1
|
Yan Q, Liu H, Zhu R, Zhang Z. Contribution of macrophage polarization in bone metabolism: A literature review. Cytokine 2024; 184:156768. [PMID: 39340960 DOI: 10.1016/j.cyto.2024.156768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Macrophage polarization divides macrophages into two main cell subpopulations, classically and alternatively activated macrophages (M1 and M2, respectively). M1 polarization promotes osteoclastogenesis, while M2 polarization promotes osteogenesis. The physiological homeostasis of bone metabolism involves a high dynamic balance between osteoclastic-mediated bone resorption and formation. Reportedly, M1/M2 imbalance causes the onset and persistence of inflammation-related bone diseases. Therefore, understanding the research advances in functions and roles of macrophages in such diseases will provide substantial guidance for improved treatment of bone diseases. In this review, we underscore and summarize the research advances in macrophage polarization, and bone-related diseases, such as rheumatoid arthritis, osteoarthritis, and osteoporosis, over the last 5 years. Our findings showed that targeting macrophages and balancing macrophage polarization can effectively reduce inflammation and decrease bone destruction while promoting bone formation and vascular repair. These results indicate that regulating macrophage and macrophage polarization to restore homeostasis is a prospective approach for curing bone-related diseases.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruyuan Zhu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Lin S, Moreinos D, Marvidou AM, Novak R, Rotstein I, Abbott PV. The role of infection in signalling root resorption: A narrative review. Int Endod J 2024. [PMID: 39291291 DOI: 10.1111/iej.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Root resorption consists of complex, multistep processes that involve cell signalling caused by inflammation and stromal cells, which promotes the secretion of receptor activator of nuclear factor κB ligand/ macrophage-colony stimulating factor (RANKL/M-CSF) resulting in a resorptive process. OBJECTIVE The aim of this narrative review was to analyse the literature related to root resorption resulting from microbial infection and to comparing it with non-microbial infection. METHODS An electronic literature search was performed using the PubMed database and applying keywords of articles published in English. Eligible papers were reviewed to reveal the descriptions of bone and root resorption processes. The abstracts were searched manually to identify articles about infection-stimulating bone and root resorption. RESULTS Three main types of root resorption were identified, two associated with primary bacterial infection and one secondary to bacterial infection. These include external inflammatory resorption, internal inflammatory resorption and external cervical (invasive) resorption. DISCUSSION The magnitude of cytokine involvement that promotes resorption and M-CSF/RANKL production depends on multiple factors, including pathogen virulence, site of infection and host genetic factors that activate the inflammation at the infection site. Two mechanisms activate the resorption mechanisms-the canonical and non-canonical pathways that can activate clastic cells independently of the RANKL/RANK canonical pathways. CONCLUSIONS Two pathways of root resorption co-exist in the body. When resorption is caused by infection, chronic inflammation due to bacterial infection prolongs the secretions of pro-inflammatory cytokines that intensify root and bone resorption. The second pathway is bacterial independent of the non-infection root resorption that is part of the wound healing process, which is limited in time due to its innate ability.
Collapse
Affiliation(s)
- S Lin
- The Israeli National Center for Trauma & Emergency Medicine Research, Gertner Institute, Tel Hashomer, Israel
- Department of Endodontics, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - D Moreinos
- Endodontic Department, Galilee Medical Center, Nahariya, Israel
| | - A M Marvidou
- Department of Endodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - R Novak
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Orthopedic Oncology Unit, Department of Orthopedic, Rambam Health Care Campus, Haifa, Israel
| | - I Rotstein
- University of Southern California, Los Angeles, California, USA
| | - P V Abbott
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Huang CY, Le HHT, Tsai HC, Tang CH, Yu JH. The effect of low-level laser therapy on osteoclast differentiation: Clinical implications for tooth movement and bone density. J Dent Sci 2024; 19:1452-1460. [PMID: 39035342 PMCID: PMC11259655 DOI: 10.1016/j.jds.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 03/25/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Osteoclast differentiation is crucial for orchestrating both tooth movement and the maintenance of bone density. Therefore, the current study sought to explore the impact of low-level laser therapy (LLLT) on osteoclast differentiation, functional gene expression, molecular signaling pathways, and orthodontic tooth movement in clinical settings. Materials and methods The RAW 264.7 cell line served as the precursor for osteoclasts, and these cells underwent irradiation using a 808-nm LLLT. Osteoclast differentiation was assessed through tartrate-resistant acid phosphatase (TRAP) staining. Functional gene expression levels were evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) while signaling molecules were examined through Western blot analysis. In the clinical study, 12 participants were enrolled. Their tooth movement was monitored using a TRIOS desktop scanner. Bone density measurements were conducted using Mimics software, which processed cone-beam computed tomography (CBCT) images exported in Digital Imaging and Communications in Medicine (DICOM) format. Results We found that LLLT effectively promoted receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and the expression of osteoclast functional genes, including matrix metallopeptidase 9 (MMP9), nuclear factor of activated T-cells cytoplasmic 1(NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK) in RAW264.7 cells. Clinically, the cumulative tooth movement over 90 days was significantly higher in the laser group than in the control group. Conclusion Our research demonstrates that LLLT not only significantly promotes osteoclast differentiation but is also a valuable adjunct in orthodontic therapy.
Collapse
Affiliation(s)
- Chun-Yi Huang
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Orthodontics, China Medical University Hospital Medical Center, Taichung, Taiwan
| | - Huynh Hoai Thuong Le
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jian-Hong Yu
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Orthodontics, China Medical University Hospital Medical Center, Taichung, Taiwan
| |
Collapse
|
4
|
Deng Y, Phillips K, Feng ZP, Smith PN, Li RW. Aseptic loosening around total joint replacement in humans is regulated by miR-1246 and miR-6089 via the Wnt signalling pathway. J Orthop Surg Res 2024; 19:94. [PMID: 38287447 PMCID: PMC10823634 DOI: 10.1186/s13018-024-04578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Total joint replacement for osteoarthritis is one of the most successful surgical procedures in modern medicine. However, aseptic loosening continues to be a leading cause of revision arthroplasty. The diagnosis of aseptic loosening remains a challenge as patients are often asymptomatic until the late stages. MicroRNA (miRNA) has been demonstrated to be a useful diagnostic tool and has been successfully used in the diagnosis of other diseases. We aimed to identify differentially expressed miRNA in the plasma of patients with aseptic loosening. METHODS Adult patients undergoing revision arthroplasty for aseptic loosening and age- and gender-matched controls were recruited. Samples of bone, tissue and blood were collected, and RNA sequencing was performed in 24 patients with aseptic loosening and 26 controls. Differentially expressed miRNA in plasma was matched to differentially expressed mRNA in periprosthetic bone and tissue. Western blot was used to validate protein expression. RESULTS Seven miRNA was differentially expressed in the plasma of patients with osteolysis (logFC >|2|, adj-P < 0.05). Three thousand six hundred and eighty mRNA genes in bone and 427 mRNA genes in tissue samples of osteolysis patients were differentially expressed (logFC >|2|, adj-P < 0.05). Gene enrichment analysis and pathway analysis revealed two miRNA (miR-1246 and miR-6089) had multiple gene targets in the Wnt signalling pathway in the local bone and tissues which regulate bone metabolism. CONCLUSION These results suggest that aseptic loosening may be regulated by miR-1246 and miR-6089 via the Wnt signalling pathway.
Collapse
Affiliation(s)
- Yi Deng
- Australian National University Medical School, Canberra, Australia.
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia.
| | - Kate Phillips
- Australian National University Medical School, Canberra, Australia
| | - Zhi-Ping Feng
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Paul N Smith
- Australian National University Medical School, Canberra, Australia
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia
| | - Rachel W Li
- Australian National University Medical School, Canberra, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
5
|
Xie Y, Peng Y, Fu G, Jin J, Wang S, Li M, Zheng Q, Lyu FJ, Deng Z, Ma Y. Nano wear particles and the periprosthetic microenvironment in aseptic loosening induced osteolysis following joint arthroplasty. Front Cell Infect Microbiol 2023; 13:1275086. [PMID: 37854857 PMCID: PMC10579613 DOI: 10.3389/fcimb.2023.1275086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
Joint arthroplasty is an option for end-stage septic arthritis due to joint infection after effective control of infection. However, complications such as osteolysis and aseptic loosening can arise afterwards due to wear and tear caused by high joint activity after surgery, necessitating joint revision. Some studies on tissue pathology after prosthesis implantation have identified various cell populations involved in the process. However, these studies have often overlooked the complexity of the altered periprosthetic microenvironment, especially the role of nano wear particles in the etiology of osteolysis and aseptic loosening. To address this gap, we propose the concept of the "prosthetic microenvironment". In this perspective, we first summarize the histological changes in the periprosthetic tissue from prosthetic implantation to aseptic loosening, then analyze the cellular components in the periprosthetic microenvironment post prosthetic implantation. We further elucidate the interactions among cells within periprosthetic tissues, and display the impact of wear particles on the disturbed periprosthetic microenvironments. Moreover, we explore the origins of disease states arising from imbalances in the homeostasis of the periprosthetic microenvironment. The aim of this review is to summarize the role of relevant factors in the microenvironment of the periprosthetic tissues, in an attempt to contribute to the development of innovative treatments to manage this common complication of joint replacement surgery.
