1
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Zuo H, Li MM. Ankylosing spondylitis and psychiatric disorders in European population: a Mendelian randomization study. Front Immunol 2023; 14:1277959. [PMID: 37954601 PMCID: PMC10637577 DOI: 10.3389/fimmu.2023.1277959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Background Epidemiologic evidence has demonstrated a correlation between ankylosing spondylitis and psychiatric disorders. However, little is known about the common genetics and causality of this association. This study aimed to investigate the common genetics and causality between ankylosing spondylitis (AS) and psychiatric disorders. Methods A two-sample Mendelian Randomization (MR) analysis was carried out to confirm causal relationships between ankylosing spondylitis and five mental health conditions including major depressive disorder (MDD), anxiety disorder (AXD), schizophrenia (SCZ), bipolar disorder (BIP), and anorexia nervosa (AN). Genetic instrumental variables associated with exposures and outcomes were derived from the largest available summary statistics of genome-wide association studies (GWAS). Bidirectional causal estimation of MR was primarily obtained using the inverse variance weighting (IVW) method. Other MR methods include MR-Egger regression, Weighted Median Estimator (WME), Weighted Mode, Simple Mode, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO). Sensitivity analyses are conducted to estimate the robustness of MR results. Results The findings suggest that AS may be causally responsible for the risk of developing SCZ (OR = 1.18, 95% confidence interval = (1.06, 1.31), P = 2.58 × 10-3) and AN (OR = 1.32, 95% confidence interval = (1.07, 1.64), P = 9.43 × 10-3). In addition, MDD, AXD, SCZ, AN, and BIP were not inversely causally related to AS (all p > 0.05). Conclusion Our study provides fresh insights into the relationship between AS and psychiatric disorders (SCZ and AN). Furthermore, it may provide new clues for risk management and preventive interventions for mental disorders in patients with AS.
Collapse
Affiliation(s)
| | - Min-Min Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Priyathilaka TT, Laaker CJ, Herbath M, Fabry Z, Sandor M. Modeling infectious diseases of the central nervous system with human brain organoids. Transl Res 2022; 250:18-35. [PMID: 35811019 PMCID: PMC11185418 DOI: 10.1016/j.trsl.2022.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Bacteria, fungi, viruses, and protozoa are known to infect and induce diseases in the human central nervous system (CNS). Modeling the mechanisms of interaction between pathogens and the CNS microenvironment is essential to understand their pathophysiology and develop new treatments. Recent advancements in stem cell technologies have allowed for the creation of human brain organoids, which more closely resembles the human CNS microenvironment when compared to classical 2-dimensional (2D) cultures. Now researchers can utilize these systems to investigate and reinvestigate questions related to CNS infection in a human-derived brain organoid system. Here in this review, we highlight several infectious diseases which have been tested in human brain organoids and compare similarities in response to these pathogens across different investigations. We also provide a brief overview of some recent advancements which can further enrich this model to develop new and better therapies to treat brain infections.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Collin James Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, Wisconsin
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin.
