1
|
Türkdönmez Ak E, Okuyucu B, Arslan G, Ağar E, Ayyildiz M. The Role of Acetylcholinesterase Enzyme Inhibitor Rivastigmine on Spike-Wave Discharges, Learning-Memory, Anxiety, and TRPV1 Channel Expression in Genetic Absence Epileptic WAG/Rij Rats. Neurochem Res 2025; 50:67. [PMID: 39751932 DOI: 10.1007/s11064-024-04318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
In the present study, the effects of the acetylcholinesterase (AChE) enzyme inhibitor rivastigmine (RIVA) on spike-wave discharges (SWDs), memory impairment, anxiety-like behavior, and the transient receptor potential vanilloid 1 (TRPV1) gene expression were investigated in genetic absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. After tripolar electrodes were implanted on the WAG/Rij rats' skulls, single doses of 0.125, 0.25, 0.5, 1, and 2 mg/kg RIVA were intraperitoneally (i.p.) administered, and electrocorticogram (ECoG) recordings of SWDs were recorded for three hours before and after injections. Additionally, once significant doses were determined in acute studies, WAG/Rij rats were administered low-dose (0.5 mg/kg) and high-dose (2 mg/kg) of RIVA for 21 consecutive days and SWDs were recorded. Learning-memory abilities (Y-maze test), anxiety-like behavior (elevated plus maze test), and TRPV1 gene expression were determined and compared in 8-month-old WAG/Rij and age-matched Wistar rats. Acute RIVA administration dose-dependently reduced the total number of SWDs and was even entirely inhibited at 1 and 2 mg/kg RIVA doses. On the other hand, long-term high-dose RIVA administration increased the total number of SWDs. Long-term high-dose RIVA treatment reduced learning-memory and anxiety-like behavior in WAG/Rij rats, while only anxiety-like behavior decreased in Wistar rats. TRPV1 gene expression increased in WAG/Rij rats and decreased in Wistar rats with long-term RIVA administration. These data indicate that the sudden increase of acetylcholine (ACh) causes a significant decrease in absence seizures. In contrast, prolonged maintenance of ACh elevation causes an increase in absence seizures, probably by altering the expression of channels such as TRPV1.
Collapse
Affiliation(s)
- Elif Türkdönmez Ak
- Department of Physiology, Faculty of Medicine, University of Ordu, Ordu, Türkiye
| | - Büşra Okuyucu
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye.
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
2
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
3
|
Puthumana EA, Muhamad L, Young LA, Chu XP. TRPA1, TRPV1, and Caffeine: Pain and Analgesia. Int J Mol Sci 2024; 25:7903. [PMID: 39063144 PMCID: PMC11276833 DOI: 10.3390/ijms25147903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is a naturally occurring methylxanthine that acts as a potent central nervous system stimulant found in more than 60 different plants and fruits. Although caffeinated beverages are widely and casually consumed, the application of caffeine beyond dietary levels as pharmacologic therapy has been recognized since the beginning of its recorded use. The analgesic and vasoactive properties of caffeine are well known, but the extent of their molecular basis remains an area of active research. There is existing evidence in the literature as to caffeine's effect on TRP channels, the role of caffeine in pain management and analgesia, as well as the role of TRP in pain and analgesia; however, there has yet to be a review focused on the interaction between caffeine and TRP channels. Although the influence of caffeine on TRP has been demonstrated in the lab and in animal models, there is a scarcity of data collected on a large scale as to the clinical utility of caffeine as a regulator of TRP. This review aims to prompt further molecular research to elucidate the specific ligand-host interaction between caffeine and TRP by validating caffeine as a regulator of transient receptor potential (TRP) channels-focusing on the transient receptor potential vanilloid 1 (TRPV1) receptor and transient receptor potential ankyrin 1 (TRPA1) receptor subtypes-and its application in areas of pain.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Departments of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (E.A.P.); (L.M.); (L.A.Y.)
| |
Collapse
|
4
|
Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111029. [PMID: 38762160 DOI: 10.1016/j.pnpbp.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicole Rodrigues da Silva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Livea Dornela Godoy
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Li X, Yennawar M, Wiest A, O'Brien WT, Babrowicz B, White RS, Talos DM, Jensen FE. Cannabidiol attenuates seizure susceptibility and behavioural deficits in adult CDKL5 R59X knock-in mice. Eur J Neurosci 2024; 59:3337-3352. [PMID: 38654472 DOI: 10.1111/ejn.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhumita Yennawar
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa Wiest
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William T O'Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bergan Babrowicz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel S White
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Stasiłowicz-Krzemień A, Nogalska W, Maszewska Z, Maleszka M, Dobroń M, Szary A, Kępa A, Żarowski M, Hojan K, Lukowicz M, Cielecka-Piontek J. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:5749. [PMID: 38891938 PMCID: PMC11171823 DOI: 10.3390/ijms25115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Wiktoria Nogalska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Zofia Maszewska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Mateusz Maleszka
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Maria Dobroń
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Agnieszka Szary
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Aleksandra Kępa
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swięcickiego 6, 61-847 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Malgorzata Lukowicz
- Department of Rehabilitation, Centre of Postgraduate Medical Education, Konarskiego 13, 05-400 Otwock, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
7
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
8
|
Dell'Isola GB, Verrotti A, Sciaccaluga M, Dini G, Ferrara P, Parnetti L, Costa C. Cannabidiol: metabolism and clinical efficacy in epileptic patients. Expert Opin Drug Metab Toxicol 2024; 20:119-131. [PMID: 38465404 DOI: 10.1080/17425255.2024.2329733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The landscape of epilepsy treatment has undergone a significant transformation with the emergence of cannabidiol as a potential therapeutic agent. Epidiolex, a pharmaceutical formulation of highly purified CBD, garnered significant attention not just for its therapeutic potential but also for being the first cannabis-derived medication to obtain approval from regulatory bodies. AREA COVERED In this narrative review the authors explore the intricate landscape of CBD as an antiseizure medication, deepening into its pharmacological mechanisms and clinical trials involving various epileptic encephalopathies. This exploration serves as a comprehensive guide, shedding light on a compound that holds promise for individuals contending with the significant challenges of drug-resistant epilepsy. EXPERT OPINION Rigorous studies highlight cannabidiol's efficacy, safety profile, and potential cognitive benefits, warranting further exploration for its approval in various drug-resistant epilepsy forms. As a promising therapeutic option, cannabidiol not only demonstrates efficacy in seizure control but also holds the potential for broader enhancements in the quality of life, especially for patients with epileptic encephalopathies.
Collapse
Affiliation(s)
| | | | - Miriam Sciaccaluga
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- "Mauro Baschirotto" Institute for Rare Diseases - BIRD Foundation Onlus, Longare, Vicenza, Italy
| | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Costa
- Section of Neurology, Laboratory of Experimental Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Cai J, Xiong W, Wang X, Tan H. Genetic architecture of hippocampus subfields volumes in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14110. [PMID: 36756718 PMCID: PMC10915996 DOI: 10.1111/cns.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The hippocampus is a heterogeneous structure, comprising histologically and functionally distinguishable hippocampal subfields. The volume reductions in hippocampal subfields have been demonstrated to be linked with Alzheimer's disease (AD). The aim of our study is to investigate the hippocampal subfields' genetic architecture based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set. METHODS After preprocessing the downloaded genetic variants and imaging data from the ADNI database, a co-sparse reduced rank regression model was applied to analyze the genetic architecture of hippocampal subfields volumes. Homology modeling, docking, molecular dynamics simulations, and Co-IP experiments for protein-protein interactions were used to verify the function of target protein on hippocampal subfields successively. After that, the association analysis between the candidated genes on the hippocampal subfields volume and clinical scales were performed. RESULTS The results of the association analysis revealed five unique genetic variants (e.g., ubiquitin-specific protease 10 [USP10]) changed in nine hippocampal subfields (e.g., the granule cell and molecular layer of the dentate gyrus [GC-ML-DG]). Among five genetic variants, USP10 had the strongest interaction effect with BACE1, which affected hippocampal subfields verified by MD and Co-IP experiments. The results of association analysis between the candidated genes on the hippocampal subfields volume and clinical scales showed that candidated genes influenced the volume and function of hippocampal subfields. CONCLUSIONS Current evidence suggests that hippocampal subfields have partly distinct genetic architecture and may improve the sensitivity of the detection of AD.
