao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yin Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
31
|
Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis-A systematic immunoinformatics analysis of T cell epitopes. PLoS One 2021; 16:e0253918. [PMID: 34185818 PMCID: PMC8241107 DOI: 10.1371/journal.pone.0253918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.
Collapse
|
32
|
Long-term Outcome of Children Born to Women with Autoimmune Rheumatic Diseases: A Multicentre, Nationwide Study on 299 Randomly Selected Individuals. Clin Rev Allergy Immunol 2021; 62:346-353. [PMID: 33725262 PMCID: PMC8994724 DOI: 10.1007/s12016-021-08857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 10/26/2022]
Abstract
The concern about the offspring's health is one of the reasons for a reduced family size of women with rheumatic diseases (RD). Increased risk of autoimmune diseases (AD) and neurodevelopmental disorders (ND) has been reported in children born to patients with RD. Within a nationwide survey about reproductive issues of women with RD, we aimed at exploring the long-term outcome of their children. By surveying 398 patients who received their diagnosis of RD during childbearing age (before the age of 45), information about the offspring were obtained from 230 women who declared to have had children. A total of 148 (64.3%) patients were affected by connective tissue diseases (CTD) and 82 (35.7%) by chronic arthritis. Data on 299 children (156 males, 52.1%; mean age at the time of interview 17.1 ± 9.7 years) were collected. Twelve children (4.0%), who were born to patients with CTD in 75% of the cases, were affected by AD (8 cases of celiac disease). Eleven children had a certified diagnosis of ND (3.6%; 6 cases of learning disabilities); 9 of them were born to mothers with CTD (5 after maternal diagnosis). No association was found between ND and prenatal exposure to either maternal autoantibodies or anti-rheumatic drugs. Absolute numbers of offspring affected by AD and ND were low in a multicentre cohort of Italian women with RD. This information can be helpful for the counselling about reproductive issues, as the health outcomes of the offspring might not be an issue which discourage women with RD from having children.
Collapse
|
33
|
Angioni MM, Floris A, Cangemi I, Congia M, Chessa E, Orrù S, Piga M, Cauli A. Gene Expression Profiling of Monozygotic Twins Affected by Psoriatic Arthritis. Open Access Rheumatol 2021; 13:23-29. [PMID: 33692638 PMCID: PMC7939499 DOI: 10.2147/oarrr.s291391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/23/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Psoriatic Arthritis (PsA) is a multifactorial disease, where the relative burden of genetic, epigenetic and environmental factors in clinical course and damage accrual is not yet definitively clarified. In clinical practice, there is a real need for useful candidate biomarkers in PsA diagnosis and disease progression, by exploring its underlying transcriptomic and epigenomic mechanisms. This work aims to profile the transcriptome in monozygotic (MZ) twins with psoriatic arthritis (PsA) highly concordant for clinical presentation, but discordant for the radiographic outcomes’ severity. Methods We describe i) the clinical case of two MZ twins; ii) their comparative gene expression profiling (HTA 2.0 Affymetrix) and iii) signal pathways and pathophysiological processes in which differentially expressed genes are involved (in silico analysis by the IPA software, QIAGEN). Results One hundred sixty-three transcripts and 36 coding genes (28 up and 8 down) were differentially expressed between twins, and in the brother with the most erosive form, the transcriptomic profiling highlights the overexpression of genes known to be involved in immunomodulatory processes and on a broad spectrum of PsA manifestations. Discussion Twins’ clinical cases are still a gold mine in medical research: twin brothers are ideal experimental models in estimating the relative importance of genetic versus nongenetic components as determinants of complex phenotypes, non-Mendelian and multifactorial diseases as PsA.
