1
|
Mm Yahya S, Elsayed GH. The role of MiRNA-34 family in different signaling pathways and its therapeutic options. Gene 2024; 931:148829. [PMID: 39154971 DOI: 10.1016/j.gene.2024.148829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
MiRNAs are short non-coding RNA molecules that have been shown to affect a vast number of genes at the post-transcriptional level, hence regulating several signaling pathways. Because the miRNA-34 family regulates a number of different signaling pathways, including those linked to cancer, the immune system, metabolism, cellular structure, and neurological disorders, it has garnered a great deal of attention from researchers. Members of the miRNA-34 family have been shown to inhibit tumors in a variety of cancer types. This family is also important for obesity, the cardiovascular system, and glycolysis. It's interesting to note that the miRNA-34 family is known to play a role in major depressive disorder, schizophrenia, Parkinson's disease (PD), adverse childhood experiences or trauma, regulation of stress responses, Alzheimer's disease (AD), and stress-related psychatric conditions. In this review, the expected targets of the miRNA-34 family are presented alongside the well-established targets identified by pathway analysis. Furthermore, the therapeutic potential of this miRNA family will be discussed.
Collapse
Affiliation(s)
- Shaymaa Mm Yahya
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medical Research and Clinical Studies Institute, and Stem Cell Lab, Centre of Excellence for Advanced SciencesNational Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
2
|
Campo A, Aliquò F, Velletri T, Scuruchi M, Avenoso A, Campo GM, D'Ascola A, Campo S, De Pasquale M. Involvement of selected circulating ncRNAs in the regulation of cognitive dysfunction induced by anesthesia. Gene 2024; 928:148806. [PMID: 39074643 DOI: 10.1016/j.gene.2024.148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Post-operative cognitive dysfunction (POCD) refers to the functional impairment of the nervous system caused by prolonged exposure to anesthetics. It is known that prolonged exposure to anesthetics may increase the risk for the development of several cognitive impairments. The drugs used to induce general anesthesia are generally safe, owing to the CNS's direct and/or indirect self-protective activity against drug-induced damages. Non-coding RNAs have recently started to gain attention to better understand the mechanism of gene regulation correlated to cellular physiology and pathology. In order to provide new insights for the neuroprotective function of highly expressed ncRNAs in the central nervous system, we investigated their expression profile in the circulating exosomes of patients exposed to anesthesia vs healthy controls. The experimental design envisaged the recruitment of 30 adult patients undergoing general anesthesia and healthy controls. The effects of anesthetics have been evaluated on miR-34a and miR-124, on the lncRNAs MALAT-1, HOTAIR, GAS5, BLACAT1, HULC, PANDA, and on YRNAs. NcRNAs miR-34a, miR-124, MALAT-1, HOTAIR, GAS5, BLACAT1, and YRNA1 are significantly overexpressed following anesthesia, while YRNA5 is significantly down regulated. Some of them have neuroprotective function, while other correlate with neurological dysfunctions. Our data suggests that, during anesthesia, the toxic action of some non-coding RNAs could be compensated by other non-coding RNAs, both synthesized by the CNS or also transported into neurons from other tissues. It is reasonable to suppose a mutual action of these molecules likely to secure the CNS from anesthetics, that drive a convoluted cascade of ncRNA-dependent biological counter-responses. Our findings are novel in the field of brain dysfunction, indicating that some of the analyzed ncRNAs, although several of their functions still need to be addressed, could be suggested as potential biomarkers and therapeutic targets in post-operative cognitive dysfunction-related processes.
Collapse
Affiliation(s)
- Adele Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Tania Velletri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Maria De Pasquale
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
3
|
Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O. MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis 2024; 10:186. [PMID: 39369002 PMCID: PMC11455891 DOI: 10.1038/s41531-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/15/2024] [Indexed: 10/07/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNA (mRNA) molecules and promoting their degradation or blocking their translation. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. There is increasing evidence to suggest that miRNAs play a role in the pathogenesis of PD. Studies have identified several miRNAs that are dysregulated in the brains of PD patients, and animal models of the disease. MiRNA expression dysregulation contributes to the onset and progression of PD by modulating neuroinflammation, oxidative stress, and protein aggregation genes. Moreover, miRNAs have emerged as potential therapeutic targets for PD. This review elucidates the changes in miRNA expression profiles associated with PD, emphasising their potential as diagnostic biomarkers and therapeutic targets, and detailing specific miRNAs implicated in PD and their downstream targets. Integrated Insights into miRNA Function, Microglial Activation, Diagnostic, and Treatment Prospects in PD Note: This figure is an original figure created by the authors.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
| | | | - Vishal Bharmauria
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- Center for Vision Research and Center for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
4
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
5
|
Li M, Lu L, Xu H. Diagnostic value of miR-34a in Mycoplasma pneumoniae pneumonia in children and its correlation with rehabilitation effect. J Cardiothorac Surg 2024; 19:507. [PMID: 39223566 PMCID: PMC11367975 DOI: 10.1186/s13019-024-02992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia (MPP) is responsible for 20 to 40% of all cases of pneumonia acquired by children and shows an increasing incidence year by year. The aim of this study was to investigate the expression of miR-34a in children with MPP and its diagnostic value, and further explore the relationship between miR-34a and the rehabilitation effect of children with MPP. METHODS The expression level of miR-34a was detected by RT-qPCR, and the clinical value of miR-34a was analyzed by ROC analysis. In addition, the levels of IL-6, IL-18 and TNF-α in serum of children with MPP were detected by ELISA kit, and the correlation with miR-34a was analyzed. RESULTS Elevated levels of miR-34a were observed in the serum of children with MPP, and significantly higher expression levels were observed in children with severe symptoms and poor rehabilitation. The study suggested that miR-34a has potential as a diagnostic marker for MPP in children, helping to distinguish between mild and severe cases and predicting rehabilitation from MPP in children. In addition, miR-34a expression was positively correlated with IL-6, IL-8, and TNF-α levels. CONCLUSIONS miR-34a is closely related to MPP in children and miR-34a may be used as a clinical biomarker for MPP in children.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, 226100, China
| | - Leijuan Lu
- Department of Pediatrics, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, 226100, China
| | - Hong Xu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
6
|
Liang L, Yi X, Wang C, Su L, Wei G. The Impact of miR-34a on Endothelial Cell Viability and Apoptosis in Ischemic Stroke: Unraveling the MTHFR-Homocysteine Pathway. CLIN INVEST MED 2024; 47:27-37. [PMID: 39325580 DOI: 10.3138/cim-2024-2711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Ischemic stroke (IS) is a global health concern, often tied to dyslipidemia and vascular endothelial dysfunction. MicroRNA-34a (miR-34a) was reported to be up-regulated in the blood samples of patients with IS, but the specific role of miR-34a and methylenetetrahydrofolate reductase (MTHFR) in IS remains to be elucidated. METHODS We studied 143 subjects: 71 IS patients, and 72 healthy controls. Human umbilical vein endothelial cells (HUVECs) were cultured and transfected with a miR-34a mimic, inhibitor, or negative control. The miR-34a expression in serum and HUVECs was quantified via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Viability and apoptosis of HUVECs were assessed using CCK-8 assay and flow cytometry. The expression levels of bcl-2, bax, cyt-c, cleaved caspase 3, MTHFR, and homocysteine were measured by Western blot or enzyme-linked immunosorbent assay (ELISA). The relationship between miR-34a and MTHFR was verified by luciferase reporter assay. The levels of MTHFR and homocysteine in serum were examined by ELISA. RESULTS MiR-34a expression was increased in IS patients and inhibited viability of HUVECs while promoting their apoptosis. Overexpression of miR-34a up-regulated pro-apoptotic proteins (bax, cyt-c and cleaved caspase 3) and down-regulated anti-apoptotic protein bcl-2 in HUVECs. MTHFR was identified as the downstream target of miR-34a and its expression was reduced by miR-34a overexpression, while homocysteine levels increased. Consistently, MTHFR levels were lower and homocysteine levels were higher in IS patients compared with controls. DISCUSSION Our results suggest that up-regulated miR-34a plays a role in the pathogenesis of IS, potentially through inhibiting MTHFR expression and increasing homocysteine in endothelial cells. Therefore, miR-34a might be a therapeutic target for IS.