| |
Collapse
|
4
|
Identification of molecular signatures and pathways common to blood cells and brain tissue based RNA-Seq datasets of bipolar disorder: Insights from comprehensive bioinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Lorettu L, Carpita B, Nivoli A, Milia P, De Iorio G, Cremone IM, DellʼOsso L. Lithium Use During Pregnancy in a Patient With Bipolar Disorder and Multiple Sclerosis. Clin Neuropharmacol 2021; 43:158-161. [PMID: 32947427 DOI: 10.1097/wnf.0000000000000407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although lithium is widely used as a first-line treatment for mood disorders, its mood-stabilizing effects remain not fully understood. A growing body of data are stressing that lithium seems to show broader properties, including neuroprotective effects. Lithium's ability to inhibit glycogen synthase kinase 3β, an enzyme that participates in the phosphorylation of τ, a microtubule-associated protein, stimulated interest in its possible therapeutic role in Alzheimer disease and other neurodegenerative disorders. Preliminary data also support exploration of lithium's potential therapeutic role in multiple sclerosis, an autoimmune disorder that is associated with co-occurring mood disorders. Lithium is associated with teratogenic risks to the developing fetus; however, recently revised downward estimates of its teratogenic risk of causing fetal cardiac malformation suggest that its potential therapeutic benefit to both mothers with bipolar disorder and their offspring should be considered in at least some cases. A 43-year-old woman previously diagnosed with bipolar disorder and MS was treated with lithium and thyroid hormone supplementation as her sole medications during her pregnancy. The patient remained euthymic throughout her pregnancy and over the course of her 5-year follow-up evaluations on this medication regimen. In addition to her stable mood, there has been no symptomatic progression or relapse of her MS, and her daughter continues to develop normally.The case supports consideration of balancing lithium's mood-stabilizing benefit with its known teratogenic risk during pregnancy. The case also supports exploration of possible additional benefit in the context of MS co-occurring with bipolar disorder.
Collapse
Affiliation(s)
- Liliana Lorettu
- Clinica Psichiatrica-Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari-AOU Sassari, Sassari
| | - Barbara Carpita
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Alessandra Nivoli
- Clinica Psichiatrica-Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari-AOU Sassari, Sassari
| | - Paolo Milia
- Clinica Psichiatrica-Dipartimento di Scienze Mediche Chirurgiche e Sperimentali, Università degli Studi di Sassari-AOU Sassari, Sassari
| | - Giovanni De Iorio
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Ivan Mirko Cremone
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Liliana DellʼOsso
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| |
Collapse
|
6
|
Kathuria A, Lopez-Lengowski K, Vater M, McPhie D, Cohen BM, Karmacharya R. Transcriptome analysis and functional characterization of cerebral organoids in bipolar disorder. Genome Med 2020; 12:34. [PMID: 32306996 PMCID: PMC7168850 DOI: 10.1186/s13073-020-00733-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Reprogramming human induced pluripotent stem cells (iPSCs) from somatic cells and generating three-dimensional brain organoids from these iPSCs provide access to live human neuronal tissue with disease-specific genetic backgrounds. Methods Cerebral organoids were generated from iPSCs of eight bipolar disorder (BPI) patients and eight healthy control individuals. RNA-seq experiments were undertaken using RNA isolated from the cerebral organoids. Functional activity in the cerebral organoids was studied using microelectrode arrays. Results RNA-seq data comparing gene expression profiles in the cerebral organoids showed downregulation of pathways involved in cell adhesion, neurodevelopment, and synaptic biology in bipolar disorder along with upregulation of genes involved in immune signaling. The central hub in the network analysis was neurocan (NCAN), which is located in a locus with evidence for genome-wide significant association in BPI. Gene ontology analyses suggested deficits related to endoplasmic reticulum biology in BPI, which was supported by cellular characterization of ER–mitochondria interactions. Functional studies with microelectrode arrays revealed specific deficits in response to stimulation and depolarization in BPI cerebral organoids. Conclusions Our studies in cerebral organoids from bipolar disorder showed dysregulation in genes involved in cell adhesion, immune signaling, and endoplasmic reticulum biology; implicated a central role for the GWAS hit NCAN in the biology of BPI; and showed evidence of deficits in neurotransmission.