Collapse
Affiliation(s)
- Yu Xie
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yujie Peng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Guangtao Fu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mengyuan Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Fernández Vallone V, Borzone FR, Martinez LM, Giorello MB, Choi H, Dimase F, Feldman L, Bordenave RH, Chudzinski-Tavassi AM, Batagelj E, Chasseing NA. Spontaneous Osteoclastogenesis, a risk factor for bone metastasis in advanced luminal A-type breast cancer patients. Front Oncol 2023; 13:1073793. [PMID: 36890825 PMCID: PMC9986318 DOI: 10.3389/fonc.2023.1073793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Osteolytic bone metastasis in advanced breast cancer stages are a major complication for patient´s quality life and a sign of low survival prognosis. Permissive microenvironments which allow cancer cell secondary homing and later proliferation are fundamental for metastatic processes. The causes and mechanisms behind bone metastasis in breast cancer patients are still an unsolved puzzle. Therefore, in this work we contribute to describe bone marrow pre-metastatic niche in advanced breast cancer patients. Results We show an increase in osteoclasts precursors with a concomitant imbalance towards spontaneous osteoclastogenesis which can be evidenced at bone marrow and peripheral levels. Pro-osteoclastogenic factors RANKL and CCL-2 may contribute to bone resorption signature observed in bone marrow. Meanwhile, expression levels of specific microRNAs in primary breast tumors may already indicate a pro-osteoclastogenic scenario prior to bone metastasis. Discussion The discovery of prognostic biomarkers and novel therapeutic targets linked to bone metastasis initiation and development are a promising perspective for preventive treatments and metastasis management in advanced breast cancer patients.
Collapse
Affiliation(s)
- Valeria Fernández Vallone
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Core Unit Pluripotent Stem Cells and Organoids, Berlin, Germany
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Department of Medicine, Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, United States
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hosoon Choi
- Research Service, Central Texas Veterans Health Care System, Temple, Texas, TX, United States
| | - Federico Dimase
- Servicio de Hematología, Hospital Militar Central, Buenos Aires, Argentina
| | - Leonardo Feldman
- Facultad de Ciencias de la Salud, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPB), Tandil, Buenos Aires, Argentina
| | | | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Development and Innovation/Center of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Emilio Batagelj
- Servicio de Oncología, Hospital Militar Central, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Che Z, Song Y, Zhu L, Liu T, Li X, Huang L. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet 2022; 13:1037190. [PMID: 36452155 PMCID: PMC9702520 DOI: 10.3389/fgene.2022.1037190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 12/20/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic condition that requires total hip arthroplasty in most late-stage cases. However, mechanisms underlying the development of ONFH remain unknown, and the therapeutic strategies remain limited. Growth factors play a crucial role in different physiological processes, including cell proliferation, invasion, metabolism, apoptosis, and stem cell differentiation. Recent studies have reported that polymorphisms of growth factor-related genes are involved in the pathogenesis of ONFH. Tissue and genetic engineering are attractive strategies for treating early-stage ONFH. In this review, we summarized dysregulated growth factor-related genes and their role in the occurrence and development of ONFH. In addition, we discussed their potential clinical applications in tissue and genetic engineering for the treatment of ONFH.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Song
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liwei Zhu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tengyue Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xudong Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lanfeng Huang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci 2022; 23:1786. [PMID: 35163708 PMCID: PMC8836472 DOI: 10.3390/ijms23031786] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bone is a mineralized and elastic connective tissue that provides fundamental functions in the human body, including mechanical support to the muscles and joints, protection of vital organs and storage of minerals. Bone is a metabolically active organ that undergoes continuous remodeling processes to maintain its architecture, shape, and function throughout life. One of the most important medical discoveries of recent decades has been that the immune system is involved in bone remodeling. Indeed, chronic inflammation has been recognized as the most significant factor influencing bone homeostasis, causing a shift in the bone remodeling process toward pathological bone resorption. Bone osteolytic diseases typified by excessive bone resorption account for one of the greatest causes of disability worldwide, with significant economic and public health burdens. From this perspective, we discuss the recent findings and discoveries highlighting the cellular and molecular mechanisms that regulate this process in the bone microenvironment, in addition to the current therapeutic strategies for the treatment of osteolytic bone diseases.
Collapse
Affiliation(s)
- M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| |
Collapse
|
9
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Inhibitory Effects of Combined Bone Morphogenetic Protein 2, Vascular Endothelial Growth Factor, and Basic Fibroblast Growth Factor on Osteoclast Differentiation and Activity. Tissue Eng Part A 2021; 27:1387-1398. [PMID: 33632010 DOI: 10.1089/ten.tea.2020.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factors (bFGF) are important regulators of bone development and bone remodeling involving the coordination of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. The synergistic promotions of these growth factors on osteogenesis in the appropriate combination have been confirmed by a lot of studies, but the effect of this combined application on osteoclastogenesis still remains ambiguous. On the basis of comparing the osteoclastic potentials under stimulation of BMP-2, VEGF, or bFGF alone, this study focused on their combined effects on the differentiation and activity of osteoclasts. Our results showed that osteoclastogenesis was enhanced to some extent under the stimulation of BMP-2, VEGF, or bFGF alone, and the potential of these three growth factors to stimulate osteoclastogenesis was VEGF > BMP-2 > bFGF. However, the treatment with the combination of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL), the most suitable dose combination for osteogenesis optimized in our previous study, weakened osteoclast differentiation confirmed by smaller tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, lower TRAP activity, and lower expression of dendritic cell-specific transmembrane protein, an important molecule regulating osteoclast fusion. Moreover, BMP-2, VEGF, and bFGF in combination also moderately inhibited the bone-resorbing activity of mature osteoclasts by suppressing the expression of osteoclast-specific genes cathepsin K, and matrix metalloproteinase-9. The underlying molecular mechanisms involved the suppression of the receptor activator of nuclear factor-κB ligand-induced c-Fos levels and the activation of nuclear factor of activated T cells c1, two major transcription factors in osteoclast differentiation. Taken together, our study showed that the combination of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL) promoted osteoblastogenesis but inhibited osteoclastogenesis. Thus, the simultaneous use of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL) in an appropriate combination might improve efficacious bone regeneration in a clinical setting. Impact statement Few studies have addressed the combined effects of multiple growth factors on osteoclasts. This study demonstrated that the simultaneous use of bone morphogenetic protein 2 (BMP-2; 50 ng/mL), vascular endothelial growth factor (VEGF; 1 ng/mL), and basic fibroblast growth factors (bFGF; 10 ng/mL), the most suitable dose combination for osteogenesis optimized in our previous study, showed inhibitory effects on the differentiation and activity of osteoclasts. Our results suggest that the growth factor signaling pathways in osteoclasts may interact with each other. Furthermore, this study could provide new insights into the optimal application of BMP-2, VEGF, and bFGF for bone repair and regeneration.
Collapse
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
10
|
Matsumae G, Shimizu T, Tian Y, Takahashi D, Ebata T, Alhasan H, Yokota S, Kadoya K, Terkawi MA, Iwasaki N. Targeting thymidine phosphorylase as a potential therapy for bone loss associated with periprosthetic osteolysis. Bioeng Transl Med 2021; 6:e10232. [PMID: 34589604 PMCID: PMC8459589 DOI: 10.1002/btm2.10232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Macrophages are generally thought to play a key role in the pathogenesis of aseptic loosening through initiating periprosthetic inflammation and pathological bone resorption. The aim of this study was to identify macrophage-derived factors that promote osteoclast differentiation and periprosthetic bone destruction. To achieve this, we examined the effects of 12 macrophage-derived factors that were identified by RNA-seq analysis of stimulated macrophages on osteoclast differentiation. Surprisingly, thymidine phosphorylase (TYMP) was found to trigger significant number of osteoclasts that exhibited resorbing activities on dentine slices. Functionally, TYMP knockdown reduced the number of osteoclasts in macrophages that had been stimulated with polyethylene debris. TYMP were detected in serum and synovial tissues of patients that had been diagnosed with aseptic loosening. Moreover, the administration of TYMP onto calvariae of mice induced pathological bone resorption that was accompanied by an excessive infiltration of inflammatory cells and osteoclasts. The RNA-seq for TYMP-induced-osteoclasts was then performed in an effort to understand action mode of TYMP. TYMP stimulation appeared to activate the tyrosine kinase FYN signaling associated with osteoclast formation. Oral administration of saracatinib, a FYN kinase inhibitor, significantly suppressed formation of bone osteolytic lesions in a polyethylene debris-induced osteolysis model. Our findings highlight a novel molecular target for therapeutic intervention in periprosthetic osteolysis.
Collapse
Affiliation(s)
- Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Shunichi Yokota
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Global Institution for Collaborative Research and Education (GI‐CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2. Hokkaido UniversitySapporoJapan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Global Institution for Collaborative Research and Education (GI‐CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2. Hokkaido UniversitySapporoJapan
| |
Collapse
|
11
|
Mabilleau G, Libouban H, Geoffroy V. Osteomorphs as a tool for personalized medicine. Trends Endocrinol Metab 2021; 32:655-656. [PMID: 33895074 DOI: 10.1016/j.tem.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
McDonald and colleagues reported osteoclast-related dynamic mechanisms that lead, by fission, to osteomorphs; motile, fusion-competent cells capable of forming bone-resorbing osteoclasts. scRNA-seq analyses revealed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and might be implicated in rare and common bone diseases in humans.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Univ Angers, GEROM, SFR ICAT, F-49000 Angers, France; CHU Angers, Bone Pathology, F-49933 Angers, France.
| | | | - Valérie Geoffroy
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, Oniris, F-44042 Nantes, France
| |
Collapse
|
12
|
Peng H, Hua Z, Yang H, Wang J. [Research progress on mechanism of myokines regulating bone tissue cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:923-929. [PMID: 34308604 DOI: 10.7507/1002-1892.202012062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the effects and mechanisms of various myokines secreted by skeletal muscle on various bone tissue cells. Methods Literature related to myokines and their regulation of bone tissue cells was reviewed and analyzed comprehensively in recent years. Results Bone and skeletal muscle are important members of the motor system, and they are closely related in anatomy, genetics, and physiopathology. In recent years, it has been found that skeletal muscle can secrete a variety of myokines to regulate bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, and bone cells; these factors mutual crosstalk between myoskeletal unit, contact each other and influence each other, forming a complex myoskeletal micro-environment, and to some extent, it has a positive impact on bone repair and reconstruction. Conclusion Myokines are potential targets for the dynamic balance of bone tissue cells. In-depth study of its mechanism is helpful to the prevention and treatment of myoskeletal diseases.
