1
|
Schultz A, Albertos-Arranz H, Sáez XS, Morgan J, Darland DC, Gonzalez-Duarte A, Kaufmann H, Mendoza-Santiesteban CE, Cuenca N, Lefcort F. Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy. Glia 2024; 72:2268-2294. [PMID: 39228100 DOI: 10.1002/glia.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Henar Albertos-Arranz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jamie Morgan
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | | | - Horacio Kaufmann
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Carlos E Mendoza-Santiesteban
- Department of Neurology, NYU Langone Health, New York, New York, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Filipi T, Tureckova J, Vanatko O, Chmelova M, Kubiskova M, Sirotova N, Matejkova S, Vargova L, Anderova M. ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model. Front Cell Neurosci 2024; 18:1472374. [PMID: 39449756 PMCID: PMC11499153 DOI: 10.3389/fncel.2024.1472374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are crucial for the functioning of the nervous system as they maintain the ion homeostasis via volume regulation. Pathological states, such as amyotrophic lateral sclerosis (ALS), affect astrocytes and might even cause a loss of such functions. In this study, we examined astrocytic swelling/volume recovery in both the brain and spinal cord of the SOD1 animal model to determine the level of their impairment caused by the ALS-like pathology. Astrocyte volume changes were measured in acute brain or spinal cord slices during and after exposure to hyperkalemia. We then compared the results with alterations of extracellular space (ECS) diffusion parameters, morphological changes, expression of the Kir4.1 channel and the potassium concentration measured in the cerebrospinal fluid, to further disclose the link between potassium and astrocytes in the ALS-like pathology. Morphological analysis revealed astrogliosis in both the motor cortex and the ventral horns of the SOD1 spinal cord. The activated morphology of SOD1 spinal astrocytes was associated with the results from volume measurements, which showed decreased swelling of these cells during hyperkalemia. Furthermore, we observed lower shrinkage of ECS in the SOD1 spinal ventral horns. Immunohistochemical analysis then confirmed decreased expression of the Kir4.1 channel in the SOD1 spinal cord, which corresponded with the diminished volume regulation. Despite astrogliosis, cortical astrocytes in SOD1 mice did not show alterations in swelling nor changes in Kir4.1 expression, and we did not identify significant changes in ECS parameters. Moreover, the potassium level in the cerebrospinal fluid did not deviate from the physiological concentration. The results we obtained thus suggest that ALS-like pathology causes impaired potassium uptake associated with Kir4.1 downregulation in the spinal astrocytes, but based on our data from the cortex, the functional impairment seems to be independent of the morphological state.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Monika Kubiskova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Natalia Sirotova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Stanislava Matejkova
- Analytical Laboratory, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Li Q, Sandoval A, Moth J, Shang J, Liew JY, Dunn T, Yang Z, Su J, Henwood M, Williams P, Chen B. Reduction of prolonged excitatory neuron swelling after spinal cord injury improves locomotor recovery in mice. Sci Transl Med 2024; 16:eadn7095. [PMID: 39321270 DOI: 10.1126/scitranslmed.adn7095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/09/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Spinal cord injury (SCI) results in acute damage and triggers secondary injury responses with sustained neuronal loss and dysfunction. However, the underlying mechanisms for these delayed neuronal pathologies are not entirely understood. SCI results in the swelling of spinal neurons, but the contribution of cell swelling to neuronal loss and functional deficits after SCI has not been systematically characterized. In this study, we devised a three-dimensional image analysis pipeline to evaluate spinal neurons, examining their types, quantities, volumes, and spatial distribution in a double-lateral hemisection SCI mouse model. We found that both excitatory and inhibitory neurons swell and are lost, albeit with distinct temporal patterns. Inhibitory neurons demonstrated marked swelling and decline in number on day 2 after SCI, which resolved by day 14. In contrast, excitatory neurons maintained persistent swelling and continued cell loss for at least 35 days after SCI in mice. Excitatory neurons exhibited sustained expression of the Na+-K+-Cl- cotransporter 1 (NKCC1), whereas inhibitory neurons down-regulated the protein by day 14 after SCI. Treatment with a Food and Drug Administration-approved NKCC1 inhibitor, bumetanide, mitigated swelling of excitatory neurons and reduced their loss in the secondary injury phase after SCI. The administration of bumetanide after SCI in mouse improved locomotor recovery, with functional benefits persisting for at least 4 weeks after treatment cessation. This study advances our understanding of SCI-related pathology and introduces bumetanide as a potential treatment to mitigate sustained neuronal swelling and enhance recovery after SCI.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo Sandoval
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John Moth
- Department of Anesthesiology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Junkui Shang
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Yi Liew