Collapse
Affiliation(s)
- Annie Kathuria
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kara Lopez-Lengowski
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Magdalena Vater
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Donna McPhie
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Bruce M Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA. .,Program in Neuroscience, Harvard University, Cambridge, MA, USA. .,Program in Chemical Biology, Harvard University, Cambridge, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Snijders GJLJ, van Mierlo HC, Boks MP, Begemann MJH, Sutterland AL, Litjens M, Ophoff RA, Kahn RS, de Witte LD. The association between antibodies to neurotropic pathogens and bipolar disorder : A study in the Dutch Bipolar (DB) Cohort and meta-analysis. Transl Psychiatry 2019; 9:311. [PMID: 31748521 PMCID: PMC6868237 DOI: 10.1038/s41398-019-0636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Exposure to neurotropic pathogens has been hypothesized to be a risk factor for the development of bipolar disorder (BD). However, evidence so far is inconsistent. We, therefore, analyzed the seroprevalence and titer levels of IgG antibodies against several herpesviruses and Toxoplasma gondii (T. gondii) in plasma of 760 patients with a bipolar disorder, 144 first-degree matched relatives and 132 controls of the Dutch Bipolar (DB) Cohort using ELISA. In addition, we performed a literature-based meta-analysis on the seroprevalence of IgG antibodies against these pathogens (n = 14). Our results in the DB Cohort and subsequent meta-analysis (n = 2364 BD patients, n = 5101 controls) show no association between exposure to herpesviruses and bipolar disorder (HSV-1 [adjusted OR 0.842, 95% CI 0.567-1.230], HSV-2 [adjusted OR 0.877, 95% CI 0.437-1.761], CMV [adjusted OR 0.884 95% CI 0.603-1.295], EBV [adjusted OR 0.968 95% CI 0.658-1.423]). In the DB Cohort, we did not find an association between bipolar disorder and T. gondii titer or seroprevalence either [adjusted OR 1.018, 95% CI 0.672-1.542]. The overall OR was not significant for T. gondii [OR: 1.4, 95% CI 0.95-1.90, p = 0.09), but subgroup analyses in age groups below 40 years showed a significantly increased seroprevalence of T. gondii IgGs in BD [OR: 1.8 (95% CI 1.10-2.89, p = 0.021]. Our meta-analysis indicates that T. gondii exposure may be a risk factor for BD in certain subpopulations.
Collapse
Affiliation(s)
- Gijsje J L J Snijders
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Hans C van Mierlo
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marieke J H Begemann
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjen L Sutterland
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, The Netherlands
| | - Manja Litjens
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lot D de Witte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Lang D, Schott BH, van Ham M, Morton L, Kulikovskaja L, Herrera-Molina R, Pielot R, Klawonn F, Montag D, Jänsch L, Gundelfinger ED, Smalla KH, Dunay IR. Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. J Neuroinflammation 2018; 15:216. [PMID: 30068357 PMCID: PMC6090988 DOI: 10.1186/s12974-018-1242-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background Chronic infection with the neurotropic parasite Toxoplasma gondii has been implicated in the risk for several neuropsychiatric disorders. The mechanisms, by which the parasite may alter neural function and behavior of the host, are not yet understood completely. Methods Here, a novel proteomic approach using mass spectrometry was employed to investigate the alterations in synaptic protein composition in a murine model of chronic toxoplasmosis. In a candidate-based strategy, immunoblot analysis and immunohistochemistry were applied to investigate the expression levels of key synaptic proteins in glutamatergic signaling. Results A comparison of the synaptosomal protein composition revealed distinct changes upon infection, with multiple proteins such as EAAT2, Shank3, AMPA receptor, and NMDA receptor subunits being downregulated, whereas inflammation-related proteins showed an upregulation. Treatment with the antiparasitic agent sulfadiazine strongly reduced tachyzoite levels and diminished neuroinflammatory mediators. However, in both conditions, a significant number of latent cysts persisted in the brain. Conversely, infection-related alterations of key synaptic protein levels could be partly reversed by the treatment. Conclusion These results provide evidence for profound changes especially in synaptic protein composition in T. gondii-infected mice with a downregulation of pivotal components of glutamatergic neurotransmission. Our results suggest that the detected synaptic alterations are a consequence of the distinct neuroinflammatory milieu caused by the neurotropic parasite. Electronic supplementary material The online version of this article (10.1186/s12974-018-1242-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Lang
