1
|
Maghami E, Sadighi A, Najafi AR. Fracture behavior of human cortical bone with high glycation content under dynamic loading. J Mech Behav Biomed Mater 2024; 155:106577. [PMID: 38759587 DOI: 10.1016/j.jmbbm.2024.106577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The present study simulates the fracture behavior of diabetic cortical bone with high levels of advanced glycation end-products (AGEs) under dynamic loading. We consider that the increased AGEs in diabetic cortical bone degrade the materials heterogeneity of cortical bone through a reduction in critical energy release rates of the microstructural features. To simulate the initiation and propagation of cracks, we implement a phase field fracture framework on 2D models of human tibia cortical microstructure. The simulations show that the mismatch between the fracture properties (e.g., critical energy release rate) of osteons and interstitial tissue due to high AGEs contents can change crack growth trajectories. The results show crack branching in the cortical microstructure under dynamic loading is affected by the mismatches related to AGEs. In addition, we observe cortical features such as osteons and cement lines can prevent multiple cracking under dynamic loading even with changing the mismatches due to high AGEs. Furthermore, under dynamic loading, some toughening mechanisms can be activated and deactivated with different AGEs contents. In conclusion, the current findings present that the combination of the loading type and materials heterogeneity of microstructural features can change the fracture response of diabetic cortical bone and its fragility.
Collapse
Affiliation(s)
- Ebrahim Maghami
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Amirreza Sadighi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Maghami E, Najafi AR. Influence of age-related changes on crack growth trajectories and toughening mechanisms in human dentin. Dent Mater 2022; 38:1789-1800. [DOI: 10.1016/j.dental.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
|
3
|
Maghami E, Josephson TO, Moore JP, Rezaee T, Freeman TA, Karim L, Najafi AR. Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features. J Biomech 2021; 125:110600. [PMID: 34246065 DOI: 10.1016/j.jbiomech.2021.110600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023]
Abstract
Diabetes is associated with increased fracture risk in human bone, especially in the elderly population. In the present study, we investigate how simulated advanced glycation end-products (AGEs) and materials heterogeneity affect crack growth trajectory in human cortical bone. We used a phase field fracture framework on 2D models of cortical microstructure created from human tibias to analyze crack propagation. The increased AGEs level results in a higher rate of crack formation. The simulations also indicate that the mismatch between the fracture properties (e.g., critical energy release rate) of osteons and interstitial tissue can alter the post-yielding behavior. The results show that if the critical energy release rate of cement lines is lower than that of osteons and the surrounding interstitial matrix, cracks can be arrested by cement lines. Additionally, activation of toughening mechanisms such as crack merging and branching depends on bone microstructural morphology (i.e., osteons geometrical parameters, canals, and lacunae porosities). In conclusion, the present findings suggest that materials heterogeneity of microstructural features and the crack-microstructure interactions can play important roles in bone fragility.
Collapse
Affiliation(s)
- Ebrahim Maghami
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Timothy O Josephson
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Jason P Moore
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Theresa A Freeman
- Thomas Jefferson University Division of Orthopaedic Research, Philadelphia, PA 19107, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Nielsen JJ, Low SA. Bone-Targeting Systems to Systemically Deliver Therapeutics to Bone Fractures for Accelerated Healing. Curr Osteoporos Rep 2020; 18:449-459. [PMID: 32860563 PMCID: PMC7560943 DOI: 10.1007/s11914-020-00604-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Compared with the current standard of implanting bone anabolics for fracture repair, bone fracture-targeted anabolics would be more effective, less invasive, and less toxic and would allow for control over what phase of fracture healing is being affected. We therefore sought to identify the optimal bone-targeting molecule to allow for systemic administration of therapeutics to bone fractures. RECENT FINDINGS We found that many bone-targeting molecules exist, but most have been developed for the treatment of bone cancers, osteomyelitis, or osteoporosis. There are a few examples of bone-targeting ligands that have been developed for bone fractures that are selective for the bone fracture over the body and skeleton. Acidic oligopeptides have the ideal half-life, toxicity profile, and selectivity for a bone fracture-targeting ligand and are the most developed and promising of these bone fracture-targeting ligands. However, many other promising ligands have been developed that could be used for bone fractures.