Collapse
Affiliation(s)
- Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
- *These authors contributed equally
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
- *These authors contributed equally
| | - Chunfang Wang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
| | - Li Su
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
| |
Collapse
|
7
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
8
|
Liu Y, Meng XK, Shao WZ, Liu YQ, Tang C, Deng SS, Tang CF, Zheng L, Guo W. miR-34a/TAN1/CREB Axis Engages in Alleviating Oligodendrocyte Trophic Factor-Induced Myelin Repair Function and Astrocyte-Dependent Neuroinflammation in the Early Stages of Alzheimer's Disease: The Anti-Neurodegenerative Effect of Treadmill Exercise. Neurochem Res 2024; 49:1105-1120. [PMID: 38289520 DOI: 10.1007/s11064-024-04108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Reduced myelin stability observed in the early stages of Alzheimer's disease leads to spatial learning and memory impairment. Exercise has been shown to protect nerves, reduce the risk of Alzheimer's disease, and strengthen synaptic connectivity. However, the underlying mechanisms of how exercise can promote myelin repair and coordinate inflammation and proliferation are still uncertain. In this study, we conducted histological and biochemical assays of cortical lysates after behavioral testing to detect pathological changes, myelin sheath thickness, and mRNA and protein levels. It is notable that D-galactose model mice exhibited elevated miRNA-34a levels, overactive astrocytes, decreased myelin staining scores, increased apoptosis, and decreased synaptic plasticity in the brain. Significantly, after eight weeks of exercise, we observed improvements in LFB scores, NeuN( +) neuron counts, and myelin basic protein (MBP) expression. Additionally, exercise promoted the expression of oligodendrocyte markers Olig2 and PDFGR-α associated with brain proliferation, and improved spatial cognitive function. Furthermore, it decreased the inflammation caused by astrocyte secretions (TNF-α, Cox-2, CXCL2). Interestingly, we also observed downregulation of miR-34a and activation of the TAN1/PI3K/CREB signaling pathway. Our data shed light on a previously unsuspected mechanism by which exercise reduces miR-34a levels and protects neuronal function and survival by preventing excessive demyelination and inflammatory infiltration in the CNS.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Xiao-Kang Meng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Wen-Zhen Shao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Ya-Qun Liu
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Si-Si Deng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
- Hunan Province Sports Public Service Research Base, Hunan Normal University, Changsha, 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Wen Guo
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China.
| |
Collapse
|
9
|
Abu-Alghayth MH, Khan FR, Belali TM, Abalkhail A, Alshaghdali K, Nassar SA, Almoammar NE, Almasoudi HH, Hessien KBG, Aldossari MS, Binshaya AS. The emerging role of noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast cancer. Pathol Res Pract 2024; 255:155180. [PMID: 38330621 DOI: 10.1016/j.prp.2024.155180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Breast cancer persists as a major problem for the world's healthcare, thus it is essential to fully understand the complex molecular processes that cause its growth and development. ncRNAs had been discovered to serve critical roles in a variety of cellular functions, including the regulation of signalling pathways. Within different pathways, the AKT/PI3K/mTOR signalling cascade has received a lot of interest because of its role in cancer. A complex interaction between ncRNAs, notably miRNAs, lncRNAs, and circRNAs, and the AKT/PI3K/mTOR signalling pathway exerts both oncogenic and tumor-suppressive activities by targeting critical components of the pathway directly or indirectly. Through miRNA-mediated post-transcriptional regulation, lncRNA-guided chromatin remodelling, and circRNA sequestration, ncRNAs modulate the activity of PI3K, AKT, and mTOR, influencing cell proliferation, survival, and metastasis. Furthermore, ncRNAs can serve as promising biomarkers for breast cancer prognosis, diagnosis, and treatment response, as their dysregulation is commonly observed in breast cancer patients. Harnessing the potential of ncRNAs as therapeutic targets or tools for restoring pathway homeostasis holds promise for innovative treatment strategies in breast cancer. Understanding the intricate regulatory networks orchestrated by ncRNAs in this context may pave the way for novel diagnostic approaches, therapeutic interventions, and a deeper comprehension of breast cancer's molecular landscape, ultimately improving patient outcomes. This abstract underscores the emerging significance of ncRNAs in the AKT/PI3K/mTOR signaling pathway in breast cancer.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Tareg M Belali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Khater Balatone G Hessien
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
10
|
Štefánik P, Morová M, Herichová I. Impact of Long-Lasting Environmental Factors on Regulation Mediated by the miR-34 Family. Biomedicines 2024; 12:424. [PMID: 38398026 PMCID: PMC10887245 DOI: 10.3390/biomedicines12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The present review focuses on the interactions of newly emerging environmental factors with miRNA-mediated regulation. In particular, we draw attention to the effects of phthalates, electromagnetic fields (EMFs) and a disrupted light/dark cycle. miRNAs are small non-coding RNA molecules with a tremendous regulatory impact, which is usually executed via gene expression inhibition. To address the capacity of environmental factors to influence miRNA-mediated regulation, the miR-34 family was selected for its well-described oncostatic and neuro-modulatory properties. The expression of miR-34 is in a tissue-dependent manner to some extent under the control of the circadian system. There is experimental evidence implicating that phthalates, EMFs and the circadian system interact with the miR-34 family, in both lines of its physiological functioning. The inhibition of miR-34 expression in response to phthalates, EMFs and light contamination has been described in cancer tissue and cell lines and was associated with a decline in oncostatic miR-34a signalling (decrease in p21 expression) and a promotion of tumorigenesis (increases in Noth1, cyclin D1 and cry1 expressions). The effects of miR-34 on neural functions have also been influenced by phthalates, EMFs and a disrupted light/dark cycle. Environmental factors shifted the effects of miR-34 from beneficial to the promotion of neurodegeneration and decreased cognition. Moreover, the apoptogenic capacity of miR-34 induced via phthalate administration in the testes has been shown to negatively influence germ cell proliferation. To conclude, as the oncostatic and positive neuromodulatory functions of the miR-34 family can be strongly influenced by environmental factors, their interactions should be taken into consideration in translational medicine.
Collapse
Affiliation(s)
- Peter Štefánik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martina Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
11
|
Zhu K, Wang T, Li S, Liu Z, Zhan Y, Zhang Q. NcRNA: key and potential in hearing loss. Front Neurosci 2024; 17:1333131. [PMID: 38298898 PMCID: PMC10827912 DOI: 10.3389/fnins.2023.1333131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Hearing loss has an extremely high prevalence worldwide and brings incredible economic and social burdens. Mechanisms such as epigenetics are profoundly involved in the initiation and progression of hearing loss and potentially yield definite strategies for hearing loss treatment. Non-coding genes occupy 97% of the human genome, and their transcripts, non-coding RNAs (ncRNAs), are widely participated in regulating various physiological and pathological situations. NcRNAs, mainly including micro-RNAs (miRNAs), long-stranded non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the regulation of cell metabolism and cell death by modulating gene expression and protein-protein interactions, thus impacting the occurrence and prognosis of hearing loss. This review provides a detailed overview of ncRNAs, especially miRNAs and lncRNAs, in the pathogenesis of hearing loss. We also discuss the shortcomings and issues that need to be addressed in the study of hearing loss ncRNAs in the hope of providing viable therapeutic strategies for the precise treatment of hearing loss.
Collapse
Affiliation(s)
- Keyu Zhu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Epp S, Chuah SM, Halasz M. Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma. Int J Mol Sci 2023; 24:17085. [PMID: 38069407 PMCID: PMC10707345 DOI: 10.3390/ijms242317085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.
Collapse
Affiliation(s)
- Soraya Epp
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Shin Mei Chuah
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Melinda Halasz
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
13
|
Pereira RL, Oliveira D, Pêgo AP, Santos SD, Moreira FTC. Electrochemical miRNA-34a-based biosensor for the diagnosis of Alzheimer's disease. Bioelectrochemistry 2023; 154:108553. [PMID: 37672968 DOI: 10.1016/j.bioelechem.2023.108553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is the most common dementia type and a leading cause of death and disability in the elderly. Diagnosis is expensive and invasive, urging the development of new, affordable, and less invasive diagnostic tools. The identification of changes in the expression of non-coding RNAs prompts the development of diagnostic tools to detect disease-specific blood biomarkers. Building on this idea, this work reports a novel electrochemical microRNA (miRNA) biosensor for the diagnosis of AD, based on carbon screen-printed electrodes (C-SPEs) modified with two gold nanostructures and a complementary anti-miR-34a oligonucleotide probe. This biosensor showed good target affinity, reflected on a 100 pM to 1 μM linearity range and a limit of detection (LOD) of 39 pM in buffer and 94 aM in serum. Moreover, the biosensor's response was not affected by serum compounds, indicating selectivity for miR-34a. The biosensor also detected miR-34a in the cell culture medium of a common AD model, stimulated with a neurotoxin to increase miR-34a secretion. Overall, the proposed biosensor makes a solid case for the introduction of a novel, inexpensive, and minimally invasive tool for the early diagnosis of AD, based on the detection of a circulating miRNA overexpressed in this pathology.
