1
|
Hernández-Díaz Y, Genis-Mendoza AD, González-Castro TB, Fresán A, Tovilla-Zárate CA, López-Narváez ML, Juárez-Rojop IE, Nicolini H. Exploring Candidate Gene Studies and Alexithymia: A Systematic Review. Genes (Basel) 2024; 15:1025. [PMID: 39202385 PMCID: PMC11353493 DOI: 10.3390/genes15081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Alexithymia is a trait involving difficulties in processing emotions. Genetic association studies have investigated candidate genes involved in alexithymia's pathogenesis. Therefore, the aim of the present study was to perform a systematic review of the genetic background associated with alexithymia. METHODS A systematic review of genetic studies of people with alexithymia was conducted. Electronic databases including PubMed, Scopus, and Web of Science were searched for the study purpose. We used the words "Alexithymia", "gene", "genetics", "variants", and "biomarkers". The present systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement. We found only candidate gene studies. A total of seventeen studies met the eligibility criteria, which comprised 22,361 individuals. The candidate genes associated with alexithymia were the serotoninergic pathway genes solute carrier family 6 member 4 (SLC6A4), serotonin 1A receptor (HTR1A), and serotonin 1A receptor (HTR2A); the neurotransmitter metabolism genes dopamine receptor D2 (DRD2), ankyrin repeat and kinase domain containing 1 (ANKK1), catechol-o-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF), and oxytocin receptor (OXTR); and other pathway genes, vitamin D-binding protein (VDBP), tumor protein P53 regulated apoptosis inducing protein 1 (TP53AIP1), Rho GTPase Activating Protein 32 (ARHGAP32), and transmembrane protein 88B (TMEM88B). CONCLUSION The results of this study showed that only case-control gene studies have been performed in alexithymia. On the basis of our findings, the majority of alexithymia genes and polymorphisms in this study belong to the serotoninergic pathway and neurotransmitter metabolism genes. These data suggest a role of serotoninergic neurotransmission in alexithymia. Nevertheless, more and future research is required to learn about the role of these genes in alexithymia.
Collapse
Affiliation(s)
- Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Mexico;
| | | | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Mexico;
| | - Ana Fresán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico;
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Mexico; (C.A.T.-Z.); (M.L.L.-N.)
| | - María Lilia López-Narváez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86650, Mexico; (C.A.T.-Z.); (M.L.L.-N.)
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Mexico;
| | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| |
Collapse
|
2
|
Chen R, Wang Z, Lin Q, Hou X, Jiang Y, Le Q, Liu X, Ma L, Wang F. Destabilization of fear memory by Rac1-driven engram-microglia communication in hippocampus. Brain Behav Immun 2024; 119:621-636. [PMID: 38670239 DOI: 10.1016/j.bbi.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Rac1 is a key regulator of the cytoskeleton and neuronal plasticity, and is known to play a critical role in psychological and cognitive brain disorders. To elucidate the engram specific Rac1 signaling in fear memory, a doxycycline (Dox)-dependent robust activity marking (RAM) system was used to label dorsal dentate gyrus (DG) engram cells in mice during contextual fear conditioning. Rac1 mRNA and protein levels in DG engram cells were peaked at 24 h (day 1) after fear conditioning and were more abundant in the fear engram cells than in the non-engram cells. Optogenetic activation of Rac1 in a temporal manner in DG engram cells before memory retrieval decreased the freezing level in the fear context. Optogenetic activation of Rac1 increased autophagy protein 7 (ATG7) expression in the DG engram cells and activated DG microglia. Microglia-specific transcriptomics and fluorescence in situ hybridization revealed that overexpression of ATG7 in the fear engram cells upregulated the mRNA of Toll-like receptor TLR2/4 in DG microglia. Knockdown of microglial TLR2/4 rescued fear memory destabilization induced by ATG7 overexpression or Rac1 activation in DG engram cells. These results indicate that Rac1-driven communications between engram cells and microglia contributes to contextual fear memory destabilization, and is mediated by ATG7 and TLR2/4, and suggest a novel mechanistic framework for the cytoskeletal regulator in fear memory interference.
Collapse
Affiliation(s)
- Ruyan Chen
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Zhilin Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qing Lin
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xutian Hou
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yan Jiang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xing Liu
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| |
Collapse
|
3
|
Wan Y, Wong OW, Tun HM, Su Q, Xu Z, Tang W, Ma SL, Chan S, Chan FKL, Ng SC. Fecal microbial marker panel for aiding diagnosis of autism spectrum disorders. Gut Microbes 2024; 16:2418984. [PMID: 39468837 PMCID: PMC11540074 DOI: 10.1080/19490976.2024.2418984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Accumulating evidence suggests that gut microbiota alterations influence brain function and could serve as diagnostic biomarkers and therapeutic targets. The potential of using fecal microbiota signatures to aid autism spectrum disorder (ASD) detection is still not fully explored. Here, we assessed the potential of different levels of microbial markers (taxonomy and genome) in distinguishing children with ASD from age and gender-matched typically developing peers (n = 598, ASD vs TD = 273 vs 325). A combined microbial taxa and metagenome-assembled genome (MAG) markers showed a better performance than either microbial taxa or microbial MAGs alone for detecting ASD. A machine-learning model comprising 5 bacterial taxa and 44 microbial MAG markers (2 viral MAGs and 42 bacterial MAGs) achieved an area under the receiving operator curve (AUROC) of 0.886 in the discovery cohort and 0.734 in an independent validation cohort. Furthermore, the identified biomarkers and predicted ASD risk score also significantly correlated with the core symptoms measured by the Social Responsiveness Scale-2 (SRS-2). The microbiome panel showed a superior classification performance in younger children (≤6 years old) with an AUROC of 0.845 than older children (>6 years). The model was broadly applicable to subjects across genders, with or without gastrointestinal tract symptoms (constipation and diarrhea) and with or without psychiatric comorbidities (attention deficit and hyperactivity disorder and anxiety). This study highlights the potential clinical validity of fecal microbiome to aid in ASD diagnosis and will facilitate studies to understand the association of disturbance of human gut microbiota and ASD symptom severity.