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tiffany Dunn
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhiyun Yang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center, Boston Children's Hospital and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Henwood
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Philip Williams
- Department of Ophthalmology and Visual Sciences and Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Bo Chen
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Critzer SS, Bosch TJ, Fercho KA, Scholl JL, Baugh LA. Water and brain function: effects of hydration status on neurostimulation with transcranial magnetic stimulation. J Neurophysiol 2024; 132:791-807. [PMID: 39081213 PMCID: PMC11427052 DOI: 10.1152/jn.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
Neurostimulation/neurorecording are tools to study, diagnose, and treat neurological/psychiatric conditions. Both techniques depend on volume conduction between scalp and excitable brain tissue. Here, we examine how neurostimulation with transcranial magnetic stimulation (TMS) is affected by hydration status, a physiological variable that can influence the volume of fluid spaces/cells, excitability, and cellular/global brain functioning. Normal healthy adult participants (32, 9 males) had common motor TMS measures taken in a repeated-measures design from dehydrated (12-h overnight fast/thirst) and rehydrated (identical dehydration protocol followed by rehydration with 1 L water in 1 h) testing days. The target region was left primary motor cortex hand area. Response at the target muscle was recorded with electromyography. Urinalysis confirmed hydration status. Motor hotspot shifted in half of participants. Motor threshold decreased in rehydration, indicating increased excitability. Even after redosing/relocalizing TMS to the new threshold/hotspot, rehydration still showed evidence of increased excitability: recruitment curve measures generally shifted upward and the glutamate-dependent paired-pulse protocol, short intracortical facilitation (SICF), was increased. Short intracortical inhibition (SICI), long intracortical inhibition (LICI), long intracortical facilitation (LICF), and cortical silent period (CSP) were relatively unaffected. The hydration perturbations were mild/subclinical based on the magnitude/speed and urinalysis. Motor TMS measures showed evidence of expected physiological changes of osmotic challenges. Rehydration showed signs of macroscopic and microscopic volume changes including decreased scalp-cortex distance (brain closer to stimulator) and astrocyte swelling-induced glutamate release. Hydration may be a source of variability affecting any techniques dependent on brain volumes/volume conduction. These concepts are important for researchers/clinicians using such techniques or dealing with the wide variety of disease processes involving water balance.NEW & NOTEWORTHY Hydration status can affect brain volumes and excitability, which should affect techniques dependent on electrical volume conduction, including neurostimulation/recording. We test the previously unknown effects of hydration on neurostimulation with TMS and briefly review relevant physiology of hydration. Rehydration showed lower motor threshold, shifted motor hotspot, and generally larger responses even after compensating for threshold/hotspot changes. This is important for clinical and research applications of neurostimulation/neurorecording and the many clinical disorders related to water balance.
Collapse
Affiliation(s)
- Sam S Critzer
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
- Department of Psychiatry, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| | - Taylor J Bosch
- Department of Psychology, University of South Dakota, Vermillion, South Dakota, United States
| | - Kelene A Fercho
- FAA Civil Aerospace Medical Institute, Oklahoma City, Oklahoma, United States
| | - Jamie L Scholl
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
| | - Lee A Baugh
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
| |
Collapse
|
5
|
Rybiczka-Tešulov M, Garritsen O, Venø MT, Wieg L, Dijk RV, Rahimi K, Gomes-Duarte A, Wit MD, van de Haar LL, Michels L, van Kronenburg NCH, van der Meer C, Kjems J, Vangoor VR, Pasterkamp RJ. Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development. Nat Commun 2024; 15:6773. [PMID: 39117691 PMCID: PMC11310423 DOI: 10.1038/s41467-024-51041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Midbrain dopamine (mDA) neurons play an essential role in cognitive and motor behaviours and are linked to different brain disorders. However, the molecular mechanisms underlying their development, and in particular the role of non-coding RNAs (ncRNAs), remain incompletely understood. Here, we establish the transcriptomic landscape and alternative splicing patterns of circular RNAs (circRNAs) at key developmental timepoints in mouse mDA neurons in vivo using fluorescence-activated cell sorting followed by short- and long-read RNA sequencing. In situ hybridisation shows expression of several circRNAs during early mDA neuron development and post-transcriptional silencing unveils roles for different circRNAs in regulating mDA neuron morphology. Finally, in utero electroporation and time-lapse imaging implicate circRmst, a circRNA with widespread morphological effects, in the migration of developing mDA neurons in vivo. Together, these data for the first time suggest a functional role for circRNAs in developing mDA neurons and characterise poorly defined aspects of mDA neuron development.