Collapse
Affiliation(s)
- Raquel L Pereira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Daniela Oliveira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia D Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
| |
Collapse
|
14
|
Hewitt T, Alural B, Tilak M, Wang J, Becke N, Chartley E, Perreault M, Haggarty SJ, Sheridan SD, Perlis RH, Jones N, Mellios N, Lalonde J. Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca 2+ entry and accelerated differentiation. Mol Psychiatry 2023; 28:5237-5250. [PMID: 37402854 DOI: 10.1038/s41380-023-02152-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
While most of the efforts to uncover mechanisms contributing to bipolar disorder (BD) focused on phenotypes at the mature neuron stage, little research has considered events that may occur during earlier timepoints of neurodevelopment. Further, although aberrant calcium (Ca2+) signaling has been implicated in the etiology of this condition, the possible contribution of store-operated Ca2+ entry (SOCE) is not well understood. Here, we report Ca2+ and developmental dysregulations related to SOCE in BD patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells (BD-NPCs) and cortical-like glutamatergic neurons. First, using a Ca2+ re-addition assay we found that BD-NPCs and neurons had attenuated SOCE. Intrigued by this finding, we then performed RNA-sequencing and uncovered a unique transcriptome profile in BD-NPCs suggesting accelerated neurodifferentiation. Consistent with these results, we measured a slower rate of proliferation, increased neurite outgrowth, and decreased size in neurosphere formations with BD-NPCs. Also, we observed decreased subventricular areas in developing BD cerebral organoids. Finally, BD NPCs demonstrated high expression of the let-7 family while BD neurons had increased miR-34a, both being microRNAs previously implicated in neurodevelopmental deviations and BD etiology. In summary, we present evidence supporting an accelerated transition towards the neuronal stage in BD-NPCs that may be indicative of early pathophysiological features of the disorder.
Collapse
Affiliation(s)
- Tristen Hewitt
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Begüm Alural
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Natalina Becke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Ellis Chartley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Stephen J Haggarty
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
15
|
Musazzi L, Carini G, Barbieri SS, Maggi S, Veronese N, Popoli M, Barbon A, Ieraci A. Phenotypic Frailty Assessment in SAMP8 Mice: Sex Differences and Potential Role of miRNAs as Peripheral Biomarkers. J Gerontol A Biol Sci Med Sci 2023; 78:1935-1943. [PMID: 37422721 DOI: 10.1093/gerona/glad160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 07/10/2023] Open
Abstract
Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research. The senescence-accelerated prone-8 (SAMP8) mouse strain exhibits early cognitive loss that mimics the deterioration of learning and memory in the elderly and is widely used as a model of aging and neurodegenerative diseases. Here, we examined the frailty phenotype, which includes body weight, strength, endurance, activity, and slow walking speed, in male and female SAMP8 and senescence-accelerated mouse resistant (SAMR1) mice at 6- and 9-months of age. We found that the prevalence of frailty was higher in SAMP8 mice compared with SAMR1 mice, regardless of sex. The overall percentage of prefrail and frail mice was similar in male and female SAMP8 mice, although the percentage of frail mice was slightly higher in males than in females. In addition, we found sex- and frailty-specific changes in selected miRNAs blood levels. In particular, the levels of miR-34a-5p and miR-331-3p were higher in both prefrail and frail mice, whereas miR-26b-5p was increased only in frail mice compared with robust mice. Finally, levels of miR-331-3p were also increased in whole blood from a small group of frail patients. Overall, these results suggest that SAMP8 mice may be a useful mouse model for identifying potential biomarkers and studying biological mechanisms of frailty.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| |
Collapse
|
16
|
Payne CT, Tabassum S, Wu S, Hu H, Gusdon AM, Choi HA, Ren XS. Role of microRNA-34a in blood-brain barrier permeability and mitochondrial function in ischemic stroke. Front Cell Neurosci 2023; 17:1278334. [PMID: 37927446 PMCID: PMC10621324 DOI: 10.3389/fncel.2023.1278334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Over the past decade, there has been an uptick in the number of studies conducting research on the role of microRNA (miRNA) molecules in stroke. Among these molecules, miR-34a has emerged as a significant player, as its levels have been observed to exhibit a substantial rise following ischemic events. Elevated levels of miR-34a have been found to have multiple effects, including the modulation of inflammatory molecules involved in the post-stroke recovery process, as well as negative effects on the blood-brain barrier (BBB) permeability. Interestingly, the increase of miR-34a appears to increase BBB permeability post stroke, through the negative effect on mitochondrial function. The strength of mitochondrial function is crucial for limiting para-cellular permeability and maintaining the structural integrity of the BBB. Furthermore, the activation of ischemic repair mechanisms and the reduction of ischemic event damage depend on healthy mitochondrial activity. This review aims to emphasize the involvement of miR-34a in ischemic stroke, specifically its interaction with mitochondrial genes in cerebrovascular endothelial cells, the effect on mitochondrial function, and lastly its regulatory role in BBB permeability. A comprehensive understanding of the role of miR-34a in maintaining BBB integrity and its contribution to the pathogenesis of stroke holds significant value in establishing a foundation for the development of future therapeutics and diagnostic markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuefang S. Ren
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
17
|
Xu X, Li C, Zou J, Liu L. MiR-34a targets SIRT1 to reduce p53 deacetylation and promote sevoflurane inhalation anesthesia-induced neuronal autophagy and apoptosis in neonatal mice. Exp Neurol 2023; 368:114482. [PMID: 37467842 DOI: 10.1016/j.expneurol.2023.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
This study is to investigate the function of miR-34a and interactions between miR-34a, SIRT1, and p53 in sevoflurane-induced neuronal apoptosis and autophagy in neonatal mice. A mouse model was established by inhalation anesthesia with sevoflurane and injected with genetic reagents, followed by tests of learning and memory abilities and histological staining of the hippocampus. CCK-8 and AnnexinV/PI staining respectively measured the survival and apoptosis rates of primary hippocampal neurons cultured with sevoflurane. The expression levels of miR-34a, SIRT1, p53, Ac-p53, and autophagy- or apoptosis-related proteins were measured. Sevoflurane impaired the learning and memory abilities of mice, increased TUNEL-positive cells in their hippocampus, and hindered the survival of hippocampal neurons. Sevoflurane increased miR-34a, Bax, cleaved caspase-3, and the ratio of LC3-II/LC3-I and reduced SIRT1 and p62. MiR-34a overexpression promoted sevoflurane-induced neural damage, whereas SIRT1 inhibition or p53 upregulation counteracted the neuroprotection of miR-34a knockdown. SIRT1 was a target of miR-34a and promoted p53 deacetylation. MiR-34a promotes sevoflurane-stimulated neuronal apoptosis and autophagy in neonatal mice by inhibiting SIRT1 expression and subsequent p53 deacetylation.
Collapse
Affiliation(s)
- Xiang Xu
- Supervision Room, Changsha Health Vocational College, Changsha, Hunan 410605, PR China
| | - Caifeng Li
- Department of Anesthesia, Changsha Hospital for Maternal & Child Health Care, Changsha, Hunan 410007, PR China
| | - Junping Zou
- Supervision Room, Changsha Health Vocational College, Changsha, Hunan 410605, PR China
| | - Liang Liu
- Department of Anesthesia, Changde First People's Hospital, Changde, Hunan 415003, PR China.
| |
Collapse
|
18
|
Lu C, Wu L, Tang MY, Liu YF, Liu L, Liu XY, Zhang C, Huang L. Indoxyl sulfate in atherosclerosis. Toxicol Lett 2023:S0378-4274(23)00215-1. [PMID: 37414304 DOI: 10.1016/j.toxlet.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis (AS), a chronic vascular inflammatory disease, has become a main focus of attention worldwide for its chronic progressing disease course and serious complications in the later period. Nevertheless, explanations for the exact molecular mechanisms of AS initiation and development remain to be an unsolved problem. The classic pathogenesis theories, such as lipid percolation and deposition, endothelium injury, inflammation and immune damage, provide the foundation for discovering the new key molecules or signaling mechanisms. Recently, indoxyl sulfate (IS), one of non-free uremia toxins, has been noticeable for its multiple atherogenic effects. IS exists at high concentration in plasma for its great albumin binding rate. Patients with uremia have markedly elevated serum levels of IS due both to the deterioration of renal function and to the high binding affinity of IS to albumin. Nowadays, elevated incidence of circulatory disease among patients with renal dysfunction indicates correlation of uremic toxins with cardiovascular damage. In this review, the atherogenic effects of IS and the underlying mechanisms are summarized with emphasis on several key pathological events associated with AS developments, such as vascular endothelium dysfunction, arterial medial lesions, vascular oxidative stress, excessive inflammatory responses, calcification, thrombosis and foam cell formation. Although recent studies have proved the great correlation between IS and AS, deciphering cellular and pathophysiological signaling by confirming key factors involved in IS-mediated atherosclerosis development may enable identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Cong Lu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Li Wu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Fan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lei Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xi-Ya Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
19
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Wijesinghe P, Xi J, Cui J, Campbell M, Pham W, Matsubara JA. MicroRNAs in tear fluids predict underlying molecular changes associated with Alzheimer's disease. Life Sci Alliance 2023; 6:e202201757. [PMID: 36941055 PMCID: PMC10027899 DOI: 10.26508/lsa.202201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Extracellular circulating microRNAs (miRNAs) have been discussed as potential biomarkers for Alzheimer's disease (AD) diagnosis. As the retina is a part of the CNS, we hypothesize that miRNAs expression levels in the brain, particularly neocortex-hippocampus, eye tissues, and tear fluids are similar at different stages of AD progression. Ten miRNA candidates were systematically investigated in transgenic APP-PS1 mice, noncarrier siblings, and C57BL/6J wild-type controls at young and old ages. Relative expression levels of tested miRNAs revealed a similar pattern in both APP-PS1 mice and noncarrier siblings when compared with age- and sex-matched wild-type controls. However, the differences seen in expression levels between APP-PS1 mice and noncarrier siblings could possibly have resulted from underlying molecular etiology of AD. Importantly, miRNAs associated with amyloid beta (Aβ) production (-101a, -15a, and -342) and proinflammation (-125b, -146a, and -34a) showed significant up-regulations in the tear fluids with disease progression, as tracked by cortical Aβ load and reactive astrogliosis. Overall, for the first time, the translational potential of up-regulated tear fluid miRNAs associated with AD pathogenesis was comprehensively demonstrated.