Collapse
Affiliation(s)
- Yating Wan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oscar W.H. Wong
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hein M Tun
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Whitney Tang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Suk Ling Ma
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sandra Chan
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The D. H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Rani N, Boora N, Rani R, Kumar V, Ahalawat N. Molecular dynamics simulation of RAC1 protein and its de novo variants related to developmental disorders. J Biomol Struct Dyn 2023; 42:13437-13446. [PMID: 37897175 DOI: 10.1080/07391102.2023.2275188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) are conceptualized as childhood disability, but it has increasingly been recognized as lifelong neurological conditions that could notably impact adult functioning and quality of life. About 1%-3% of the general population suffers from NDDs including ADHD, ASD, IDD, communication disorders, motor disorders, etc. Studies suggest that Rho GTPases are key in neuronal development, highlighting the importance of altered GTPase signaling in NDDs. RAC1, a member of the Rho GTPase family, plays a critical role in neurogenesis, migration, synapse formation, axon growth, and regulation of actin cytoskeleton dynamics. We performed 6µs all-atom molecular dynamics simulation of native RAC1 (PDB: 3TH5) and three-point mutations (C18Y, N39S, and Y64D) related to developmental disorders to understand the impact of mutations on protein stability and functional dynamics. Our analysis, which included root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA), revealed that the N39S and Y64D mutations induced significant structural changes in RAC1. These alterations primarily occurred in the functional region adjacent to switch II, a region crucial for complex conformational rearrangements during the GDP and GTP exchange cycle.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nigam Rani
- Department of Human Development and Family Studies, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Nisha Boora
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Reena Rani
- Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Vinay Kumar
- Department of Mathematics and Statistics, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Navjeet Ahalawat
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University Hisar, Hisar, India
| |
Collapse
|
5
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Roles of Rac1-Dependent Intrinsic Forgetting in Memory-Related Brain Disorders: Demon or Angel. Int J Mol Sci 2023; 24:10736. [PMID: 37445914 DOI: 10.3390/ijms241310736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
6
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
7
|
Vakilzadeh G, Martinez-Cerdeño V. Pathology and Astrocytes in Autism. Neuropsychiatr Dis Treat 2023; 19:841-850. [PMID: 37077706 PMCID: PMC10106330 DOI: 10.2147/ndt.s390053] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 04/21/2023] Open
Abstract
A distinct pathology for autism spectrum disorder (ASD) remains elusive. Human and animal studies have focused on investigating the role of neurons in ASD. However, recent studies have hinted that glial cell pathology could be a characteristic of ASD. Astrocytes are the most abundant glial cell in the brain and play an important role in neuronal function, both during development and in adult. They regulate neuronal migration, dendritic and spine development, and control the concentration of neurotransmitters at the synaptic cleft. They are also responsible for synaptogenesis, synaptic development, and synaptic function. Therefore, any change in astrocyte number and/or function could contribute to the impairment of connectivity that has been reported in ASD. Data available to date is scarce but indicates that while the number of astrocytes is reduced, their state of activation and their GFAP expression is increased in ASD. Disruption of astrocyte function in ASD may affect proper neurotransmitter metabolism, synaptogenesis, and the state of brain inflammation. Astrocytes alterations are common to ASD and other neurodevelopmental disorders. Future studies about the role of astrocytes in ASD are required to better understand this disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, and Shriners Hospitals for Children, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
- Correspondence: Veronica Martinez-Cerdeño, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA, Tel +916 453-2163, Email
| |
Collapse
|
8
|
Wan Y, Zuo T, Xu Z, Zhang F, Zhan H, Chan D, Leung TF, Yeoh YK, Chan FKL, Chan R, Ng SC. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut 2022; 71:910-918. [PMID: 34312160 DOI: 10.1136/gutjnl-2020-324015] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The gut microbiota has been suggested to play a role in autism spectrum disorder (ASD). We postulate that children with ASD harbour an altered developmental profile of the gut microbiota distinct from that of typically developing (TD) children. Here, we aimed to characterise compositional and functional alterations in gut microbiome in association with age in children with ASD and to identify novel faecal bacterial markers for predicting ASD. DESIGN We performed deep metagenomic sequencing in faecal samples of 146 Chinese children (72 ASD and 74 TD children). We compared gut microbial composition and functions between children with ASD and TD children. Candidate bacteria markers were identified and validated by metagenomic analysis. Gut microbiota development in relation to chronological age was assessed using random forest model. RESULTS ASD and chronological age had the most significant and largest impacts on children's faecal microbiome while diet showed no correlation. Children with ASD had significant alterations in faecal microbiome composition compared with TD children characterised by increased bacterial richness (p=0.021) and altered microbiome composition (p<0.05). Five bacterial species were identified to distinguish gut microbes in ASD and TD children, with areas under the receiver operating curve (AUC) of 82.6% and 76.2% in the discovery cohort and validation cohort, respectively. Multiple neurotransmitter biosynthesis related pathways in the gut microbiome were depleted in children with ASD compared with TD children (p<0.05). Developing dynamics of growth-associated gut bacteria (age-discriminatory species) seen in TD children were lost in children with ASD across the early-life age spectrum. CONCLUSIONS Gut microbiome in Chinese children with ASD was altered in composition, ecological network and functionality compared with TD children. We identified novel bacterial markers for prediction of ASD and demonstrated persistent underdevelopment of the gut microbiota in children with ASD which lagged behind their respective age-matched peers.
Collapse
Affiliation(s)
- Yating Wan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Tao Zuo
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhilu Xu
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Fen Zhang
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Hui Zhan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Dorothy Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China.,Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| | - Ruth Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Siew C Ng
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.,Microbiota I-Center (MagIC), Hong Kong, China
| |
Collapse
|
9
|
Liu X, Ying J, Wang X, Zheng Q, Zhao T, Yoon S, Yu W, Yang D, Fang Y, Hua F. Astrocytes in Neural Circuits: Key Factors in Synaptic Regulation and Potential Targets for Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:729273. [PMID: 34658786 PMCID: PMC8515196 DOI: 10.3389/fnmol.2021.729273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are the major glial cells in the brain, which play a supporting role in the energy and nutritional supply of neurons. They were initially regarded as passive space-filling cells, but the latest progress in the study of the development and function of astrocytes highlights their active roles in regulating synaptic transmission, formation, and plasticity. In the concept of "tripartite synapse," the bidirectional influence between astrocytes and neurons, in addition to their steady-state and supporting function, suggests that any negative changes in the structure or function of astrocytes will affect the activity of neurons, leading to neurodevelopmental disorders. The role of astrocytes in the pathophysiology of various neurological and psychiatric disorders caused by synaptic defects is increasingly appreciated. Understanding the roles of astrocytes in regulating synaptic development and the plasticity of neural circuits could help provide new treatments for these diseases.
Collapse
Affiliation(s)
- Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Tiancheng Zhao
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Sungtae Yoon
- Helping Minds International Charitable Foundation, New York, NY, United States
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
10
|
Soria-Ortiz MB, Reyes-Ortega P, Martínez-Torres A, Reyes-Haro D. A Functional Signature in the Developing Cerebellum: Evidence From a Preclinical Model of Autism. Front Cell Dev Biol 2021; 9:727079. [PMID: 34540842 PMCID: PMC8448387 DOI: 10.3389/fcell.2021.727079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental conditions detected during childhood when delayed language onset and social deficits are observed. Children diagnosed with ASD frequently display sensorimotor deficits associated with the cerebellum, suggesting a dysfunction of synaptic circuits. Astroglia are part of the tripartite synapses and postmortem studies reported an increased expression of the glial fibrillary acidic protein (GFAP) in the cerebellum of ASD patients. Astroglia respond to neuronal activity with calcium transients that propagate to neighboring cells, resulting in a functional response known as a calcium wave. This form of intercellular signaling is implicated in proliferation, migration, and differentiation of neural precursors. Prenatal exposure to valproate (VPA) is a preclinical model of ASD in which premature migration and excess of apoptosis occur in the internal granular layer (IGL) of the cerebellum during the early postnatal period. In this study we tested calcium wave propagation in the IGL of mice prenatally exposed to VPA. Sensorimotor deficits were observed and IGL depolarization evoked a calcium wave with astrocyte recruitment. The calcium wave propagation, initial cell recruitment, and mean amplitude of the calcium transients increased significantly in VPA-exposed mice compared to the control group. Astrocyte recruitment was significantly increased in the VPA model, but the mean amplitude of the calcium transients was unchanged. Western blot and histological studies revealed an increased expression of GFAP, higher astroglial density and augmented morphological complexity. We conclude that the functional signature of the IGL is remarkably augmented in the preclinical model of autism.