Collapse
Affiliation(s)
- Jiahui Cai
- Shantou University Medical CollegeShantouChina
| | | | - Xueqin Wang
- Department of Statistics and Finance, School of ManagementUniversity of Science and Technology of ChinaHefeiChina
| | - Haizhu Tan
- Shantou University Medical CollegeShantouChina
| | | |
Collapse
|
10
|
Xu S, Hao K, Xiong Y, Xu R, Huang H, Wang H. Capsaicin alleviates neuronal apoptosis and schizophrenia-like behavioral abnormalities induced by early life stress. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:77. [PMID: 37935716 PMCID: PMC10630396 DOI: 10.1038/s41537-023-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Early life stress (ELS) is associated with the later development of schizophrenia. In the rodent model, the maternal separation (MS) stress may induce neuronal apoptosis and schizophrenia-like behavior. Although the TRPV1 agonist capsaicin (CAP) has been reported to reduce apoptosis in the central nervous system, its effect in MS models is unclear. Twenty-four hours of MS of Wistar rat pups on postnatal day (PND9) was used as an ELS. Male rats in the adult stage were the subjects of the study. CAP (1 mg/kg/day) intraperitoneal injection pretreatment was undertaken before behavioral tests for 1 week and continued during the tests. Behavioral tests included open field, novel object recognition, Barnes maze test, and pre-pulse inhibition (PPI) test. MS rats showed behavioral deficits and cognitive impairments mimicking symptoms of schizophrenia compared with controls. MS decreased the expression of TRPV1 in the frontal association cortex (FrA) and in the hippocampal CA1, CA3, and dentate gyrus (DG) regions compared with the control group resulting in the increase of pro-apoptotic proteins (BAX, Caspase3, Cleaved-Caspase3) and the decrease of anti-apoptotic proteins (Bcl-2). The number of NeuN++TUNEL+ cells increased in the MS group in the FrA, CA1, CA3, and DG compared with the control group. Neuronal and behavioral impairments of MS were reversed by treatment with CAP. Exposure to ELS may lead to increased neuronal apoptosis and impaired cognitive function with decreased TRPV1 expression in the prefrontal cortex and hippocampus in adulthood. Sustained low-dose administration of CAP improved neuronal apoptosis and cognitive function. Our results provide evidence for future clinical trials of chili peppers or CAP as dietary supplements for the reversal treatment of schizophrenia.
Collapse
Affiliation(s)
- Shilin Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
11
|
Ovey IS, Ozsimsek A, Velioglu HA, Altay O, Mardinoglu A, Yulug B. EGb 761 reduces Ca 2+ influx and apoptosis after pentylenetetrazole treatment in a neuroblastoma cell line. Front Cell Neurosci 2023; 17:1195303. [PMID: 37744878 PMCID: PMC10516604 DOI: 10.3389/fncel.2023.1195303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Background Transient receptor potential (TRP) channels have been found to have significant implications in neuronal outgrowth, survival, inflammatory neurogenic pain, and various epileptogenic processes. Moreover, there is a growing body of evidence indicating that transient receptor potential (TRP) channels have a significant impact on epilepsy and its drug-resistant subtypes. Objective We postulated that EGb 761 would modulate TRPA1 channels, thereby exhibiting anti-inflammatory and neuroprotective effects in a neuroblastoma cell line. Our rationale was to investigate the impact of EGb 761 in a controlled model of pentylenetetrazole-induced generalized epilepsy. Methodology We evaluated the neuroprotective, antioxidant and anti-apoptotic effects of EGb 761 both before and after the pentylenetetrazole application in a neuroblastoma cell line. Specifically, we focused on the effects of EGB 761 on the activity of Transient receptor potential (TRP) channels. Results EGb 761 applications both before and after the pentylenetetrazole incubation period reduced Ca release and restored apoptosis, ROS changes, mitochondrial depolarization and caspase levels, suggesting a prominent prophylactic and therapeutic effect of EGb 761 in the pentylenetetrazole-induced epileptogenesis process. Conclusion Our basic mechanistic framework for elucidating the pathophysiological significance of fundamental ion mechanisms in a pentylenetetrazole treated neuroblastoma cell line provided compelling evidence for the favorable efficacy and safety profile of Egb 761 in human-relevant in vitro model of epilepsy. To the best of our knowledge, this is the first study to investigate the combined effects of EGb 761 and pentylenetetrazole on TRP channels and measure their activation level in a relevant model of human epileptic diseases.
Collapse
Affiliation(s)
- Ishak Suat Ovey
- Department of Physiology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Halil Aziz Velioglu
- Department of Neuroscience, Faculty of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Center for Psychiatric Neuroscience, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ozlem Altay
- KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Türkiye
- Department of Neuroscience, Faculty of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
12
|
Oddi S, Fiorenza MT, Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective. Prog Lipid Res 2023; 91:101239. [PMID: 37385352 DOI: 10.1016/j.plipres.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Fiorenza
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Snc, 67100 L'Aquila, Italy
| |
Collapse
|
13
|
Jiang J, Yu Y. Pharmacologically targeting transient receptor potential channels for seizures and epilepsy: Emerging preclinical evidence of druggability. Pharmacol Ther 2023; 244:108384. [PMID: 36933703 PMCID: PMC10124570 DOI: 10.1016/j.pharmthera.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As one of the most prevalent and disabling brain disorders, epilepsy is characterized by spontaneous seizures that result from aberrant, excessive hyperactivity of a group of highly synchronized brain neurons. Remarkable progress in epilepsy research and treatment over the first two decades of this century led to a dramatical expansion in the third-generation antiseizure drugs (ASDs). However, there are still over 30% of patients suffering from seizures resistant to the current medications, and the broad unbearable adversative effects of ASDs significantly impair the quality of life in about 40% of individuals affected by the disease. Prevention of epilepsy in those who are at high risks is another major unmet medical need, given that up to 40% of epilepsy patients are believed to have acquired causes. Therefore, it is important to identify novel drug targets that can facilitate the discovery and development of new therapies engaging unprecedented mechanisms of action that might overcome these significant limitations. Also over the last two decades, calcium signaling has been increasingly recognized as a key contributory factor in epileptogenesis of many aspects. The intracellular calcium homeostasis involves a variety of calcium-permeable cation channels, the most important of which perhaps are the transient receptor potential (TRP) ion channels. This review focuses on recent exciting advances in understanding of TRP channels in preclinical models of seizure disorders. We also provide emerging insights into the molecular and cellular mechanisms of TRP channels-engaged epileptogenesis that might lead to new antiseizure therapies, epilepsy prevention and modification, and even a cure.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
14
|
Yang F, Sivils A, Cegielski V, Singh S, Chu XP. Transient Receptor Potential (TRP) Channels in Pain, Neuropsychiatric Disorders, and Epilepsy. Int J Mol Sci 2023; 24:ijms24054714. [PMID: 36902145 PMCID: PMC10003176 DOI: 10.3390/ijms24054714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Pharmacomodulation of membrane channels is an essential topic in the study of physiological conditions and disease status. Transient receptor potential (TRP) channels are one such family of nonselective cation channels that have an important influence. In mammals, TRP channels consist of seven subfamilies with a total of twenty-eight members. Evidence shows that TRP channels mediate cation transduction in neuronal signaling, but the full implication and potential therapeutic applications of this are not entirely clear. In this review, we aim to highlight several TRP channels which have been shown to mediate pain sensation, neuropsychiatric disorders, and epilepsy. Recent findings suggest that TRPM (melastatin), TRPV (vanilloid), and TRPC (canonical) are of particular relevance to these phenomena. The research reviewed in this paper validates these TRP channels as potential targets of future clinical treatment and offers patients hope for more effective care.