Collapse
Affiliation(s)
- Hongcheng Peng
- Nanjing University of Traditional Chinese Medicine, Nanjing Jiangsu, 210023, P.R.China
| | - Zhen Hua
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Wuxi Jiangsu, 214071, P.R.China
| | - Huilin Yang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215006, P.R.China
| | - Jianwei Wang
- Department of Orthopedics and Traumatology, Wuxi Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Wuxi Jiangsu, 214071, P.R.China
| |
Collapse
|
13
|
Chen W, Xian G, Gu M, Pan B, Wu X, Ye Y, Zheng L, Zhang Z, Sheng P. Autophagy inhibitors 3-MA and LY294002 repress osteoclastogenesis and titanium particle-stimulated osteolysis. Biomater Sci 2021; 9:4922-4935. [PMID: 34052845 DOI: 10.1039/d1bm00691f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aseptic loosening caused by peri-implant osteolysis (PIO) is a common complication after joint replacement, and there is still no better treatment than revision surgery. The wear particle-induced inflammation response, especially subsequent osteoclastic bone resorption, is responsible for PIO. As the importance of wear particles in inducing autophagy in cells around the prosthesis in PIO has been discovered, this might be a central process underlying aseptic loosening. However, the role of autophagy induced by wear particles in osteoclastogenesis during PIO remains unclear. In this study, we investigated the role of autophagy in osteoclastogenesis and verified it in a mouse calvarial osteolysis model. We found that osteoclasts were increased in the interface membranes of patients with aseptic loosening. In vitro, knocking down the Atg5 gene or using autophagy inhibitors (3-MA, LY294002) to inhibit autophagy was found to repress osteoclastogenesis and decrease expression of the osteoclast-related genes TRAP, cathepsin K, and matrix metalloprotein 9 (MMP-9) with or without titanium (Ti) particles. In vivo, 3-MA and LY294002 repressed Ti particle-stimulated osteolysis and osteoclastogenesis and reduced expression of the pro-inflammatory factors TNF-α, IL-1β, and IL-6. Our results suggest that 3-MA and LY294002 might be the potential medicines to prevent and treat PIO and aseptic loosening.
Collapse
Affiliation(s)
- Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Guoyan Xian
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongyu Ye
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
14
|
Kespohl B, Schumertl T, Bertrand J, Lokau J, Garbers C. The cytokine interleukin-11 crucially links bone formation, remodeling and resorption. Cytokine Growth Factor Rev 2021; 60:18-27. [PMID: 33940443 DOI: 10.1016/j.cytogfr.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Bone development is a complex process that requires the activity of several different signaling pathways and cell types. It involves the coordinated action of osteoclasts (cells that are capable of resorbing bone), osteoblasts (cells that are able to form bone), osteocytes (cells that form a syncytial network within the bone), skeletal muscle cells and the bone marrow. In recent years, the cytokine interleukin-11 (IL-11), a member of the IL-6 family of cytokines, has emerged as an important regulatory protein for bone formation, remodeling and resorption. Furthermore, coding missense mutations in the IL11RA gene, which encodes the IL-11 receptor (IL-11R), have recently been linked to craniosynostosis, a human disease in which the sutures that line the head bones close prematurely. This review summarizes current knowledge about IL-11 and highlights its role in bone development and homeostasis. It further discusses the specificity and redundancy provided by the other members of the IL-6 cytokine family and how they facilitate signaling and cross-talk between skeletal muscle cells, bone cells and the bone marrow. We describe their actions in physiological and in pathological states and discuss how this knowledge could be translated into therapy.
Collapse
Affiliation(s)
- Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
15
|
Ma Q, Liang M, Wu Y, Dou C, Xu J, Dong S, Luo F. Small extracellular vesicles deliver osteolytic effectors and mediate cancer-induced osteolysis in bone metastatic niche. J Extracell Vesicles 2021; 10:e12068. [PMID: 33659051 PMCID: PMC7892803 DOI: 10.1002/jev2.12068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) play critical roles in regulating bone metastatic microenvironment through mediating intercellular crosstalks. However, little is known about the contribution of EVs derived from cancer cells to the vicious cycle of bone metastasis. Here, we report a direct regulatory mode between tumour cells and osteoclasts in metastatic niche of prostate cancer via vesicular miRNAs transfer. Combined analysis of miRNAs profiles both in tumour‐derived small EVs (sEVs) and osteoclasts identified miR‐152‐3p as a potential osteolytic molecule. sEVs were enriched in miR‐152‐3p, which targets osteoclastogenic regulator MAFB. Blocking miR‐152‐3p in sEVs upregulated the expression of MAFB and impaired osteoclastogenesis in vitro. In vivo experiments of xenograft mouse model found that blocking of miR‐152‐3p in sEVs significantly slowed down the loss of trabecular architecture, while systemic inhibition of miR‐152‐3p using antagomir‐152‐3p reduced the osteolytic lesions of cortical bone while preserving basic trabecular architecture. Our findings suggest that miR‐152‐3p carried by prostate cancer‐derived sEVs deliver osteolytic signals from tumour cells to osteoclasts, facilitating osteolytic progression in bone metastasis.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Mengmeng Liang
- Department of Biomedical Materials Science Third Military Medical University Chongqing 400038 China
| | - Yutong Wu
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Ce Dou
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Jianzhong Xu
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Shiwu Dong
- Department of Biomedical Materials Science Third Military Medical University Chongqing 400038 China.,State Key Laboratory of Trauma Burns and Combined Injury Third Military Medical University Chongqing 400038 China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| |
Collapse
|
16
|
Liu W, Li Z, Cai Z, Xie Z, Li J, Li M, Cen S, Tang S, Zheng G, Ye G, Su H, Wang S, Wang P, Shen H, Wu Y. LncRNA-mRNA expression profiles and functional networks in osteoclast differentiation. J Cell Mol Med 2020; 24:9786-9797. [PMID: 32715654 PMCID: PMC7520269 DOI: 10.1111/jcmm.15560] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
Human osteoclasts are differentiated from CD14+ monocytes and are responsible for bone resorption. Long non‐coding RNAs (lncRNAs) have been proved to be significantly involved in multiple biologic processes, especially in cell differentiation. However, the effect of lncRNAs in osteoclast differentiation is less appreciated. In our study, RNA sequencing (RNA‐seq) was used to identify the expression profiles of lncRNAs and mRNAs in osteoclast differentiation. The results demonstrated that expressions of 1117 lncRNAs and 296 mRNAs were significantly altered after osteoclast differentiation. qRT‐PCR assays were performed to confirm the expression profiles, and the results were almost consistent with the RNA‐seq data. GO and KEGG analyses were used to predict the functions of these differentially expressed mRNA and lncRNAs. The Path‐net analysis demonstrated that MAPK pathway, PI3K‐AKT pathway and NF‐kappa B pathway played important roles in osteoclast differentiation. Co‐expression networks and competing endogenous RNA networks indicated that ENSG00000257764.2‐miR‐106a‐5p‐TIMP2 may play a central role in osteoclast differentiation. Our study provides a foundation to further understand the role and underlying mechanism of lncRNAs in osteoclast differentiation, in which many of them could be potential targets for bone metabolic disease.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaofeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuizhong Cen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Su'an Tang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shan Wang
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, Wang W, Zhu Q, Lu Z, Cao X. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis 2020; 11:330. [PMID: 32382069 PMCID: PMC7205892 DOI: 10.1038/s41419-020-2548-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/20/2022]
Abstract
Quaking (QKI), an RNA-binding protein, has been reported to exhibit numerous biological functions, such as mRNA regulation, cancer suppression, and anti-inflammation. However, little known about the effects of QKI on bone metabolism. In this study, we used a monocyte/macrophage-specific QKI knockout transgenic mouse model to investigate the effects of QKI deficiency on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. The loss of QKI promoted the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts (OCs) from bone marrow macrophages, and upregulated the expression of OC-specific markers, including TRAP (Acp5) and cathepsin K (Ctsk). The pro-osteoclastogenesis effect of QKI deficiency was achieved by amplifying the signaling cascades of the NF-κB and mitogen-activated protein kinase (MAPK) pathways; then, signaling upregulated the activation of nuclear factor of activated T cells c1 (NFATc1), which is considered to be the core transcription factor that regulates OC differentiation. In addition, QKI deficiency could inhibit osteoblast (OB) formation through the inflammatory microenvironment. Taken together, our data suggest that QKI deficiency promoted OC differentiation and disrupted bone metabolic balance, and eventually led to osteopenia under physiological conditions and aggravated the degree of osteoporosis under pathological conditions.
Collapse
Affiliation(s)
- Tianshu Du
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zhao Yan
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Shu Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zichen Ye
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Wenwen Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Qingsheng Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Xiaorui Cao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
18
|
Xie S, Pan Z, Yin T, Ren J, Liu W. Expression of PTHrP and RANKL in acquired middle ear cholesteatoma epithelium. Acta Otolaryngol 2020; 140:351-355. [PMID: 32108533 DOI: 10.1080/00016489.2020.1717609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Regarded as the most important clinical characteristic of middle ear cholesteatoma, the exact mechanism of bone resorption in cholesteatoma still remains unknown.Objectives: To investigate protein expression of PTHrP and RANKL in acquired middle ear cholesteatoma epithelium and analyze their functional roles in the etiopathogenesis of bone resorption in middle ear cholesteatoma.Material and methods: A total of 22 patients who underwent surgical treatment for middle ear cholesteatoma were recruited in the study. Protein expression of PTHrP and RANKL in middle ear cholesteatoma and normal postauricular skin was investigated by immunohistochemical staining. Correlations between bone resorption degree and expression of PTHrP and RANKL were also analyzed.Results: Protein expression of PTHrP and RANKL in cholesteatoma epithelium significantly increased when compared with normal postauricular skin epithelium. In cholesteatoma epithelium, a significantly positive association was observed between PTHrP and RANKL expression. Meanwhile, obviously positive correlations between protein expression of PTHrP and RANKL and bone resorption degree were discovered.Conclusions and significance: The increased protein expression of PTHrP and RANKL in cholesteatoma epithelium, and their associations with the degree of bone resorption, revealing that PTHrP might promote bone resorption process in middle ear cholesteatoma through RANKL signaling pathway.