Collapse
Affiliation(s)
- María Berenice Soria-Ortiz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Pamela Reyes-Ortega
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
11
|
LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021; 10:cells10082079. [PMID: 34440848 PMCID: PMC8391678 DOI: 10.3390/cells10082079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
Collapse
|
12
|
Bioinformatics Analysis: The Regulatory Network of hsa_circ_0007843 and hsa_circ_0007331 in Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6662897. [PMID: 34337040 PMCID: PMC8324362 DOI: 10.1155/2021/6662897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Objective To analyze the molecular regulation network of circular RNA (circRNA) in colon cancer (CC) by bioinformatics method. Methods hsa_circ_0007843 and hsa_circ_0007331 proved to be associated with CC in previous studies were chosen as the research object. ConSite database was used to predict the transcription factors associated with circRNA, and the CC-associated transcription factors were screened out after intersection. The CircInteractome database was used to predict the RNA-binding proteins (RBPs) interacting with circRNAs and screen out the CC-associated RBPs after an intersection. Furthermore, the CircInteractome database was used to predict the miRNAs interrelated with circRNAs, and the HMDD v3.2 database was used to search for miRNAs associated with CC. The target mRNAs of miRNA were predicted by the miRWalk v3.0 database. CC-associated target genes were screened out from the GeneCards database, and the upregulated genes were enriched and analyzed by the FunRich 3.1.3 software. Finally, the molecular regulatory network diagram of circRNA in CC was plotted. Results The ConSite database predicted a total of 14 common transcription factors of hsa_circ_0007843 and hsa_circ_0007331, among which Snail, SOX17, HNF3, C-FOS, and RORα-1 were related to CC. The CircInteractome database predicted that the RBPs interacting with these two circRNAs were AGO2 and EIF4A3, and both of them were related to CC. A total of 17 miRNAs interacting with hsa_circ_0007843 and hsa_circ_0007331 were predicted by CircInteractome database. miR-145-5p, miR-21, miR-330-5p, miR-326, and miR-766 were associated with CC according to the HMDDv3.2 database. miR-145-5p and miR-330-5p, lowly expressed in CC, were analyzed in the follow-up study. A total of 676 common target genes of these two miRNAs were predicted by the miRWalk3.0 database. And 57 target genes were involved in the occurrence and development of CC from the GeneCards database, with 23 genes downregulated and 34 genes upregulated. Additionally, GO analysis showed that the 34 upregulated genes were mainly enriched in biological processes such as signal transduction and cell communication. KEGG pathway analysis showed that the upregulated genes were closely related to integrin, ErbB receptor, and ALK1 signal pathways. Finally, a complete regulatory network of hsa_circ_0007843 and hsa_circ_0007331 in CC was proposed, whereby each one of the participants was either directly or indirectly associated and whose deregulation may result in CC progression. Conclusion Predicting the molecular regulatory network of circRNAs by bioinformatics provides a new theoretical basis for further occurrence and development pathogenesis of CC and good guidance for future experimental research.
Collapse
|
13
|
Reichova A, Schaller F, Bukatova S, Bacova Z, Muscatelli F, Bakos J. The impact of oxytocin on neurite outgrowth and synaptic proteins in Magel2-deficient mice. Dev Neurobiol 2021; 81:366-388. [PMID: 33609001 DOI: 10.1002/dneu.22815] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
Abstract
Oxytocin contributes to the regulation of cytoskeletal and synaptic proteins and could, therefore, affect the mechanisms of neurodevelopmental disorders, including autism. Both the Prader-Willi syndrome and Schaaf-Yang syndrome exhibit autistic symptoms involving the MAGEL2 gene. Magel2-deficient mice show a deficit in social behavior that is rescued following the postnatal administration of oxytocin. Here, in Magel2-deficient mice, we showed that the neurite outgrowth of primary cultures of immature hippocampal neurons is reduced. Treatment with oxytocin reversed this abnormality. In the hippocampus of Magel2-deficient pups, we further demonstrated that several transcripts of neurite outgrowth-associated proteins, synaptic vesicle proteins, and cell-adhesion molecules are decreased. In the juvenile stage, when neurons are mature, normalization or even overexpression of most of these markers was observed, suggesting a delay in the neuronal maturation of Magel2-deficient pups. Moreover, we found reduced transcripts of the excitatory postsynaptic marker, Psd95 in the hippocampus and we observed a decrease of PSD95/VGLUT2 colocalization in the hippocampal CA1 and CA3 regions in Magel2-deficient mice, indicating a defect in glutamatergic synapses. Postnatal administration of oxytocin upregulated postsynaptic transcripts in pups; however, it did not restore the level of markers of glutamatergic synapses in Magel2-deficient mice. Overall, Magel2 deficiency leads to abnormal neurite outgrowth and reduced glutamatergic synapses during development, suggesting abnormal neuronal maturation. Oxytocin stimulates the expression of numerous genes involved in neurite outgrowth and synapse formation in early development stages. Postnatal oxytocin administration has a strong effect on development that should be considered for certain neuropsychiatric conditions in infancy.
Collapse
Affiliation(s)
- Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Fabienne Schaller
- Mediterranean Institute of Neurobiology (INMED), Parc Scientifique de Luminy, Marseille, France
| | - Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Françoise Muscatelli
- Mediterranean Institute of Neurobiology (INMED), Parc Scientifique de Luminy, Marseille, France
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
14
|
Luo T, Ou JN, Cao LF, Peng XQ, Li YM, Tian YQ. The Autism-Related lncRNA MSNP1AS Regulates Moesin Protein to Influence the RhoA, Rac1, and PI3K/Akt Pathways and Regulate the Structure and Survival of Neurons. Autism Res 2020; 13:2073-2082. [PMID: 33215882 DOI: 10.1002/aur.2413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023]
Abstract
Autism spectrum disorder (ASD) is a complex disease involving multiple genes and multiple sites, and it is closely related to environmental factors. It has been gradually revealed that long noncoding RNAs (lncRNAs) may regulate the pathogenesis of ASD at the epigenetic level. In neuronal cells, the lncRNA moesin pseudogene 1 antisense (MSNP1AS) forms a double-stranded RNA with moesin (MSN) to suppress moesin protein expression. MSNP1AS overexpression can activate the RhoA pathway and inhibit the Rac1 and PI3K/Akt pathways; however, the regulation of Rac1 by MSNP1AS is not associated with MSN, and the effect on the RhoA pathway may also be associated with other factors. MSNP1AS can decrease the number and length of neurites, inhibit neuronal cell viability and migration, and promote apoptosis. Downregulation of MSN expression functions similarly to MSNP1AS, and its overexpression can block the above functions of MSNP1AS. In addition, in vivo experiments show that MSN improves social interactions and reduces repetitive behaviors in BTBR mice, decreases the activity of RhoA and restores the activity of PI3K/Akt pathway. Therefore, the abnormal expression of MSNP1AS in ASD patients might influence the structure and survival of neuronal cells through the regulation of moesin protein expression to facilitate the development and progression of ASD. These findings provide new evidence for studying the mechanisms of lncRNAs in ASD. LAY SUMMARY: Autism spectrum disorder (ASD) is a common neurodevelopmental disease and its neurodevelopmental mechanisms have not been elucidated. More and more studies have found that long noncoding RNAs (lncRNAs) can regulate the development of central nervous system in many ways and affect the pathogenic process of ASD. Moesin pseudogene 1 antisense (MSNP1AS) is an up-regulated lncRNA in ASD patients. In-depth functional experiments showed that MSNP1AS inhibited moesin protein expression and regulated the activation of multiple signaling pathways, thus decreasing the number and length of neurites, inhibiting neuronal cell viability and migration, and promoting apoptosis. Therefore, MSNP1AS is an important lncRNA related to ASD and can regulate the biological function of neurons.
Collapse
Affiliation(s)
- Ting Luo
- XiangYa School of Public Health, Central South University, Changsha, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin-Nan Ou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Fang Cao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Qing Peng
- Medical Administration Department, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong-Quan Tian
- XiangYa School of Public Health, Central South University, Changsha, China
| |
Collapse
|
15
|
Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain 2020; 13:96. [PMID: 32571372 PMCID: PMC7310353 DOI: 10.1186/s13041-020-00634-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). METHODS A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. RESULTS From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. CONCLUSIONS Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Paskus JD, Herring BE, Roche KW. Kalirin and Trio: RhoGEFs in Synaptic Transmission, Plasticity, and Complex Brain Disorders. Trends Neurosci 2020; 43:505-518. [PMID: 32513570 DOI: 10.1016/j.tins.2020.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Changes in the actin cytoskeleton are a primary mechanism mediating the morphological and functional plasticity that underlies learning and memory. The synaptic Ras homologous (Rho) guanine nucleotide exchange factors (GEFs) Kalirin and Trio have emerged as central regulators of actin dynamics at the synapse. The increased attention surrounding Kalirin and Trio stems from the growing evidence for their roles in the etiology of a wide range of neurodevelopmental and neurodegenerative disorders. In this Review, we discuss recent findings revealing the unique and diverse functions of these paralog proteins in neurodevelopment, excitatory synaptic transmission, and plasticity. We additionally survey the growing literature implicating these proteins in various neurological disorders.