Collapse
Affiliation(s)
- Printha Wijesinghe
- Department of Ophthalmology & Visual Sciences, Faculty of Medicine, The University of British Columbia, Eye Care Centre, Vancouver, Canada
| | - Jeanne Xi
- Department of Ophthalmology & Visual Sciences, Faculty of Medicine, The University of British Columbia, Eye Care Centre, Vancouver, Canada
| | - Jing Cui
- Department of Ophthalmology & Visual Sciences, Faculty of Medicine, The University of British Columbia, Eye Care Centre, Vancouver, Canada
| | - Matthew Campbell
- Department of Ophthalmology & Visual Sciences, Faculty of Medicine, The University of British Columbia, Eye Care Centre, Vancouver, Canada
| | - Wellington Pham
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Sciences, Faculty of Medicine, The University of British Columbia, Eye Care Centre, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Tang X, Tena J, Di Lucente J, Maezawa I, Harvey DJ, Jin LW, Lebrilla CB, Zivkovic AM. Transcriptomic and glycomic analyses highlight pathway-specific glycosylation alterations unique to Alzheimer's disease. Sci Rep 2023; 13:7816. [PMID: 37188790 PMCID: PMC10185676 DOI: 10.1038/s41598-023-34787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Glycosylation has been found to be altered in the brains of individuals with Alzheimer's disease (AD). However, it is unknown which specific glycosylation-related pathways are altered in AD dementia. Using publicly available RNA-seq datasets covering seven brain regions and including 1724 samples, we identified glycosylation-related genes ubiquitously changed in individuals with AD. Several differentially expressed glycosyltransferases found by RNA-seq were confirmed by qPCR in a different set of human medial temporal cortex (MTC) samples (n = 20 AD vs. 20 controls). N-glycan-related changes predicted by expression changes in these glycosyltransferases were confirmed by mass spectrometry (MS)-based N-glycan analysis in the MTC (n = 9 AD vs. 6 controls). About 80% of glycosylation-related genes were differentially expressed in at least one brain region of AD participants (adjusted p-values < 0.05). Upregulation of MGAT1 and B4GALT1 involved in complex N-linked glycan formation and galactosylation, respectively, were reflected by increased concentrations of corresponding N-glycans. Isozyme-specific changes were observed in expression of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family and the alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (ST6GALNAC) family of enzymes. Several glycolipid-specific genes (UGT8, PIGM) were upregulated. The critical transcription factors regulating the expression of N-glycosylation and elongation genes were predicted and found to include STAT1 and HSF5. The miRNA predicted to be involved in regulating N-glycosylation and elongation glycosyltransferases were has-miR-1-3p and has-miR-16-5p, respectively. Our findings provide an overview of glycosylation pathways affected by AD and potential regulators of glycosyltransferase expression that deserve further validation and suggest that glycosylation changes occurring in the brains of AD dementia individuals are highly pathway-specific and unique to AD.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Danielle J Harvey
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Vallelunga A, Iannitti T, Somma G, Russillo MC, Picillo M, De Micco R, Vacca L, Cilia R, Cicero CE, Zangaglia R, Lazzeri G, Galantucci S, Radicati FG, De Rosa A, Amboni M, Scaglione C, Tessitore A, Stocchi F, Eleopra R, Nicoletti A, Pacchetti C, Di Fonzo A, Volontè MA, Barone P, Pellecchia MT. Gender differences in microRNA expression in levodopa-naive PD patients. J Neurol 2023:10.1007/s00415-023-11707-0. [PMID: 37052669 DOI: 10.1007/s00415-023-11707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Gender is an important factor influencing epidemiological and clinical features of Parkinson's disease (PD). We aimed to evaluate gender differences in the expression of a panel of miRNAs (miR-34a-5p, miR-146a, miR-155, miR-29a, miR-106a) possibly involved in the pathophysiology or progression of disease. Serum samples were obtained from 104 PD patients (58 men and 46 women) never treated with levodopa. We measured levels of miRNAs using quantitative PCR. Correlations between miRNA expression and clinical data were assessed using the Spearman's correlation test. We used STRING to evaluate co-expression relationship among target genes. MiR-34a-5p was significantly upregulated in PD male patients compared to PD female patients (fc: 1.62; p < 0.0001). No correlation was found with age, BMI, and disease severity, assessed by UPDRS III scale, in male and female patients. MiR-146a-5p was significantly upregulated in female as compared to male patients (fc: 3.44; p < 0.0001) and a significant correlation was also observed between disease duration and mir-146a-5p. No differences were found in the expression of miR-29a, miR-106a-5p and miR-155 between genders. Predicted target genes for miR-34a-5p and miR-146-5p and protein interactions in biological processes were reported. Our study supports the hypothesis that there are gender-specific differences in serum miRNAs expression in PD patients. Follow-up of this cohort is needed to understand if these differences may affect disease progression and response to treatment.
Collapse
Affiliation(s)
- A Vallelunga
- Department of Life Sciences and Biotechnologies, Section of Medicines and Health Products, University of Ferrara, Ferrara, Italy
| | - T Iannitti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - G Somma
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - M C Russillo
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - M Picillo
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - R De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - L Vacca
- IRCCS San Raffaele, Rome, Italy
| | - R Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - C E Cicero
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - R Zangaglia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - G Lazzeri
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - S Galantucci
- IRCCS San Raffaele Scientific Institute, Neurology Unit, Milan, Italy
| | | | - A De Rosa
- IRCCS San Raffaele, Rome, Italy
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - M Amboni
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - C Scaglione
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - A Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - F Stocchi
- IRCCS San Raffaele, Rome, Italy
- University San Raffaele, Roma, Italy
| | - R Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Nicoletti
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - C Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - A Di Fonzo
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - M A Volontè
- IRCCS San Raffaele Scientific Institute, Neurology Unit, Milan, Italy
| | - P Barone
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - M T Pellecchia
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy.
| |
Collapse
|
23
|
Dexmedetomidine alleviates oxidative stress and mitochondrial dysfunction in diabetic peripheral neuropathy via the microRNA-34a/SIRT2/S1PR1 axis. Int Immunopharmacol 2023; 117:109910. [PMID: 37012886 DOI: 10.1016/j.intimp.2023.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE Dexmedetomidine (Dex) is a highly selective α2-adrenoceptor agonist with sedative, analgesic, sympatholytic, and hemodynamic-stabilizing properties, which plays a neuroprotective role in diabetic peripheral neuropathy (DPN) and diabetes-induced nerve damage. However, the related molecular mechanisms are not fully understood. Therefore, our study explored the mechanism of Dex in DPN using rat and RSC96 cell models. METHODS Sciatic nerve sections were observed under an optical microscope and the ultrastructure of the sciatic nerves was observed under a transmission electron microscope. Oxidative stress was assessed by detecting MDA, SOD, GSH-Px, and ROS levels. The motor nerve conduction velocity (MNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) of rats were measured. Cell viability, apoptosis, and the changes in the expression of related genes and proteins were examined. Furthermore, the relationship between microRNA (miR)-34a and SIRT2 or SIRT2 and S1PR1 was analyzed. RESULTS Dex reversed DPN-induced decreases in MNCV, MWT, and TWL. Dex alleviated oxidative stress, mitochondrial damage, and apoptosis in both the rat and RSC96 cell models of DPN. Mechanistically, miR-34a negatively targeted SIRT2, and SIRT2 inhibited S1PR1 transcription. The overexpression of miR-34a or S1PR1 or the inhibition of SIRT2 counteracted the neuroprotective effects of Dex in DPN in vivo and in vitro. CONCLUSION Dex alleviates oxidative stress and mitochondrial dysfunction associated with DPN by downregulating miR-34a to regulate the SIRT2/S1PR1 axis.