Collapse
Affiliation(s)
- Maria Maddalena Angioni
- Rheumatology Unit, Department of Medical Sciences and Public Health, University of Cagliari, University Clinic AOU, Cagliari, 09042, Italy
| | - Alberto Floris
- Rheumatology Unit, Department of Medical Sciences and Public Health, University of Cagliari, University Clinic AOU, Cagliari, 09042, Italy
| | - Ignazio Cangemi
- Rheumatology Unit, Department of Medical Sciences and Public Health, University of Cagliari, University Clinic AOU, Cagliari, 09042, Italy
| | - Mattia Congia
- Rheumatology Unit, Department of Medical Sciences and Public Health, University of Cagliari, University Clinic AOU, Cagliari, 09042, Italy
| | - Elisabetta Chessa
- Rheumatology Unit, Department of Medical Sciences and Public Health, University of Cagliari, University Clinic AOU, Cagliari, 09042, Italy
| | - Sandro Orrù
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, 09042, Italy
| | - Matteo Piga
- Rheumatology Unit, Department of Medical Sciences and Public Health, University of Cagliari, University Clinic AOU, Cagliari, 09042, Italy
| | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences and Public Health, University of Cagliari, University Clinic AOU, Cagliari, 09042, Italy
| |
Collapse
|
34
|
Floreani A, De Martin S, Ikeura T, Okazaki K, Gershwin ME. Gut microbial profiling as a therapeutic and diagnostic target for managing primary biliary cholangitis. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1865917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Annarosa Floreani
- Scientific Consultant, IRCCS Negrar, Verona, Italy
- Studiosa Senior, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Tsukasa Ikeura
- Department of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Merrill Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
35
|
Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci 2020; 21:ijms21249626. [PMID: 33348854 PMCID: PMC7766382 DOI: 10.3390/ijms21249626] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
A high prevalence of vitamin D (calcidiol) serum deficiency has been described in several autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis (AR), and systemic lupus erythematosus (SLE). Vitamin D is a potent immunonutrient that through its main metabolite calcitriol, regulates the immunomodulation of macrophages, dendritic cells, T and B lymphocytes, which express the vitamin D receptor (VDR), and they produce and respond to calcitriol. Genetic association studies have shown that up to 65% of vitamin D serum variance may be explained due to genetic background. The 90% of genetic variability takes place in the form of single nucleotide polymorphisms (SNPs), and SNPs in genes related to vitamin D metabolism have been linked to influence the calcidiol serum levels, such as in the vitamin D binding protein (VDBP; rs2282679 GC), 25-hydroxylase (rs10751657 CYP2R1), 1α-hydroxylase (rs10877012, CYP27B1) and the vitamin D receptor (FokI (rs2228570), BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) VDR). Therefore, the aim of this comprehensive literature review was to discuss the current findings of functional SNPs in GC, CYP2R1, CYP27B1, and VDR associated to genetic risk, and the most common clinical features of MS, RA, and SLE.
Collapse
Affiliation(s)
- Adolfo I. Ruiz-Ballesteros
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
| | - Mónica R. Meza-Meza
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Barbara Vizmanos-Lamotte
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo Guerrero 39087, Mexico;
| | - Ulises de la Cruz-Mosso
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Correspondence: ; Tel.: +52-1-331-744-15-75
| |
Collapse
|
36
|
Pourhajibagher M, Ahmadi H, Roshan Z, Bahador A. Streptococcus mutans bystander-induced bioeffects following sonodynamic antimicrobial chemotherapy through sonocatalytic performance of Curcumin-Poly (Lactic-co-Glycolic Acid) on off-target cells. Photodiagnosis Photodyn Ther 2020; 32:102022. [PMID: 33038486 DOI: 10.1016/j.pdpdt.2020.102022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
To assessed the Streptococcus mutans bystander-induced bioeffects following sonodynamic antimicrobial chemotherapy (SACT) by Curcumin-Poly (Lactic-co-Glycolic Acid) nanoparticles (Cur-PLGA-NPs). Cur-PLGA-NPs were synthesized and characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Attenuated Total Reflection Fourier Transform IR (ATR-FTIR) spectroscopy, as well as, determination of in vitro drug release. Following the successful synthesis and characterization of Cur-PLGA-NPs, the cell survival, intracellular ROS production, apoptotic effects, DNA fragmentation, and gene expression levels of pro-inflammatory cytokines were investigated on human gingival fibroblast (HGF) cells as off-target cells through S. mutans bystander-induced bioeffects following SACT (BCSS). No significant cytotoxic and damage caused by the release of ROS from BCSS were observed in HGF cells (P > 0.05). There was no DNA fragmentation and anti-proliferation effects on HGF cells. The expression levels of bFGF, TNF-α, and IL-8 genes were increased after exposure to BCSS to 15.4-, 13.5-, and 8.7-fold, respectively (P < 0.05), while TGF-ß and IL-10 were downregulated to -4.1- and -6.8-fold, respectively (P < 0.05). It could be concluded that there were no bystander bioeffects of targeted sonocatalytic stress on off-target cells.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hanie Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Zahra Roshan
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Blackburn KM, Wang C. Post-infectious neurological disorders. Ther Adv Neurol Disord 2020; 13:1756286420952901. [PMID: 32944082 PMCID: PMC7466892 DOI: 10.1177/1756286420952901] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
A multitude of environmental factors can result in breakdown of immune tolerance in susceptible hosts. Infectious pathogens are among the most important environmental triggers in the pathogenesis of autoimmunity. Certain autoimmune disorders have a strong association with specific infections. Several neurological autoimmune disorders are thought to occur through post-infectious mechanisms. In this review, we discuss the proposed mechanisms underlying pathogen-induced autoimmunity, and highlight the clinical presentation and treatment of several post-infectious autoimmune neurological disorders. We also highlight post-infectious neurological disorders in the setting of recent outbreaks.