Collapse
Affiliation(s)
- Jeremiah D Paskus
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Bruce E Herring
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
17
|
Abstract
Current understanding of the neuroanatomical abnormalities in autism includes gross anatomical changes in several brain areas and microstructural alterations in neuronal cells as well. There are many controversies in the interpretation of the imaging data, evaluation of volume and size of particular brain areas, and their functional translation into a broad autism phenotype. Critical questions of neuronal pathology in autism include the concept of the reversible plasticity of morphological changes, volume alterations of brain areas, and both short- and long-term consequences of adverse events present during the brain development. At the cellular level, remodeling of the actin cytoskeleton is considered as one of the critical factors associated with the autism spectrum disorders. Alterations in the composition of the neuronal cytoskeleton, in particular abnormalities in the polymerization of actin filaments and their associated proteins underlie the functional consequences in behavior resulting in symptoms and clinical correlates of autism spectrum disorder. In the present review, a special attention is devoted to the role of oxytocin in experimental models of neurodevelopmental disorders manifesting alterations in neuronal morphology.
Collapse
|
18
|
Argou-Cardozo I, Cano Martín JC, Zeidán-Chuliá F. Dental amalgam fillings and the use of technological devices as an environmental factor: Updating the cumulative mercury exposure-based hypothesis of autism. Eur J Dent 2019; 11:569-570. [PMID: 29279688 PMCID: PMC5727747 DOI: 10.4103/ejd.ejd_222_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Isadora Argou-Cardozo
- Specialization Course in Public Management and Regional Development, Faculty of Administration and Tourism, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Fares Zeidán-Chuliá
- Department of Periodontology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Kowalski TW, Dupont ÁDV, Rengel BD, Sgarioni E, Gomes JDA, Fraga LR, Schuler-Faccini L, Vianna FSL. Assembling systems biology, embryo development and teratogenesis: What do we know so far and where to go next? Reprod Toxicol 2019; 88:67-75. [PMID: 31362043 DOI: 10.1016/j.reprotox.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023]
Abstract
The recognition of molecular mechanisms of a teratogen can provide insights to understand its embryopathy, and later to plan strategies for the prevention of new exposures. In this context, experimental research is the most invested approach. Despite its relevance, these assays require financial and time investment. Hence, the evaluation of such mechanisms through systems biology rise as an alternative for this conventional methodology. Systems biology is an integrative field that connects experimental and computational analyses, assembling interaction networks between genes, proteins, and even teratogens. It is a valid strategy to generate new hypotheses, that can later be confirmed in experimental assays. Here, we present a literature review of the application of systems biology in embryo development and teratogenesis studies. We provide a glance at the data available in public databases, and evaluate common mechanisms between different teratogens. Finally, we discuss the advantages of using this strategy in future teratogenesis researches.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Ágata de Vargas Dupont
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduarda Sgarioni
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil; Sistema Nacional de Informação sobre Agentes Teratogênicos, SIAT, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Group of Post-Graduation Research, GPPG, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
20
|
Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019; 101:1070-1088. [PMID: 30897358 PMCID: PMC9628679 DOI: 10.1016/j.neuron.2019.02.041] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Abstract
Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse. In this article, we review brain architecture and synaptic pathways that are dysregulated in FXS and ASDs, including spine architecture, signaling in synaptic plasticity, local protein synthesis, (m)RNA modifications, and degradation. mRNA repression is a powerful mechanism for the regulation of synaptic structure and efficacy. We infer that there is no single pathway that explains most of the etiology and discuss new findings and the implications for future work directed at improving our understanding of the pathogenesis of FXS and related ASDs and the design of therapeutic strategies to ameliorate these disorders.
Collapse
Affiliation(s)
- Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
21
|
Zatkova M, Reichova A, Bacova Z, Bakos J. Activation of the Oxytocin Receptor Modulates the Expression of Synaptic Adhesion Molecules in a Cell-Specific Manner. J Mol Neurosci 2019; 68:171-180. [DOI: 10.1007/s12031-019-01296-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/11/2019] [Indexed: 11/29/2022]
|
22
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
23
|
Association between catatonia and levels of hair and serum trace elements and minerals in autism spectrum disorder. Biomed Pharmacother 2019; 109:174-180. [DOI: 10.1016/j.biopha.2018.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
|
24
|
Jia W, Li Z, Chen J, Sun L, Liu C, Wang S, Chi J, Niu J, Lai H. TIPE2 acts as a biomarker for tumor aggressiveness and suppresses cell invasiveness in papillary thyroid cancer (PTC). Cell Biosci 2018; 8:49. [PMID: 30186591 PMCID: PMC6119276 DOI: 10.1186/s13578-018-0247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2 or TNFAIP8L2) is a newly described negative immune regulator and is closely associated with various tumors. However, the expression and roles of TIPE2 in PTC is unknown. Results In the present study, TIPE2 upregulation in PTC tissues was found to be negatively associated with tumor size, capsule infiltration, peripheral infiltration and tumor T stage, which could be used to predict tumor invasiveness. TIPE2 overexpression significantly suppressed the viability, proliferation, migration and invasion of PTC cells. Moreover, TIPE2 suppressed tumor invasiveness by inhibiting Rac1, leading to decreased expression of uPA and MMP9. Conclusions These results indicate that TIPE2 is a potential biomarker for predicting tumor aggressiveness and suppresses tumor invasiveness in a Rac1-dependent manner. Electronic supplementary material The online version of this article (10.1186/s13578-018-0247-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyu Jia
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong People's Republic of China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong People's Republic of China
| | - Zequn Li
- 3Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Junyu Chen
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Lei Sun
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Chuanqian Liu
- 5Department of Traditional Chinese Medicine, The First People's Hospital of Jining, Jining, Shandong People's Republic of China
| | - Shaping Wang
- Clinical Laboratory, Weihai Wendeng Central Hospital, Weihai, Shandong People's Republic of China
| | - Jingwei Chi
- 7Key Laboratory of Thyroid Disease, Affiliated Hospital of Qingdao University, Qingdao, Shandong People's Republic of China
| | - Jun Niu
- 8Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong People's Republic of China
| | - Hong Lai
- 4Department of Endocrinology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| |
Collapse
|
25
|
Risher WC, Kim N, Koh S, Choi JE, Mitev P, Spence EF, Pilaz LJ, Wang D, Feng G, Silver DL, Soderling SH, Yin HH, Eroglu C. Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J Cell Biol 2018; 217:3747-3765. [PMID: 30054448 PMCID: PMC6168259 DOI: 10.1083/jcb.201802057] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Astrocytes promote synapse formation during development via secreted factors including thrombospondin family proteins, which act through the neuronal calcium channel subunit α2δ-1. Risher et al. demonstrate that this process requires signaling via the Rho GTPase Rac1 to facilitate the maturation of dendritic spine synapses in the cortex. Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP–α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP–α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology.