Collapse
Affiliation(s)
- Mateja Rybiczka-Tešulov
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Oxana Garritsen
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Omiics ApS, Aarhus N, Denmark
| | - Laura Wieg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roland van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Department of Genetics, Blavatnik Institute, Harvard Medical School, MA, Boston, USA
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Lars Michels
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan van der Meer
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Sengking J, Mahakkanukrauh P. The underlying mechanism of calcium toxicity-induced autophagic cell death and lysosomal degradation in early stage of cerebral ischemia. Anat Cell Biol 2024; 57:155-162. [PMID: 38680098 PMCID: PMC11184419 DOI: 10.5115/acb.24.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+) are the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence in Osteology Research and Training Center (ORTC), Chaing Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
8
|
Phillips RS, Baertsch NA. Interdependence of cellular and network properties in respiratory rhythm generation. Proc Natl Acad Sci U S A 2024; 121:e2318757121. [PMID: 38691591 PMCID: PMC11087776 DOI: 10.1073/pnas.2318757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/24/2024] [Indexed: 05/03/2024] Open
Abstract
How breathing is generated by the preBötzinger complex (preBötC) remains divided between two ideological frameworks, and a persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "preinspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we find that small changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and preinspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or preinspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
Collapse
Affiliation(s)
- Ryan S. Phillips
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA98101
| | - Nathan A. Baertsch
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA98101
- Pulmonary, Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA98195
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
| |
Collapse
|
9
|
Dehghani H, Holzapfel GA, Mittelbronn M, Zilian A. Cell adhesion affects the properties of interstitial fluid flow: A study using multiscale poroelastic composite modeling. J Mech Behav Biomed Mater 2024; 153:106486. [PMID: 38428205 DOI: 10.1016/j.jmbbm.2024.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
In this study, we conduct a multiscale, multiphysics modeling of the brain gray matter as a poroelastic composite. We develop a customized representative volume element based on cytoarchitectural features that encompass important microscopic components of the tissue, namely the extracellular space, the capillaries, the pericapillary space, the interstitial fluid, cell-cell and cell-capillary junctions, and neuronal and glial cell bodies. Using asymptotic homogenization and direct numerical simulation, the effective properties at the tissue level are identified based on microscopic properties. To analyze the influence of various microscopic elements on the effective/macroscopic properties and tissue response, we perform sensitivity analyses on cell junction (cluster) stiffness, cell junction diameter (dimensions), and pericapillary space width. The results of this study suggest that changes in cell adhesion can greatly affect both mechanical and hydraulic (interstitial fluid flow and porosity) features of brain tissue, consistent with the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamidreza Dehghani
- Institute of Computational Engineering and Sciences, Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, 8010 Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg; Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Andreas Zilian
- Institute of Computational Engineering and Sciences, Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Sen A, Erdivanlı B, Tümkaya L, Uydu HA, Mercantepe T, Batcik Ş, Ozdemir A. The effects of dexmedetomidine on trauma-induced secondary injury in rat brain. Neurol Res 2024; 46:23-32. [PMID: 37842946 DOI: 10.1080/01616412.2023.2257446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/29/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND The objective of this study was to investigate the effect of dexmedetomidine (Dex), a sedative drug with little or no depressant effect on respiratory centers, on secondary injury in rat brain tissue by means of the Na+/K+ ATPase enzyme, which maintains the cell membrane ion gradient; malondialdehyde, an indicator of membrane lipid peroxidation; glutathione, an indicator of antioxidant capacity; and histopathological analyses. METHODS Eighteen rats were randomized into three groups: the trauma group received anesthesia, followed by head trauma with a Mild Traumatic Brain Injury Apparatus; the Trauma+Dex group received an additional treatment of 100 µg/kg intraperitoneal dexmedetomidine daily for three days; the Control group received anesthesia only. RESULTS The highest MDA levels compared to the Control group were found in the Trauma group. Mean levels in the Trauma+Dex group were lower, albeit still significantly high compared to the Control group. Glutathione levels were similar in all groups. Na/K-ATPase levels were significantly lower in the Trauma group compared to both the Control group and the Trauma+Dex group. Histopathologic findings of tissue degeneration including edema, vascular congestion and neuronal injury, and cleaved caspase-3 levels were lower in the Trauma+Dex group compared with the Trauma group. CONCLUSIONS Dexmedetomidine administered during the early stage of traumatic brain injury may inhibit caspase-3 cleavageHowever, the mechanism does not seem to be related to the improvement of MDA or GSH levels.