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Medical Faculty, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Marco van Ham
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonora Kulikovskaja
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rainer Pielot
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank Klawonn
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany.,Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbuettel, Germany
| | - Dirk Montag
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, Cellular Proteomics Group, Braunschweig, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Molecular Neurobiology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Karl Heinz Smalla
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
9
|
Parks S, Avramopoulos D, Mulle J, McGrath J, Wang R, Goes FS, Conneely K, Ruczinski I, Yolken R, Pulver AE, Pearce BD. HLA typing using genome wide data reveals susceptibility types for infections in a psychiatric disease enriched sample. Brain Behav Immun 2018; 70:203-213. [PMID: 29574260 DOI: 10.1016/j.bbi.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The infections Toxoplasma gondii (T. gondii), cytomegalovirus, and Herpes Simplex Virus Type 1 (HSV1) are common persistent infections that have been associated with schizophrenia and bipolar disorder. The major histocompatibility complex (MHC, termed HLA in humans) region has been implicated in these infections and these mental illnesses. The interplay of MHC genetics, mental illness, and infection has not been systematically examined in previous research. METHODS In a cohort of 1636 individuals, we used genome-wide association data to impute 7 HLA types (A, B, C, DRB1, DQA1, DQB1, DPB1), and combined this data with serology data for these infections. We used regression analysis to assess the association between HLA alleles, infections (individually and collectively), and mental disorder status (schizophrenia, bipolar disorder, controls). RESULTS After Bonferroni correction for multiple comparisons, HLA C∗07:01 was associated with increased HSV1 infection among mentally healthy controls (OR 3.4, p = 0.0007) but not in the schizophrenia or bipolar groups (P > 0.05). For the multiple infection outcome, HLA B∗ 38:01 and HLA C∗12:03 were protective in the healthy controls (OR ≈ 0.4) but did not have a statistically-significant effect in the schizophrenia or bipolar groups. T. gondii had several nominally-significant positive associations, including the haplotypes HLA DRB∗03:01 ∼ HLA DQA∗05:01 ∼ HLA DQB∗02:01 and HLA B∗08:01 ∼ HLA C∗07:01. CONCLUSIONS We identified HLA types that showed strong and significant associations with neurotropic infections. Since some of these associations depended on mental illness status, the engagement of HLA-related pathways may be altered in schizophrenia due to immunogenetic differences or exposure history.
Collapse
Affiliation(s)
- Samuel Parks
- Dept. of Epidemiology, Rollins School of Public Health, USA
| | - Dimitrios Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Mulle
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - John McGrath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruihua Wang
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ingo Ruczinski
- Bloomberg School of Public Heath, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Yolken
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ann E Pulver
- Bloomberg School of Public Heath, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brad D Pearce
- Dept. of Epidemiology, Rollins School of Public Health, USA.
| |
Collapse
|
10
|
|
11
|
Abstract
Epidemiological studies and mouse models suggest that maternal immune activation, induced clinically through prenatal exposure to one of several infectious diseases, is a risk factor in the development of schizophrenia. This is supported by the strong genetic association established by genome wide association studies (GWAS) between the human leukocyte antigen (HLA) locus and schizophrenia. HLA proteins (also known in mice as the major histocompatibility complex; MHC) are mediators of the T-lymphocyte responses, and genetic variability is well-established as a risk factor for autoimmune diseases and susceptibility to infectious diseases. Taken together, the findings strongly suggest that schizophrenia risk in a subgroup of patients is caused by an infectious disease, and/or an autoimmune phenomenon. However, this view may be overly simplistic. First, MHC proteins have a non-immune effect on synaptogenesis by modulating synaptic pruning by microglia and other mechanisms, suggesting that genetic variability could be compromising this physiological process. Second, some GWAS signals in the HLA locus map near non-HLA genes, such as the histone gene cluster. On the other hand, recent GWAS data show association signals near B-lymphocyte enhancers, which lend support for an infectious disease etiology. Thus, although the genetic findings implicating the HLA locus are very robust, how genetic variability in this region leads to schizophrenia remains to be elucidated.