Collapse
Affiliation(s)
- Shumin Xie
- Department of Otolaryngology-Head and Neck Surgery, Hunan Provincial Key Lab, Otolaryngology Institute of Major Diseases, The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Pan
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuanfang Yin
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jihao Ren
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Cappelli LC, Thomas MA, Bingham CO, Shah AA, Darrah E. Immune checkpoint inhibitor-induced inflammatory arthritis as a model of autoimmune arthritis. Immunol Rev 2020; 294:106-123. [PMID: 31930524 PMCID: PMC7047521 DOI: 10.1111/imr.12832] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The development of inflammatory arthritis in patients receiving immune checkpoint inhibitor therapy is increasingly recognized due to the growing use of these drugs for the treatment of cancer. This represents an important opportunity not only to define the mechanisms responsible for the development of this immune-related adverse event and to ultimately predict or prevent its development, but also to provide a unique window into early events in the development of inflammatory arthritis. Knowledge gained through the study of this patient population, for which the inciting event is known, could shed light into the pathogenesis of autoimmune arthritis. This review will highlight the clinical and immunologic features of these entities to define common elements for future study.
Collapse
Affiliation(s)
- Laura C. Cappelli
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Mekha A. Thomas
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Clifton O. Bingham
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Ami A. Shah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Erika Darrah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| |
Collapse
|
20
|
Dubus M, Varin J, Papa S, Rammal H, Chevrier J, Maisonneuve E, Mauprivez C, Mongaret C, Gangloff S, Reffuveille F, Kerdjoudj H. Interaction of Cutibacterium acnes with human bone marrow derived mesenchymal stem cells: a step toward understanding bone implant- associated infection development. Acta Biomater 2020; 104:124-134. [PMID: 31881313 DOI: 10.1016/j.actbio.2019.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Crosstalk between mesenchymal stem cells (MSCs) and bacteria plays an important role in regulating the regenerative capacities of MSCs, fighting infections, modulating immune responses and maintaining tissue homeostasis. Commensal Cutibacterium acnes (C. acnes) bacterium becomes an opportunistic pathogen causing implant-associated infections. Herein, we examined MSCs/C. acnes interaction and analysed the subsequent bacteria and MSCs behaviours following infection. Human bone marrow derived MSCs were infected by two clinical and one laboratory C. acnes strains. Following 3h of interaction, all bacterial strains were able to invade MSCs. Viable intracellular bacteria acquired virulence factors by increasing biofilm formation and/or by affecting macrophage phagocytosis. Although the direct and indirect (through neutrophil stimulation) antibacterial effects of the MSCs secretome were not enhanced following C. acnes infection, ELISA analysis revealed that C. acnes clinical strains are able to license MSCs to become immunosuppressive cell-like by increasing the secretion of IL-6, IL-8, PGE-2, VEGF, TGF-β and HGF. Overall, these results showed a direct impact of C. acnes on bone marrow derived MSCs, providing new insights into the development of C. acnes during implant-associated infections. STATEMENT OF SIGNIFICANCE: The originality of this work relies on the study of relationship between human bone marrow derived mesenchymal stem cells (MSCs) phenotype and C. acnes clinical strains virulence following cell infection. Our major results showed that C. acnes are able to invade MSCs, inducing a transition of commensal to an opportunistic pathogen behaviour. Although the direct and indirect antibacterial effects were not enhanced following C. acnes infection, secretome analysis revealed that C. acnes clinical strains were able to license MSCs to become immunosuppressive and anti-fibrotic cell-like. These results showed a direct impact of C. acnes on bone marrow derived MSCs, providing new insights into the development of C. acnes during associated implant infections.
Collapse
|
21
|
Loftus A, Cappariello A, George C, Ucci A, Shefferd K, Green A, Paone R, Ponzetti M, Delle Monache S, Muraca M, Teti A, Rucci N. Extracellular Vesicles From Osteotropic Breast Cancer Cells Affect Bone Resident Cells. J Bone Miner Res 2020; 35:396-412. [PMID: 31610048 DOI: 10.1002/jbmr.3891] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are emerging as mediators of a range of pathological processes, including cancer. However, their role in bone metastases has been poorly explored. We investigated EV-mediated effects of osteotropic breast cancer cells (MDA-MB-231) on bone resident cells and endothelial cells. Pretreatment of osteoblasts with conditioned medium (CM) of MDA-MB-231 (MDA) cells promoted pro-osteoclastogenic and pro-angiogenic effects by osteoblast EVs (OB-EVs), as well as an increase of RANKL-positive OB-EVs. Moreover, when treating osteoblasts with MDA-EVs, we observed a reduction of their number, metabolic activity, and alkaline phosphatase (Alp) activity. MDA-EVs also reduced transcription of Cyclin D1 and of the osteoblast-differentiating genes, while enhancing the expression of the pro-osteoclastogenic factors Rankl, Lcn2, Il1b, and Il6. Interestingly, a cytokine array on CM from osteoblasts treated with MDA-EVs showed an increase of the cytokines CCL3, CXCL2, Reg3G, and VEGF, while OPG and WISP1 were downregulated. MDA-EVs contained mRNAs of genes involved in bone metabolism, as well as cytokines, including PDGF-BB, CCL3, CCL27, VEGF, and Angiopoietin 2. In line with this profile, MDA-EVs increased osteoclastogenesis and in vivo angiogenesis. Finally, intraperitoneal injection of MDA-EVs in mice revealed their ability to reach the bone microenvironment and be integrated by osteoblasts and osteoclasts. In conclusion, we showed a role for osteoblast-derived EVs and tumor cell-derived EVs in the deregulation of bone and endothelial cell physiology, thus fueling the vicious cycle induced by bone tumors. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexander Loftus
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alfredo Cappariello
- Oncohematology Department, IRCCS Bambino Gesù Children's Hospital Research Laboratories, Rome, Italy
| | - Christopher George
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Argia Ucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Kirsty Shefferd
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alice Green
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Riccardo Paone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
22
|
Characterization and immunogenicity of bone marrow-derived mesenchymal stem cells under osteoporotic conditions. SCIENCE CHINA-LIFE SCIENCES 2019; 63:429-442. [PMID: 31879847 DOI: 10.1007/s11427-019-1555-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized by their multilineage potential and low immunogenicity. However, the properties of MSCs under pathological conditions are unclear. The current study investigated the differentiation potential and immunological characteristics of bone marrow-derived MSCs from ovariectomized-osteoporotic rats (OP-BMSCs). Although the expression of cell morphology- and stemness-related surface markers was similar between OP-BMSCs and BMSCs from healthy rats (H-BMSCs), the proliferation rate was significantly decreased compared with that of H-BMSCs. Regarding multilineage potential, osteogenesis and chondrogenesis abilities of OP-BMSCs decreased, but the adipogenesis ability was significantly enhanced compared with that of H-BMSCs. As expected, decreased osteogenesis following osteogenic induction resulted in reduced expression of β-catenin, osteocalcin, and runt-related transcription factor 2 in OP-BMSCs. Remarkably, the expression of the co-stimulatory proteins CD40 and CD80 was significantly higher, whereas the expression of the negative co-stimulatory molecule programmed cell death ligand 1 was significantly lower in the OP-BMSCs than that in H-BMSCs. Consequently, H-BMSCs inhibited the proliferation and secretion of inflammatory cytokines from anti-CD3 antibody-activated T cells, whereas OP-BMSCs did not. These results indicate that decreased osteogenesis and increased immunogenicity of OP-BMSCs contribute to bone loss in osteoporosis.
Collapse
|
23
|
Yu C, Wang L, Ni Y, Wang J. A simple and robust reporter gene assay for measuring the bioactivity of anti-RANKL therapeutic antibodies. RSC Adv 2019; 9:40196-40202. [PMID: 35542634 PMCID: PMC9076180 DOI: 10.1039/c9ra07328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022] Open
Abstract
RANKL (receptor activator of nuclear factor κB ligand) plays a key role in the differentiation, activation and survival of osteoclasts. Denosumab, which targets RANKL, is approved for osteoporosis or bone loss that has a high risk for fracture and bone metastases from solid tumors. Bioactivity determination is essential for the safety and efficacy of therapeutic antibodies. At present, the mechanism of action (MOA) based bioassay for anti-RANKL monoclonal antibodies (mAbs) is the measurement of tartrate resistant acid phosphatase (TRAP) activity, which takes about five days and has complex operation and relatively high variation. In this study, we developed a reporter gene assay (RGA) based on a RAW264.7 cell line stably expressing luciferase reporter under the control of nuclear factor-κB (NF-κB) response elements. After optimizing the key parameters, the validation results based on ICH-Q2 not only show superior specificity, precision, linearity, accuracy and passage stability, but also a short duration and simple operation. These results demonstrate the RGA based on the RANKL-RANK-NF-κB pathway can be an excellent alternative for measuring the bioactivity of anti-RANKL mAbs.