Collapse
Affiliation(s)
- Kyle M. Blackburn
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Cynthia Wang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Mack CL, Adams D, Assis DN, Kerkar N, Manns MP, Mayo MJ, Vierling JM, Alsawas M, Murad MH, Czaja AJ. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology 2020; 72:671-722. [PMID: 31863477 DOI: 10.1002/hep.31065] [Citation(s) in RCA: 462] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Cara L Mack
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - David Adams
- Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - David N Assis
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Nanda Kerkar
- Golisano Children's Hospital at Strong, University of Rochester Medical Center, New York, NY
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Marlyn J Mayo
- Division of Digestive and Liver Diseases, University of Texas SW Medical Center, Dallas, TX
| | - John M Vierling
- Medicine and Surgery, Baylor College of Medicine, Houston, TX
| | | | - Mohammad H Murad
- Mayo Knowledge and Encounter Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
39
|
Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, Kanduc D, Alijotas-Reig J, Zinserling V, Semenova N, Amital H, Shoenfeld Y. Covid-19 and autoimmunity. Autoimmun Rev 2020; 19:102597. [PMID: 32535093 PMCID: PMC7289100 DOI: 10.1016/j.autrev.2020.102597] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Ehrenfeld
- The Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Israel.
| | - Angela Tincani
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Russia; U.O. Reumatologia e Immunologia Clinica, ASST-Spedali Civili di Brescia, Università degli Studi di Brescia, Italy
| | - Laura Andreoli
- U.O. Reumatologia e Immunologia Clinica, ASST-Spedali Civili di Brescia, Università degli Studi di Brescia, Italy
| | - Marco Cattalini
- Pediatrics Clinic, ASST Spedali Civili di Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Assaf Greenbaum
- The Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Italy
| | - Jaume Alijotas-Reig
- Hospital Universitari Vall d'Hebron & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vsevolod Zinserling
- V.A. Almazov Research Center and S.P. Botkin infectious Hospital, Saint-Petersburg, Russia
| | - Natalia Semenova
- V.A. Almazov Research Center and S.P. Botkin infectious Hospital, Saint-Petersburg, Russia
| | - Howard Amital
- The Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Russia
| |
Collapse
|
40
|
Bäckdahl L, Aoun M, Norin U, Holmdahl R. Identification of Clec4b as a novel regulator of bystander activation of auto-reactive T cells and autoimmune disease. PLoS Genet 2020; 16:e1008788. [PMID: 32497089 PMCID: PMC7297379 DOI: 10.1371/journal.pgen.1008788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 06/16/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
The control of chronic inflammation is dependent on the possibility of limiting bystander activation of autoreactive and potentially pathogenic T cells. We have identified a non-sense loss of function single nucleotide polymorphism in the C-type lectin receptor, Clec4b, and have shown that it controls chronic autoimmune arthritis in rat models of rheumatoid arthritis. Clec4b is specifically expressed in CD4+ myeloid cells, mainly classical dendritic cells (DCs), and is defined by the markers CD4+/MHCIIhi/CD11b/c+. We found that Clec4b limited the activation of arthritogenic CD4+αβT cells and the absence of Clec4b allowed development of arthritis already 5 days after adjuvant injection. Clec4b sufficient CD4+ myeloid dendritic cells successfully limited the arthritogenic T cell expansion immediately after activation both in vitro and in vivo. We conclude that Clec4b expressed on CD4+ myeloid dendritic cells regulate the expansion of auto-reactive and potentially pathogenic T cells during an immune response, demonstrating an early checkpoint control mechanism to avoid autoimmunity leading to chronic inflammation. To identify early disease regulatory mechanisms in autoimmune diseases such as rheumatoid arthritis (RA) is challenging not only because of the genetic and environmental complexity but also because of the critical autoimmune time-period that precedes the clinical diagnosis. Therefore, we set out to study the complex disease pathways in a more restricted setting. Through genetic segregation of rat crosses, followed by the selection of recombinants to produce minimal congenic strains, we have identified a single nucleotide polymorphism regulating the expression of Clec4b2 that in turn controls the development of arthritis. The Clec4b gene is normally expressed in a population of antigen-presenting cells that can limit enhanced activation of bystander autoreactive T cells during an immune-priming response. This previously unknown type of immune regulation reveals the existence of a mechanism protecting against autoimmune dieases by the avoidance of bystander activation of autoreactive T cells during a normal immune response to foreign antigen.