Collapse
Affiliation(s)
- Ahmet Sen
- Department of Anesthesiology and Reanimation, Trabzon Faculty of Medicine, University of Health Sciences, Trabzon, Turkey
| | - Basar Erdivanlı
- Department of Anestjesıology and Reamınatıon, Faculty of Medıcıne, Recep Tayyıp Erdogan Unıversıty
| | - Levent Tümkaya
- Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hüseyin Avni Uydu
- Histology and Embryology and Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Şule Batcik
- Department of Anestjesıology and Reamınatıon, Faculty of Medıcıne, Recep Tayyıp Erdogan Unıversıty
| | - Abdullah Ozdemir
- Department of Anestjesıology and Reamınatıon, Faculty of Medıcıne, Recep Tayyıp Erdogan Unıversıty
| |
Collapse
|
11
|
Maex R. Energy optimisation predicts the capacity of ion buffering in the brain. BIOLOGICAL CYBERNETICS 2023; 117:467-484. [PMID: 38103053 DOI: 10.1007/s00422-023-00980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Neurons store energy in the ionic concentration gradients they build across their cell membrane. The amount of energy stored, and hence the work the ions can do by mixing, can be enhanced by the presence of ion buffers in extra- and intracellular space. Buffers act as sources and sinks of ions, however, and unless the buffering capacities for different ion species obey certain relationships, a complete mixing of the ions may be impeded by the physical conditions of charge neutrality and isotonicity. From these conditions, buffering capacities were calculated that enabled each ion species to mix completely. In all valid buffer distributions, the [Formula: see text] ions were buffered most, with a capacity exceeding that of [Formula: see text] and [Formula: see text] buffering by at least an order of magnitude. The similar magnitude of the (oppositely directed) [Formula: see text] and [Formula: see text] gradients made extracellular space behave as a [Formula: see text]-[Formula: see text] exchanger. Anions such as [Formula: see text] were buffered least. The great capacity of the extra- and intracellular [Formula: see text] buffers caused a large influx of [Formula: see text] ions as is typically observed during energy deprivation. These results explain many characteristics of the physiological buffer distributions but raise the question how the brain controls the capacity of its ion buffers. It is suggested that neurons and glial cells, by their great sensitivity to gradients of charge and osmolarity, respectively, sense deviations from electro-neutral and isotonic mixing, and use these signals to tune the chemical composition, and buffering capacity, of the extra- and intracellular matrices.
Collapse
Affiliation(s)
- Reinoud Maex
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK.
| |
Collapse
|
12
|
Yang J, Prescott SA. Homeostatic regulation of neuronal function: importance of degeneracy and pleiotropy. Front Cell Neurosci 2023; 17:1184563. [PMID: 37333893 PMCID: PMC10272428 DOI: 10.3389/fncel.2023.1184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Neurons maintain their average firing rate and other properties within narrow bounds despite changing conditions. This homeostatic regulation is achieved using negative feedback to adjust ion channel expression levels. To understand how homeostatic regulation of excitability normally works and how it goes awry, one must consider the various ion channels involved as well as the other regulated properties impacted by adjusting those channels when regulating excitability. This raises issues of degeneracy and pleiotropy. Degeneracy refers to disparate solutions conveying equivalent function (e.g., different channel combinations yielding equivalent excitability). This many-to-one mapping contrasts the one-to-many mapping described by pleiotropy (e.g., one channel affecting multiple properties). Degeneracy facilitates homeostatic regulation by enabling a disturbance to be offset by compensatory changes in any one of several different channels or combinations thereof. Pleiotropy complicates homeostatic regulation because compensatory changes intended to regulate one property may inadvertently disrupt other properties. Co-regulating multiple properties by adjusting pleiotropic channels requires greater degeneracy than regulating one property in isolation and, by extension, can fail for additional reasons such as solutions for each property being incompatible with one another. Problems also arise if a perturbation is too strong and/or negative feedback is too weak, or because the set point is disturbed. Delineating feedback loops and their interactions provides valuable insight into how homeostatic regulation might fail. Insofar as different failure modes require distinct interventions to restore homeostasis, deeper understanding of homeostatic regulation and its pathological disruption may reveal more effective treatments for chronic neurological disorders like neuropathic pain and epilepsy.