Collapse
Affiliation(s)
- W Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV .,Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC
| | - Sehwon Koh
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Ji-Eun Choi
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Petar Mitev
- Department of Pharmacology, Duke University Medical Center, Durham, NC
| | - Erin F Spence
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Dongqing Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC.,Duke Institute for Brain Sciences, Durham, NC
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC.,Duke Institute for Brain Sciences, Durham, NC.,Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC.,Duke Institute for Brain Sciences, Durham, NC.,Department of Neurobiology, Duke University Medical Center, Durham, NC
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC .,Duke Institute for Brain Sciences, Durham, NC.,Department of Neurobiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
26
|
Tian C, Kay Y, Sadybekov A, Rao S, Katritch V, Herring BE. An Intellectual Disability-Related Missense Mutation in Rac1 Prevents LTP Induction. Front Mol Neurosci 2018; 11:223. [PMID: 30042656 PMCID: PMC6049044 DOI: 10.3389/fnmol.2018.00223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/07/2018] [Indexed: 11/22/2022] Open
Abstract
The small GTPase Rac1 promotes actin polymerization and plays a critical and increasingly appreciated role in the development and plasticity of glutamatergic synapses. Growing evidence suggests that disruption of the Rac1 signaling pathway at glutamatergic synapses contributes to Autism Spectrum Disorder/intellectual disability (ASD/ID)-related behaviors seen in animal models of ASD/ID. Rac1 has also been proposed as a strong candidate of convergence for many factors implicated in the development of ASD/ID. However, the effects of ASD/ID-related mutations in Rac1 itself have not been explored in neurons. Here, we investigate a recently reported de novo missense mutation in Rac1 found in an individual with severe ID. Our modeling predicts that this mutation will strongly inhibit Rac1 activation by occluding Rac1's GTP binding pocket. Indeed, we find that this de novo mutation prevents Rac1 function and results in a selective reduction in synaptic AMPA receptor function. Furthermore, this mutation prevents the induction of long-term potentiation (LTP), the cellular mechanism underlying learning and memory formation. Together, our findings strongly suggest that this mutation contributes to the development of ID in this individual. This research demonstrates the importance of Rac1 in synaptic function and plasticity and contributes to a growing body of evidence pointing to dysregulation of actin polymerization at glutamatergic synapses as a contributing factor to ASD/ID.
Collapse
Affiliation(s)
- Chen Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Yuni Kay
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Anastasiia Sadybekov
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
- The Bridge Institute, University of Southern California, Los Angeles, CA, United States
| | - Sadhna Rao
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Vsevolod Katritch
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
- The Bridge Institute, University of Southern California, Los Angeles, CA, United States
| | - Bruce E. Herring
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- The Bridge Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
27
|
Argou-Cardozo I, Zeidán-Chuliá F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med Sci (Basel) 2018; 6:medsci6020029. [PMID: 29617356 PMCID: PMC6024569 DOI: 10.3390/medsci6020029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there seems to be a consensus about the multifactorial nature of autism spectrum disorders (ASD). The literature provides hypotheses dealing with numerous environmental factors and genes accounting for the apparently higher prevalence of this condition. Researchers have shown evidence regarding the impact of gut bacteria on neurological outcomes, altering behavior and potentially affecting the onset and/or severity of psychiatric disorders. Pesticides and agrotoxics are also included among this long list of ASD-related environmental stressors. Of note, ingestion of glyphosate (GLY), a broad-spectrum systemic herbicide, can reduce beneficial bacteria in the gastrointestinal tract microbiota without exerting any effects on the Clostridium population, which is highly resistant to this herbicide. In the present study, (i) we performed a systematic review to evaluate the relationship between Clostridium bacteria and the probability of developing and/or aggravating autism among children. For that purpose, electronic searches were performed on Medline/PubMed and Scielo databases for identification of relevant studies published in English up to December 2017. Two independent researches selected the studies and analyzed the data. The results of the present systematic review demonstrate an interrelation between Clostridium bacteria colonization of the intestinal tract and autism. Finally, (ii) we also hypothesize about how environmental GLY levels may deleteriously influence the gut–brain axis by boosting the growth of Clostridium bacteria in autistic toddlers.
Collapse
Affiliation(s)
- Isadora Argou-Cardozo
- Specialization Course in Public Management and Regional Development, Faculty of Administration and Tourism, Federal University of Pelotas (UFPel), 96010-610 Pelotas, RS, Brazil.
| | - Fares Zeidán-Chuliá
- Departamento de Ciencias Biomédicas Básicas, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain.
- These authors equally contributed to this systematic review.
| |
Collapse
|
28
|
Neves de Oliveira BH, Dalmaz C, Zeidán-Chuliá F. Network-Based Identification of Altered Stem Cell Pluripotency and Calcium Signaling Pathways in Metastatic Melanoma. Med Sci (Basel) 2018. [PMID: 29518019 PMCID: PMC5872180 DOI: 10.3390/medsci6010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malignancy of cancer has been linked to distinct subsets of stem-like cells, the so-called cancer stem cells (CSCs), which persist during treatment and seem to lead to drug-resistant recurrence. Metastatic spread of cancer cells is one of the hallmarks of malignancy and contributes to most human melanoma-related deaths. Recently, overlapping groups of proteins and pathways were shown to regulate stem cell migration and cancer metastasis, raising the question of whether genes/proteins involved in stem cell pluripotency may have important implications when applied to the biology of cancer metastasis. Furthermore, it is well known that ion channels and receptors, particularly those responsible for calcium (Ca2+) signal generation, are critical in determining the cellular fate of stem cells (SCs). In the present study, we searched for evidence of altered stem cell pluripotency and Ca2+ signaling-related genes in the context of melanoma metastasis. We did this by using network analysis of gene expression in tissue biopsies from three different independent datasets of patients. First, we created an in silico network model (“STEMCa” interactome) showing the landscape of interactions between stem cell pluripotency and Ca2+ signaling-related genes/proteins, and demonstrated that around 51% (151 out of 294) of the genes within this model displayed significant changes of expression (False Discovery Rate (FDR), corrected p-value < 0.05) in at least one of the datasets of melanoma metastasis when compared with primary tumor biopsies (controls). Analysis of the properties (degree and betweenness) of the topological network revealed 27 members as the most central hub (HB) and nonhub-bottlenecks (NH-B) among the 294 genes/proteins of the whole interactome. From those representative genes, CTNNB1, GNAQ, GSK3B, GSTP1, MAPK3, PPP1CC, PRKACA, and SMAD4 showed equal up- or downregulation (corrected p-value < 0.05) in at least 2 independent datasets of melanoma metastases samples and PTPN11 showed upregulation (corrected p-value < 0.05) in three of them when compared with control samples. We postulate that altered expression of stem cell pluripotency and Ca2+ signaling pathway-related genes may contribute to the metastatic transformation, with these central members being an optimal candidate group of biomarkers and in silico therapeutic targets for melanoma metastasis, which deserve further investigation.
Collapse
Affiliation(s)
- Ben-Hur Neves de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil.
| | - Carla Dalmaz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil.
| | - Fares Zeidán-Chuliá
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil.
- Departamento de Ciencias Biomédicas Básicas, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain.