Collapse
Affiliation(s)
- Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA.
| | - Stewart A Low
- Novosteo Inc., West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Maurotti S, Russo C, Musolino V, Nucera S, Gliozzi M, Scicchitano M, Bosco F, Morittu VM, Ragusa M, Mazza E, Pujia R, Gazzaruso C, Britti D, Valenti MT, Deiana M, Romeo S, Giannini S, Dalle Carbonare L, Mollace V, Pujia A, Montalcini T. Effects of C-Peptide Replacement Therapy on Bone Microarchitecture Parameters in Streptozotocin-Diabetic Rats. Calcif Tissue Int 2020; 107:266-280. [PMID: 32607636 DOI: 10.1007/s00223-020-00716-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
C-peptide therapy protects against diabetic micro- and macrovascular damages and neuropatic complications. However, to date, the role of C-peptide in preventing diabetes-related bone loss has not been investigated. Our aim was to evaluate if C-peptide infusion improves bone quality in diabetic rats. Twenty-three male Wistar rats were randomly divided into three groups: normal control group; sham diabetic control group; diabetic plus C-peptide group. Diabetes was induced by streptozotocin injection and C-peptide was delivered subcutaneously for 6 weeks. We performed micro-CT and histological testing to assess several trabecular microarchitectural parameters. At the end, diabetic plus C-peptide rats had a higher serum C-peptide (p = 0.02) and calcium (p = 0.04) levels and tibia weight (p = 0.02) than the diabetic control group. The diabetic plus C-peptide group showed a higher trabecular thickness and cross-sectional thickness than the diabetic control group (p = 0.01 and p = 0.03). Both the normal control and diabetic plus C-peptide groups had more Runx-2 and PLIN1 positive cells in comparison with the diabetic control group (p = 0.045 and p = 0.034). Diabetic rats receiving C-peptide had higher quality of trabecular bone than diabetic rats not receiving this treatment. If confirmed, C-peptide could have a role in improving bone quality in diabetes.
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Medical and Surgical Science, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Cristina Russo
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Viale S. Venuta, 88100, Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Interregional Center for Food Safety and Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Interregional Center for Food Safety and Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Interregional Center for Food Safety and Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Interregional Center for Food Safety and Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Interregional Center for Food Safety and Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Monica Ragusa
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Science, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Science, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Carmine Gazzaruso
- Diabetes and Endocrine and Metabolic Diseases Unit and the Centre for Applied Clinical Research (Ce.R.C.A.) Clinical Institute "Beato Matteo" (Hospital Group San Donato), 27029, Vigevano, Italy
| | - Domenico Britti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Maria Teresa Valenti
- Department of Medicine, Specialized Regional Center for Biomolecular and Histomorphometric Research On Degenerative and Skelatal Diseases, Verona, Italy
| | - Michela Deiana
- Department of Medicine, Specialized Regional Center for Biomolecular and Histomorphometric Research On Degenerative and Skelatal Diseases, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Stefano Romeo
- Department of Medical and Surgical Science, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
- Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascolar and Metabolic Research, University of Gothenburg, 42246, Göteborg, Sweden
| | - Sandro Giannini
- Department of Medicine, University of Padova and Regional Center for Osteoporosis, Clinica Medica 1, Padova, Italy
| | - Luca Dalle Carbonare
- Department of Medicine, Specialized Regional Center for Biomolecular and Histomorphometric Research On Degenerative and Skelatal Diseases, Verona, Italy
| | - Vincenzo Mollace
- IRC-FSH Interregional Center for Food Safety and Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Viale S. Venuta, 88100, Catanzaro, Italy.