Collapse
|
15
|
Manna SSS. Dual effects of anandamide in the antiepileptic activity of diazepam in pentylenetetrazole-induced seizures in mice. Behav Pharmacol 2022; 33:527-541. [PMID: 36094027 DOI: 10.1097/fbp.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prototype endocannabinoid, anandamide activates both CB 1 and transient receptor potential vanilloid type 1 channels (TRPV1) receptor at different concentrations. At high concentrations, anandamide-mediated TRPV1 effects are opposite to its effects at low concentrations via CB 1 receptor. Thus, synaptic concentrations of anandamide govern the neuronal activity and consequently might affect the response of a drug. This study was undertaken to investigate the influence of high and low doses of anandamide on the anticonvulsant action of diazepam on the subcutaneous dose of pentylenetetrazole (PTZ) in Swiss mice weighing 20-25 g. Results revealed that intracerebroventricular administration of capsazepine (a TRPV1 antagonist: 1, 10, or 100 µg/mouse) and the low doses (10 µg/mouse) of anandamide, AM404 (anandamide transport inhibitor), or URB597 (fatty acid amide hydrolase inhibitor) augmented the anticonvulsant effect of diazepam. Conversely, higher dose of anandamide, AM404, URB597 (100 µg/mouse) as well as capsaicin (a TRPV1 agonist: 1, 10, or 100 µg/mouse) attenuated the protective effect of diazepam against PTZ-induced seizures. Thus, this study demonstrates that the effects of diazepam may be augmented by activating CB 1 receptors or dampened via TRPV1 receptors. The findings of the present study can be extrapolated to understand the use of TRPV1 blockers alone or in combination of benzodiazepines in the treatment of benzodiazepines-refractory status epilepticus, a condition associated with maladaptive trafficking of synaptic gamma-aminobutyric acid and glutamate receptors. However, potential clinical applications are needed to further support such preclinical studies.
Collapse
|
16
|
Caballero J. A new era for the design of TRPV1 antagonists and agonists with the use of structural information and molecular docking of capsaicin-like compounds. J Enzyme Inhib Med Chem 2022; 37:2169-2178. [PMID: 35975286 PMCID: PMC9387342 DOI: 10.1080/14756366.2022.2110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The design of TRPV1 antagonists and agonists has reached a new era since TRPV1 structures at near-atomic resolution are available. Today, the ligand-binding forms of several classical antagonists and agonists are known; therefore, the specific role of key TRPV1’s residues in binding of ligands can be elucidated. It is possible to place the well-defined pharmacophore of TRPV1 ligands, conformed by head, neck, and tail groups, in the right pocket regions of TRPV1. It will allow a more thorough use of molecular modelling methods to conduct more effective rational drug design protocols. In this work, important points about the interactions between TRPV1 and capsaicin-like compounds are spelled out, based on the known pharmacophore of the ligands and the already available TRPV1 structures. These points must be addressed to generate reliable poses of novel candidates and should be considered during the design of novel TRPV1 antagonists and agonists.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
17
|
Signorelli L, Hescham SA, Pralle A, Gregurec D. Magnetic nanomaterials for wireless thermal and mechanical neuromodulation. iScience 2022; 25:105401. [PMID: 36388996 PMCID: PMC9641224 DOI: 10.1016/j.isci.2022.105401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic fields are very attractive for non-invasive neuromodulation because they easily penetrate trough the skull and tissue. Cell specific neuromodulation requires the magnetic field energy to be converted by an actuator to a biologically relevant signal. Miniaturized actuators available today range from small, isotropic magnetic nanoparticles to larger, submicron anisotropic magnetic nanomaterials. Depending on the parameters of external magnetic fields and the properties of the nanoactuators, they create either a thermal or a mechanical stimulus. Ferromagnetic nanomaterials generate heat in response to high frequency alternating magnetic fields associated with dissipative losses. Anisotropic nanomaterials with large magnetic moments are capable of exerting forces at stationary or slowly varying magnetic fields. These tools allow exploiting thermosensitive or mechanosensitive neurons in circuit or cell specific tetherless neuromodulation schemes. This review will address assortment of available magnetic nanomaterial-based neuromodulation techniques that rely on application of external magnetic fields.
Collapse
Affiliation(s)
- Lorenzo Signorelli
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah- Anna Hescham
- Department of Neurosurgery, Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Arnd Pralle
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | - Danijela Gregurec
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
19
|
Kudsi SQ, Piccoli BC, Ardisson-Araújo D, Trevisan G. Transcriptional landscape of TRPV1, TRPA1, TRPV4, and TRPM8 channels throughout human tissues. Life Sci 2022; 308:120977. [PMID: 36126722 DOI: 10.1016/j.lfs.2022.120977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS This article aims to analyze the baseline distribution of TRPA1, TRPV1, TRPV4, and TRPM8 channels in human systems at the transcriptional level. MAIN METHODS Using the RNA-seq dataset from the National Center for Biotechnology Information (NCBI) gene database, we investigated and compared the transcriptional levels of TRPV1, TRPA1, TRPV4 and TRPM8 found in 95 human subjects representing 33 different tissues to determine the tissue specificity of all protein-coding genes. KEY FINDING In this study, we observed higher transcriptional levels for TRPV1 (duodenum), TRPA1 (Urinary bladder), TRPV4 (Kidney) and TRPM8 (Prostate) compared to the other TRPs. SIGNIFICANCE These channels are involved in developing inflammatory and painful pathologies and seem to participate in cancer development. This information on transcriptional levels of TRPV1, TRPA1, TRPV4 and TRPM8 in human systems may provide essential suggestions for further studies on these proteins.
Collapse
Affiliation(s)
- Sabrina Qader Kudsi
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Bruna Candia Piccoli
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Ardisson-Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
20
|
Petitjean H, Héberlé E, Hilfiger L, Łapieś O, Rodrigue G, Charlet A. TRP channels and monoterpenes: Past and current leads on analgesic properties. Front Mol Neurosci 2022; 15:945450. [PMID: 35966017 PMCID: PMC9373873 DOI: 10.3389/fnmol.2022.945450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of the transient receptor potential (TRP) channels expressed by sensory neurons is essential to the transduction of thermal and mechanical sensory information. In the setting of chronic inflammatory conditions, the activation of the melastatin family member 8 (TRPM8), the TRP vanilloid 1 (TRPV1), and the TRP ankyrin 1 (TRPA1) is correlated with pain hypersensitivity reactions. Monoterpenes, among which pulegone and menthol, a major class of phytocompounds present in essential oils of medicinal plants, are known modulators of those TRP channels activity. In the present review, we correlate the monoterpene content of plants with their historical therapeutic properties. We then describe how monoterpenes exert their anti-inflammatory and antihyperalgesia effects through modulation of TRP channels activity. Finally, we discuss the importance and the potential of characterizing new plant extracts and reassessing studied plant extracts for the development of ethnopharmacology-based innovative treatments for chronic pain. This review suggests that monoterpene solutions, based on composition from traditional healing herbs, offer an interesting avenue for the development of new phytotherapeutic treatments to alleviate chronic inflammatory pain conditions.