- Faculty of Medicine, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
29
|
Omotosho IO, Akinade AO, Lagunju IA. Calcium and Magnesium Levels Are down Regulated in Nigerian Children with Autism Spectrum Disorder and Cerebral Palsy. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/nm.2018.93016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Reichova A, Zatkova M, Bacova Z, Bakos J. Abnormalities in interactions of Rho GTPases with scaffolding proteins contribute to neurodevelopmental disorders. J Neurosci Res 2017; 96:781-788. [DOI: 10.1002/jnr.24200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Alexandra Reichova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
| | - Martina Zatkova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Physiology; Comenius University, Faculty of Medicine; Bratislava Slovakia
| | - Zuzana Bacova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
- Department of Normal and Pathological Physiology, Faculty of Medicine; Slovak Medical University; Bratislava Slovakia
| | - Jan Bakos
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Physiology; Comenius University, Faculty of Medicine; Bratislava Slovakia
| |
Collapse
|
31
|
Martinez LA, Tejada-Simon MV. Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome. Mol Neurobiol 2017; 55:5951-5961. [DOI: 10.1007/s12035-017-0819-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
|
32
|
An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat Commun 2017; 8:601. [PMID: 28928363 PMCID: PMC5605661 DOI: 10.1038/s41467-017-00472-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2017] [Indexed: 12/24/2022] Open
Abstract
The Rho guanine nucleotide exchange factor (RhoGEF) Trio promotes actin polymerization by directly activating the small GTPase Rac1. Recent studies suggest that autism spectrum disorder (ASD)-related behavioral phenotypes in animal models of ASD can be produced by dysregulation of Rac1’s control of actin polymerization at glutamatergic synapses. Here, in humans, we discover a large cluster of ASD-related de novo mutations in Trio’s Rac1 activating domain, GEF1. Our study reveals that these mutations produce either hypofunctional or hyperfunctional forms of Trio in rodent neurons in vitro. In accordance with pathological increases or decreases in glutamatergic neurotransmission observed in animal models of ASD, we find that these mutations result in either reduced synaptic AMPA receptor expression or enhanced glutamatergic synaptogenesis. Together, our findings implicate both excessive and reduced Trio activity and the resulting synaptic dysfunction in ASD-related pathogenesis, and point to the Trio-Rac1 pathway at glutamatergic synapses as a possible key point of convergence of many ASD-related genes. Trio is a RhoGEF protein that promotes actin polymerization and is implicated in the regulation of glutamatergic synapses in autism spectrum disorder (ASD). Here the authors identify a large cluster of de novo mutations in the GEF1 domain of Trio in whole-exome sequencing data from individuals with ASD, and confirm that some of these mutations lead to glutamatergic dysregulation in vitro.
Collapse
|
33
|
Davis RL, Zhong Y. The Biology of Forgetting-A Perspective. Neuron 2017; 95:490-503. [PMID: 28772119 DOI: 10.1016/j.neuron.2017.05.039] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/23/2023]
Abstract
Pioneering research studies, beginning with those using Drosophila, have identified several molecular and cellular mechanisms for active forgetting. The currently known mechanisms for active forgetting include neurogenesis-based forgetting, interference-based forgetting, and intrinsic forgetting, the latter term describing the brain's chronic signaling systems that function to slowly degrade molecular and cellular memory traces. The best-characterized pathway for intrinsic forgetting includes "forgetting cells" that release dopamine onto engram cells, mobilizing a signaling pathway that terminates in the activation of Rac1/Cofilin to effect changes in the actin cytoskeleton and neuron/synapse structure. Intrinsic forgetting may be the default state of the brain, constantly promoting memory erasure and competing with processes that promote memory stability like consolidation. A better understanding of active forgetting will provide insights into the brain's memory management system and human brain disorders that alter active forgetting mechanisms.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, USA.
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, School for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
34
|
Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes. Proc Natl Acad Sci U S A 2016; 113:7644-9. [PMID: 27335463 DOI: 10.1073/pnas.1602152113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The etiology of autism is so complicated because it involves the effects of variants of several hundred risk genes along with the contribution of environmental factors. Therefore, it has been challenging to identify the causal paths that lead to the core autistic symptoms such as social deficit, repetitive behaviors, and behavioral inflexibility. As an alternative approach, extensive efforts have been devoted to identifying the convergence of the targets and functions of the autism-risk genes to facilitate mapping out causal paths. In this study, we used a reversal-learning task to measure behavioral flexibility in Drosophila and determined the effects of loss-of-function mutations in multiple autism-risk gene homologs in flies. Mutations of five autism-risk genes with diversified molecular functions all led to a similar phenotype of behavioral inflexibility indicated by impaired reversal-learning. These reversal-learning defects resulted from the inability to forget or rather, specifically, to activate Rac1 (Ras-related C3 botulinum toxin substrate 1)-dependent forgetting. Thus, behavior-evoked activation of Rac1-dependent forgetting has a converging function for autism-risk genes.
Collapse
|
35
|
Interstitial 11q24 deletion: a new case and review of the literature. J Appl Genet 2016; 57:357-62. [PMID: 27020790 DOI: 10.1007/s13353-015-0333-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
We describe a 19-month-old male presenting with right stenotic megaureter, anemia and thrombocytopenia, cardiac and ophthalmologic abnormalities. Analysis with array-based comparative genomic hybridization (aCGH) revealed an interstitial deletion of about 2.4 Mb of chromosome 11q24.2q24.3. We compared the phenotype of our patient with that of recently reported patients studied by aCGH, who showed an overlapping deletion. We also analysed the gene content of the deleted region in order to investigate the possible involvement of specific genes in the clinical phenotype.
Collapse
|
36
|
Filice F, Vörckel KJ, Sungur AÖ, Wöhr M, Schwaller B. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain 2016; 9:10. [PMID: 26819149 PMCID: PMC4729132 DOI: 10.1186/s13041-016-0192-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A reduction of the number of parvalbumin (PV)-immunoreactive (PV(+)) GABAergic interneurons or a decrease in PV immunoreactivity was reported in several mouse models of autism spectrum disorders (ASD). This includes Shank mutant mice, with SHANK being one of the most important gene families mutated in human ASD. Similar findings were obtained in heterozygous (PV+/-) mice for the Pvalb gene, which display a robust ASD-like phenotype. Here, we addressed the question whether the observed reduction in PV immunoreactivity was the result of a decrease in PV expression levels and/or loss of the PV-expressing GABA interneuron subpopulation hereafter called "Pvalb neurons". The two alternatives have important implications as they likely result in opposing effects on the excitation/inhibition balance, with decreased PV expression resulting in enhanced inhibition, but loss of the Pvalb neuron subpopulation in reduced inhibition. METHODS Stereology was used to determine the number of Pvalb neurons in ASD-associated brain regions including the medial prefrontal cortex, somatosensory cortex and striatum of PV-/-, PV+/-, Shank1-/- and Shank3B-/- mice. As a second marker for the identification of Pvalb neurons, we used Vicia Villosa Agglutinin (VVA), a lectin recognizing the specific extracellular matrix enwrapping Pvalb neurons. PV protein and Pvalb mRNA levels were determined quantitatively by Western blot analyses and qRT-PCR, respectively. RESULTS Our analyses of total cell numbers in different brain regions indicated that the observed "reduction of PV(+) neurons" was in all cases, i.e., in PV+/-, Shank1-/- and Shank3B-/- mice, due to a reduction in Pvalb mRNA and PV protein, without any indication of neuronal cell decrease/loss of Pvalb neurons evidenced by the unaltered numbers of VVA(+) neurons. CONCLUSIONS Our findings suggest that the PV system might represent a convergent downstream endpoint for some forms of ASD, with the excitation/inhibition balance shifted towards enhanced inhibition due to the down-regulation of PV being a promising target for future pharmacological interventions. Testing whether approaches aimed at restoring normal PV protein expression levels and/or Pvalb neuron function might reverse ASD-relevant phenotypes in mice appears therefore warranted and may pave the way for novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- Federica Filice
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland.
| | - Karl Jakob Vörckel
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany.
| | - Ayse Özge Sungur
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany.
| | - Markus Wöhr
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraβe 18, D-35032, Marburg, Germany.