Collapse
|
24
|
Izadi Z, Barzegari E, Iranpanah A, Sajadimajd S, Derakhshankhah H. Gentamycin Rationally Repositioned to Inhibit miR-34a Ameliorates Oxidative Injury to PC12 Cells. ACS OMEGA 2023; 8:771-781. [PMID: 36643496 PMCID: PMC9835649 DOI: 10.1021/acsomega.2c06112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke accompanies oxidative stress and cell death in the cerebral tissue. The microRNA miR-34a plays a pivotal role in this molecular pathology. This study presents the rational repositioning of aminoglycosidic antibiotics as miR-34a antagonists in order to assess their efficiency in protecting the PC12 stroke model cells from oxidative stress occurring under cerebral ischemic conditions. A library of 29 amino-sugar compounds were screened against anticipated structural models of miR-34a through molecular docking. MiR-ligand interactions were mechanistically studied by molecular dynamics simulations and free-energy calculations. Cultured PC12 cells were treated by H2O2 alone or in combination with gentamycin and neomycin as selected drugs. Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) and annexin V-FITC/propidium iodate (PI) double staining assays, respectively. The expression levels of key factors involved in cell proliferation, oxidative stress, and apoptosis in treated PC12 cells were measured through a quantitative real-time polymerase chain reaction and flow cytometric annexin V-FITC/PI double staining assays. A stable and energetically favorable binding was observed for miR-34a with gentamycin and neomycin. Gentamycin pretreatments followed by H2O2 oxidative injury led to increased cell viability and protected PC12 cells against H2O2-induced apoptotic events. This study will help in further understanding how the suppression of miR-34a in neural tissue affects the cell viability upon stroke.
Collapse
Affiliation(s)
- Zhila Izadi
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN
Office, Kermanshah University of Medical
Sciences, Kermanshah 6715847141, Iran
| | - Ebrahim Barzegari
- Medical
Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Amin Iranpanah
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN
Office, Kermanshah University of Medical
Sciences, Kermanshah 6715847141, Iran
| | - Soraya Sajadimajd
- Department
of Biology, Faculty of Science, Razi University, Kermanshah 67144-14971, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical
Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN
Office, Kermanshah University of Medical
Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
25
|
Abuelezz NZ, Nasr FE, Abdel Aal WM, Molokhia T, Zaky A. Sera miR-34a, miR-29b and miR-181c as potential novel diagnostic biomarker panel for Alzheimers in the Egyptian population. Exp Gerontol 2022; 169:111961. [PMID: 36155067 DOI: 10.1016/j.exger.2022.111961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Till date, there is an obvious obscurity of specific and early diagnostic biomarkers for Alzheimer's disease (AD). The promising diagnostic potential of serum miRNAs is increasingly emerging; however, rare miRNAs data originates from middle and low-income countries to provide proper validation in these highly affected populations. This study evaluated the diagnostic value of serum miR-34a, miR-29b and miR-181c in Egyptian AD patients. METHODS Expression levels of serum miR-34a, miR-29b and miR-181c were determined using quantitative real time PCR in AD patients versus healthy controls. Amyloid Beta 42 (Aβ42), Phosphorylated Tau (p-Tau) and TNF-α levels were also detected as distinctive AD markers. We further explored the correlation between miRNAs levels and Mini mental state examination (MMSE) scores. Finally, we conducted logistic regression and ROC curve analyses to evaluate the diagnostic values of the measured parameters. RESULTS Sera miR-34a, miR-29b and miR-181c were significantly downregulated in AD patients and this decrease was associated with cognitive decline. AD patients manifested significant elevation of Aβ42, pTau and TNF-α levels. The measured miRNAs showed good AD diagnostic value solely and when used together (AUC = 0.77, 95 % C·I. 0.62-0.93 at p < 0.01). Interestingly, combining miRNAs panel with Aβ42, TNF-α and pTau levels remarkably increased the diagnostic power (AUC = 0.97, 95 % C·I. 0.94-1.00 at p < 0.001) achieving sensitivity 88.2 % and specificity 91.4 %. CONCLUSION This study spots for the first time the diagnostic potential of serum miR-34a, miR-29b and miR-181c as minimally invasive AD biomarker panel in Egyptian patients and highlights their contribution in AD pathogenesis.
Collapse
Affiliation(s)
- Nermeen Z Abuelezz
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Fayza Eid Nasr
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Tarek Molokhia
- Department of Psychiatry, School of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Carecho R, Figueira I, Terrasso AP, Godinho‐Pereira J, de Oliveira Sequeira C, Pereira SA, Milenkovic D, Leist M, Brito C, Nunes dos Santos C. Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson's Disease. Mol Nutr Food Res 2022; 66:e2100959. [PMID: 34964254 PMCID: PMC9788306 DOI: 10.1002/mnfr.202100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Diets rich in (poly)phenols have been associated with positive effects on neurodegenerative disorders, such as Parkinson's disease (PD). Several low-molecular weight (poly)phenol metabolites (LMWPM) are found in the plasma after consumption of (poly)phenol-rich food. It is expected that LMWPM, upon reaching the brain, may have beneficial effects against both oxidative stress and neuroinflammation, and possibly attenuate cell death mechanisms relate to the loss of dopaminergic neurons in PD. METHODS AND RESULTS This study investigates the neuroprotective potential of two blood-brain barrier permeant LMWPM, catechol-O-sulfate (cat-sulf), and pyrogallol-O-sulfate (pyr-sulf), in a human 3D cell model of PD. Neurospheroids were generated from LUHMES neuronal precursor cells and challenged by 1-methyl-4-phenylpyridinium (MPP+ ) to induce neuronal stress. LMWPM pretreatments were differently neuroprotective towards MPP+ insult, presenting distinct effects on the neuronal transcriptome. Particularly, cat-sulf pretreatment appeared to boost counter-regulatory defense mechanisms (preconditioning). When MPP+ is applied, both LMWPM positively modulated glutathione metabolism and heat-shock response, as also favorably shifting the balance of pro/anti-apoptotic proteins. CONCLUSIONS Our findings point to the potential of LMWPM to trigger molecular mechanisms that help dopaminergic neurons to cope with a subsequent toxic insult. They are promising molecules to be further explored in the context of preventing and attenuating parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Rafael Carecho
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
| | - Inês Figueira
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
| | - Ana Paula Terrasso
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | - Joana Godinho‐Pereira
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | | | - Sofia Azeredo Pereira
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
| | - Dragan Milenkovic
- INRAEUNHUniversité Clermont Auvergne63122St Genes ChampanelleFrance
- Department of NutritionUniversity of California Davis95616DavisCAUSA
| | - Marcel Leist
- In‐vitro Toxicology and BiomedicineUniversity of Konstanz78457ConstanceGermany
| | - Catarina Brito
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | - Cláudia Nunes dos Santos
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| |
Collapse
|
27
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
28
|
Selvakumar SC, Preethi KA, Tusubira D, Sekar D. MicroRNAs in the epigenetic regulation of disease progression in Parkinson’s disease. Front Cell Neurosci 2022; 16:995997. [PMID: 36187290 PMCID: PMC9524246 DOI: 10.3389/fncel.2022.995997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/31/2022] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial neurodegenerative condition with symptoms such as resting tremor, rigidity, bradykinesia (slowness of moment), and postural instability. Neuroinflammation plays a significant part in the onset and progression of neurodegeneration in a wide range of disorders, including PD. The loss of dopaminergic neurons in the substantia nigra (SN) is thought to be the primary cause of PD disease progression. However, other neurotransmitter systems like serotoninergic, glutamatergic, noradrenergic, adrenergic, cholinergic, tryptaminergic, and peptidergic appear to be affected as well. Epigenetic regulation of gene expression is emerging as an influencing factor in the pathophysiology of PD. In recent years, epigenetic regulation by microRNAs (miRNAs) has been discovered to play an important function in the disease progression of PD. This review explores the role of miRNAs and their signaling pathways in regulating gene expression from development through neurodegeneration and how these mechanisms are linked to the pathophysiology of PD, emphasizing potential therapeutic interventions.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - K. Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, Uganda
- *Correspondence: Deusdedit Tusubira,
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Durairaj Sekar, ;
| |
Collapse
|
29
|
Sharawy I. Neuroimmune crosstalk and its impact on cancer therapy and research. Discov Oncol 2022; 13:80. [PMID: 35997976 PMCID: PMC9399329 DOI: 10.1007/s12672-022-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is a major health problem as it is the first or second leading cause of death worldwide. The global cancer burden is expected to rise 47% relative to 2020 cancer incidence. Recently, the fields of neuroscience, neuroimmunology and oncology have elaborated the neuroimmune crosstalk role in tumor initiation, invasion, progression, and metastases. The nervous system exerts a broad impact on the tumor microenvironment by interacting with a complex network of cells such as stromal, endothelial, malignant cells and immune cells. This communication modulates cancer proliferation, invasion, metastasis, induce resistance to apoptosis and promote immune evasion. This paper has two aims, the first aim is to explain neuroimmune crosstalk in cancer, tumor innervation origin and peripheral nervous system, exosomes, and miRNA roles. The second aim is to elaborate neuroimmune crosstalk impact on cancer therapy and research highlighting various potential novel strategies such as use of immune checkpoint inhibitors and anti-neurogenic drugs as single agents, drug repurposing, miRNA-based and si-RNA-based therapies, tumor denervation, cellular therapies, and oncolytic virus therapy.