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Gaspard N. Magnetic Resonance Imaging in Status Epilepticus: Useful Scrying Board or Expensive Stopwatch? Epilepsy Curr 2023; 23:162-165. [PMID: 37334407 PMCID: PMC10273823 DOI: 10.1177/15357597231160608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Association of Peri-Ictal MRI Abnormalities With Mortality, Antiseizure Medications Refractoriness, and Morbidity in Status Epilepticus Bonduelle T, Ollivier M, Trin K, Thomas B, Daubigney A, Michel V, De Montaudouin M, Marchal C, Aupy J. Neurology . 2022. doi:10.1212/WNL.0000000000201599 . Online ahead of print. Background and objectives: Status epilepticus (SE) is a life-threatening emergency requiring a prompt assessment of patient prognosis to guide management. Magnetic resonance imaging (MRI) allows the identification of peri-ictal MRI abnormalities (PMA) and provides insight into brain structural modifications induced by SE. However, little is known about the significance of PMA in SE prognosis. The aim of this study was to determine whether PMA are associated with an increased mortality in SE, and to establish the association between PMA and refractoriness to antiseizure medications, complications encountered and induced morbidity. Methods: We conducted a retrospective observational cohort study including all eligible consecutive patients over 15 years-old and hospitalized with SE at Bordeaux University Hospital (France), between January 2015 and December 2019. The primary endpoint was in-hospital mortality. Together with a dedicated neuroradiological reassessment, baseline characteristics, in-hospital death, SE characterization, drug refractoriness and following outcome in survivors were assessed by comprehensive medical review. Results: Of 307 patients included, 79 (26%) showed PMA related to SE. Demographic, functional status at baseline and median delay between SE onset and MRI exam were similar in PMA-positive and PMA-negative group. In-hospital death occurred in 15% (45/307) patients and was significantly higher in the PMA-positive group (27%, 21/79 vs 11%, 24/228; p<0.001). In multivariate analysis, the presence of PMA (odds ratio [OR] 2.86, 95% confidence interval [CI] 1.02-8.18; p=0.045), together with SE duration ([OR] 1.01, 95% CI 1.01-1.02; p=0.007), older age at SE onset ([OR] 1.05, 95% CI 1.01-1.09; p=0.013), preexisting ultimately fatal comorbidity ([OR] 4.01, 95% CI 1.56-10.6; p=0.004) and acute lesional SE etiology ([OR] 3.74, 95% CI 1.45-10.2; p=0.007) were independent predictors associated with in-hospital death. Patients with PMA had a higher risk of refractory SE (71 vs 33%, p<0.001). Among survivors, delayed onset epilepsy (40% vs 21%, p=0.009) occurred more frequently in the PMA-positive group. Discussion: PMA-positive cases had a higher mortality rate in the largest cohort so far to assess the prognosis value of PMA in SE. As a non-invasive and easily available tool, PMA represents a promising structural biomarker for developing a personalized approach to prognostication in SE patients receiving MRI. Association of Ictal Imaging Changes in Status Epilepticus and Neurological Deterioration Cornwall CD, Dahl SM, Nguyen N, Roberg LE, Monsson O, Krøigård T, Beier CP. Epilepsia . 2022;63(11):2970-2980. doi:10.1111/epi.17404 Objective: In patients with status epilepticus (SE), the clinical significance of ictal changes on magnetic resonance imaging (MRI) is insufficiently understood. We here studied whether the presence of ictal MRI changes was associated with neurological deterioration at discharge. Methods: The retrospective cohort comprised all identifiable patients treated at Odense University Hospital in the period 2008-2017. All amenable MRIs were systemically screened for ictal changes. Patient demographics, electroencephalography, seizure characteristics, treatment, and SE duration were assessed. Neurological status was estimated before and after SE. The predefined endpoint was the association of neurological deterioration and ictal MRI changes. Results: Of 261 eligible patients, 101 received at least one MRI during SE or within 7 days after cessation; 43.6% (44/101) had SE due to non- or less brain-damaging etiologies. Patients who received MRI had a longer duration of SE, less frequently had a history of epilepsy, and were more likely to have SE due to unknown causes. Basic characteristics (including electroencephalographic features defined by the Salzburg criteria) did not differ between patients with (n = 20) and without (n = 81) ictal MRI changes. Timing of MRI was important; postictal changes were rare within the first 24 h and hardly seen >5 days after cessation of SE. Ictal MRI changes were associated with a higher risk of neurological deterioration at discharge irrespective of etiology. Furthermore, they were associated with a longer duration of SE and higher long-term mortality that reached statistical significance in patients with non- or less brain-damaging etiologies. Significance: In this retrospective cohort, ictal changes on MRI were associated with a higher risk of neurological deterioration at discharge and, possibly, with a longer duration of SE and poorer survival.