Collapse
Affiliation(s)
- Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| | - Yongbo Ni
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control No. 29, Huatuo Road, Daxing District Beijing 102629 China +86-10-53851527
| |
Collapse
|
24
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
25
|
Wu RW, Lian WS, Chen YS, Kuo CW, Ke HC, Hsieh CK, Wang SY, Ko JY, Wang FS. MicroRNA-29a Counteracts Glucocorticoid Induction of Bone Loss through Repressing TNFSF13b Modulation of Osteoclastogenesis. Int J Mol Sci 2019; 20:ijms20205141. [PMID: 31627291 PMCID: PMC6829322 DOI: 10.3390/ijms20205141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoid excess escalates osteoclastic resorption, accelerating bone mass loss and microarchitecture damage, which ramps up osteoporosis development. MicroRNA-29a (miR-29a) regulates osteoblast and chondrocyte function; however, the action of miR-29a to osteoclastic activity in the glucocorticoid-induced osteoporotic bone remains elusive. In this study, we showed that transgenic mice overexpressing an miR-29a precursor driven by phosphoglycerate kinase exhibited a minor response to glucocorticoid-mediated bone mineral density loss, cortical bone porosity and overproduction of serum resorption markers C-teleopeptide of type I collagen and tartrate-resistant acid phosphatase 5b levels. miR-29a overexpression compromised trabecular bone erosion and excessive osteoclast number histopathology in glucocorticoid-treated skeletal tissue. Ex vivo, the glucocorticoid-provoked osteoblast formation and osteoclastogenic markers (NFATc1, MMP9, V-ATPase, carbonic anhydrase II and cathepsin K) along with F-actin ring development and pit formation of primary bone-marrow macrophages were downregulated in miR-29a transgenic mice. Mechanistically, tumor necrosis factor superfamily member 13b (TNFSF13b) participated in the glucocorticoid-induced osteoclast formation. miR-29a decreased the suppressor of cytokine signaling 2 (SOCS2) enrichment in the TNFSF13b promoter and downregulated the cytokine production. In vitro, forced miR-29a expression and SOCS2 knockdown attenuated the glucocorticoid-induced TNFSF13b expression in osteoblasts. miR-29a wards off glucocorticoid-mediated excessive bone resorption by repressing the TNFSF13b modulation of osteoclastic activity. This study sheds new light onto the immune-regulatory actions of miR-29a protection against glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Huei-Ching Ke
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chin-Kuei Hsieh
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: (J.-Y.K.); (F.-S.W.); Tel.: +886-7-731-7123 (ext. 6406) (F.-S.W.)
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (J.-Y.K.); (F.-S.W.); Tel.: +886-7-731-7123 (ext. 6406) (F.-S.W.)
| |
Collapse
|
26
|
Wang J, Liu H, Zhang Q. IGF-1 polymorphisms modulate the susceptibility to osteonecrosis of the femoral head among Chinese Han population. Medicine (Baltimore) 2019; 98:e15921. [PMID: 31169709 PMCID: PMC6571255 DOI: 10.1097/md.0000000000015921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The study was performed to investigate the genetic associations of IGF-1 polymorphisms rs35767, rs5742714, and rs972936 with susceptibility to osteonecrosis of the femoral head (ONFH) among Chinese Han population.Totally, 101 ONFH patients and 128 healthy controls were enrolled. Hardy-Weinberg equilibrium (HWE) was detected with chi-square test in control group. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated to estimate the relationship between IGF-1 polymorphisms and ONFH risk. Besides, hyplotype analysis was performed to examine linkage disequilibrium between the studied polymorphisms.Genotype AA and allele A of polymorphism rs35767 were more frequent in control group, and offered protection for ONFH onset (AA: OR = 0.382, 95% CI = 0.158-0.923; A: OR = 0.650, 95% CI = 0.442-0.956). Furthermore, the negative relationship was also observed between ONFH risk and polymorphism rs5742714 under the comparisons CG vs CC, and G vs C (OR = 0.395, 95%CI = 0.199-0.787; OR = 0.346, 95%CI = 0.191-0.627). While the polymorphism rs972936 significantly enhanced the disease risk (CT vs CC: OR = 2.434, 95% CI = 1.184-5.003; TT vs CC: OR = 2.497, 95% CI = 1.040-5.990). Furthermore, haplotype analysis demonstrated that C-T (rs5742714-rs972936) could increase ONFH risk (OR = 2.177, 95% CI = 1.444-3.283), while G-T might be a protective factor for ONFH (OR = 0.472, 95% CI = 0.254-0.878).IGF-1 polymorphisms rs35767, rs5742714, and rs972936 show significant association with ONFH risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Joint Surgery, Laiyang Central Hospital, Yantai
| | - Hongyun Liu
- Department of Pathology, Qingdao Municipal Hospital, Qingdao
| | - Qiliang Zhang
- Department of Orthopedics and Sports Medicine and Joint Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
27
|
Liang M, Ma Q, Ding N, Luo F, Bai Y, Kang F, Gong X, Dong R, Dai J, Dai Q, Dou C, Dong S. IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis 2019; 10:353. [PMID: 31040267 PMCID: PMC6491651 DOI: 10.1038/s41419-019-1594-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
A variety of osteolytic factors have been identified from breast cancer cells leading to osteolysis, but less is known about which factor plays an essential role in the initiation process prior to the overt vicious osteolytic cycle. Here, we present in vitro and in vivo evidences to clarify the role of interleukin-11 (IL-11) as an essential contributor to breast cancer bone metastasis mediated osteolysis. Animal studies showed that bone specific metastatic BoM-1833 cells induce earlier onset of osteolysis and faster tumor growth compared with MCF7 and parental MDA-MB-231 cells in BALB/c-nu/nu nude mice. IL-11 was further screened and identified as the indispensable factor secreted by BoM-1833 cells inducing osteoclastogenesis independently of receptor activator of nuclear factor κB ligand (RANKL). Mechanistic investigation revealed that the JAK1/STAT3 signaling pathway as a downstream effector of IL-11, STAT3 activation further induces the expression of c-Myc, a necessary factor required for osteoclastogenesis. By inhibiting STAT3 phosphorylation, AG-490 was shown effective in reducing osteolysis and tumor growth in the metastatic niche. Overall, our results revealed the essential role and the underlying molecular mechanism of IL-11 in breast cancer bone metastasis mediated osteolysis. STAT3 targeting through AG-490 is a potential therapeutic strategy for mitigating osteolysis and tumor growth of bone metastatic breast cancer.
Collapse
Affiliation(s)
- Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ning Ding
- Department of promoting osteolysisBlood Purification, General Hospital of Shenyang Military Area Command, Shenyang, 110000, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yun Bai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Rui Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Jingjin Dai
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China. .,Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
28
|
Sinomenine inhibits osteolysis in breast cancer by reducing IL-8/CXCR1 and c-Fos/NFATc1 signaling. Pharmacol Res 2019; 142:140-150. [DOI: 10.1016/j.phrs.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
|
29
|
Saito H, Gasser A, Bolamperti S, Maeda M, Matthies L, Jähn K, Long CL, Schlüter H, Kwiatkowski M, Saini V, Pajevic PD, Bellido T, van Wijnen AJ, Mohammad KS, Guise TA, Taipaleenmäki H, Hesse E. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat Commun 2019; 10:1354. [PMID: 30902975 PMCID: PMC6430773 DOI: 10.1038/s41467-019-08778-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
Osteoporosis is caused by increased bone resorption and decreased bone formation. Intermittent administration of a fragment of Parathyroid hormone (PTH) activates osteoblast-mediated bone formation and is used in patients with severe osteoporosis. However, the mechanisms by which PTH elicits its anabolic effect are not fully elucidated. Here we show that the absence of the homeodomain protein TG-interacting factor 1 (Tgif1) impairs osteoblast differentiation and activity, leading to a reduced bone formation. Deletion of Tgif1 in osteoblasts and osteocytes decreases bone resorption due to an increased secretion of Semaphorin 3E (Sema3E), an osteoclast-inhibiting factor. Tgif1 is a PTH target gene and PTH treatment failed to increase bone formation and bone mass in Tgif1-deficient mice. Thus, our study identifies Tgif1 as a novel regulator of bone remodeling and an essential component of the PTH anabolic action. These insights contribute to a better understanding of bone metabolism and the anabolic function of PTH.
Collapse
Affiliation(s)
- Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Andreas Gasser
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Miki Maeda
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Levi Matthies
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Katharina Jähn
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Courtney L Long
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Marcel Kwiatkowski
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Paola Divieti Pajevic
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
- Department of Molecular and Cell Biology, Boston University, School of Dental Medicine, 72 East Concord St., Boston, MA, 02118, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
| |
Collapse
|
30
|
Camuzard O, Breuil V, Carle GF, Pierrefite-Carle V. Autophagy Involvement in Aseptic Loosening of Arthroplasty Components. J Bone Joint Surg Am 2019; 101:466-472. [PMID: 30845042 DOI: 10.2106/jbjs.18.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olivier Camuzard
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France.,Service de Chirurgie Réparatrice et Chirurgie de la Main (O.C.) and Service de Rhumatologie (V.B.), Hôpital Pasteur 2, CHU de Nice, France
| | - Véronique Breuil
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France.,Service de Chirurgie Réparatrice et Chirurgie de la Main (O.C.) and Service de Rhumatologie (V.B.), Hôpital Pasteur 2, CHU de Nice, France
| | - Georges F Carle
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France
| | - Valérie Pierrefite-Carle
- UMR E4320 TIRO-MATOs BIAM CEA UNS Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France
| |
Collapse
|
31
|
Ossicular chain erosion in chronic otitis media patients with cholesteatoma or granulation tissue or without those: analysis of 915 cases. Eur Arch Otorhinolaryngol 2019; 276:1301-1305. [DOI: 10.1007/s00405-019-05339-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
|
32
|
Myelofibrosis osteoclasts are clonal and functionally impaired. Blood 2019; 133:2320-2324. [PMID: 30745304 DOI: 10.1182/blood-2018-10-878926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
Bone marrow (BM) sclerosis is commonly found in patients with late-stage myelofibrosis (MF). Because osteoclasts (OCs) and osteoblasts play a key role in bone remodeling, and MF monocytes, the OC precursors, are derived from the neoplastic clone, we wondered whether decreased OC numbers or impairment in their osteolytic function affects the development of osteosclerosis. Analysis of BM biopsies from 50 MF patients showed increased numbers of multinucleated tartrate-resistant acid phosphatase (TRAP)/cathepsin K+ OCs expressing phosphorylated Janus kinase 2 (JAK2). Randomly microdissected TRAP+ OCs from 16 MF patients harbored JAK2 or calreticulin (CALR) mutations, confirming MF OCs are clonal. To study OC function, CD14+ monocytes from MF patients and healthy individuals were cultured and differentiated into OCs. Unlike normal OCs, MF OCs appeared small and round, with few protrusions, and carried the mutations and chromosomal abnormalities of neoplastic clones. In addition, MF OCs lacked F-actin-rich ring-like structures and had fewer nuclei and reduced colocalization signals, compatible with decreased fusion events, and their mineral resorption capacity was significantly reduced, indicating impaired osteolytic function. Taken together, our data suggest that, although the numbers of MF OCs are increased, their impaired osteolytic activity distorts bone remodeling and contributes to the induction of osteosclerosis.