Collapse
Affiliation(s)
- Iman Sharawy
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
30
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
32
|
Li X, Peng X, Yang S, Wei S, Fan Q, Liu J, Yang L, Li H. Targeting tumor innervation: premises, promises, and challenges. Cell Death Dis 2022; 8:131. [PMID: 35338118 PMCID: PMC8956600 DOI: 10.1038/s41420-022-00930-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 01/03/2023]
Abstract
A high intratumoral nerve density is correlated with poor survival, high metastasis, and high recurrence across multiple solid tumor types. Recent research has revealed that cancer cells release diverse neurotrophic factors and exosomes to promote tumor innervation, in addition, infiltrating nerves can also mediate multiple tumor biological processes via exosomes and neurotransmitters. In this review, through seminal studies establishing tumor innervation, we discuss the communication between peripheral nerves and tumor cells in the tumor microenvironment (TME), and revealed the nerve-tumor regulation mechanisms on oncogenic process, angiogenesis, lymphangiogenesis, and immunity. Finally, we discussed the promising directions of ‘old drugs newly used’ to target TME communication and clarified a new line to prevent tumor malignant capacity.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
33
|
Streese L, Demougin P, Iborra P, Kanitz A, Deiseroth A, Kröpfl JM, Schmidt-Trucksäss A, Zavolan M, Hanssen H. Untargeted sequencing of circulating microRNAs in a healthy and diseased older population. Sci Rep 2022; 12:2991. [PMID: 35194110 PMCID: PMC8863825 DOI: 10.1038/s41598-022-06956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
We performed untargeted profiling of circulating microRNAs (miRNAs) in a well characterized cohort of older adults to verify associations of health and disease-related biomarkers with systemic miRNA expression. Differential expression analysis revealed 30 miRNAs that significantly differed between healthy active, healthy sedentary and sedentary cardiovascular risk patients. Increased expression of miRNAs miR-193b-5p, miR-122-5p, miR-885-3p, miR-193a-5p, miR-34a-5p, miR-505-3p, miR-194-5p, miR-27b-3p, miR-885-5p, miR-23b-5b, miR-365a-3p, miR-365b-3p, miR-22-5p was associated with a higher metabolic risk profile, unfavourable macro- and microvascular health, lower physical activity (PA) as well as cardiorespiratory fitness (CRF) levels. Increased expression of miR-342-3p, miR-1-3p, miR-92b-5p, miR-454-3p, miR-190a-5p and miR-375-3p was associated with a lower metabolic risk profile, favourable macro- and microvascular health as well as higher PA and CRF. Of note, the first two principal components explained as much as 20% and 11% of the data variance. miRNAs and their potential target genes appear to mediate disease- and health-related physiological and pathophysiological adaptations that need to be validated and supported by further downstream analysis in future studies. Clinical Trial Registration: ClinicalTrials.gov: NCT02796976 (https://clinicaltrials.gov/ct2/show/NCT02796976).
Collapse
Affiliation(s)
- Lukas Streese
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Philippe Demougin
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, Life Sciences Training Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Paula Iborra
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Kanitz
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Arne Deiseroth
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Julia M Kröpfl
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Medical Faculty, University of Basel, Birsstrasse 320 B, 4052, Basel, Switzerland.
| |
Collapse
|
34
|
Kho W, von Haefen C, Paeschke N, Nasser F, Endesfelder S, Sifringer M, González-López A, Lanzke N, Spies CD. Dexmedetomidine Restores Autophagic Flux, Modulates Associated microRNAs and the Cholinergic Anti-inflammatory Pathway upon LPS-Treatment in Rats. J Neuroimmune Pharmacol 2022; 17:261-276. [PMID: 34357471 PMCID: PMC9726767 DOI: 10.1007/s11481-021-10003-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/26/2021] [Indexed: 12/29/2022]
Abstract
Infections and perioperative stress can lead to neuroinflammation, which in turn is linked to cognitive impairments such as postoperative delirium or postoperative cognitive dysfunctions. The α2-adrenoceptor agonist dexmedetomidine (DEX) prevents cognitive impairments and has organo-protective and anti-inflammatory properties. Macroautophagy (autophagy) regulates many biological processes, but its role in DEX-mediated anti-inflammation and the underlying mechanism of DEX remains largely unclear. We were interested how a pretreatment with DEX protects against lipopolysaccharide (LPS)-induced inflammation in adult male Wistar rats. We used Western blot and activity assays to study how DEX modulated autophagy- and apoptosis-associated proteins as well as molecules of the cholinergic anti-inflammatory pathway, and qPCR to analyse the expression of autophagy and inflammation-associated microRNAs (miRNA) in the spleen, cortex and hippocampus at different time points (6 h, 24 h, 7 d). We showed that a DEX pretreatment prevents LPS-induced impairments in autophagic flux and attenuates the LPS-induced increase in the apoptosis-associated protein cleaved poly(ADP-ribose)-polymerase (PARP) in the spleen. Both, DEX and LPS altered miRNA expression and molecules of the cholinergic anti-inflammatory pathway in the spleen and brain. While only a certain set of miRNAs was up- and/or downregulated by LPS in each tissue, which was prevented or attenuated by a DEX pretreatment in the spleen and hippocampus, all miRNAs were up- and/or downregulated by DEX itself - independent of whether or not they were altered by LPS. Our results indicate that the organo-protective effect of DEX may be mediated by autophagy, possibly by acting on associated miRNAs, and the cholinergic anti-inflammatory pathway. Preventive effects of DEX on LPS-induced inflammation. DEX restores the LPS-induced impairments in autophagic flux, attenuates PARP cleavage and alters molecules of the cholinergic system in the spleen. Furthermore, DEX alters and prevents LPS-induced miRNA expression changes in the spleen and brain along with LPS.
Collapse
Affiliation(s)
- Widuri Kho
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Paeschke
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Fatme Nasser
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Sifringer
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Adrián González-López
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany ,CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Nadine Lanzke
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia D. Spies
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Herichová I, Tesáková B, Kršková L, Olexová L. Food reward induction of rhythmic clock gene expression in the prefrontal cortex of rats is accompanied by changes in miR-34a-5p expression. Eur J Neurosci 2021; 54:7476-7492. [PMID: 34735028 DOI: 10.1111/ejn.15518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
The current study is focused on mechanisms by which the peripheral circadian oscillator in the prefrontal cortex (PFC) participates in food reward-induced activity. The experimental group of male Wistar rats was trained to receive a food reward with a low hedonic and caloric value. Afterwards, animals were exposed to a 5 h phase advance. Experimental animals could access a small food reward as they had been accustomed to, while control rats were exposed to the same phase shift without access to a food reward. When synchronisation to a new light:dark cycle was accompanied by intake of food reward, animals exerted more exact phase shift compared to the controls. In rats with access to a food reward, a rhythm in dopamine receptors types 1 and 2 in the PFC was detected. Rhythmic clock gene expression was induced in the PFC of rats when a food reward was provided together with a phase shift. The per2 and clock genes are predicted targets of miR-34a-5p. The precursor form of miR-34a-5p (pre-miR-34a-5p) showed a daily rhythm in expression in the PFC of the control and experimental groups. On the other hand, the mature form of miR-34a-5p exerted an inverted rhythm compared to pre-miR-34a-5p and negative correlation with per and clock genes expression only in the PFC of rewarded rats. A difference in the pattern of mature and pre-miR-34a-5p values was not related to expression of enzymes drosha, dicer and dgcr8. A role of the clock genes and miR-34a-5p in reward-facilitated synchronisation has been hypothesised.