Collapse
Affiliation(s)
- Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA
| |
Collapse
|
12
|
Leboyer M, Oliveira J, Tamouza R, Groc L. Is it time for immunopsychiatry in psychotic disorders? Psychopharmacology (Berl) 2016; 233:1651-60. [PMID: 26988846 DOI: 10.1007/s00213-016-4266-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immune dysregulation is suggested to play an important aetiological role in schizophrenia (SZ) and bipolar disorder (BD) potentially driving neurodevelopmental pathways. Immune dysfunction may precede the onset of psychiatric disorders and parallel the development of multiaxial comorbidity, including suicidal behaviour and metabolic and autoimmune disorders. Depicting the source of the chronic low-grade inflammatory component in SZ and BD is thus a research priority. Strong environmental insults early in life, such as infections, acting on a background of genetic vulnerability, may induce potent and enduring inflammatory responses setting a state of liability to second-hit environmental encounters, namely childhood trauma, drug abuse or additional infectious exposures. The immunogenetic background of susceptibility, suggested to be not only lying within the HLA locus but also implicating inherited deficits of the innate immune system, may amplify the harmful biological effects of infections/psychosocial stress leading to the manifestation of a broad range of psychiatric symptoms. OBJECTIVES The present review aims to discuss the following: (i) biological arguments in favour of a chronic low-grade inflammation in SZ and BD and its potential origin in the interaction between the immunogenetic background and environmental infectious insults, and (ii) the consequences of this inflammatory dysfunction by focusing on N-methyl-D-aspartate (NMDA) receptor antibodies and activation of the family of human endogenous retroviruses (HERVs). CONCLUSIONS Specific therapeutic approaches targeting immune pathways may lead the way to novel personalized medical interventions, improvement of quality of life and average life expectancy of psychiatric patients, if not even prevent mood episodes and psychotic symptoms.
Collapse
Affiliation(s)
- Marion Leboyer
- Université Paris-Est, INSERM U955, Laboratoire Psychiatrie Translationnelle, et AP-HP, DHU Pe-PSY, Pole de Psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, et fondation FondaMental, F-94000, Créteil, France. .,Pôle de Psychiatrie, Hôpital Albert Chenevier, 40 rue de Mesly, 94000, Créteil, France.
| | - José Oliveira
- Université Paris-Est, INSERM U955, Laboratoire Psychiatrie Translationnelle, et AP-HP, DHU Pe-PSY, Pole de Psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, et fondation FondaMental, F-94000, Créteil, France.,INSERM, U1160, Hôpital Saint Louis, Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris-Cité, Paris, France
| | - Ryad Tamouza
- INSERM, U1160, Hôpital Saint Louis, Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris-Cité, Paris, France
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France
| |
Collapse
|
13
|
Abstract
The immune system's role in the pathophysiology of several neuropsychiatric disorders has been the subject of research for many decades. Despite suggestive evidence from genetic, epidemiologic, and immunologic studies, those findings did not translate into clinical practice. Recent recognition of antibody-mediated central nervous system (CNS) disorders has fueled the search for a subgroup of patients with an antibody-mediated psychiatric illness. This chapter focuses on the current understanding of autoimmune CNS disorders and how they may be relevant to psychiatric disorders, particularly schizophrenia and autism. We review the results provided by antibody screening in psychiatric patient groups and discuss future directions to establish whether those findings will be meaningful in clinical practice.