| |
Collapse
|
6
|
Parle E, Tio S, Behre A, Carey JJ, Murphy CG, O'Brien TF, Curtin WA, Kearns SR, McCabe JP, Coleman CM, Vaughan TJ, McNamara LM. Bone Mineral Is More Heterogeneously Distributed in the Femoral Heads of Osteoporotic and Diabetic Patients: A Pilot Study. JBMR Plus 2020; 4:e10253. [PMID: 32149268 PMCID: PMC7017882 DOI: 10.1002/jbm4.10253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is associated with systemic bone loss, leading to a significant deterioration of bone microarchitecture and an increased fracture risk. Although recent studies have shown that the distribution of bone mineral becomes more heterogeneous because of estrogen deficiency in animal models of osteoporosis, it is not known whether osteoporosis alters mineral distribution in human bone. Type 2 diabetes mellitus (T2DM) can also increase bone fracture risk and is associated with impaired bone cell function, compromised collagen structure, and reduced mechanical properties. However, it is not known whether alterations in mineral distribution arise in diabetic (DB) patients’ bone. In this study, we quantify mineral content distribution and tissue microarchitecture (by μCT) and mechanical properties (by compression testing) of cancellous bone from femoral heads of osteoporotic (OP; n = 10), DB (n = 7), and osteoarthritic (OA; n = 7) patients. We report that though OP cancellous bone has significantly deteriorated compressive mechanical properties and significantly compromised microarchitecture compared with OA controls, there is also a significant increase in the mean mineral content. Moreover, the heterogeneity of the mineral content in OP bone is significantly higher than controls (+25%) and is explained by a significant increase in bone volume at high mineral levels. We propose that these mineral alterations act to exacerbate the already reduced bone quality caused by reduced cancellous bone volume during osteoporosis. We show for the first time that cancellous bone mineralization is significantly more heterogeneous (+26%) in patients presenting with T2DM compared with OA (non‐DB) controls, and that this heterogeneity is characterized by a significant increase in bone volume at low mineral levels. Despite these mineralization changes, bone microarchitecture and mechanical properties are not significantly different between OA groups with and without T2DM. Nonetheless, the observed alterations in mineral heterogeneity may play an important tissue‐level role in bone fragility associated with OP and DB bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eoin Parle
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Sherdya Tio
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Annie Behre
- Department of Bioengineering Lehigh University Bethlehem PA USA
| | - John J Carey
- Department of Rheumatology Galway University Hospitals Galway Ireland
| | - Colin G Murphy
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Timothy F O'Brien
- Department of Endocrinology Galway University Hospitals Galway Ireland
| | - William A Curtin
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Stephen R Kearns
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - John P McCabe
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Cynthia M Coleman
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Ted J Vaughan
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Laoise M McNamara
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| |
Collapse
|
7
|
Hunt HB, Torres AM, Palomino PM, Marty E, Saiyed R, Cohn M, Jo J, Warner S, Sroga GE, King KB, Lane JM, Vashishth D, Hernandez CJ, Donnelly E. Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone From Men With Type 2 Diabetes Mellitus. J Bone Miner Res 2019; 34:1191-1206. [PMID: 30866111 PMCID: PMC6650336 DOI: 10.1002/jbmr.3711] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 01/07/2023]
Abstract
People with type 2 diabetes mellitus (T2DM) have normal-to-high BMDs, but, counterintuitively, have greater fracture risks than people without T2DM, even after accounting for potential confounders like BMI and falls. Therefore, T2DM may alter aspects of bone quality, including material properties or microarchitecture, that increase fragility independently of bone mass. Our objective was to elucidate the factors that influence fragility in T2DM by comparing the material properties, microarchitecture, and mechanical performance of cancellous bone in a clinical population of men with and without T2DM. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 31, age = 65 ± 8 years, HbA1c = 7.1 ± 0.9%; non-DM: n = 34, age = 62 ± 9 years, HbA1c = 5.5 ± 0.4%). The T2DM specimens had greater concentrations of the advanced glycation endproduct pentosidine (+ 36%, P < 0.05) and sugars bound to the collagen matrix (+ 42%, P < 0.05) than the non-DM specimens. The T2DM specimens trended toward a greater bone volume fraction (BV/TV) (+ 24%, NS, P = 0.13) and had greater mineral content (+ 7%, P < 0.05) than the non-DM specimens. Regression modeling of the mechanical outcomes revealed competing effects of T2DM on bone mechanical behavior. The trend of higher BV/TV values and the greater mineral content observed in the T2DM specimens increased strength, whereas the greater values of pentosidine in the T2DM group decreased postyield strain and toughness. The long-term medical management and presence of osteoarthritis in these patients may influence these outcomes. Nevertheless, our data indicate a beneficial effect of T2DM on cancellous microarchitecture, but a deleterious effect of T2DM on the collagen matrix. These data suggest that high concentrations of advanced glycation endproducts can increase fragility by reducing the ability of bone to absorb energy before failure, especially for the subset of T2DM patients with low BV/TV. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley M Torres