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
37
|
Muldoon M, Ousley OY, Kobrynski LJ, Patel S, Oster ME, Fernandez-Carriba S, Cubells JF, Coleman K, Pearce BD. The effect of hypocalcemia in early childhood on autism-related social and communication skills in patients with 22q11 deletion syndrome. Eur Arch Psychiatry Clin Neurosci 2015; 265:519-24. [PMID: 25267002 PMCID: PMC4379129 DOI: 10.1007/s00406-014-0546-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
22q11 deletion syndrome (22qDS), also known as DiGeorge syndrome, is a copy number variant disorder that has a diverse clinical presentation including hypocalcaemia, learning disabilities, and psychiatric disorders. Many patients with 22q11DS present with signs that overlap with autism spectrum disorder (ASD) yet the possible physiological mechanisms that link 22q11DS with ASD are unknown. We hypothesized that early childhood hypocalcemia influences the neurobehavioral phenotype of 22q11DS. Drawing on a longitudinal cohort of 22q11DS patients, we abstracted albumin-adjusted serum calcium levels from 151 participants ranging in age from newborn to 19.5 years (mean 2.5 years). We then examined a subset of 20 infants and toddlers from this group for the association between the lowest calcium level on record and scores on the Communication and Symbolic Behavior Scales-Developmental Profile Infant-Toddler Checklist (CSBS-DP ITC). The mean (SD) age at calcium testing was 6.2 (8.5) months, whereas the mean (SD) age at the CSBS-DP ITC assessment was 14.7 (3.8) months. Lower calcium was associated with significantly greater impairment in the CSBS-DP ITC Social (p < 0.05), Speech (p < 0.01), and Symbolic domains (p < 0.05), in regression models adjusted for sex, age at blood draw, and age at the psychological assessment. Nevertheless, these findings are limited by the small sample size of children with combined data on calcium and CSBS-DP ITC, and hence will require replication in a larger cohort with longitudinal assessments. Considering the role of calcium regulation in neurodevelopment and neuroplasticity, low calcium during early brain development could be a risk factor for adverse neurobehavioral outcomes.
Collapse
Affiliation(s)
- Meghan Muldoon
- Emory University Rollins School of Public Health Dept. of Epidemiology. 1518 Clifton Rd., Atlanta, GA 30322
| | - Opal Y. Ousley
- Center for Translational Social Neuroscience, 101 Woodruff Circle Atlanta, GA 30322,Emory University School of Medicine, Emory Autism Center, Department of Psychiatry, 101 Woodruff Circle Atlanta, GA 30322
| | - Lisa J. Kobrynski
- Children’s Healthcare of Atlanta; Emory University School of Medicine, Department of Pediatrics, 1405 Clifton Road, Atlanta, GA 30329
| | - Sheena Patel
- Emory University Rollins School of Public Health Dept. of Epidemiology. 1518 Clifton Rd., Atlanta, GA 30322
| | - Matthew E. Oster
- Emory University Rollins School of Public Health Dept. of Epidemiology. 1518 Clifton Rd., Atlanta, GA 30322,Children’s Healthcare of Atlanta; Emory University School of Medicine, Department of Pediatrics, 1405 Clifton Road, Atlanta, GA 30329
| | - Samuel Fernandez-Carriba
- Emory University School of Medicine, Emory Autism Center, Department of Psychiatry, 101 Woodruff Circle Atlanta, GA 30322
| | - Joseph F. Cubells
- Center for Translational Social Neuroscience, 101 Woodruff Circle Atlanta, GA 30322,Emory University School of Medicine, Emory Autism Center, Department of Psychiatry, 101 Woodruff Circle Atlanta, GA 30322,Dept of Human Genetics, 101 Woodruff Circle Atlanta, GA 30322
| | - Karlene Coleman
- Children’s Healthcare of Atlanta; Emory University School of Medicine, Department of Pediatrics, 1405 Clifton Road, Atlanta, GA 30329,Nell Hodgson Woodruff School of Nursing, Emory University, 101 Woodruff Circle Atlanta, GA 30322
| | - Bradley D. Pearce
- Emory University Rollins School of Public Health Dept. of Epidemiology. 1518 Clifton Rd., Atlanta, GA 30322,Center for Translational Social Neuroscience, 101 Woodruff Circle Atlanta, GA 30322
| |
Collapse
|
38
|
Zeidán-Chuliá F, Salmina AB, Noda M, Verkhratsky A. Rho GTPase RAC1 at the Molecular Interface Between Genetic and Environmental Factors of Autism Spectrum Disorders. Neuromolecular Med 2015; 17:333-4. [PMID: 26305490 DOI: 10.1007/s12017-015-8366-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/18/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Fares Zeidán-Chuliá
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-anexo-Bairro Santana, Porto Alegre, RS, 90035-003, Brazil.
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain and Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
39
|
Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression. Mol Neurobiol 2015; 53:4019-4025. [PMID: 26189831 DOI: 10.1007/s12035-015-9351-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022]
Abstract
Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p value <0.05) in the cerebellum of autistic patients. In particular, we found up-regulation of OLIG2-, MBP-, OLIG1-, and MAG-specific oligodendrocyte markers. We postulate that aberrant expression of oligodendrocyte-specific genes, potentially related to changes in oligodendrogenesis, may contribute to abnormal cerebellar development, impaired myelination, and anomalous synaptic connectivity in autism spectrum disorders (ASD).
Collapse
|
40
|
Wöhr M, Orduz D, Gregory P, Moreno H, Khan U, Vörckel KJ, Wolfer DP, Welzl H, Gall D, Schiffmann SN, Schwaller B. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Transl Psychiatry 2015; 5:e525. [PMID: 25756808 PMCID: PMC4354349 DOI: 10.1038/tp.2015.19] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 12/29/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022] Open
Abstract
Gene mutations and gene copy number variants are associated with autism spectrum disorders (ASDs). Affected gene products are often part of signaling networks implicated in synapse formation and/or function leading to alterations in the excitation/inhibition (E/I) balance. Although the network of parvalbumin (PV)-expressing interneurons has gained particular attention in ASD, little is known on PV's putative role with respect to ASD. Genetic mouse models represent powerful translational tools for studying the role of genetic and neurobiological factors underlying ASD. Here, we report that PV knockout mice (PV(-/-)) display behavioral phenotypes with relevance to all three core symptoms present in human ASD patients: abnormal reciprocal social interactions, impairments in communication and repetitive and stereotyped patterns of behavior. PV-depleted mice also showed several signs of ASD-associated comorbidities, such as reduced pain sensitivity and startle responses yet increased seizure susceptibility, whereas no evidence for behavioral phenotypes with relevance to anxiety, depression and schizophrenia was obtained. Reduced social interactions and communication were also observed in heterozygous (PV(+/-)) mice characterized by lower PV expression levels, indicating that merely a decrease in PV levels might be sufficient to elicit core ASD-like deficits. Structural magnetic resonance imaging measurements in PV(-/-) and PV(+/-) mice further revealed ASD-associated developmental neuroanatomical changes, including transient cortical hypertrophy and cerebellar hypoplasia. Electrophysiological experiments finally demonstrated that the E/I balance in these mice is altered by modification of both inhibitory and excitatory synaptic transmission. On the basis of the reported changes in PV expression patterns in several, mostly genetic rodent models of ASD, we propose that in these models downregulation of PV might represent one of the points of convergence, thus providing a common link between apparently unrelated ASD-associated synapse structure/function phenotypes.