Collapse
Affiliation(s)
- Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Barbora Tesáková
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Lucia Kršková
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Lucia Olexová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
36
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
37
|
Perdoncin M, Konrad A, Wyner JR, Lohana S, Pillai SS, Pereira DG, Lakhani HV, Sodhi K. A Review of miRNAs as Biomarkers and Effect of Dietary Modulation in Obesity Associated Cognitive Decline and Neurodegenerative Disorders. Front Mol Neurosci 2021; 14:756499. [PMID: 34690698 PMCID: PMC8529023 DOI: 10.3389/fnmol.2021.756499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a progressive increase in the prevalence of obesity and its comorbidities such as type 2 diabetes and cardiovascular diseases worldwide. Recent studies have suggested that the crosstalk between adipose tissue and central nervous system (CNS), through cellular mediators and signaling pathways, may causally link obesity with cognitive decline and give rise to neurodegenerative disorders. Several mechanisms have been proposed in obesity, including inflammation, oxidative stress, insulin resistance, altered lipid and cholesterol homeostasis, which may result in neuroinflammation, altered brain insulin signaling, amyloid-beta (Aβ) deposition and neuronal cell death. Since obesity is associated with functional and morphological alterations in the adipose tissues, the resulting peripheral immune response augments the development and progression of cognitive decline and increases susceptibility of neurodegenerative disorders, such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Studies have also elucidated an important role of high fat diet in the exacerbation of these clinical conditions. However, the underlying factors that propel and sustain this obesity associated cognitive decline and neurodegeneration, remains highly elusive. Moreover, the mechanisms linking these phenomena are not well-understood. The cumulative line of evidence have demonstrated an important role of microRNAs (miRNAs), a class of small non-coding RNAs that regulate gene expression and transcriptional changes, as biomarkers of pathophysiological conditions. Despite the lack of utility in current clinical practices, miRNAs have been shown to be highly specific and sensitive to the clinical condition being studied. Based on these observations, this review aims to assess the role of several miRNAs and aim to elucidate underlying mechanisms that link obesity with cognitive decline and neurodegenerative disorders. Furthermore, this review will also provide evidence for the effect of dietary modulation which can potentially ameliorate cognitive decline and neurodegenerative diseases associated with obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Komal Sodhi
- Department of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
38
|
Bazrgar M, Khodabakhsh P, Prudencio M, Mohagheghi F, Ahmadiani A. The role of microRNA-34 family in Alzheimer's disease: A potential molecular link between neurodegeneration and metabolic disorders. Pharmacol Res 2021; 172:105805. [PMID: 34371173 DOI: 10.1016/j.phrs.2021.105805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 02/09/2023]
Abstract
Growing evidence indicates that overexpression of the microRNA-34 (miR-34) family in the brain may play a crucial role in Alzheimer's disease (AD) pathogenesis by targeting and downregulating genes associated with neuronal survival, synapse formation and plasticity, Aβ clearance, mitochondrial function, antioxidant defense system, and energy metabolism. Additionally, elevated levels of the miR-34 family in the liver and pancreas promote the development of metabolic syndromes (MetS), such as diabetes and obesity. Importantly, MetS represent a well-documented risk factor for sporadic AD. This review focuses on the recent findings regarding the role of the miR-34 family in the pathogenesis of AD and MetS, and proposes miR-34 as a potential molecular link between both disorders. A comprehensive understanding of the functional roles of miR-34 family in the molecular and cellular pathogenesis of AD brains may lead to the discovery of a breakthrough treatment strategy for this disease.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
39
|
Leggio L, Paternò G, Vivarelli S, Falzone GG, Giachino C, Marchetti B, Iraci N. Extracellular Vesicles as Novel Diagnostic and Prognostic Biomarkers for Parkinson's Disease. Aging Dis 2021; 12:1494-1515. [PMID: 34527424 PMCID: PMC8407885 DOI: 10.14336/ad.2021.0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
The elderly population will significantly increase in the next decade and, with it, the proportion of people affected by age-related diseases. Among them, one of the most invalidating is Parkinson's disease (PD), characterized by motor- and non-motor dysfunctions which strongly impair the quality of life of affected individuals. PD is characterized by the progressive degeneration of dopaminergic neurons, with consequent dopamine depletion, and the accumulation of misfolded α-synuclein aggregates. Although 150 years have passed since PD first description, no effective therapies are currently available, but only palliative treatments. Importantly, PD is often diagnosed when the neuronal loss is elevated, making difficult any therapeutic intervention. In this context, two key challenges remain unanswered: (i) the early diagnosis to avoid the insurgence of irreversible symptoms; and (ii) the reliable monitoring of therapy efficacy. Research strives to identify novel biomarkers for PD diagnosis, prognosis, and therapeutic follow-up. One of the most promising sources of biomarkers is represented by extracellular vesicles (EVs), a heterogeneous population of nanoparticles, released by all cells in the microenvironment. Brain-derived EVs are able to cross the blood-brain barrier, protecting their payload from enzymatic degradation, and are easily recovered from biofluids. Interestingly, EV content is strongly influenced by the specific pathophysiological status of the donor cell. In this manuscript, the role of EVs as source of novel PD biomarkers is discussed, providing all recent findings concerning relevant proteins and miRNAs carried by PD patient-derived EVs, from several biological specimens. Moreover, the contribution of mitochondria-derived EVs will be dissected. Finally, the promising possibility to use EVs as source of markers to monitor PD therapy efficacy will be also examined. In the future, larger cohort studies will help to validate these EV-associated candidates, that might be effectively used as non-invasive and robust source of biomarkers for PD.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Giovanna G Falzone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| |
Collapse
|
40
|
Neurodevelopment regulators miR-137 and miR-34 family as biomarkers for early and adult onset schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:35. [PMID: 34226568 PMCID: PMC8257739 DOI: 10.1038/s41537-021-00164-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Early-onset schizophrenia (EOS) may have stronger familial aggregation and a more severe outcome than adult-onset schizophrenia (AOS). MicroRNA (miRNA) takes on dual roles as a genetic and epigenetic modulator, which may mediate the influence of genetic risk. Neurological soft signs (NSS) are neurological abnormalities that may be intermediate phenotypes or endophenotypes for schizophrenia. Our previous study found poorer performance on NSS tests from patients with EOS and their unaffected first-degree relatives. Thus, we aimed to identify a set of aberrant neurodevelopmental-related miRNAs that could serve as potential biomarkers for EOS or schizophrenia with NSS. This study included 215 schizophrenia patients (104 EOS and 111 AOS), 72 unaffected first-degree relatives, 31 patients with bipolar disorder, and 100 healthy controls. Differential expression analysis revealed that miR-137, miR-34b, and miR-34c were significantly up-regulated in patients with schizophrenia and their unaffected first-degree relatives compared to healthy controls. Receiver operating characteristic (ROC) analysis showed that the miR-137 expression signature could be used to discriminate between patients with EOS and healthy controls (AUC = 0.911). Additionally, miR-34b had the highest ability to discriminate between EOS and AOS (AUC = 0.810), which may indicate different aetiological pathways to disease onset. Moreover, miR-137 dysregulation was correlated with almost all NSS subscales (i.e., sensory integration, motor sequencing, etc.) and, when EOS patients with NSS, miR-137 expression discriminated these patients from healthy controls to a greater extent (AUC = 0.957). These findings support the potential for neurodevelopmental-related miRNAs to be used as indicators of vulnerability to EOS.
Collapse
|
41
|
Kmetzsch V, Anquetil V, Saracino D, Rinaldi D, Camuzat A, Gareau T, Jornea L, Forlani S, Couratier P, Wallon D, Pasquier F, Robil N, de la Grange P, Moszer I, Le Ber I, Colliot O, Becker E. Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2021; 92:485-493. [PMID: 33239440 PMCID: PMC8053348 DOI: 10.1136/jnnp-2020-324647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify potential biomarkers of preclinical and clinical progression in chromosome 9 open reading frame 72 gene (C9orf72)-associated disease by assessing the expression levels of plasma microRNAs (miRNAs) in C9orf72 patients and presymptomatic carriers. METHODS The PREV-DEMALS study is a prospective study including 22 C9orf72 patients, 45 presymptomatic C9orf72 mutation carriers and 43 controls. We assessed the expression levels of 2576 miRNAs, among which 589 were above noise level, in plasma samples of all participants using RNA sequencing. The expression levels of the differentially expressed miRNAs between patients, presymptomatic carriers and controls were further used to build logistic regression classifiers. RESULTS Four miRNAs were differentially expressed between patients and controls: miR-34a-5p and miR-345-5p were overexpressed, while miR-200c-3p and miR-10a-3p were underexpressed in patients. MiR-34a-5p was also overexpressed in presymptomatic carriers compared with healthy controls, suggesting that miR-34a-5p expression is deregulated in cases with C9orf72 mutation. Moreover, miR-345-5p was also overexpressed in patients compared with presymptomatic carriers, which supports the correlation of miR-345-5p expression with the progression of C9orf72-associated disease. Together, miR-200c-3p and miR-10a-3p underexpression might be associated with full-blown disease. Four presymptomatic subjects in transitional/prodromal stage, close to the disease conversion, exhibited a stronger similarity with the expression levels of patients. CONCLUSIONS We identified a signature of four miRNAs differentially expressed in plasma between clinical conditions that have potential to represent progression biomarkers for C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. This study suggests that dysregulation of miRNAs is dynamically altered throughout neurodegenerative diseases progression, and can be detectable even long before clinical onset. TRIAL REGISTRATION NUMBER NCT02590276.