Collapse
Affiliation(s)
- Ester Coutinho
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
14
|
Shimada-Sugimoto M, Otowa T, Miyagawa T, Khor SS, Kashiwase K, Sugaya N, Kawamura Y, Umekage T, Kojima H, Saji H, Miyashita A, Kuwano R, Kaiya H, Kasai K, Tanii H, Okazaki Y, Tokunaga K, Sasaki T. Immune-related pathways including HLA-DRB1(∗)13:02 are associated with panic disorder. Brain Behav Immun 2015; 46:96-103. [PMID: 25582808 DOI: 10.1016/j.bbi.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/26/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022] Open
Abstract
Panic disorder (PD) is an anxiety disorder characterized by panic attacks and anticipatory anxiety. Both genetic and environmental factors are thought to trigger PD onset. Previously, we performed a genome-wide association study (GWAS) for PD and focused on candidate SNPs with the lowest P values. However, there seemed to be a number of polymorphisms which did not reach genome-wide significance threshold due to their low allele frequencies and odds ratios, even though they were truly involved in pathogenesis. Therefore we performed pathway analyses in order to overcome the limitations of conventional single-marker analysis and identify associated SNPs with modest effects. Each pathway analysis indicated that pathways related to immunity showed the strongest association with PD (DAVID, P=2.08×10(-6); i-GSEA4GWAS, P<10(-3); ICSNPathway, P<10(-3)). Based on the results of pathway analyses and the previously performed GWAS for PD, we focused on and investigated HLA-B and HLA-DRB1 as candidate susceptibility genes for PD. We typed HLA-B and HLA-DRB1 in 744 subjects with PD and 1418 control subjects. Patients with PD were significantly more likely to carry HLA-DRB1(∗)13:02 (P=2.50×10(-4), odds ratio=1.54). Our study provided initial evidence that HLA-DRB1(∗)13:02 and genes involved in immune-related pathways are associated with PD. Future studies are necessary to confirm these results and clarify the underlying mechanisms causing PD.
Collapse
Affiliation(s)
- Mihoko Shimada-Sugimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Otowa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Taku Miyagawa
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Kashiwase
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Nagisa Sugaya
- Department of Epidemiology and Public Health, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Yoshiya Kawamura
- Department of Psychiatry, Sakae Seijinkai Hospital, Kanagawa, Japan
| | - Tadashi Umekage
- Division for Environment, Health and Safety, The University of Tokyo, Tokyo, Japan
| | | | | | - Akinori Miyashita
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hisanobu Kaiya
- Panic Disorder Research Center, Warakukai Med. Corp., Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tanii
- Department of Psychiatry, Institute of Medical Life Science, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yuji Okazaki
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Pan W, Chen YM, Wei P. Testing for polygenic effects in genome-wide association studies. Genet Epidemiol 2015; 39:306-16. [PMID: 25847094 DOI: 10.1002/gepi.21899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 12/20/2022]
Abstract
To confirm associations with a large number of single nucleotide polymorphisms (SNPs), each with only a small effect size, as hypothesized in the polygenic theory for schizophrenia, the International Schizophrenia Consortium (2009, Nature 460:748-752) proposed a polygenic risk score (PRS) test and demonstrated its effectiveness when applied to psychiatric disorders. The basic idea of the PRS test is to use a half of the sample to select and up-weight those more likely to be associated SNPs, and then use the other half of the sample to test for aggregated effects of the selected SNPs. Intrigued by the novelty and increasing use of the PRS test, we aimed to evaluate and improve its performance for GWAS data. First, by an analysis of the PRS test, we point out its connection with the Sum test [Chapman and Whittaker, Genet Epidemiol 32:560-566; Pan, Genet Epidemiol 33:497-507]; given the known advantages and disadvantages of the Sum test, this connection motivated the development of several other polygenic tests, some of which may be more powerful than the PRS test under certain situations. Second, more importantly, to overcome the low statistical efficiency of the data-splitting strategy as adopted in the PRS test, we reformulate and thus modify the PRS test, obtaining several adaptive tests, which are closely related to the adaptive sum of powered score (SPU) test studied in the context of rare variant analysis [Pan et al., 2014, Genetics 197:1081-1095]. We use both simulated data and a real GWAS dataset of alcohol dependence to show dramatically improved power of the new tests over the PRS test; due to its superior performance and simplicity, we recommend the whole sample-based adaptive SPU test for polygenic testing. We hope to raise the awareness of the limitations of the PRS test and potential power gain of the adaptive SPU test.