Collapse
Affiliation(s)
| | | | - Louis Hilfiger
- Benephyt, Strasbourg, France
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| | - Olga Łapieś
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| |
Collapse
|
21
|
Llanos MA, Enrique N, Sbaraglini ML, Garofalo FM, Talevi A, Gavernet L, Martín P. Structure-Based Virtual Screening Identifies Novobiocin, Montelukast, and Cinnarizine as TRPV1 Modulators with Anticonvulsant Activity In Vivo. J Chem Inf Model 2022; 62:3008-3022. [PMID: 35696534 DOI: 10.1021/acs.jcim.2c00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel, known to be involved in the regulation of many important physiological and pathological processes. In the last few years, it has been proposed as a promising target to develop novel anticonvulsant compounds. However, thermoregulatory effects associated with the channel inhibition have hampered the path for TRPV1 antagonists to become marketed drugs. In this regard, we conducted a structure-based virtual screening campaign to find potential TRPV1 modulators among approved drugs, which are known to be safe and thermally neutral. To this end, different docking models were developed and validated by assessing their pose and score prediction powers. Novobiocin, montelukast, and cinnarizine were selected from the screening as promising candidates for experimental testing and all of them exhibited nanomolar inhibitory activity. Moreover, the in vivo profiles showed promising results in at least one of the three models of seizures tested.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| | - María L Sbaraglini
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Federico M Garofalo
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Alan Talevi
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| |
Collapse
|
22
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
23
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Gladkikh IN, Sintsova OV, Leychenko EV, Kozlov SA. TRPV1 Ion Channel: Structural Features, Activity Modulators, and Therapeutic Potential. BIOCHEMISTRY (MOSCOW) 2021; 86:S50-S70. [PMID: 33827400 DOI: 10.1134/s0006297921140054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although TRPV1 ion channel has been attracting researchers' attention for many years, its functions in animal organisms, the principles of regulation, and the involvement in pathological processes have not yet been fully clarified. Mutagenesis experiments and structural studies have identified the structural features of the channel and binding sites for its numerous ligands; however, these studies are far from conclusion. This review summarizes recent achievements in the TRPV1 research with special focus on structural and functional studies of the channel and on its ligands, which are extremely diverse in their nature and interaction specificity to TRPV1. Particular attention was given to the effects of numerous endogenous agonists and antagonists that can fine-tune the channel sensitivity to its usual activators, such as capsaicin, heat, acids, or their combination. In addition to the pain sensing not covered in this review, the TRPV1 channel was found to be involved in the regulation of many important physiological and pathological processes and, therefore, can be considered as a promising therapeutic target in the treatment of various diseases, such as pneumonia, ischemia, diabetes, epilepsy, schizophrenia, psoriasis, etc.
Collapse
Affiliation(s)
- Irina N Gladkikh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Oksana V Sintsova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Elena V Leychenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Sergey A Kozlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
25
|
Satpute Janve V, Anderson LL, Bahceci D, Hawkins NA, Kearney JA, Arnold JC. The Heat Sensing Trpv1 Receptor Is Not a Viable Anticonvulsant Drug Target in the Scn1a +/- Mouse Model of Dravet Syndrome. Front Pharmacol 2021; 12:675128. [PMID: 34079465 PMCID: PMC8165383 DOI: 10.3389/fphar.2021.675128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol has been approved for the treatment of drug-resistant childhood epilepsies including Dravet syndrome (DS). Although the mechanism of anticonvulsant action of cannabidiol is unknown, emerging data suggests involvement of the transient receptor potential cation channel subfamily V member 1 (Trpv1). Pharmacological and genetic studies in conventional seizure models suggest Trpv1 is a novel anticonvulsant target. However, whether targeting Trpv1 is anticonvulsant in animal models of drug-resistant epilepsies is not known. Thus, we examined whether Trpv1 affects the epilepsy phenotype of the F1.Scn1a +/- mouse model of DS. We found that cortical Trpv1 mRNA expression was increased in seizure susceptible F1.Scn1a +/- mice with a hybrid genetic background compared to seizure resistant 129.Scn1a +/- mice isogenic on 129S6/SvEvTac background, suggesting Trpv1 could be a genetic modifier. Previous studies show functional loss of Trpv1 is anticonvulsant. However, Trpv1 selective antagonist SB-705498 did not affect hyperthermia-induced seizure threshold, frequency of spontaneous seizures or survival of F1.Scn1a +/- mice. Surprisingly, Trpv1 deletion had both pro- and anti-seizure effects. Trpv1 deletion did not affect hyperthermia-induced seizure temperature thresholds of F1.Scn1a +/- ; Trpv1 +/- at P14-16 but was proconvulsant at P18 as it reduced seizure temperature thresholds. Conversely, Trpv1 deletion did not alter the frequency of spontaneous seizures but reduced their severity. These results suggest that Trpv1 is a modest genetic modifier of spontaneous seizure severity in the F1.Scn1a +/- model of DS. However, the opposing pro- and anti-seizure effects of Trpv1 deletion and the lack of effects of Trpv1 inhibition suggest that Trpv1 is unlikely a viable anticonvulsant drug target in DS.