Collapse
|
33
|
Korkosz M, Czepiel M, Guła Z, Stec M, Węglarczyk K, Rutkowska-Zapała M, Gruca A, Lenart M, Baran J, Gąsowski J, Błyszczuk P, Siedlar M. Sera of patients with axial spondyloarthritis (axSpA) enhance osteoclastogenic potential of monocytes isolated from healthy individuals. BMC Musculoskelet Disord 2018; 19:434. [PMID: 30522483 PMCID: PMC6284314 DOI: 10.1186/s12891-018-2356-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Axial spondyloarthritis (axSpA) is characterized by significant bone loss caused by dysregulation of physiological bone turnover, possibly resulting from intensified differentiation of osteoclasts. The aim of this study was to reevaluate the levels of osteoclastogenesis-mediating factors: soluble RANKL, M-CSF, OPG and other cytokines in sera of untreated, with sDMARDs and/or bDMARDs, axSpA patients and to test whether these sera influence differentiation of healthy monocytes towards osteoclast lineage. Methods Bone remodeling molecules (RANKL, M-CSF, OPG, IL-6, OSM, IL-17A, TGFβ, and TNFα) were evaluated in 27 patients with axSpA and 23 age and sex-matched controls. Disease activity (BASDAI, ASDAS) and inflammatory markers (ESR, CRP) were assessed. Monocytes obtained from healthy individuals were cultured in vitro in presence of sera from 11 randomly chosen axSpA patients and 10 controls, with addition of exogenous M-CSF and/or RANKL or without. Osteoclastic differentiation was assessed analyzing osteoclast markers (cathepsin K and RANK at mRNA level) and with osteoclast-specific staining. Results axSpA patients’ sera levels of soluble RANKL were significantly lower and M-CSF, IL-6, OSM, IL-17A and TNFα significantly higher in comparison to controls, whereas of OPG and TGFβ were comparable in both groups. Numbers of generated in vitro osteoclasts and cathepsin K mRNA levels did not differ between cultures supplemented with sera of healthy and axSpA patients, both in the absence and presence of M-CSF. Instead, addition of exogenous RANKL boosted osteoclastogenesis, which was significantly higher in cultures with axSpA sera. Furthermore, sera from axSpA patients induced substantially higher levels of RANK mRNA, independently of M-CSF and RANKL stimulation. Conclusion We show that, paradoxically, serum levels of soluble RANKL observed in axSpA are in fact significantly lower in comparison to healthy blood donors. Our results indicate that sera of axSpA patients - in contrary to healthy subjects - contain circulating, soluble factors (presumably IL-6, OSM, IL-17A, TNFα and others) able to stimulate healthy monocytes responsiveness to even relative low RANKL serum levels, by inducing high RANK mRNA expression and - as a net effect - boosting their osteoclastogenic potential. We suggest also that locally produced RANKL in axSpA may induce overactive osteoclasts from their precursors.
Collapse
Affiliation(s)
- Mariusz Korkosz
- Department of Rheumatology, Jagiellonian University Medical College, 10 Sniadeckich Str., Krakow, Poland
| | - Marcin Czepiel
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Zofia Guła
- Department of Rheumatology, Jagiellonian University Medical College, 10 Sniadeckich Str., Krakow, Poland
| | - Małgorzata Stec
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Anna Gruca
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Jerzy Gąsowski
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, 10 Sniadeckich Str., Krakow, Poland
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 265 Wielicka Str., 30-663, Krakow, Poland.
| |
Collapse
|
34
|
Drynda A, Drynda S, Kekow J, Lohmann CH, Bertrand J. Differential Effect of Cobalt and Chromium Ions as Well as CoCr Particles on the Expression of Osteogenic Markers and Osteoblast Function. Int J Mol Sci 2018; 19:ijms19103034. [PMID: 30301134 PMCID: PMC6213485 DOI: 10.3390/ijms19103034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
The balance of bone formation and resorption is the result of a regulated crosstalk between osteoblasts, osteoclasts, and osteocytes. Inflammation, mechanical load, and external stimuli modulate this system. Exposure of bone cells to metal ions or wear particles are thought to cause osteolysis via activation of osteoclasts and inhibition of osteoblast activity. Co2+ ions have been shown to impair osteoblast function and the expression of the three transforming growth factor (TGF)-β isoforms. The current study was performed to analyze how Co2+ and Cr3+ influence the expression, proliferation, and migration profile of osteoblast-like cells. The influence of Co2+, Cr3+, and CoCr particles on gene expression was analyzed using an osteogenesis PCR Array. The expression of different members of the TGF-β signaling cascade were down-regulated by Co2+, as well as several TGF-β regulated collagens, however, Cr3+ had no effect. CoCr particles partially affected similar genes as the Co2+treatment. Total collagen production of Co2+ treated osteoblasts was reduced, which can be explained by the reduced expression levels of various collagens. While proliferation of MG63 cells appears unaffected by Co2+, the migration capacity was impaired. Our data may improve the knowledge of changes in gene expression patterns, and the proliferation and migration effects caused by artificial materials.
Collapse
Affiliation(s)
- Andreas Drynda
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Susanne Drynda
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
- Clinic for Rheumatology, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Jörn Kekow
- Clinic for Rheumatology, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Christoph Hubertus Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
35
|
Heni H, Ebner JK, Schmidt G, Aktories K, Orth JHC. Involvement of Osteocytes in the Action of Pasteurella multocida Toxin. Toxins (Basel) 2018; 10:toxins10080328. [PMID: 30104531 PMCID: PMC6115833 DOI: 10.3390/toxins10080328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023] Open
Abstract
Pasteurella multocida toxin (PMT) causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. It has been reported that the toxin deamidates and activates heterotrimeric G proteins, resulting in increased differentiation of osteoclasts and blockade of osteoblast differentiation. So far, the action of PMT on osteocytes, which is the most abundant cell type in bone tissue, is not known. In MLO-Y4 osteocytes, PMT deamidated heterotrimeric G proteins, resulting in loss of osteocyte dendritic processes, stress fiber formation, cell spreading and activation of RhoC but not of RhoA. Moreover, the toxin caused processing of membrane-bound receptor activator of NF-κB ligand (RANKL) to release soluble RANKL and enhanced the secretion of osteoclastogenic TNF-α. In a co-culture model of osteocytes and bone marrow cells, PMT-induced osteoclastogenesis was largely increased as compared to the mono-culture model. The enhancement of osteoclastogenesis observed in the co-culture was blocked by sequestering RANKL with osteoprotegerin and by an antibody against TNF-α indicating involvement of release of the osteoclastogenic factors from osteocytes. Data support the crucial role of osteocytes in bone metabolism and osteoclastogenesis and identify osteocytes as important target cells of PMT in progressive atrophic rhinitis.
Collapse
Affiliation(s)
- Hannah Heni
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
- Hermann-Staudinger-Graduiertenschule, Universität Freiburg, 79104 Freiburg, Germany.
| | - Julia K Ebner
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), Universität Freiburg, 79104 Freiburg, Germany.