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Pablo M Palomino
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eric Marty
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rehan Saiyed
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Matthew Cohn
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Jonathan Jo
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Stephen Warner
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Grazyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Karen B King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.,Surgical Service/Orthopaedic Service, Rocky Mountain Veterans Affairs Regional Medical Center, Aurora, CO, USA
| | - Joseph M Lane
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Christopher J Hernandez
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
8
|
Álvarez-Lloret P, Fernández JM, Molinuevo MS, Lino AB, Ferretti JL, Capozza RF, Cortizo AM, McCarthy AD. Multi-Scale Approach for the Evaluation of Bone Mineralization in Strontium Ranelate-Treated Diabetic Rats. Biol Trace Elem Res 2018; 186:457-466. [PMID: 29623650 DOI: 10.1007/s12011-018-1322-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/21/2018] [Indexed: 11/27/2022]
Abstract
Long-term diabetes mellitus can induce osteopenia and osteoporosis, an increase in the incidence of low-stress fractures, and/or delayed fracture healing. Strontium ranelate (SrR) is a dual-action anti-osteoporotic agent whose use in individuals with diabetic osteopathy has not been adequately evaluated. In this study, we studied the effects of an oral treatment with SrR and/or experimental diabetes on bone composition and biomechanics. Young male Wistar rats (half non-diabetic, half with streptozotocin/nicotinamide-induced diabetes) were either untreated or orally administered 625 mg/kg/day of SrR for 6 weeks. After sacrifice, femora from all animals were evaluated by a multi-scale approach (X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma optical-emission spectrometry, static histomorphometry, pQCT, and mechanical testing) to determine chemical, crystalline, and biomechanical properties. Untreated diabetic animals (versus untreated non-diabetic) showed a decrease in femoral mineral carbonate content, in cortical thickness and BMC, in trabecular osteocyte density, in maximum load supported at rupture and at yield point, and in overall toughness at mid-shaft. Treatment of diabetic animals with SrR further affected several parameters of bone (some already impaired by diabetes): crystallinity index (indicating less mature apatite crystals); trabecular area, BMC, and vBMD; maximum load at yield point; and structural elastic rigidity. However, SrR was also able to prevent the diabetes-induced decreases in trabecular osteocyte density (completely) and in bone ultimate strength at rupture (partially). Our results indicate that SrR treatment can partially but significantly prevent some bone structural mechanical properties as previously affected by diabetes, but not others (which may even be worsened).
Collapse
Affiliation(s)
- Pedro Álvarez-Lloret
- Departament of Geology, University of Oviedo, C/Jesús Arias de Velasco, s/n, 33005, Oviedo, Spain
| | - Juan Manuel Fernández
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - María Silvina Molinuevo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Agustina Berenice Lino
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - José Luis Ferretti
- Centro de Estudios del Metabolismo Fosfocálcico (CeMFoC), Facultad de Medicina, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Ricardo Francisco Capozza
- Centro de Estudios del Metabolismo Fosfocálcico (CeMFoC), Facultad de Medicina, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Ana María Cortizo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Antonio Desmond McCarthy
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
9
|
Creecy A, Uppuganti S, Unal M, Clay Bunn R, Voziyan P, Nyman JS. Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone 2018; 110:204-214. [PMID: 29438824 PMCID: PMC5878744 DOI: 10.1016/j.bone.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 01/22/2023]
Abstract