Collapse
Affiliation(s)
- Vaishali Satpute Janve
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dilara Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicole A Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Vitale RM, Iannotti FA, Amodeo P. The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. Int J Mol Sci 2021; 22:4876. [PMID: 34062987 PMCID: PMC8124847 DOI: 10.3390/ijms22094876] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cannabidiol (CBD), the major nonpsychoactive Cannabis constituent, has been proposed for the treatment of a wide panel of neurological and neuropsychiatric disorders, including anxiety, schizophrenia, epilepsy and drug addiction due to the ability of its versatile scaffold to interact with diverse molecular targets that are not restricted to the endocannabinoid system. Albeit the molecular mechanisms responsible for the therapeutic effects of CBD have yet to be fully elucidated, many efforts have been devoted in the last decades to shed light on its complex pharmacological profile. In particular, an ever-increasing number of molecular targets linked to those disorders have been identified for this phytocannabinoid, along with the modulatory effects of CBD on their cascade signaling. In this view, here we will try to provide a comprehensive and up-to-date overview of the molecular basis underlying the therapeutic effects of CBD involved in the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| |
Collapse
|
27
|
Lee K, Jo YY, Chung G, Jung JH, Kim YH, Park CK. Functional Importance of Transient Receptor Potential (TRP) Channels in Neurological Disorders. Front Cell Dev Biol 2021; 9:611773. [PMID: 33748103 PMCID: PMC7969799 DOI: 10.3389/fcell.2021.611773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are transmembrane protein complexes that play important roles in the physiology and pathophysiology of both the central nervous system (CNS) and the peripheral nerve system (PNS). TRP channels function as non-selective cation channels that are activated by several chemical, mechanical, and thermal stimuli as well as by pH, osmolarity, and several endogenous or exogenous ligands, second messengers, and signaling molecules. On the pathophysiological side, these channels have been shown to play essential roles in the reproductive system, kidney, pancreas, lung, bone, intestine, as well as in neuropathic pain in both the CNS and PNS. In this context, TRP channels have been implicated in several neurological disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and epilepsy. Herein, we focus on the latest involvement of TRP channels, with a special emphasis on the recently identified functional roles of TRP channels in neurological disorders related to the disruption in calcium ion homeostasis.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon, South Korea
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jung Hoon Jung
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
28
|
Lattanzi S, Trinka E, Striano P, Rocchi C, Salvemini S, Silvestrini M, Brigo F. Highly Purified Cannabidiol for Epilepsy Treatment: A Systematic Review of Epileptic Conditions Beyond Dravet Syndrome and Lennox-Gastaut Syndrome. CNS Drugs 2021; 35:265-281. [PMID: 33754312 PMCID: PMC8005394 DOI: 10.1007/s40263-021-00807-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD), which is one major constituent of the Cannabis sativa plant, has anti-seizure properties and does not produce euphoric or intrusive side effects. A plant-derived, highly purified CBD formulation with a known and constant composition has been approved by the US Food and Drug Administration for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. In the European Union, the drug has been authorized by the European Medicines Agency for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome, in conjunction with clobazam, and is under regulatory review for the treatment of seizures in patients with tuberous sclerosis complex. OBJECTIVES This systematic review aimed to summarize the currently available body of knowledge about the use of this US Food and Drug Administration/European Medicines Agency-approved oral formulation of pharmaceutical-grade CBD in patients with epileptic conditions, especially developmental and epileptic encephalopathies other than Dravet syndrome and Lennox-Gastaut syndrome. METHODS The relevant studies were identified through MEDLINE and the US National Institutes of Health Clinical Trials Registry in October 2020. There were no date limitations or language restrictions. The following types of studies were included: clinical trials, cohorts, case-control, cross-sectional, clinical series, and case reports. Participants had to meet the following criteria: any sex, any ethnicity, any age, diagnosis of epilepsy, receiving plant-derived, highly purified (> 98% w/w) CBD in a sesame oil-based oral solution for the treatment of seizures. Data extracted from selected records included efficacy, tolerability, and safety outcomes. RESULTS Five hundred and seventy records were identified by database and trial register searching. Fifty-seven studies were retrieved for detailed assessment, of which 42 were eventually included for the review. The participants of the studies included patients of both pediatric and adult age. Across the trials, purified CBD was administered at dosages up to 50 mg/kg/day. In a randomized double-blind controlled trial in patients with tuberous sclerosis complex, CBD was associated with a significantly greater percent reduction in seizure frequency than placebo over the treatment period. Open-label studies suggested the effectiveness of CBD in the treatment of children and adults presenting with other epilepsy syndromes than those addressed by regulatory trials, including CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes, SYNGAP1 encephalopathy, and epilepsy with myoclonic absences. The most common adverse events observed during treatment with CBD included somnolence, decreased appetite, diarrhea, and increased serum aminotransferases. CONCLUSIONS The currently available data suggest that response to treatment with a highly purified, plant-derived CBD oil-based solution can be seen in patients across a broad range of epilepsy disorders and etiologies. The existing evidence can provide preliminary support for additional research.
Collapse
Affiliation(s)
- Simona Lattanzi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy.
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Center for Cognitive Neuroscience, Salzburg, Austria.,Public Health, Health Services Research and HTA, University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genoa, Italy
| | - Chiara Rocchi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy
| | - Sergio Salvemini
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy
| | - Mauro Silvestrini
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Via Conca 71, 60020, Ancona, Italy
| | - Francesco Brigo
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy.,Division of Neurology, "Franz Tappeiner" Hospital, Merano, BZ, Italy
| |
Collapse
|
29
|
Cabral-Pereira G, Sánchez-Benito D, Díaz-Rodríguez SM, Gonçalves J, Sancho C, Castellano O, Muñoz LJ, López DE, Gómez-Nieto R. Behavioral and Molecular Effects Induced by Cannabidiol and Valproate Administration in the GASH/Sal Model of Acute Audiogenic Seizures. Front Behav Neurosci 2021; 14:612624. [PMID: 33551767 PMCID: PMC7862126 DOI: 10.3389/fnbeh.2020.612624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Despite evidence that supports cannabidiol (CBD) as an anticonvulsant agent, there remains controversy over the antiseizure efficacy, possible adverse effects, and synergistic interactions with classic antiepileptics such as valproate (VPA). The genetic audiogenic seizure hamster from the University of Salamanca (GASH/Sal) is a reliable experimental model of generalized tonic–clonic seizures in response to intense sound stimulation. The present study examines the behavioral and molecular effects of acute and chronic intraperitoneal administrations of VPA (300 mg/kg) and CBD (100 mg/kg) on the GASH/Sal audiogenic seizures, as well as the coadministration of both drugs. The GASH/Sal animals were examined prior to and after the corresponding treatment at 45 min, 7 days, and 14 days for seizure severity and neuroethology, open-field behaviors, body weight variations, and various hematological and biochemical parameters. Furthermore, the brain tissue containing the inferior colliculus (so-called epileptogenic nucleus) was processed for reverse transcription–quantitative polymerase chain reaction analysis to determine the treatment effects on the gene expression of neuronal receptors associated with drug actions and ictogenesis. Our results indicated that single dose of VPA helps prevent the animals from getting convulsions, showing complete elimination of seizures, whereas 7 days of chronic VPA treatment had few effects in seizure behaviors. Acute CBD administration showed subtle attenuation of seizure behaviors, increasing seizure latency and decreasing the duration of the convulsion phase, but without entirely seizure abolition. Chronic CBD treatments had no significant effects on sound-induced seizures, although some animals slightly improved seizure severity. Acute and chronic CBD treatments have no significant adverse effects on body weight, hematological parameters, and liver function, although locomotor activity was reduced. The combination of VPA and CBD did not alter the therapeutic outcome of the VPA monotherapy, showing no apparent synergistic effects. As compared to sham animals, chronic treatments with CBD caused abnormal mRNA expression levels for Trpv1, Adora1, Slc29a1, and Cnr1 genes, whereas no differences in gene expression were found for Htr1a and Sigmar1. Our study shed light on the behavioral and molecular effects of CBD and VPA on the GASH/Sal model and constituted the basis to develop further studies on the pharmacological effects of CBD and its interactions with other anticonvulsants.