Collapse
Affiliation(s)
- Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mike Aoun
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ulrika Norin
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, China
- * E-mail:
| |
Collapse
|
41
|
Wang Z, Liu X, Cao F, Bellanti JA, Zhou J, Zheng SG. Prospects of the Use of Cell Therapy to Induce Immune Tolerance. Front Immunol 2020; 11:792. [PMID: 32477335 PMCID: PMC7235417 DOI: 10.3389/fimmu.2020.00792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Conditions in which abnormal or excessive immune responses exist, such as autoimmune diseases (ADs), graft-versus-host disease, transplant rejection, and hypersensitivity reactions, are serious hazards to human health and well-being. The traditional immunosuppressive drugs used to treat these conditions can lead to decreased immune function, a higher risk of infection, and increased tumor susceptibility. As an alternative therapeutic approach, cell therapy, in which generally intact and living cells are injected, grafted, or implanted into a patient, has the potential to overcome the limitations of traditional drug treatment and to alleviate the symptoms of many refractory diseases. Cell therapy could be a powerful approach to induce immune tolerance and restore immune homeostasis with a deeper understanding of immune tolerance mechanisms and the development of new techniques. The purpose of this review is to describe the current panoramic scope of cell therapy for immune-mediated disorders, discuss the advantages and disadvantages of different types of cell therapy, and explore novel directions and future prospects for these tolerogenic therapies.
Collapse
Affiliation(s)
- Zhenkun Wang
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaolong Liu
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Fenglin Cao
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Joseph A. Bellanti
- Departments of Pediatrics and Microbiology-Immunology, The International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, United States
| | - Jin Zhou
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
42
|
Kechida M. Update on Autoimmune Diseases Pathogenesis. Curr Pharm Des 2020; 25:2947-2952. [PMID: 31686634 DOI: 10.2174/1381612825666190709205421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autoimmune diseases result from the interplay of cellular effectors like T and B cells, regulatory cells in addition to molecular factors like cytokines and regulatory molecules. METHODS Different electronic databases were searched in a non-systematic way to find out the literature of interest. RESULTS Pathogenesis of autoimmune diseases involves typical factors such as genetic background including HLA and non HLA system genes, environmental factors such as infectious agents and inflammatory cells mainly T and B lymphocytes abnormally activated leading to immune dysfunction. Other recently reported less typical factors such as micro-RNAs, circular RNAs, myeloperoxidase, vimentine and microbiome dysbiosis seem to be potential target therapies. CONCLUSION We aimed in this manuscript to review common factors in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Melek Kechida
- Internal Medicine and Endocrinology Department of Fattouma Bourguiba University Hospital, University of Monastir, BP 56 Avenue Taher Haddad, Monastir 5000, Tunisia
| |
Collapse
|
43
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
44
|
Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25:6579-6606. [PMID: 31832000 PMCID: PMC6906207 DOI: 10.3748/wjg.v25.i45.6579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple pathogenic mechanisms have been implicated in autoimmune hepatitis, but they have not fully explained susceptibility, triggering events, and maintenance or escalation of the disease. Furthermore, they have not identified a critical defect that can be targeted. The goals of this review are to examine the diverse pathogenic mechanisms that have been considered in autoimmune hepatitis, indicate investigational opportunities to validate their contribution, and suggest interventions that might evolve to modify their impact. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Genetic and epigenetic factors can affect susceptibility by influencing the expression of immune regulatory genes. Thymic dysfunction, possibly related to deficient production of programmed cell death protein-1, can allow autoreactive T cells to escape deletion, and alterations in the intestinal microbiome may help overcome immune tolerance and affect gender bias. Environmental factors may trigger the disease or induce epigenetic changes in gene function. Molecular mimicry, epitope spread, bystander activation, neo-antigen production, lymphocytic polyspecificity, and disturbances in immune inhibitory mechanisms may maintain or escalate the disease. Interventions that modify epigenetic effects on gene expression, alter intestinal dysbiosis, eliminate deleterious environmental factors, and target critical pathogenic mechanisms are therapeutic possibilities that might reduce risk, individualize management, and improve outcome. In conclusion, diverse pathogenic mechanisms have been implicated in autoimmune hepatitis, and they may identify a critical factor or sequence that can be validated and used to direct future management and preventive strategies.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
45
|
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25:1822-1832. [PMID: 31806905 DOI: 10.1038/s41591-019-0675-0] [Citation(s) in RCA: 2227] [Impact Index Per Article: 445.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.