Collapse
Affiliation(s)
- Nicolas Gaspard
- Professor of Neurology Hôpital Universitaire de Bruxelles - Université Libre de Bruxelles
| |
Collapse
|
14
|
Kalinichenko SG, Pushchin II, Matveeva NY. Neurotoxic and cytoprotective mechanisms in the ischemic neocortex. J Chem Neuroanat 2023; 128:102230. [PMID: 36603664 DOI: 10.1016/j.jchemneu.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Neuronal damage in ischemic stroke occurs due to permanent imbalance between the metabolic needs of the brain and the ability of the blood-vascular system to maintain glucose delivery and adequate gas exchange. Oxidative stress and excitotoxicity trigger complex processes of neuroinflammation, necrosis, and apoptosis of both neurons and glial cells. This review summarizes data on the structural and chemical changes in the neocortex and main cytoprotective effects induced by focal ischemic stroke. We focus on the expression of neurotrophins (NT) and molecular and cellular changes in neurovascular units in ischemic brain. We also discuss how these factors affect the apoptosis of cortical cells. Ischemic damage involves close interaction of a wide range of signaling molecules, each acting as an efficient marker of cell state in both the ischemic core and penumbra. NTs play the main regulatory role in brain tissue recovery after ischemic injury. Heterogeneous distribution of the BDNF, NT-3, and GDNF immunoreactivity is concordant with the selective response of different types of cortical neurons and glia to ischemic injury and allows mapping the position of viable neurons. Astrocytes are the central link in neurovascular coupling in ischemic brain by providing other cells with a wide range of vasotropic factors. The NT expression coincides with the distribution of reactive astrocytes, marking the boundaries of the penumbra. The development of ischemic stroke is accompanied by a dramatic change in the distribution of GDNF reactivity. In early ischemic period, it is mainly observed in cortical neurons, while in late one, the bulk of GDNF-positive cells are various types of glia, in particular, astrocytes. The proportion of GDNF-positive astrocytes increases gradually throughout the ischemic period. Some factors that exert cytoprotective effects in early ischemic period may display neurotoxic and pro-apoptotic effects later on. The number of apoptotic cells in the ischemic brain tissue correlates with the BDNF levels, corroborating its protective effects. Cytoprotection and neuroplasticity are two lines of brain protection and recovery after ischemic stroke. NTs can be considered an important link in these processes. To develop efficient pharmacological therapy for ischemic brain injury, we have to deepen our understanding of neurochemical adaptation of brain tissue to acute stroke.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmusky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Natalya Yu Matveeva
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| |
Collapse
|
15
|
Role of NKCC1 and KCC2 during hypoxia-induced neuronal swelling in the neonatal neocortex. Neurobiol Dis 2023; 178:106013. [PMID: 36706928 PMCID: PMC9945323 DOI: 10.1016/j.nbd.2023.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Neonatal hypoxia causes cytotoxic neuronal swelling by the entry of ions and water. Multiple water pathways have been implicated in neurons because these cells lack water channels, and their membrane has a low water permeability. NKCC1 and KCC2 are cation-chloride cotransporters (CCCs) involved in water movement in various cell types. However, the role of CCCs in water movement in neonatal neurons during hypoxia is unknown. We studied the effects of modulating CCCs pharmacologically on neuronal swelling in the neocortex (layer IV/V) of neonatal mice (post-natal day 8-13) during prolonged and brief hypoxia. We used acute brain slices from Clomeleon mice which express a ratiometric fluorophore sensitive to Cl- and exposed them to oxygen-glucose deprivation (OGD) while imaging neuronal size and [Cl-]i by multiphoton microscopy. Neurons were identified using a convolutional neural network algorithm, and changes in the somatic area and [Cl-]i were evaluated using a linear mixed model for repeated measures. We found that (1) neuronal swelling and Cl- accumulation began after OGD, worsened during 20 min of OGD, or returned to baseline during reoxygenation if the exposure to OGD was brief (10 min). (2) Neuronal swelling did not occur when the extracellular Cl- concentration was low. (3) Enhancing KCC2 activity did not alter OGD-induced neuronal swelling but prevented Cl- accumulation; (4) blocking KCC2 led to an increase in Cl- accumulation during prolonged OGD and aggravated neuronal swelling during reoxygenation; (5) blocking NKCC1 reduced neuronal swelling during early but not prolonged OGD and aggravated Cl- accumulation during prolonged OGD; and (6) treatment with the "broad" CCC blocker furosemide reduced both swelling and Cl- accumulation during prolonged and brief OGD, whereas simultaneous NKCC1 and KCC2 inhibition using specific pharmacological blockers aggravated neuronal swelling during prolonged OGD. We conclude that CCCs, and other non-CCCs, contribute to water movement in neocortical neurons during OGD in the neonatal period.