Collapse
Affiliation(s)
- Giselda Cabral-Pereira
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - David Sánchez-Benito
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Sandra M Díaz-Rodríguez
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Jaime Gonçalves
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Consuelo Sancho
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Orlando Castellano
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Luis J Muñoz
- Animal Research and Service Center, University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
30
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
33
|
Mohandass A, Surenkhuu B, Covington K, Baskaran P, Lehmann T, Thyagarajan B. Kainic Acid Activates TRPV1 via a Phospholipase C/PIP2-Dependent Mechanism in Vitro. ACS Chem Neurosci 2020; 11:2999-3007. [PMID: 32833423 PMCID: PMC7747480 DOI: 10.1021/acschemneuro.0c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Kainic acid (KA) is an excitotoxic glutamate analogue produced by a marine seaweed. It elicits neuronal excitotoxicity leading to epilepsy in rodents. Activation of transient receptor potential vanilloid subfamily 1 (TRPV1), a nonselective cation channel protein, by capsaicin, prevents KA-induced seizures in a mouse model of temporal lobe epilepsy. However, the precise mechanism behind this protective effect of capsaicin remains unclear. In order to analyze the direct effect of KA on TRPV1, we evaluated the ability of KA to activate TRPV1 and analyzed its binding to TRPV1 using a molecular modeling approach. In vitro, KA activates a Ca2+ influx into TRPV1 expressing HEK293 cells but not in contsrol HEK293 cells. Pretreatment with either capsaicin (1 M) or capsazepine (10 M; TRPV1 antagonist) prevents the effect of KA. Pharmacological inhibition of phospholipase C (PLC) by U73122 or overexpression of phosphatidylinositol 5 phosphatase (Synaptojanin 1; Synj-1) counters the effect of KA. Further, KA treatment causes actin reorganization in HEKTRPV1 cells and PLC inhibition by U73122 prevents this. Molecular modeling data revealed that KA binds to TRPV1 and prebinding with capsaicin prevents the binding of KA to TRPV1. Consistently, the lack of effect of KA in activating chicken TRPV1, which is insensitive to capsaicin, suggests that there is a significant overlap between the sites of KA and capsaicin activation of TRPV1. However, PLC inhibition did not suppress TRPV1 activation by capsaicin. Collectively, our data suggest that KA binds to and activates TRPV1 and causes actin reorganization via PLC-dependent mechanism in vitro. We propose that KA mediates Ca2+ induced toxicity possibly by activating TRPV1. Therefore, inhibiting TRPV1 will be a beneficial strategy in abating Ca2+-induced neurotoxicity.
Collapse
|
34
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
35
|
Kuchenbuch M, D'Onofrio G, Chemaly N, Barcia G, Teng T, Nabbout R. Add-on cannabidiol significantly decreases seizures in 3 patients with SYNGAP1 developmental and epileptic encephalopathy. Epilepsia Open 2020; 5:496-500. [PMID: 32913957 PMCID: PMC7469777 DOI: 10.1002/epi4.12411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/28/2020] [Indexed: 01/11/2023] Open
Abstract
Mutations in SYNGAP1 are associated with developmental delay, epilepsy, and autism spectrum disorder (ASD). Epilepsy is often drug-resistant in this syndrome with frequent drop attacks. In a prospective study of add-on cannabidiol (CBD), we identified three patients with SYNGAP1 mutations: two boys and one girl. Seizure onset was at 3.5, 8, and 18 months (M), respectively, with numerous atypical absences per day associated with eyelid myoclonia (2/3 patients), upper limb myoclonic jerks (2/3 patients), and drop attacks (all patients). Seizures were resistant to at least 5 antiepileptic drugs (AEDs). After CBD introduction, two patients were responders since M2 and achieve a seizure reduction of 90% and 80%, respectively, at M9 with disappearance of drop attacks. EEGs showed an improvement regarding background activity and interictal anomalies. The last patient showed a late response at M7 of treatment with an 80% decrease in seizure frequency. Caregiver in all three evaluated as much improved the status of their children. Treatment was well-tolerated in all, and no major adverse events (AEs) were reported. CBD showed efficacy in patients with drug-resistant epilepsy due to SYNGAP1 mutations. Other patients with rare genetic developmental and epileptic encephalopathies with drug-resistant epilepsies might benefit from CBD.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- Department of Pediatric NeurologyReference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParisFrance
- Laboratory of Translational Research for Neurological DisordersINSERMUMR 1163Imagine InstituteParisFrance
- Université Paris Descartes ‐Université de ParisParisFrance
| | - Gianluca D'Onofrio
- Department of Pediatric NeurologyReference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParisFrance
| | - Nicole Chemaly
- Department of Pediatric NeurologyReference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParisFrance
- Laboratory of Translational Research for Neurological DisordersINSERMUMR 1163Imagine InstituteParisFrance
| | - Giulia Barcia
- Laboratory of Translational Research for Neurological DisordersINSERMUMR 1163Imagine InstituteParisFrance
- Department of geneticHôpital Necker‐Enfants MaladesParisFrance
| | - Théo Teng
- Department of Pediatric NeurologyReference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParisFrance
| | - Rima Nabbout
- Department of Pediatric NeurologyReference Centre for Rare EpilepsiesHôpital Necker‐Enfants MaladesParisFrance
- Laboratory of Translational Research for Neurological DisordersINSERMUMR 1163Imagine InstituteParisFrance
- Université Paris Descartes ‐Université de ParisParisFrance
| |
Collapse
|
36
|
Silvennoinen K, Balestrini S, Rothwell JC, Sisodiya SM. Transcranial magnetic stimulation as a tool to understand genetic conditions associated with epilepsy. Epilepsia 2020; 61:1818-1839. [PMID: 32783192 PMCID: PMC8432162 DOI: 10.1111/epi.16634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022]
Abstract
Advances in genetics may enable a deeper understanding of disease mechanisms and promote a shift to more personalised medicine in the epilepsies. At present, understanding of consequences of genetic variants mainly relies on preclinical functional work; tools for acquiring similar data from the living human brain are needed. Transcranial magnetic stimulation (TMS), in particular paired-pulse TMS protocols which depend on the function of cortical GABAergic interneuron networks, has the potential to become such a tool. For this report, we identified and reviewed 23 publications on TMS studies of cortical excitability and inhibition in 15 different genes or conditions relevant to epilepsy. Reduced short-interval intracortical inhibition (SICI) and reduced cortical silent period (CSP) duration were the most commonly reported findings, suggesting abnormal GABAA - (SICI) or GABAB ergic (CSP) signalling. For several conditions, these findings are plausible based on established evidence of involvement of the GABAergic system; for some others, they may inform future research around such mechanisms. Challenges of TMS include lack of complete understanding of the neural underpinnings of the measures used: hypotheses and analyses should be based on existing clinical and preclinical data. Further pitfalls include gathering sufficient numbers of participants, and the effect of confounding factors, especially medications. TMS-EEG is a unique perturbational technique to study the intrinsic properties of the cortex with excellent temporal resolution; while it has the potential to provide further information of use in interpreting effects of genetic variants, currently the links between measures and neurophysiology are less established. Despite these challenges, TMS is a tool with potential for elucidating the system-level in vivo functional consequences of genetic variants in people carrying genetic changes of interest, providing unique insights.
Collapse
Affiliation(s)
- Katri Silvennoinen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Department of UCL Queen Square, Institute of Neurology, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
| |
Collapse
|
37
|
Receptors and Channels Possibly Mediating the Effects of Phytocannabinoids on Seizures and Epilepsy. Pharmaceuticals (Basel) 2020; 13:ph13080174. [PMID: 32751761 PMCID: PMC7463541 DOI: 10.3390/ph13080174] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Epilepsy contributes to approximately 1% of the global disease burden. By affecting especially young children as well as older persons of all social and racial variety, epilepsy is a present disorder worldwide. Currently, only 65% of epileptic patients can be successfully treated with antiepileptic drugs. For this reason, alternative medicine receives more attention. Cannabis has been cultivated for over 6000 years to treat pain and insomnia and used since the 19th century to suppress epileptic seizures. The two best described phytocannabinoids, (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are claimed to have positive effects on different neurological as well as neurodegenerative diseases, including epilepsy. There are different cannabinoids which act through different types of receptors and channels, including the cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55) and 18 (GPR18), opioid receptor µ and δ, transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), type A γ-aminobutyric acid receptor (GABAAR) and voltage-gated sodium channels (VGSC). The mechanisms and importance of the interaction between phytocannabinoids and their different sites of action regarding epileptic seizures and their clinical value are described in this review.