Collapse
Affiliation(s)
- M Wöhr
- Department of Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Marburg, Germany
| | - D Orduz
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - P Gregory
- Anatomy Unit, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - H Moreno
- Department of Neurology, SUNY Downstate Medical Center, The Robert F Furchgott Center for Neural and Behavioral Science, Brooklyn, NY, USA
| | - U Khan
- Department of Neurology, SUNY Downstate Medical Center, The Robert F Furchgott Center for Neural and Behavioral Science, Brooklyn, NY, USA
| | - K J Vörckel
- Department of Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Marburg, Germany
| | - D P Wolfer
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland,Institute of Human Movement Sciences and Sport, ETH Zürich, D-HEST, Zürich, Switzerland
| | - H Welzl
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - D Gall
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - S N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - B Schwaller
- Anatomy Unit, Department of Medicine, University of Fribourg, Fribourg, Switzerland,Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg CH 1700, Switzerland. E-mail:
| |
Collapse
|
41
|
Buraei Z, Lumen E, Kaur S, Yang J. RGK regulation of voltage-gated calcium channels. SCIENCE CHINA-LIFE SCIENCES 2015; 58:28-38. [PMID: 25576452 PMCID: PMC9074095 DOI: 10.1007/s11427-014-4788-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Voltage-gated calcium channels (VGCCs) play critical roles in cardiac and skeletal muscle contractions, hormone and neurotransmitter release, as well as slower processes such as cell proliferation, differentiation, migration and death. Mutations in VGCCs lead to numerous cardiac, muscle and neurological disease, and their physiological function is tightly regulated by kinases, phosphatases, G-proteins, calmodulin and many other proteins. Fifteen years ago, RGK proteins were discovered as the most potent endogenous regulators of VGCCs. They are a family of monomeric GTPases (Rad, Rem, Rem2, and Gem/Kir), in the superfamily of Ras GTPases, and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs. Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition, the physiological impact of this inhibition, and recent evidence linking the two known RGK functions.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biology, Pace University, New York, NY, 10038, USA,
| | | | | | | |
Collapse
|
42
|
Akshoomoff N, Mattson SN, Grossfeld PD. Evidence for autism spectrum disorder in Jacobsen syndrome: identification of a candidate gene in distal 11q. Genet Med 2014; 17:143-8. [DOI: 10.1038/gim.2014.86] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/06/2014] [Indexed: 12/20/2022] Open
|
43
|
Gürsoy M, Zeidán-Chuliá F, Könönen E, Moreira JCF, Liukkonen J, Sorsa T, Gürsoy UK. Pregnancy-induced gingivitis and OMICS in dentistry: in silico modeling and in vivo prospective validation of estradiol-modulated inflammatory biomarkers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:582-90. [PMID: 24983467 DOI: 10.1089/omi.2014.0020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pregnancy-associated gingivitis is a bacterial-induced inflammatory disease with a remarkably high prevalence ranging from 35% to 100% across studies. Yet little is known about the attendant mechanisms or diagnostic biomarkers that can help predict individual susceptibility for rational personalized medicine. We aimed to define inflammatory proteins in saliva, induced or inhibited by estradiol, as early diagnostic biomarkers or target proteins in relation to pregnancy-associated gingivitis. An in silico gene/protein interaction network model was developed by using the STITCH 3.1 with "experiments" and "databases" as input options and a confidence score of 0.700 (high confidence). Salivary estradiol, interleukin (IL)-1β and -8, myeloperoxidase (MPO), matrix metalloproteinase (MMP)-2, -8, and -9, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 levels from 30 women were measured prospectively three times during pregnancy and twice during postpartum. In silico analysis revealed that estradiol interacts with IL-1β and -8 by an activation link when the "actions view" was consulted. In saliva, estradiol concentrations associated positively with TIMP-1 and negatively with MPO and MMP-8 concentrations. When the gingival bleeding on probing percentage (BOP%) was included in the model as an effect modifier, the only association, a negative one, was found between estradiol and MMP-8. Throughout gestation, estradiol modulates the inflammatory response by inhibiting neutrophilic enzymes, such as MMP-8. The interactions between salivary degradative enzymes and proinflammatory cytokines during pregnancy suggest promising ways to identify candidate biomarkers for pregnancy-associated gingivitis, and for personalized medicine in the field of dentistry. Finally, we call for greater investments in, and action for biomarker research in periodontology and dentistry that have surprisingly lagged behind in personalized medicine compared to other fields, such as cancer research.
Collapse
Affiliation(s)
- Mervi Gürsoy
- 1 Department of Periodontology, Institute of Dentistry, University of Turku , Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
44
|
Zeidán-Chuliá F, de Oliveira BHN, Salmina AB, Casanova MF, Gelain DP, Noda M, Verkhratsky A, Moreira JCF. Altered expression of Alzheimer's disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death Dis 2014; 5:e1250. [PMID: 24853428 PMCID: PMC4047885 DOI: 10.1038/cddis.2014.227] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 11/09/2022]
Abstract
Autism and Alzheimer's disease (AD) are, respectively, neurodevelopmental and degenerative diseases with an increasing epidemiological burden. The AD-associated amyloid-β precursor protein-α has been shown to be elevated in severe autism, leading to the 'anabolic hypothesis' of its etiology. Here we performed a focused microarray analysis of genes belonging to NOTCH and WNT signaling cascades, as well as genes related to AD and apoptosis pathways in cerebellar samples from autistic individuals, to provide further evidence for pathological relevance of these cascades for autism. By using the limma package from R and false discovery rate, we demonstrated that 31% (116 out of 374) of the genes belonging to these pathways displayed significant changes in expression (corrected P-values <0.05), with mitochondria-related genes being the most downregulated. We also found upregulation of GRIN1, the channel-forming subunit of NMDA glutamate receptors, and MAP3K1, known activator of the JNK and ERK pathways with anti-apoptotic effect. Expression of PSEN2 (presinilin 2) and APBB1 (or F65) were significantly lower when compared with control samples. Based on these results, we propose a model of NMDA glutamate receptor-mediated ERK activation of α-secretase activity and mitochondrial adaptation to apoptosis that may explain the early brain overgrowth and disruption of synaptic plasticity and connectome in autism. Finally, systems pharmacology analyses of the model that integrates all these genes together (NOWADA) highlighted magnesium (Mg(2+)) and rapamycin as most efficient drugs to target this network model in silico. Their potential therapeutic application, in the context of autism, is therefore discussed.
Collapse
Affiliation(s)
- F Zeidán-Chuliá
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - B-H N de Oliveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - M F Casanova
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, USA
| | - D P Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - A Verkhratsky
- 1] Faculty of Life Sciences, The University of Manchester, Manchester, UK [2] IKERBASQUE, Basque Foundation for Science, Bilbao, Spain [3] Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - J C F Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
45
|
Zeidán-Chuliá F, Gursoy M, de Oliveira BHN, Gelain DP, Könönen E, Gursoy UK, Moreira JCF, Uitto VJ. Focussed microarray analysis of apoptosis in periodontitis and its potential pharmacological targeting by carvacrol. Arch Oral Biol 2014; 59:461-9. [DOI: 10.1016/j.archoralbio.2014.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/17/2022]
|
46
|
Clayton DF, London SE. Advancing avian behavioral neuroendocrinology through genomics. Front Neuroendocrinol 2014; 35:58-71. [PMID: 24113222 DOI: 10.1016/j.yfrne.2013.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/14/2022]
Abstract
Genome technologies are transforming all areas of biology, including the study of hormones, brain and behavior. Annotated reference genome assemblies are rapidly being produced for many avian species. Here we briefly review the basic concepts and tools used in genomics. We then consider how these are informing the study of avian behavioral neuroendocrinology, focusing in particular on lessons from the study of songbirds. We discuss the impact of having a complete "parts list" for an organism; the transformational potential of studying large sets of genes at once instead one gene at a time; the growing recognition that environmental and behavioral signals trigger massive shifts in gene expression in the brain; and the prospects for using comparative genomics to uncover the genetic roots of behavioral variation. Throughout, we identify promising new directions for bolstering the application of genomic information to further advance the study of avian brain and behavior.
Collapse
Affiliation(s)
- David F Clayton
- Biological & Experimental Psychology Division, School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Sarah E London
- Department of Psychology, Institute for Mind and Biology, Committee on Neurobiology, University of Chicago, 940 E 57th Street, Chicago, IL, USA.
| |
Collapse
|
47
|
Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JCF. The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 2014; 38:160-72. [DOI: 10.1016/j.neubiorev.2013.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/03/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023]
|
48
|
Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:791795. [PMID: 23766861 PMCID: PMC3674721 DOI: 10.1155/2013/791795] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/16/2013] [Indexed: 01/06/2023]
Abstract
Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs). Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125–2 mg/mL), taurine (1–16 mg/mL), and guarana (3.125–50 mg/mL) showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD) and catalase (CAT) activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses) of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5–50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or “antioxidative stress”), could be a cause of in vitro toxicity induced by these drugs.
Collapse
|