Collapse
|
16
|
Maex R. An Isotonic Model of Neuron Swelling Based on Co-Transport of Salt and Water. MEMBRANES 2023; 13:206. [PMID: 36837709 PMCID: PMC9958824 DOI: 10.3390/membranes13020206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Neurons spend most of their energy building ion gradients across the cell membrane. During energy deprivation the neurons swell, and the concomitant mixing of their ions is commonly assumed to lead toward a Donnan equilibrium, at which the concentration gradients of all permeant ion species have the same Nernst potential. This Donnan equilibrium, however, is not isotonic, as the total concentration of solute will be greater inside than outside the neurons. The present theoretical paper, in contrast, proposes that neurons follow a path along which they swell quasi-isotonically by co-transporting water and ions. The final neuronal volume on the path is taken that at which the concentration of impermeant anions in the shrinking extracellular space equals that inside the swelling neurons. At this final state, which is also a Donnan equilibrium, all permeant ions can mix completely, and their Nernst potentials vanish. This final state is isotonic and electro-neutral, as are all intermediate states along this path. The path is in principle reversible, and maximizes the work of mixing.
Collapse
Affiliation(s)
- Reinoud Maex
- Biocomputation Research Group, School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| |
Collapse
|
17
|
Takahashi N, Akaike N, Nagamatsu T, Uchino H, Kudo Y. Effects of TND1128 (a 5-deazaflavin derivative), with self-redox ability, as a mitochondria activator on the mouse brain slice and its comparison with β-NMN. J Pharmacol Sci 2023; 151:93-109. [PMID: 36707184 DOI: 10.1016/j.jphs.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
We have no definitive treatment for dementia characterized by prolonged neuronal death due to the enormous accumulation of foreign matter, such as β-amyloid. Since Alzheimer's type dementia develops slowly, we may be able to delay the onset and improve neuronal dysfunction by enhancing the energy metabolism of individual neurons. TND1128, a derivative of 5-deazaflavin, is a chemical known to have an efficient self-redox ability. We expected TND1128 as an activator for mitochondrial energy synthesis. We used brain slices prepared from mice 22 ± 2 h pretreated with TND1128 or β-NMN. We measured Ca2+ concentrations in the cytoplasm ([Ca2+]cyt) and mitochondria ([Ca2+]mit) by using fluorescence Ca2+ indicators, Fura-4F, and X-Rhod-1, respectively, and examined the protective effects of drugs on [Ca2+]cyt and [Ca2+]mit overloading by repeating 80K exposure. TND1128 (0.01, 0.1, and 1 mg/kg s.c.) mitigates the dynamics of both [Ca2+]cyt and [Ca2+]mit in a dose-dependent manner. β-NMN (10, 30, and 100 mg/kg s.c.) also showed significant dose-dependent mitigating effects on [Ca2+]cyt, but the effect on the [Ca2+]mit dynamics was insignificant. We confirmed the mitochondria-activating potential of TND1128 in the present study. We expect TND1128 as a drug that rescues deteriorating neurons with aging or disease.
Collapse
Affiliation(s)
- Nanae Takahashi
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center 1163 Tatemachi,Hachioji, Tokyo 193-0998, Japan.