Collapse
|
38
|
Thapak P, Bishnoi M, Sharma SS. Amelioration of diabetes-induced cognitive impairment by Transient Receptor Potential Vanilloid 2 (TRPV2) channel inhibitor: Behavioral and mechanistic study. Neurochem Int 2020; 139:104783. [PMID: 32652268 DOI: 10.1016/j.neuint.2020.104783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential (TRP) channels are Ca2+ permeable non-selective cation channels which play a pivotal role in diabetes and diabetic complications. Among diabetic complications, diabetes-induced cognitive impairment is a major CNS complication. The role of several TRP channels has been investigated extensively for their diverse Ca2+ regulating mechanism, and recently their role has been postulated in the progression of neurodegenerative disorders. However, the role of TRPV2 has not been investigated yet. Therefore, in the present study, the involvement of TRPV2 channels was investigated in diabetes-induced cognitive impairment using TRPV2 inhibitor, tranilast. High glucose exposure in rat C6 glial cells enhances the Ca2+-entry through TRPV2 channels. In our in-vivo study, diabetic rats showed increased gene and protein expression of TRPV2 in the hippocampus. Subsequent increase in the acetylcholinesterase activity in the cortex, as well as decrease in the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (p-CaMKII-Thr-286), p-GSK-3β (Ser-9), p-CREB (Ser-133) and postsynaptic density protein 95 (PSD-95) in the hippocampus were also observed this led to the impairment in the learning and memory as evident from behavioral parameters such as Morris water maze test, passive avoidance and Y-maze test paradigm. Three-week treatment with tranilast (30 and 100 mg/kg, p.o.) showed improvement in learning and memory associated behaviours (Morris water maze test, passive avoidance, and Y-maze test) by increasing the p-CaMKII (Thr-286), p-GSK-3β (Ser-9), p-CREB (Ser-133) and PSD-95 in the hippocampus. Cortical acetylcholinesterase activity was also reduced by the tranilast. These findings depicted that TRPV2 inhibition may be an effective treatment strategy in diabetes-induced cognitive deficits.
Collapse
Affiliation(s)
- P Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - M Bishnoi
- National Agri-Food Biotechnology Institute (NABI), S. A. S. Nagar, Punjab, India
| | - S S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India.
| |
Collapse
|
39
|
Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 2020; 159:105026. [PMID: 32562815 DOI: 10.1016/j.phrs.2020.105026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/21/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) disorders like Alzheimer's disease (AD), Parkinson disease (PD), stroke, epilepsy, depression, and bipolar disorder have a high impact on both medical and social problems due to the surge in their prevalence. All of these neuronal disorders share some common etiologies including disruption of Ca2+ homeostasis and accumulation of misfolded proteins. These misfolded proteins further disrupt the intracellular Ca2+ homeostasis by disrupting the activity of several ion channels including transient receptor potential (TRP) channels. TRP channel families include non-selective Ca2+ permeable channels, which act as cellular sensors activated by various physio-chemical stimuli, exogenous, and endogenous ligands responsible for maintaining the intracellular Ca2+ homeostasis. TRP channels are abundantly expressed in the neuronal cells and disturbance in their activity leads to various neuronal diseases. Under the pathological conditions when the activity of TRP channels is perturbed, there is a disruption of the neuronal homeostasis through increased inflammatory response, generation of reactive oxygen species, and mitochondrial dysfunction. Therefore, there is a potential of pharmacological interventions targeting TRP channels in CNS disorders. This review focuses on the role of TRP channels in neurological diseases; also, we have highlighted the current insights into the pharmacological modulators targeting TRP channels.
Collapse
|
40
|
TRPV1 Contributes to the Neuroprotective Effect of Dexmedetomidine in Pilocarpine-Induced Status Epilepticus Juvenile Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7623635. [PMID: 32337274 PMCID: PMC7168755 DOI: 10.1155/2020/7623635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
To investigate the antiepileptic and neuroprotective effects of dexmedetomidine (Dex) in pilocarpine- (Pilo-) induced status epilepticus (SE) juvenile rats, rats were randomly assigned to the following six groups (n = 20): normal, normal+Dex, SE, SE+Cap, SE+Dex, and SE+Dex+Cap. The rats were treated with either diazepam (i.p., an antiepileptic drug) or Dex after the onset of SE. The Morris water maze was used to assess rat cognitive behavior. Flow cytometry was used to detect the concentrations of Ca2+, mitochondrial membrane potential, and reactive oxygen species. Transmission electron microscopy was performed to evaluate specimens of brain tissue. The levels of caspase 3 and TRPV1 were examined by western blot and immunohistochemistry (IHC). Treatment with Dex significantly decreased the escape latency of the SE rats (P < 0.05). Capsaicin, a TRPV1 agonist, delivery aggravated the performance of SE rats. Pathological changes in SE rat were attenuated by Dex and deteriorated by capsaicin. Swollen mitochondria and abnormal endoplasmic reticulum were found in SE rats and were then aggravated by capsaicin and reversed by Dex. Moreover, our data showed that Dex significantly restrained calcium overload, ROS production, and mitochondrial membrane potential loss, all of which were induced by Pilo and capsaicin (P < 0.05). Dex decreased the apoptotic rate in the Model SE group (P < 0.05) and TRPV1 and caspase 3 expression in the Dex treatment group (P < 0.05). Interestingly, all these effects of Dex were partially counteracted by the TRPV1 agonist, capsaicin (P < 0.05). Our study showed that Dex exerted a neuroprotective effect in Pilo-induced SE rats by inhibiting TRPV1 expression and provided information for therapy to SE patients.
Collapse
|
41
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [PMID: 32097233 DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Capsaicin Exerts Anti-convulsant and Neuroprotective Effects in Pentylenetetrazole-Induced Seizures. Neurochem Res 2020; 45:1045-1061. [PMID: 32036609 DOI: 10.1007/s11064-020-02979-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
The transient receptor potential vanilloid-1 (TRPV1) receptor has been implicated in the development of epileptic seizures. We examined the effect of the TRPV1 agonist capsaicin on epileptic seizures, neuronal injury and oxidative stress in a model of status epilepticus induced in the rat by intraperitoneal (i.p.) injections of pentylenetetrazole (PTZ). Capsaicin was i.p. given at 1 or 2 mg/kg, 30 min before the first PTZ injection. Other groups were i.p. treated with the vehicle or the anti-epileptic drug phenytoin (30 mg/kg) alone or co-administered with capsaicin at 2 mg/kg. Brain levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, and paraoxonase-1 (PON-1) activity, seizure scores, latency time and PTZ dose required to reach status epilepticus were determined. Histopathological assessment of neuronal damage was done. Results showed that brain MDA decreased by treatment with capsaicin, phenytoin or capsaicin/phenytoin. Nitric oxide decreased by capsaicin or capsaicin/phenytoin. GSH and PON-1 activity increased after capsaicin, phenytoin or capsaicin/phenytoin. Mean total seizure score decreased by 48.8% and 66.3% by capsaicin compared with 78.7% for phenytoin and 69.8% for capsaicin/phenytoin treatment. Only phenytoin increased the latency (115.7%) and threshold dose of PTZ (78.3%). Capsaicin did not decrease the anti-convulsive effect of phenytoin but prevented the phenytoin-induced increase in latency time and threshold dose. Neuronal damage decreased by phenytoin or capsaicin at 2 mg/kg but almost completely prevented by capsaicin/phenytoin. Thus in this model of status epilepticus, capsaicin decreased brain oxidative stress, the severity of seizures and neuronal injury and its co-administration with phenytoin afforded neuronal protection.