- Faculty of Biology, Universität Freiburg, 79104 Freiburg, Germany.
| | - Gudula Schmidt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| | - Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
| |
Collapse
|
36
|
Lionikaite V, Westerlund A, Conaway HH, Henning P, Lerner UH. Effects of retinoids on physiologic and inflammatory osteoclastogenesis in vitro. J Leukoc Biol 2018; 104:1133-1145. [DOI: 10.1002/jlb.3a0318-094rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Vikte Lionikaite
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - Anna Westerlund
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - H. Herschel Conaway
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences Little Rock Arkansas, USA
| | - Petra Henning
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - Ulf H. Lerner
- Centre for Bone and Arthritis Research at Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| |
Collapse
|
37
|
Abstract
The number of peer-reviewed articles published during the 2016 solar year and retrieved using the "autoimmunity" key word remained stable while gaining a minimal edge among the immunology articles. Nonetheless, the quality of the publications has been rising significantly and, importantly, acquisitions have become available through scientific journals dedicated to immunology or autoimmunity. Major discoveries have been made in the fields of systemic lupus erythematosus, rheumatoid arthritis, autoimmunity of the central nervous system, vasculitis, and seronegative spondyloarthrithritides. Selected examples include the role of IL17-related genes and long noncoding RNAs in systemic lupus erythematosus or the effects of anti-pentraxin 3 (PTX3) in the treatment of this paradigmatic autoimmune condition. In the case of rheumatoid arthritis, there have been reports of the role of induced regulatory T cells (iTregs) or fibrocytes and T cell interactions with exciting implications. The large number of studies dealing with neuroimmunology pointed to Th17 cells, CD56(bright) NK cells, and low-level TLR2 ligands as involved in multiple sclerosis, along with a high salt intake or the micriobiome-derived Lipid 654. Lastly, we focused on the rare vasculitides to which numerous studies were devoted and suggested that unsuspected cell populations, including monocytes, mucosal-associated invariant T cells, and innate lymphoid cells, may be crucial to ANCA-associated manifestations. This brief and arbitrary discussion of the findings published in 2016 is representative of a promising background for developments that will enormously impact the work of laboratory scientists and physicians at an exponential rate.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.
| |
Collapse
|
38
|
Granchi D, Savarino LM, Ciapetti G, Baldini N. Biological effects of metal degradation in hip arthroplasties. Crit Rev Toxicol 2017; 48:170-193. [PMID: 29130357 DOI: 10.1080/10408444.2017.1392927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metals and metal alloys are the most used materials in orthopedic implants. The focus is on total hip arthroplasty (THA) that, though well tolerated, may be associated with local and remote adverse effects in the medium-long term. This review aims to summarize data on the biological consequences of the metal implant degradation that have been attributed predominantly to metal-on-metal (MoM) THA. Local responses to metals consist of a broad clinical spectrum ranging from small asymptomatic tissue lesions to severe destruction of bone and soft tissues, which are designated as metallosis, adverse reactions to metal debris (ARMD), aseptic lymphocytic vasculitis associated lesion (ALVAL), and pseudotumors. In addition, the dissemination of metal particles and ions throughout the body has been associated with systemic adverse effects, including organ toxicity, cancerogenesis, teratogenicity, and immunotoxicity. As proved by the multitude of studies in this field, metal degradation may increase safety issues associated with THA, especially with MoM hip systems. Data collection regarding local, systemic and long-term effects plays an essential role to better define any safety risks and to generate scientifically based recommendations.
Collapse
Affiliation(s)
- Donatella Granchi
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy
| | - Lucia Maria Savarino
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy
| | - Gabriela Ciapetti
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy
| | - Nicola Baldini
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy.,b Department of Biomedical and Neuromotor Science , University of Bologna , Bologna , Italy
| |
Collapse
|
39
|
Inflammation and bone mineral density: A Mendelian randomization study. Sci Rep 2017; 7:8666. [PMID: 28819125 PMCID: PMC5561220 DOI: 10.1038/s41598-017-09080-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a common age-related disorder leading to an increase in osteoporotic fractures and resulting in significant suffering and disability. Inflammation may contribute to osteoporosis, as it does to many other chronic diseases. We examined whether inflammation is etiologically relevant to osteoporosis, assessed from bone mineral density (BMD), as a new potential target of intervention, or whether it is a symptom/biomarker of osteoporosis. We obtained genetic predictors of inflammatory markers from genome-wide association studies and applied them to a large genome wide association study of BMD. Using two-sample Mendelian randomization, we obtained unconfounded estimates of the effect of high-sensitivity C-reactive protein (hsCRP) on BMD at the forearm, femoral neck, and lumbar spine. After removing potentially pleiotropic single nucleotide polymorphisms (SNPs) possibly acting via obesity-related traits, hsCRP, based on 16 SNPs from genes including CRP, was not associated with BMD. A causal relation of hsCRP with lower BMD was not evident in this study.
Collapse
|
40
|
Tsushima H, Morimoto S, Fujishiro M, Yoshida Y, Hayakawa K, Hirai T, Miyashita T, Ikeda K, Yamaji K, Takamori K, Takasaki Y, Sekigawa I, Tamura N. Kinase inhibitors of the IGF-1R as a potential therapeutic agent for rheumatoid arthritis. Autoimmunity 2017; 50:329-335. [PMID: 28682648 DOI: 10.1080/08916934.2017.1344970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We have previously shown that the inhibition of connective tissue growth factor (CTGF) is a potential therapeutic strategy against rheumatoid arthritis (RA). CTGF consists of four distinct modules, including the insulin-like growth factor binding protein (IGFBP). In serum, insulin-like growth factors (IGFs) bind IGFBPs, interact with the IGF-1 receptor (IGF-1 R), and regulate anabolic effects and bone metabolism. We investigated the correlation between IGF-1 and the pathogenesis of RA, and the inhibitory effect on osteoclastogenesis and angiogenesis of the small molecular weight kinase inhibitor of the IGF-1 R, NVP-AEW541, against pathogenesis of RA in vitro. Cell proliferation was evaluated by cell count and immunoblotting. The expression of IGF-1 and IGF-1 R was evaluated by RT-PCR. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase staining, a bone resorption assay, and osteoclast-specific enzyme production. Angiogenesis was evaluated by a tube formation assay using human umbilical vein endothelial cells (HUVECs). The proliferation of MH7A cells was found to be inhibited in the presence of NVP-AEW541, and the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt was downregulated in MH7A cells. IGF-1 and IGF-1 R mRNA expression levels were upregulated during formation of M-colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL)-mediated osteoclast formation. Moreover, osteoclastogenesis was suppressed in the presence of NVP-AEW541. The formation of the tubular network was enhanced by IGF-1, and this effect was neutralized by NVP-ARE541. Our findings suggest that NVP-AEW541 may be utilized as a potential therapeutic agent in the treatment of RA.
Collapse
Affiliation(s)
- Hiroshi Tsushima
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Shinji Morimoto
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,c Department of Internal Medicine and Rheumatology , Juntendo University Urayasu Hospital , Urayasu , Chiba , Japan
| | - Maki Fujishiro
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Yuko Yoshida
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Kunihiro Hayakawa
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Takuya Hirai
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Tomoko Miyashita
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Keigo Ikeda
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,c Department of Internal Medicine and Rheumatology , Juntendo University Urayasu Hospital , Urayasu , Chiba , Japan
| | - Ken Yamaji
- b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Kenji Takamori
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan
| | - Yoshinari Takasaki
- b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| | - Iwao Sekigawa
- a Institute for Environment and Gender Specific Medicine , Juntendo University Graduate School of Medicine , Urayasu , Chiba , Japan.,c Department of Internal Medicine and Rheumatology , Juntendo University Urayasu Hospital , Urayasu , Chiba , Japan
| | - Naoto Tamura
- b Department of Internal Medicine and Rheumatology, School of Medicine , Juntendo University , Tokyo , Japan
| |
Collapse
|
41
|
Sabokbar A, Afrough S, Mahoney DJ, Uchihara Y, Swales C, Athanasou NA. Role of LIGHT in the pathogenesis of joint destruction in rheumatoid arthritis. World J Exp Med 2017; 7:49-57. [PMID: 28589079 PMCID: PMC5439172 DOI: 10.5493/wjem.v7.i2.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterise the role of substitutes for receptor-activator nuclear factor kappa-B ligand (RANKL) in rheumatoid arthritis (RA) joint destruction.
METHODS Synovial fluid (SF) macrophages isolated from the knee joint of RA patients were incubated with 25 ng/mL macrophage-colony stimulating factor (M-CSF) and 50 ng/mL LIGHT (lymphotoxin-like, exhibits inducible expression and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes) in the presence and absence of 25 ng/mL RANKL and 100 ng/mL osteoprotegerin (OPG) on glass coverslips and dentine slices. Osteoclastogenesis was assessed by the formation of multinucleated cells (MNCs) expressing tartrate-resistant acid phosphatase (TRAP) on coverslips and the extent of lacunar resorption pit formation on dentine slices. The concentration of LIGHT in RA and osteoarthritis (OA) synovial fluid was measured by an enzyme-linked immunosorbent assay (ELISA) and the expression of LIGHT in RA and OA synovium was determined by immunohistochemistry using an indirect immunoperoxidase technique.
RESULTS In cultures of RA SF macrophages treated with LIGHT and M-CSF, there was significant formation of TRAP + MNCs on coverslips and extensive lacunar resorption pit formation on dentine slices. SF-macrophage-osteoclast differentiation was not inhibited by the addition of OPG, a decoy receptor for RANKL. Resorption pits were smaller and less confluent than in RANKL-treated cultures but the overall percentage area of the dentine slice resorbed was comparable in LIGHT- and RANKL-treated cultures. LIGHT significantly stimulated RANKL-induced lacunar resorption compared with RA SF macrophages treated with either RANKL or LIGHT alone. LIGHT was strongly expressed by synovial lining cells, subintimal macrophages and endothelial cells in RA synovium and the concentration of LIGHT was much higher in RA compared with OA SF.
CONCLUSION LIGHT is highly expressed in RA synovium and SF, stimulates RANKL-independent/dependent osteoclastogenesis from SF macrophages and may contribute to marginal erosion formation.