Collapse
Affiliation(s)
- David Furman
- Buck Institute for Research on Aging, Novato, CA, USA. .,Stanford 1000 Immunomes Project, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina. .,Iuve Inc., San Mateo, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Malmö, Sweden
| | - Sasha Targ
- Iuve Inc., San Mateo, CA, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Alessio Fasano
- MassGeneral Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University, London, UK
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Jorg J Goronzy
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Rita B Effros
- Department of Pathology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Nicole Kleinstreuer
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.,NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
46
|
Zhang H, Liu Y, Li Z, Liang N, Zhou X, Nie X, Zhang T, Qi W. Amyotrophic Lateral Sclerosis and Primary Biliary Cirrhosis Overlap Syndrome: Two Cases Report. Front Neurol 2019; 10:890. [PMID: 31474934 PMCID: PMC6702657 DOI: 10.3389/fneur.2019.00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/01/2019] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease of which the underlying etiology and pathogenesis are unknown. Numerous data indicate an important role of the immune system and mitochondrial function in the disease. Primary biliary cirrhosis (PBC) is an autoimmune liver disease resulting from a combination of genetic and environmental risk factors. Patients with PBC develop innate and adaptive immune reactions against mitochondrial antigens. Therefore, common mechanisms could exist in both diseases. We present two cases of ALS with PBC to explore the relationship between the two diseases from the immunological and mitochondrial aspects. Further attention should be given to immune-modulating therapy in ALS patients.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Zhenfei Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Liang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaomeng Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangyu Nie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ting Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weijing Qi
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.,Department of Neurology, Baoding First Central Hospital of Hebei Province, Baoding, China
| |
Collapse
|
47
|
From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019; 571:183-192. [PMID: 31292558 DOI: 10.1038/s41586-019-1365-2] [Citation(s) in RCA: 717] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
For several decades, understanding ageing and the processes that limit lifespan have challenged biologists. Thirty years ago, the biology of ageing gained unprecedented scientific credibility through the identification of gene variants that extend the lifespan of multicellular model organisms. Here we summarize the milestones that mark this scientific triumph, discuss different ageing pathways and processes, and suggest that ageing research is entering a new era that has unique medical, commercial and societal implications. We argue that this era marks an inflection point, not only in ageing research but also for all biological research that affects the human healthspan.
Collapse
|
48
|
Selmi C, Gershwin ME. Sex and autoimmunity: proposed mechanisms of disease onset and severity. Expert Rev Clin Immunol 2019; 15:607-615. [PMID: 31033369 DOI: 10.1080/1744666x.2019.1606714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Chronic autoimmune diseases affect 5-10% of the population worldwide and are largely predominant in women. Sex hormone changes have been widely investigated based on changes in the clinical phenotypes observed during pregnancy and menopause. It is known that females with autoimmune diseases manifest a higher rate of circulating leukocytes with a single X chromosome, and there have been several reports on the role of X chromosome gene dosage through inactivation or duplication in autoimmunity. However, it is also important not to overlook men with autoimmune diseases, who might manifest a more frequent loss of the Y chromosome in circulating leukocytes. Areas covered: In the present review, we will discuss the current evidence supporting the mechanisms of female predominance in rheumatic diseases, by discussing the role of reproductive history, sex hormones and abnormalities related to them, clinical differences between male and female patients, and epigenetic changes that have been evaluated through twin studies on genetic and environmental changes in rheumatic patients. Expert opinion: The influence of sex hormones and chromosomes on the function of the innate and adaptive immune systems needs to be clarified, to better understand the risk of autoimmune diseases, early diagnostic tools, and therapeutic response.