Collapse
|
43
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [PMID: 31831863 DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 536] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
44
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability. Brain Struct Funct 2019; 225:1-15. [PMID: 31792694 DOI: 10.1007/s00429-019-01992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Endocannabinoid system is considered a relevant player in the regulation of neuronal excitability, since it contributes to maintaining the balance of the synaptic ionic milieu. Perturbations to bioelectric conductances have been implicated in the pathophysiological processes leading to hyperexcitability and epileptic seizures. Cannabinoid influence on neurosignalling is exerted on classic receptor-mediated mechanisms or on further molecular targets. Among these, transient receptor potential vanilloid (TRPV) are ionic channels modulated by cannabinoids that are involved in the transduction of a plethora of stimuli and trigger fundamental downstream pathways in the post-synaptic site. In this review, we aim at providing a brief summary of the most recent data about the cross-talk between cannabinoid system and TRPV channels, drawing attention on their role on neuronal hyperexcitability. Then, we aim to unveil a plausible point of interaction between these neural signalling systems taking into consideration nitric oxide, a gaseous molecule inducing profound modifications to neural performances. From this novel perspective, we struggle to propose innovative cellular mechanisms in the regulation of hyperexcitability phenomena, with the goal of exploring plausible CB-related mechanisms underpinning epileptic seizures.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
45
|
Kong W, Wang X, Yang X, Huang W, Han S, Yin J, Liu W, He X, Peng B. Activation of TRPV1 Contributes to Recurrent Febrile Seizures via Inhibiting the Microglial M2 Phenotype in the Immature Brain. Front Cell Neurosci 2019; 13:442. [PMID: 31680864 PMCID: PMC6798794 DOI: 10.3389/fncel.2019.00442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel implicated in the nervous system as a key component of several inflammatory diseases. A massive amount of evidence has demonstrated that TRPV1 is extensively expressed in the central nervous system (CNS) and there might be a close relationship between TRPV1 and neuroinflammation, which is a crucial pathogenic factor in seizure generation, although it’s signaling mechanism has been less well characterized. Herein, we identified that TRPV1 is functionally expressed in the primary cultured mouse microglia and the membrane expression of TRPV1 is upregulated in rFS mice brain and specifically in activated microglia. Stimulation of TRPV1 promoted microglia activation and indirectly enhanced seizure susceptibility by inhibiting the neuroprotective effects of microglial transforming growth factor-beta1 (TGF-β1) via interaction with Toll-like receptor 4 (TLR4) in mice. Conversely, genetic deletion of TRPV1 alleviated hyperthermia or LPS-induced abnormal microglial activation and restored a balanced inflammatory microenvironment in the brain. Taken together, these findings show that microglial TRPV1, as a potential pro-inflammatory mediator, and participate in neuroinflammatory response, which will provide a novel therapeutic strategy for controlling the neuroinflammation-induced seizure.
Collapse
Affiliation(s)
- Weilin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingliang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Roet M, Jansen A, Hoogland G, Temel Y, Jahanshahi A. Endogenous TRPV1 expression in the human cingulate- and medial frontal gyrus. Brain Res Bull 2019; 152:184-190. [DOI: 10.1016/j.brainresbull.2019.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
|
47
|
Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 2019; 94:138-151. [PMID: 31112798 DOI: 10.1016/j.semcdb.2019.05.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival. This review focuses on the signaling pathways responsible for neuron-microglia crosstalk, highlighting their physiological roles and their alteration or specific involvement in disease. In particular, we discuss studies, establishing how these signaling allow microglial cells to control relevant physiological functions during brain development, including synaptic formation and circuit refinement. In addition, we highlight how microglia and neurons interact functionally to regulate highly dynamical synaptic functions. Microglia are able to release several signaling molecules involved in the regulation of synaptic activity and plasticity. On the other side, molecules of neuronal origin control microglial processes motility in an activity-dependent manner. Indeed, the continuous crosstalk between microglia and neurons is required for the sensing and housekeeping functions of microglia and contributes to the maintenance of brain homeostasis and, particularly, to the sculpting of neuronal connections during development. These interactions lay on the delicate edge between physiological processes and homeostasis alteration in pathology and are themselves altered during neuroinflammation. The full description of these processes could be fundamental for understanding brain functioning in health and disease.
Collapse
|
48
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
49
|
Roet M, Hescham SA, Jahanshahi A, Rutten BPF, Anikeeva PO, Temel Y. Progress in neuromodulation of the brain: A role for magnetic nanoparticles? Prog Neurobiol 2019; 177:1-14. [PMID: 30878723 DOI: 10.1016/j.pneurobio.2019.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
The field of neuromodulation is developing rapidly. Current techniques, however, are still limited as they i) either depend on permanent implants, ii) require invasive procedures, iii) are not cell-type specific, iv) involve slow pharmacokinetics or v) have a restricted penetration depth making it difficult to stimulate regions deep within the brain. Refinements into the different fields of neuromodulation are thus needed. In this review, we will provide background information on the different techniques of neuromodulation discussing their latest refinements and future potentials including the implementation of nanoparticles (NPs). In particular we will highlight the usage of magnetic nanoparticles (MNPs) as transducers in advanced neuromodulation. When exposed to an alternating magnetic field (AMF), certain MNPs can generate heat through hysteresis. This MNP heating has been promising in the field of cancer therapy and has recently been introduced as a method for remote and wireless neuromodulation. This indicates that MNPs may aid in the exploration of brain functions via neuromodulation and may eventually be applied for treatment of neuropsychiatric disorders. We will address the materials chemistry of MNPs, their biomedical applications, their delivery into the brain, their mechanisms of stimulation with emphasis on MNP heating and their remote control in living tissue. The final section compares and discusses the parameters used for MNP heating in brain cancer treatment and neuromodulation. Concluding, using MNPs for nanomaterial-mediated neuromodulation seem promising in a variety of techniques and could be applied for different neuropsychiatric disorders when more extensively investigated.
Collapse
Affiliation(s)
- Milaine Roet
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Sarah-Anna Hescham
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Ali Jahanshahi
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Bart P F Rutten
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands
| | - Polina O Anikeeva
- Department of Materials Science and Engineering, Department of Brain and Cognitive Sciences, Research Laboratory of Electronics, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, 02139, MA, United States of America
| | - Yasin Temel
- School for Mental Health and Neuroscience, Department of Neurosurgery, Maastricht University, Maastricht, 6200, MD, The Netherlands; European Graduate School of Neuroscience (EURON), The Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, 6202, AZ, The Netherlands.
| |
Collapse
|
50
|
Cornillot M, Giacco V, Hamilton NB. The role of TRP channels in white matter function and ischaemia. Neurosci Lett 2018; 690:202-209. [PMID: 30366011 DOI: 10.1016/j.neulet.2018.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023]
Abstract
Transient receptor potential (TRP) proteins are a large family of tetrameric non-selective cation channels that are widely expressed in the grey and white matter of the CNS, and are increasingly considered as potential therapeutic targets in brain disorders. Here we briefly review the evidence for TRP channel expression in glial cells and their possible role in both glial cell physiology and stroke. Despite their contribution to important functions, our understanding of the roles of TRP channels in glia is still in its infancy. The evidence reviewed here indicates that further investigation is needed to determine whether TRP channel inhibition can decrease damage or increase repair in stroke and other diseases affecting the white matter.
Collapse
Affiliation(s)
- Marion Cornillot
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Vincenzo Giacco
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Nicola B Hamilton
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|