Collapse
Affiliation(s)
- Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
16
|
The HLA-G low expressor genotype is associated with protection against bipolar disorder. Hum Immunol 2013; 74:593-7. [DOI: 10.1016/j.humimm.2012.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
|
17
|
Debnath M, Cannon DM, Venkatasubramanian G. Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:49-62. [PMID: 22813842 DOI: 10.1016/j.pnpbp.2012.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/23/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder with a complex genetic contribution. Although multiple genetic, immunological and environmental factors are known to contribute to schizophrenia susceptibility, the underlying neurobiological mechanism(s) is yet to be established. The immune system dysfunction theory of schizophrenia is experiencing a period of renewal due to a growth in evidence implicating components of the immune system in brain function and human behavior. Current evidence indicates that certain immune molecules such as Major Histocompatibility Complex (MHC) and cytokines, the key regulators of immunity and inflammation are directly involved in the neurobiological processes related to neurodevelopment, neuronal plasticity, learning, memory and behavior. However, the strongest support in favor of the immune hypothesis has recently emerged from on-going genome wide association studies advocating MHC region variants as major determinants of one's risk for developing schizophrenia. Further identification of the interacting partners and receptors of MHC molecules in the brain and their role in down-stream signaling pathways of neurotransmission have implicated these molecules as potential schizophrenia risk factors. More recently, combined brain imaging and genetic studies have revealed a relationship between genetic variations within the MHC region and neuromorphometric changes during schizophrenia. Furthermore, MHC molecules play a significant role in the immune-infective and neurodevelopmental pathogenetic pathways, currently hypothesized to contribute to the pathophysiology of schizophrenia. Herein, we review the immunological, genetic and expression studies assessing the role of the MHC in conferring risk for developing schizophrenia, we summarize and discuss the possible mechanisms involved, making note of the challenges to, and future directions of, immunogenetic research in schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore-560029, India.
| | | | | |
Collapse
|
18
|
Perron H, Hamdani N, Faucard R, Lajnef M, Jamain S, Daban-Huard C, Sarrazin S, LeGuen E, Houenou J, Delavest M, Moins-Teiserenc H, Bengoufa D, Yolken R, Madeira A, Garcia-Montojo M, Gehin N, Burgelin I, Ollagnier G, Bernard C, Dumaine A, Henrion A, Gombert A, Le Dudal K, Charron D, Krishnamoorthy R, Tamouza R, Leboyer M, Leboyer M. Molecular characteristics of Human Endogenous Retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry 2012; 2:e201. [PMID: 23212585 PMCID: PMC3565190 DOI: 10.1038/tp.2012.125] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epidemiological and genome-wide association studies of severe psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BD), suggest complex interactions between multiple genetic elements and environmental factors. The involvement of genetic elements such as Human Endogenous Retroviruses type 'W' family (HERV-W) has consistently been associated with SZ. HERV-W envelope gene (env) is activated by environmental factors and encodes a protein displaying inflammation and neurotoxicity. The present study addressed the molecular characteristics of HERV-W env in SZ and BD. Hundred and thirty-six patients, 91 with BD, 45 with SZ and 73 healthy controls (HC) were included. HERV-W env transcription was found to be elevated in BD (P<10-4) and in SZ (P=0.012) as compared with HC, but with higher values in BD than in SZ group (P<0.01). The corresponding DNA copy number was paradoxically lower in the genome of patients with BD (P=0.0016) or SZ (P<0.0003) than in HC. Differences in nucleotide sequence of HERV-W env were found between patients with SZ and BD as compared with HC, as well as between SZ and BD. The molecular characteristics of HERV-W env also differ from what was observed in Multiple Sclerosis (MS) and may represent distinct features of the genome of patients with BD and SZ. The seroprevalence for Toxoplasma gondii yielded low but significant association with HERV-W transcriptional level in a subgroup of BD and SZ, suggesting a potential role in particular patients. A global hypothesis of mechanisms inducing such major psychoses is discussed, placing HERV-W at the crossroads between environmental, genetic and immunological factors. Thus, particular infections would act as activators of HERV-W elements in earliest life, resulting in the production of an HERV-W envelope protein, which then stimulates pro-inflammatory and neurotoxic cascades. This hypothesis needs to be further explored as it may yield major changes in our understanding and treatment of severe psychotic disorders.