Fracture risk increases as type 2 diabetes (T2D) progresses. With the rising incidence of T2D, in particular early-onset T2D, a representative pre-clinical model is needed to study mechanisms for treating or preventing diabetic bone disease. Towards that goal, we hypothesized that fracture resistance of bone from diabetic TallyHO mice decreases as the duration of diabetes increases. Femurs and lumbar vertebrae were harvested from male, TallyHO mice and male, non-diabetic SWR/J mice at 16weeks (n≥12 per strain) and 34weeks (n≥13 per strain) of age. As is characteristic of this model of juvenile T2D, the TallyHO mice were obese and hyperglycemic at an early age (5weeks and 10weeks of age, respectively). The femur mid-shaft of TallyHO mice had higher tissue mineral density and larger cortical area, as determined by micro-computed tomography, compared to the femur mid-shaft of SWR/J mice, irrespective of age. As such, the diabetic rodent bone was structurally stronger than the non-diabetic rodent bone, but the higher peak force endured by the diaphysis during three-point (3pt) bending was not independent of the difference in body weight. Upon accounting for the structure of the femur diaphysis, the estimated toughness at 16weeks and 34weeks was lower for the diabetic mice than for non-diabetic controls, but neither toughness nor estimated material strength and resistance to crack growth (3pt bending of contralateral notched femur) decreased as the duration of hyperglycemia increased. With respect to trabecular bone, there were no differences in the compressive strength of the L6 vertebral strength between diabetic and non-diabetic mice at both ages despite a lower trabecular bone volume for the TallyHO than for the SWR/J mice at 34weeks. Amide I sub-peak ratios as determined by Raman Spectroscopy analysis of the femur diaphysis suggested a difference in collagen structure between diabetic and non-diabetic mice, although there was not a significant difference in matrix pentosidine between the groups. Overall, the fracture resistance of bone in the TallyHO model of T2D did not progressively decrease with increasing duration of hyperglycemia. However, given the variability in hyperglycemia in this model, there were correlations between blood glucose levels and certain structural properties including peak force.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Mustafa Unal
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Lexington, KY 40536, United States; Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Paul Voziyan
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| |
Collapse
|
10
|
Hunt HB, Pearl JC, Diaz DR, King KB, Donnelly E. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes. J Bone Miner Res 2018; 33:921-929. [PMID: 29281127 PMCID: PMC5935591 DOI: 10.1002/jbmr.3365] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 11/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Jared C Pearl
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - David R Diaz
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Karen B King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.,Surgical Service/Orthopaedic Service, Veterans Affairs Eastern Colorado Health Care System, Denver, CO, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
11
|
Barwick A, Tessier J, Mirow J, de Jonge XJ, Chuter V. Computed tomography derived bone density measurement in the diabetic foot. J Foot Ankle Res 2017; 10:11. [PMID: 28270861 PMCID: PMC5335776 DOI: 10.1186/s13047-017-0192-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
Background The accurate and reliable measurement of foot bone density is challenging and there is currently no gold standard technique. Such measurement is particularly valuable in populations at risk of foot bone pathology such as in those with long term diabetes. With research and development, computed tomography may prove to be a useful tool for this assessment. The aim of this study was to establish the reliability of a novel method of foot bone density measurement in people with diabetes using computed tomography. Methods Ten feet in people with diabetes were scanned with computed tomography twice with repositioning. Bone density (in Hounsfield units) was assessed in the trabecular and cortical bone in all tarsals and metatarsals. Reliability was assessed with intra-class correlation coefficients (95% confidence intervals), limits of agreement and standard error of measurement. Results The reliability of the trabecular density of most bones was excellent with intra-class correlation coefficients ranging from 0.68 to 0.91. Additionally, cortical bone density showed fair to good reliability at the talus (0.52), calcaneus (0.59), navicular (0.70), cuboid (0.69), intermediate cuneiform (0.46) and first metatarsal (0.61). Conclusions The study established the reliability of a practical method of assessing the trabecular and cortical foot bone density using computed tomography scanning. This methodology may be useful in the investigation of foot bone disease occurring in diabetes and its early diagnosis, intervention and assessment of treatment efficacy. Further development of this method is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s13047-017-0192-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex Barwick
- University of Newcastle, 10 Chittaway Rd, Ourimbah, NSW 2258 Australia
| | - John Tessier
- University of Newcastle, University Dr, Callaghan, NSW 2308 Australia
| | - James Mirow
- Hunter Imaging Group, 48 Thomas Street, Cardiff, NSW 2285 Australia
| | | | - Vivienne Chuter
- University of Newcastle, 10 Chittaway Rd, Ourimbah, NSW 2258 Australia
| |
Collapse
|
12
|
Donmez BO, Unal M, Ozdemir S, Ozturk N, Oguz N, Akkus O. Effects of losartan treatment on the physicochemical properties of diabetic rat bone. J Bone Miner Metab 2017; 35:161-170. [PMID: 27038987 DOI: 10.1007/s00774-016-0748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.
Collapse
Affiliation(s)
- Baris Ozgur Donmez
- Department of Nutrition and Dietetics, School of Health, Akdeniz University, 07070, Antalya, Turkey.