Collapse
Affiliation(s)
- Carlo Selmi
- a Division of Rheumatology and Clinical Immunology , Humanitas Research Hospital , Milan , Italy.,b BIOMETRA Department , University of Milan , Milan , Italy
| | - M Eric Gershwin
- c Division of Rheumatology, Allergy, and Clinical Immunology , University of California , Davis , CA , USA
| |
Collapse
|
49
|
Leffers HCB, Lange T, Collins C, Ulff-Møller CJ, Jacobsen S. The study of interactions between genome and exposome in the development of systemic lupus erythematosus. Autoimmun Rev 2019; 18:382-392. [PMID: 30772495 DOI: 10.1016/j.autrev.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic inflammatory autoimmune disease characterized by a broad spectrum of clinical and serological manifestations. This may reflect a complex and multifactorial etiology involving several identified genetic and environmental factors, though not explaining the full risk of SLE. Established SLE risk genotypes are either very rare or with modest effect sizes and twin studies indicate that other factors besides genetics must be operative in SLE etiology. The exposome comprises the cumulative environmental influences on an individual and associated biological responses through the lifespan. It has been demonstrated that exposure to silica, smoking and exogenous hormones candidate as environmental risk factors in SLE, while alcohol consumption seems to be protective. Very few studies have investigated potential gene-environment interactions to determine if some of the unexplained SLE risk is attributable hereto. Even less have focused on interactions between specific risk genotypes and environmental exposures relevant to SLE pathogenesis. Cohort and case-control studies may provide data to suggest such biological interactions and various statistical measures of interaction can indicate the magnitude of such. However, such studies do often have very large sample-size requirements and we suggest that the rarity of SLE to some extent can be compensated by increasing the ratio of controls. This review summarizes the current body of knowledge on gene-environment interactions in SLE. We argue for the prioritization of studies that comprise the increasing details available of the genome and exposome relevant to SLE as they have the potential to disclose new aspects of SLE pathogenesis including phenotype heterogeneity.
Collapse
Affiliation(s)
- Henrik Christian Bidstrup Leffers
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Theis Lange
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Denmark; Center for Statistical Science, Peking University, Beijing, China
| | - Christopher Collins
- Department of Rheumatology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Constance Jensina Ulff-Møller
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark..
| |
Collapse
|
50
|
Tanaka A, Leung PSC, Gershwin ME. Pathogen infections and primary biliary cholangitis. Clin Exp Immunol 2019; 195:25-34. [PMID: 30099750 PMCID: PMC6300644 DOI: 10.1111/cei.13198] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a multi-factorial disease caused by the interaction of both genetic predisposition and environmental triggers. Bacterial infection has been investigated most intensively, both epidemiologically and experimentally, as a prime environmental aetiology in PBC. The association of recurrent history of urinary tract infection (UTI) with PBC has been frequently confirmed by several large-scale, case-control studies, despite variation in geographic area or case-finding methods. Escherichia coli is a predominant pathogen in most cases with UTI. Animal studies and molecular mimicry analysis between the human and E. coli E2 subunit of the 2-oxo-acid dehydrogenase complexes demonstrated that E. coli infection is a key factor in breaking immunological tolerance against the mitochondria, resulting in the production of anti-mitochondrial autoantibodies (AMA), the disease-specific autoantibodies of PBC. Novosphingobium aromaticivorans, a ubiquitous xenobiotic-metabolizing bacterium, is another candidate which may be involved in the aetiology of PBC. Meanwhile, improved environmental hygiene and increased prevalence of PBC, especially in males, may argue against the aetiological role of bacterial infection in PBC. Multiple mechanisms can result in the loss of tolerance to mitochondrial autoantigens in PBC; nonetheless, bacterial infection is probably one of the dominant pathways, especially in female patients. Notably, there is a rising prevalence of male patients with PBC. With increasing exposure to environmental xenobiotics in both genders, studies directed towards identifying the environmental culprit with systematically designed case-control studies are much needed to further determine the environmental factors and role of bacterial infections in PBC.
Collapse
Affiliation(s)
- A. Tanaka
- Department of MedicineTeikyo University School of MedicineTokyoJapan
| | - P. S. C. Leung
- Division of Rheumatology Allergy and Clinical ImmunologyUniversity of California School of MedicineDavisCAUSA
| | - M. E. Gershwin
- Division of Rheumatology Allergy and Clinical ImmunologyUniversity of California School of MedicineDavisCAUSA
| |
Collapse
|