Collapse
Affiliation(s)
- H Perron
- Geneuro, Plan-Les-Ouates, Geneva, Switzerland.
| | - N Hamdani
- Inserm U955, Psychiatrie Génétique, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France,Fondation Fondamental, Créteil, France,Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - R Faucard
- Geneuro-Innovation, Pre-Clinical R&D Department, Lyon, France
| | - M Lajnef
- Inserm U955, Psychiatrie Génétique, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France,Fondation Fondamental, Créteil, France
| | - S Jamain
- Inserm U955, Psychiatrie Génétique, Créteil, France,Fondation Fondamental, Créteil, France
| | - C Daban-Huard
- Inserm U955, Psychiatrie Génétique, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France,Fondation Fondamental, Créteil, France
| | - S Sarrazin
- Inserm U955, Psychiatrie Génétique, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France,Fondation Fondamental, Créteil, France,CEA Saclay, Neurospin, Gif-Sur-Yvette, France
| | - E LeGuen
- Inserm U955, Psychiatrie Génétique, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France,Fondation Fondamental, Créteil, France
| | - J Houenou
- Inserm U955, Psychiatrie Génétique, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France,Fondation Fondamental, Créteil, France,CEA Saclay, Neurospin, Gif-Sur-Yvette, France
| | - M Delavest
- Fondation Fondamental, Créteil, France,AP-HP, Université Paris Diderot, Service de Psychiatrie, Hôpital Lariboisiere Fernand Widal, Paris, France
| | - H Moins-Teiserenc
- Jean Dausset Department and INSERM UMRS 940, Hôpital Saint Louis, Paris, France
| | - D Bengoufa
- Jean Dausset Department and INSERM UMRS 940, Hôpital Saint Louis, Paris, France
| | - R Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - A Madeira
- Geneuro-Innovation, Pre-Clinical R&D Department, Lyon, France
| | | | - N Gehin
- Geneuro-Innovation, Pre-Clinical R&D Department, Lyon, France
| | - I Burgelin
- Geneuro-Innovation, Pre-Clinical R&D Department, Lyon, France
| | - G Ollagnier
- Geneuro-Innovation, Pre-Clinical R&D Department, Lyon, France
| | - C Bernard
- Geneuro, Plan-Les-Ouates, Geneva, Switzerland
| | - A Dumaine
- Inserm U955, Psychiatrie Génétique, Créteil, France,Fondation Fondamental, Créteil, France
| | - A Henrion
- Inserm U955, Psychiatrie Génétique, Créteil, France,Fondation Fondamental, Créteil, France
| | - A Gombert
- Inserm U955, Psychiatrie Génétique, Créteil, France,Fondation Fondamental, Créteil, France
| | - K Le Dudal
- Plateforme de Ressources Biologiques AP-HP, Créteil, France,Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA,INSERM-CIC 006, Créteil, France
| | - D Charron
- Jean Dausset Department and INSERM UMRS 940, Hôpital Saint Louis, Paris, France
| | | | - R Tamouza
- Jean Dausset Department and INSERM UMRS 940, Hôpital Saint Louis, Paris, France
| | - M Leboyer
- Inserm U955, Psychiatrie Génétique, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Créteil, France,Fondation Fondamental, Créteil, France,Université Paris Est Créteil, Faculté de Médecine, Créteil, France,AP-HP, Hôpital Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, 40, rue de Mesly, 94010 Créteil, France. E-mail:
| | | |
Collapse
|