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryou Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan.
| | - Tomohisa Nagamatsu
- Laboratory of Curative Creation Study for Geriatric-diseases Prevention, Faculty of Pharmacological Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan.
| | - Yoshihisa Kudo
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center 1163 Tatemachi,Hachioji, Tokyo 193-0998, Japan.
| |
Collapse
|
18
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
19
|
Dynamic cerebral blood flow changes with FOXOs stimulation are involved in neuronal damage associated with high-altitude cerebral edema in mice. Brain Res 2022; 1790:147987. [PMID: 35724762 DOI: 10.1016/j.brainres.2022.147987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
Acute hypobaric hypoxia (AHH) exposure causes altitude mountain sickness (AMS) and life-threatening high altitude cerebral edema (HACE). Despite decades of research, the role of cerebral blood flow (CBF) changes in the pathophysiology of severe AMS remains unclear. The current study evaluated spatiotemporal responses of CBF associated with HACE in mice during the early stages of ascent to high altitudes. First, mice were exposed to AHH to test their tolerance to increasing altitudes (3000-8000 m). Because of its significant influence on both locomotor activity and rotarod behavior tests in mice, further observations were initiated at an altitude of 6000 m to investigate the specific pathophysiology of AMS. Compared with controls, laser speckle contrast imaging (LSCI) revealed a significant decrease in CBF during the early stage (0.5-24 h) at an altitude of 6000 m that was accompanied by a significant increase in brain water content (BWC). Moreover, observations of brain lipid oxidative damage and oxidative stress during the early stage of AHH exposure revealed DNA and cellular damage in cortical and hippocampal regions. Transcriptome profiling of the hippocampus revealed upregulation of forkhead box transcription factors. Similarly, western blot assays revealed upregulation of FOXO1a, FOXO3a, caspase-3 and Bax, and downregulation of Bcl-2, indicating a temporal influence of AHH on mitochondrial function and neuronal apoptosis. Thus, we found that the pathophysiology of HACE occurred with dynamic CBF changes, which triggered oxidative stress and neuronal damage in the mouse brain after AHH exposure. Our findings provide potential strategies for treatment of AHH in the future.
Collapse
|
20
|
Andrew RD, Farkas E, Hartings JA, Brennan KC, Herreras O, Müller M, Kirov SA, Ayata C, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Dawson-Scully KD, Ullah G, Dreier JP. Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization. Neurocrit Care 2022; 37:11-30. [PMID: 35194729 PMCID: PMC9259542 DOI: 10.1007/s12028-021-01429-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.
Collapse
Affiliation(s)
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | - Cenk Ayata
- Harvard Medical School, Harvard University, Boston, MA USA
| | | | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Omer Revah
- School of Medicine, Stanford University, Stanford, CA USA
| | | | | | | | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Corporate Member of Freie Universität Berlin, Berlin, Germany
- Department of Neurology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
21
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
22
|
Andrew RD, Hartings JA, Ayata C, Brennan KC, Dawson-Scully KD, Farkas E, Herreras O, Kirov SA, Müller M, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Shuttleworth CW, Ullah G, Dreier JP. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocrit Care 2022; 37:83-101. [PMID: 35257321 PMCID: PMC9259543 DOI: 10.1007/s12028-021-01431-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.
Collapse
Affiliation(s)
- R. David Andrew
- grid.410356.50000 0004 1936 8331Queen’s University, Kingston, ON Canada
| | - Jed A. Hartings
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Cenk Ayata
- grid.38142.3c000000041936754XHarvard Medical School, Harvard University, Boston, MA USA
| | - K. C. Brennan
- grid.223827.e0000 0001 2193 0096The University of Utah, Salt Lake City, UT USA
| | | | - Eszter Farkas
- grid.9008.10000 0001 1016 96251HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, and the Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Oscar Herreras
- grid.419043.b0000 0001 2177 5516Instituto de Neurobiologia Ramon Y Cajal (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Sergei. A. Kirov
- grid.410427.40000 0001 2284 9329Medical College of Georgia, Augusta, GA USA
| | - Michael Müller
- grid.411984.10000 0001 0482 5331University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Nikita Ollen-Bittle
- grid.39381.300000 0004 1936 8884University of Western Ontario, London, ON Canada
| | - Clemens Reiffurth
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| | - Omer Revah
- grid.168010.e0000000419368956School of Medicine, Stanford University, Stanford, CA USA
| | | | | | - Ghanim Ullah
- grid.170693.a0000 0001 2353 285XUniversity of South Florida, Tampa, FL USA
| | - Jens P. Dreier
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| |
Collapse
|
23
|
Balu R, Foreman B. Introduction to Spreading Depolarizations: Special Edition of Neurocritical Care. Neurocrit Care 2021; 35:87-88. [PMID: 34657988 DOI: 10.1007/s12028-021-01363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramani Balu
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
| | - Brandon Foreman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|