Collapse
|
42
|
Chakraborty S, Kloos B, Harre U, Schett G, Kubatzky KF. Pasteurella multocida Toxin Triggers RANKL-Independent Osteoclastogenesis. Front Immunol 2017; 8:185. [PMID: 28289415 PMCID: PMC5327351 DOI: 10.3389/fimmu.2017.00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/09/2017] [Indexed: 01/15/2023] Open
Abstract
Bone remodeling is a continuous process to retain the structural integrity and function of the skeleton. A tight coupling is maintained between osteoclast-mediated resorption of old or damaged bones and osteoblast-mediated formation of new bones for bone homeostasis. While osteoblasts differentiate from mesenchymal stem cells, osteoclasts are hematopoietic in origin and derived from myeloid precursor cells. Osteoclast differentiation is driven by two cytokines, cytokine receptor activator of NF-κB ligand (RANKL), and macrophage colony-stimulating factor. Imbalances in the activity of osteoblasts and osteoclasts result in the development of bone disorders. Bacterially caused porcine atrophic rhinitis is characterized by a loss of nasal ventral conche bones and a distortion of the snout. While Bordetella bronchiseptica strains cause mild and reversible symptoms, infection of pigs with toxigenic Pasteurella multocida strains causes a severe and irreversible decay. The responsible virulence factor Pasteurella multocida toxin (PMT) contains a deamidase activity in its catalytical domain that constitutively activates specific heterotrimeric G proteins to induce downstream signaling cascades. While osteoblasts are inhibited by the toxin, osteoclasts are activated, thus skewing bone remodeling toward excessive bone degradation. Still, the mechanism by which PMT interferes with bone homeostasis, and the reason for this unusual target tissue is not yet well understood. Here, we show that PMT has the potential to differentiate bone marrow-derived macrophages into functional osteoclasts. This toxin-mediated differentiation process is independent of RANKL, a cytokine believed to be indispensable for triggering osteoclastogenesis, as addition of osteoprotegerin to PMT-treated macrophages does not show any effect on PMT-induced osteoclast formation. Although RANKL is not a prerequisite, toxin-primed macrophages show enhanced responsiveness to low concentrations of RANKL, suggesting that the PMT-generated microenvironment offers conditions where low concentrations of RANKL lead to an increase in the number of osteoclasts resulting in increased resorption. PMT-mediated release of the osteoclastogenic cytokines such as IL-6 and TNF-α, but not IL-1, supports the differentiation process. Although the production of cytokines and the subsequent activation of signaling cascades are necessary for PMT-mediated differentiation into osteoclasts, they are not sufficient and PMT-induced activation of G protein signaling is essential for efficient osteoclastogenesis.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg , Heidelberg , Germany
| | - Bianca Kloos
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg , Heidelberg , Germany
| | - Ulrike Harre
- Department of Internal Medicine 3, Institute of Clinical Immunology, University of Erlangen-Nuremberg , Erlangen , Germany
| | - Georg Schett
- Department of Internal Medicine 3, Institute of Clinical Immunology, University of Erlangen-Nuremberg , Erlangen , Germany
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg , Heidelberg , Germany
| |
Collapse
|
43
|
Chen H, Li M, Sanchez E, Wang CS, Lee T, Soof CM, Casas CE, Cao J, Xie C, Udd KA, DeCorso K, Tang GY, Spektor TM, Berenson JR. Combined TRAF6 Targeting and Proteasome Blockade Has Anti-myeloma and Anti-Bone Resorptive Effects. Mol Cancer Res 2017; 15:598-609. [PMID: 28122920 DOI: 10.1158/1541-7786.mcr-16-0293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/06/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Haiming Chen
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Mingjie Li
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Eric Sanchez
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Cathy S Wang
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Tiffany Lee
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Camilia M Soof
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Christian E Casas
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Jasmin Cao
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Colin Xie
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Kyle A Udd
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Kevin DeCorso
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - George Y Tang
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - Tanya M Spektor
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California
| | - James R Berenson
- Institute for Myeloma & Bone Cancer Research, West Hollywood, California.
| |
Collapse
|
44
|
The role of bone resorption in the etiopathogenesis of acquired middle ear cholesteatoma. Eur Arch Otorhinolaryngol 2016; 274:2071-2078. [DOI: 10.1007/s00405-016-4422-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/03/2016] [Indexed: 12/13/2022]
|
45
|
NADPH oxidase gp91 phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep 2016; 6:38014. [PMID: 27897222 PMCID: PMC5126560 DOI: 10.1038/srep38014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023] Open
Abstract
Bone-marrow derived monocyte-macrophages (BMMs) differentiate into osteoclasts by M-CSF along subsequent RANKL stimulation possibly in collaboration with many other unknown cytokines released by pre- or mature osteoblasts. The differentiation process requires receptor activator of nuclear factor kappa-B ligand (RANKL)/RANK signaling and reactive oxygen species (ROS) such as superoxide anion (O2•−). Gp91phox, a plasma membrane subunit of NADPH oxidase (Nox), is constitutively expressed in BMMs and plays a major role in superoxide anion production. In this study, we found that mice deficient in gp91phox (gp91phox−/−) showed defects in osteoclast differentiation. Femurs of these mice produced osteoclasts at about 70% of the levels seen in femurs from wild-type mice, and accordingly exhibited excessive bone density. This abnormal bone growth in the femurs of gp91phox−/− mice resulted from impaired osteoclast differentiation. In addition, gp91phox−/− mice were defective for RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1). However, H2O2 treatment compensated for gp91phox deficiency in BMMs, almost completely rescuing osteoclast differentiation. Treating wild-type BMMs with antioxidants and superoxide inhibitors resulted in a differentiation defect resembling the phenotype of gp91phox−/− BMMs. Therefore, our results demonstrate that gp91phox-derived superoxide is important for promoting efficient osteoclast differentiation by inducing NFATc1 as a downstream signaling mediator of RANK.
Collapse
|
46
|
Chen N, Gao RF, Yuan FL, Zhao MD. Recombinant Human Endostatin Suppresses Mouse Osteoclast Formation by Inhibiting the NF-κB and MAPKs Signaling Pathways. Front Pharmacol 2016; 7:145. [PMID: 27313530 PMCID: PMC4887464 DOI: 10.3389/fphar.2016.00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/17/2016] [Indexed: 11/14/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by synovial hyperplasia and progressive joint destruction. As reported previously, recombinant human endostatin (rhEndostatin) is associated with inhibition of joint bone destruction present in rat adjuvant-induced arthritis; however, the effect of rhEndostatin on bone destruction is not known. This study was designed to assess the inhibitory effect and mechanisms of rhEndostatin on formation and function of osteoclasts in vitro, and to gain insight into the mechanism underlying the inhibitory effect of bone destruction. Bone marrow-derived macrophages isolated from BALB/c mice were stimulated with receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor to establish osteoclast formation. Osteoclast formation was determined by TRAP staining. Cell viability of BMMs affected by rhEndostatin was determined using a MTT assay. Bone resorption was examined with a bone resorption pits assay. The expression of osteoclast-specific markers was analyzed using quantitative real-time PCR. The related signaling pathways were examined using a Luciferase reporter assay and western blot analysis. Indeed, rhEndostatin showed a significant reduction in the number of osteoclast-like cells and early-stage bone resorption. Moreover, molecular analysis demonstrated that rhEndostatin attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation of IκBα and NF-κB p65 nuclear translocation. Furthermore, rhEndostatin significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases, such as ERK1/2, JNK, and p38. Hence, we demonstrated for the first time that preventing the formation and function of osteoclasts is an important anti-bone destruction mechanism of rhEndostatin, which might be useful in the prevention and treatment of bone destruction in RA.
Collapse
Affiliation(s)
- Nong Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Qingpu Branch, Fudan University Shanghai, China
| | - Ru-Feng Gao
- Department of Orthopaedic Surgery, Zhongshan Hospital, Qingpu Branch, Fudan University Shanghai, China
| | - Feng-Lai Yuan
- Department of Orthopaedics and Central Laboratory, The Third Hospital Affiliated to Nantong University Wuxi, China
| | - Ming-Dong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
47
|
Gärtner M, Sigmund IK, Alasti F, Supp G, Radner H, Machold K, Smolen JS, Aletaha D. Clinical joint inactivity predicts structural stability in patients with established rheumatoid arthritis. RMD Open 2016; 2:e000241. [PMID: 27110386 PMCID: PMC4838760 DOI: 10.1136/rmdopen-2016-000241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/09/2016] [Accepted: 02/20/2016] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Clinical joint activity is a strong predictor of joint damage in rheumatoid arthritis (RA), but progression of damage might increase despite clinical inactivity of the respective joint (silent progression). The aim of this study was to evaluate the prevalence of silent joint progression, but particularly on the patient level and to investigate the duration of clinical inactivity as a marker for non-progression on the joint level. METHODS 279 patients with RA with any radiographic progression over an observational period of 3-5 years were included. We obtained radiographic and clinical data of 22 hand/finger joints over a period of at least 3 years. Prevalence of silent progression and associations of clinical joint activity and radiographic progression were evaluated. RESULTS 120 (43.0%) of the patients showed radiographic progression in at least one of their joints without any signs of clinical activity in that respective joint. In only 7 (5.8%) patients, such silent joint progression would go undetected, as the remainder had other joints with clinical activity, either with (n=84; 70.0%) or without (n=29; 24.2%) accompanying radiographic progression. Also, the risk of silent progression decreases with duration of clinical activity. CONCLUSIONS Silent progression of a joint without accompanying apparent clinical activity in any other joint of a patient was very rare, and would therefore be most likely detected by the assessment of the patient. Thus, full clinical remission is an excellent marker of structural stability in patients with RA, and the maintenance of this state reduces the risk of progression even further.
Collapse
Affiliation(s)
- M Gärtner
- Department of Rheumatology, Department of Medicine III , Medical University of Vienna , Vienna , Austria
| | - I K Sigmund
- Department of Rheumatology, Department of Medicine III , Medical University of Vienna , Vienna , Austria
| | - F Alasti
- Department of Rheumatology, Department of Medicine III , Medical University of Vienna , Vienna , Austria
| | - G Supp
- Department of Rheumatology, Department of Medicine III , Medical University of Vienna , Vienna , Austria
| | - H Radner
- Department of Rheumatology, Department of Medicine III , Medical University of Vienna , Vienna , Austria
| | - K Machold
- Department of Rheumatology, Department of Medicine III , Medical University of Vienna , Vienna , Austria
| | - J S Smolen
- Department of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; 2nd Department of Medicine, Hietzing Hospital, Vienna, Austria
| | - D Aletaha
- Department of Rheumatology, Department of Medicine III , Medical University of Vienna , Vienna , Austria
| |
Collapse
|