Collapse
Affiliation(s)
- Virgilio Kmetzsch
- Inria, Aramis project-team, F-75013, Paris, France.,Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Vincent Anquetil
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Dario Saracino
- Inria, Aramis project-team, F-75013, Paris, France.,Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Daisy Rinaldi
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,EPHE, PSL Research University, Paris, France
| | - Thomas Gareau
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | - Ivan Moszer
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Paris Brain Institute - Institut du Cerveau - ICM, FrontLab, Paris, France
| | - Olivier Colliot
- Inria, Aramis project-team, F-75013, Paris, France.,Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | |
Collapse
|
42
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
43
|
Grossi I, Radeghieri A, Paolini L, Porrini V, Pilotto A, Padovani A, Marengoni A, Barbon A, Bellucci A, Pizzi M, Salvi A, De Petro G. MicroRNA‑34a‑5p expression in the plasma and in its extracellular vesicle fractions in subjects with Parkinson's disease: An exploratory study. Int J Mol Med 2020; 47:533-546. [PMID: 33416118 PMCID: PMC7797475 DOI: 10.3892/ijmm.2020.4806] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is an important disabling age-related disorder and is the second most common neuro-degenerative disease. Currently, no established molecular biomarkers exist for the early diagnosis of PD. Circulating microRNAs (miRNAs), either vesicle-free or encapsulated in extracellular vesicles (EVs), have emerged as potential blood-based biomarkers also for neurodegenerative diseases. In this exploratory study, we focused on miR-34a-5p because of its well-documented involvement in neurobiology. To explore a differential profile of circulating miR-34a-5p in PD, PD patients and age-matched control subjects were enrolled. Serial ultracentrifugation steps and density gradient were used to separate EV subpopulations from plasma according to their different sedimentation properties (Large, Medium, Small EVs). Characterization of EV types was performed using western blotting and atomic force microscopy (AFM); purity from protein contaminants was checked with the colorimetric nanoplasmonic assay. Circulating miR-34a-5p levels were evaluated using qPCR in plasma and in each EV type. miR-34a-5p was significantly up-regulated in small EVs devoid of exogenous protein contaminants (pure SEVs) from PD patients and ROC analysis indicated a good diagnostic performance in discriminating patients from controls (AUC=0.74, P<0.05). Moreover, miR-34a-5p levels in pure SEVs were associated with disease duration, Hoehn and Yahr and Beck Depression Inventory scores. These results under-line the necessity to examine the miRNA content of each EV subpopulation to identify miRNA candidates with potential diagnostic value and lay the basis for future studies to validate the overexpression of circulating miR-34a-5p in PD via the use of pure SEVs.
Collapse
Affiliation(s)
- Ilaria Grossi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandra Marengoni
- General Medicine and Geriatrics Unit, Department of Clinical and Experimental Sciences, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| |
Collapse
|
44
|
TSAI YC, CHENG LH, LIU YW, JENG OJ, LEE YK. Gerobiotics: probiotics targeting fundamental aging processes. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 40:1-11. [PMID: 33520563 PMCID: PMC7817508 DOI: 10.12938/bmfh.2020-026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Aging is recognized as a common risk factor for many chronic diseases and functional decline. The newly emerging field of geroscience is an interdisciplinary field that aims to understand the molecular and cellular mechanisms of aging. Several fundamental biological processes have been proposed as hallmarks of aging. The proposition of the geroscience hypothesis is that targeting holistically these highly integrated hallmarks could be an effective approach to preventing the pathogenesis of age-related diseases jointly, thereby improving the health span of most individuals. There is a growing awareness concerning the benefits of the prophylactic use of probiotics in maintaining health and improving quality of life in the elderly population. In view of the rapid progress in geroscience research, a new emphasis on geroscience-based probiotics is in high demand, and such probiotics require extensive preclinical and clinical research to support their functional efficacy. Here we propose a new term, "gerobiotics", to define those probiotic strains and their derived postbiotics and para-probiotics that are able to beneficially attenuate the fundamental mechanisms of aging, reduce physiological aging processes, and thereby expand the health span of the host. We provide a thorough discussion of why the coining of a new term is warranted instead of just referring to these probiotics as anti-aging probiotics or with other similar terms. In this review, we highlight the needs and importance of the new field of gerobiotics, past and currently on-going research and development in the field, biomarkers for potential targets, and recommended steps for the development of gerobiotic products. Use of gerobiotics could be a promising intervention strategy to improve health span and longevity of humans in the future.
Collapse
Affiliation(s)
- Ying-Chieh TSAI
- Institute of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 11221, Taiwan
| | - Li-Hao CHENG
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | - Yen-Wenn LIU
- Institute of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 11221, Taiwan
| | | | - Yuan-Kun LEE
- Department of Microbiology & Immunology, National
University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
45
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
46
|
Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther 2020; 13:2855-2872. [PMID: 32308419 PMCID: PMC7138617 DOI: 10.2147/ott.s234549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding single-stranded small-molecule RNAs that regulate gene expression by repressing target messenger RNA (mRNA) translation or degrading mRNA. miR-34a is one of the most important miRNAs participating in various physiological and pathological processes. miR-34a is abnormally expressed in a variety of tumors. The roles of miR-34a in gastrointestinal cancer (GIC) draw lots of attention. Numerous studies have demonstrated that dysregulated miR-34a is closely related to the proliferation, differentiation, migration, and invasion of tumor cells, as well as the diagnosis, prognosis, treatment, and chemo-resistance of tumors. Thus, we systematically reviewed the abnormal expression and regulatory roles of miR-34a in GICs including esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), and gallbladder cancer (GBC). It may provide a profile of versatile roles of miR-34a in GICs.
Collapse
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
47
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
48
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
49
|
Reddy AP, Ravichandran J, Carkaci-Salli N. Neural regeneration therapies for Alzheimer's and Parkinson's disease-related disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165506. [PMID: 31276770 DOI: 10.1016/j.bbadis.2019.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is 'stem cell therapy' based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation - appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.
Collapse
Affiliation(s)
- Arubala P Reddy
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Janani Ravichandran
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, United States.
| | - Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033.
| |
Collapse
|
50
|
He K, Guo C, Guo M, Tong S, Zhang Q, Sun H, He L, Shi Y. Identification of serum microRNAs as diagnostic biomarkers for schizophrenia. Hereditas 2019; 156:23. [PMID: 31297041 PMCID: PMC6598381 DOI: 10.1186/s41065-019-0099-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background At present, the schizophrenia diagnoses are based on the clinical symptoms and behaviors neglecting the laboratory test indicators. Results To better investigate the diagnostic potential of miRNAs for schizophrenia, we selected 14 candidate miRNAs and examined their expressions in the serums of 40 schizophrenia patients and 40 healthy controls by qRT-PCR. Ultimately three abnormally expressed microRNAs were identified, i.e., miR-34a-5p, miR-432-5p and miR-449a. Then, binary regression analysis was employed to combine 3 dysregulated miRNAs. ROC analysis revealed that the AUC of the combination of miR-432-5p + miR-449a in serums was 0.841 (95% CI: 0.791~0.887) with 90% sensitivity and 80% specificity. The AUC of the combination of miR-34a-5p + miR-432-5p + miR-449a in serums was 0.843 (95% CI: 0.791~0.887) with 90% sensitivity and 77.5% specificity. The results indicated that the combined model of miR-432-5p + miR-449a and miR-34a-5p + miR-432-5p + miR-449a have better prediction performances. Conclusions The study concludes that the two miRNAs combinations have the potential to be used as biomarkers for schizophrenia diagnoses. The finding may be conducive to overcoming the dilemmas faced by current schizophrenia diagnosis.
Collapse
Affiliation(s)
- Kuanjun He
- 1College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043 People's Republic of China
| | - Chuang Guo
- 1College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043 People's Republic of China
| | - Meng Guo
- 2Network Center, Inner Mongolia University for Nationalities, Tongliao, 028043 People's Republic of China
| | - Shuping Tong
- 3Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028043 People's Republic of China
| | - Qiuli Zhang
- 3Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028043 People's Republic of China
| | - Hongjun Sun
- Tongliao Institute of Mental Health, Tongliao, 028043 People's Republic of China
| | - Lin He
- 5Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 People's Republic of China.,6Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 People's Republic of China.,7Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200042 People's Republic of China
| | - Yongyong Shi
- 5Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 People's Republic of China.,6Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 People's Republic of China.,7Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200042 People's Republic of China
| |
Collapse
|