| | - Mustafa Unal
- Department of Mechanical and Aerospace Engineering, Orthopaedic Bioengineering Laboratories, Case Western Reserve University, Cleveland, OH, USA
| | - Semir Ozdemir
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nihal Ozturk
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nurettin Oguz
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Orthopaedic Bioengineering Laboratories, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Creecy A, Uppuganti S, Merkel AR, O'Neal D, Makowski AJ, Granke M, Voziyan P, Nyman JS. Changes in the Fracture Resistance of Bone with the Progression of Type 2 Diabetes in the ZDSD Rat. Calcif Tissue Int 2016; 99:289-301. [PMID: 27209312 PMCID: PMC4961536 DOI: 10.1007/s00223-016-0149-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
Individuals with type 2 diabetes (T2D) have a higher fracture risk compared to non-diabetics, even though their areal bone mineral density is normal to high. Identifying the mechanisms whereby diabetes lowers fracture resistance requires well-characterized rodent models of diabetic bone disease. Toward that end, we hypothesized that bone toughness, more so than bone strength, decreases with the duration of diabetes in ZDSD rats. Bones were harvested from male CD(SD) control rats and male ZDSD rats at 16 weeks (before the onset of hyperglycemia), at 22 weeks (5-6 weeks of hyperglycemia), and at 29 weeks (12-13 weeks of hyperglycemia). There were at least 12 rats per strain per age group. At 16 weeks, there was no difference in either body weight or glucose levels between the two rat groups. Within 2 weeks of switching all rats to a diet with 48 % of kcal from fat, only the ZDSD rats developed hyperglycemia (>250 mg/dL). They also began to lose body weight at 21 weeks. CD(SD) rats remained normoglycemic (<110 mg/dL) on the high-fat diet and became obese (>600 g). From micro-computed tomography (μCT) analysis of a lumbar vertebra and distal femur, trabecular bone volume did not vary with age among the non-diabetic rats but was lower at 29 weeks than at 16 weeks or at 22 weeks for the diabetic rats. Consistent with that finding, μCT-derived intra-cortical porosity (femur diaphysis) was higher for ZDSD following ~12 weeks of hyperglycemia than for age-matched CD(SD) rats. Despite an age-related increase in mineralization in both rat strains (μCT and Raman spectroscopy), material strength of cortical bone (from three-point bending tests) increased with age only in the non-diabetic CD(SD) rats. Moreover, two other material properties, toughness (radius) and fracture toughness (femur), significantly decreased with the duration of T2D in ZDSD rats. This was accompanied by the increase in the levels of the pentosidine (femur). However, pentosidine was not significantly higher in diabetic than in non-diabetic bone at any time point. The ZDSD rat, which has normal leptin signaling and becomes diabetic after skeletal maturity, provides a pre-clinical model of diabetic bone disease, but a decrease in body weight during prolonged diabetes and certain strain-related differences before the onset of hyperglycemia should be taken into consideration when interpreting diabetes-related differences.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sasidhar Uppuganti
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave S., Suite 4200, Nashville, TN, 37232, USA
| | - Alyssa R Merkel
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Dianne O'Neal
- School of Medicine, Meharry Medical College, Nashville, TN, 37208, USA
| | - Alexander J Makowski
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mathilde Granke
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave S., Suite 4200, Nashville, TN, 37232, USA
| | - Paul Voziyan
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeffry S Nyman
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave S., Suite 4200, Nashville, TN, 37232, USA.
| |
Collapse
|
14
|
Hammond MA, Gallant MA, Burr DB, Wallace JM. Nanoscale changes in collagen are reflected in physical and mechanical properties of bone at the microscale in diabetic rats. Bone 2014; 60:26-32. [PMID: 24269519 PMCID: PMC3944921 DOI: 10.1016/j.bone.2013.11.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/23/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023]
Abstract
Diabetes detrimentally affects the musculoskeletal system by stiffening the collagen matrix due to increased advanced glycation end products (AGEs). In this study, tibiae and tendon from Zucker diabetic Sprague-Dawley (ZDSD) rats were compared to Sprague-Dawley derived controls (CD) using Atomic Force Microscopy. ZDSD and CD tibiae were compared using Raman Spectroscopy and Reference Point Indentation (RPI). ZDSD bone had a significantly different distribution of collagen D-spacing than CD (p=0.015; ZDSD n=294 fibrils; CD n=274 fibrils) which was more variable and shifted to higher values. This shift between ZDSD and CD D-spacing distribution was more pronounced in tendon (p<0.001; ZDSD n=350; CD n=371). Raman revealed significant increases in measures of bone matrix mineralization in ZDSD (PO4(3-) ν1/Amide I p=0.008; PO4(3-) ν1/CH2 wag p=0.047; n=5 per group) despite lower bone mineral density (aBMD) and ash fraction indicating diabetes may preferentially reduce the Raman signature of collagen. Decreased indentation distance increase (p=0.010) and creep indentation distance (p=0.040) measured by RPI (n=9 per group) in ZDSD rats suggest a matrix more resistant to indentation under the high stresses associated with RPI at this length scale. There were significant correlations between Raman and RPI measurements in the ZDSD population (n=18 locations) but not the CD population (n=16 locations) indicating that while RPI is relatively unaffected by biological noise, it is sensitive to disease-induced compositional changes. In conclusion, diabetes in the ZDSD rat causes changes to the nanoscale morphology of collagen that result in compositional and mechanical effects in bone at the microscale.
Collapse
Affiliation(s)
- Max A Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Maxime A Gallant
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, USA
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, USA
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, USA.
| |
Collapse
|