1
|
Zhou YC, Wang QQ, Zhou GYJ, Yin TF, Zhao DY, Sun XZ, Tan C, Zhou L, Yao SK. Matrine promotes colorectal cancer apoptosis by downregulating shank-associated RH domain interactor expression. World J Gastrointest Oncol 2024; 16:4700-4715. [PMID: 39678809 PMCID: PMC11577358 DOI: 10.4251/wjgo.v16.i12.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND The 5-year survival rate of patients with colorectal cancer (CRC) in China is only 56.9%, highlighting the need for new therapeutic drugs. Previous studies have shown that matrine exhibits antitumor effects by inducing apoptosis. However, the mechanism by which matrine regulates antiapoptotic proteins in CRC remains unclear. AIM To identify apoptotic proteins from proteomics and investigate the role of matrine in impeding CRC apoptosis by regulating these proteins. METHODS Tumor and adjacent normal tissues were collected from 52 patients with CRC who underwent surgery between January and December 2021. Data-independent acquisition quantitative proteomic analysis was performed to identify differentially expressed apoptotic proteins. The selected apoptotic proteins were identified through their association with tumor-node-metastasis (TNM) stage and prognosis, then confirmed by immunohistochemical (IHC) staining in validation cohort. In vitro, the role of matrine or apoptotic proteins on cancer cells were analyzed. RESULTS Compared to normal tissues, 88 anti-apoptotic proteins from proteomic results were selected. Among them, Shank-associated RH domain interactor (SHARPIN) was identified because of its relationship with TNM stage and overall survival in TCGA database. In the IHC-confirmed cohort, SHARPIN was highly expressed in CRC tissues and localized in the cytoplasm. Higher SHARPIN expression was associated with TNM stage, carbohydrate antigen 153 levels, and gross type compared to low expression. SHARPIN knockdown promoted apoptosis, significantly upregulated the expression of Bcl-2 associated agonist of cell death, Bcl-2 associated X protein, caspase 3, and caspase 8, and downregulated B-cell lymphoma-2 (P < 0.05). Importantly, matrine treatment promoted apoptosis and reversed the proliferation, invasion, and migration of CRC cells by repressing SHARPIN. CONCLUSION SHARPIN was identified as an upregulated anti-apoptotic protein in CRC, and matrine exhibited anticancer effects by downregulating its expression. Thus, matrine appears to be a promising drug for CRC.
Collapse
Affiliation(s)
- Yuan-Chen Zhou
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Qian-Qian Wang
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Ge-Yu-Jia Zhou
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, China
| | - Teng-Fei Yin
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dong-Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xi-Zhen Sun
- Department of Gastroenterology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Chang Tan
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Lei Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Kun Yao
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
2
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
3
|
Koyuncu I, Temiz E, Seker F, Balos MM, Akkafa F, Yuksekdag O, Yılmaz MA, Zengin G. A mixed-apoptotic effect of Jurinea mesopotamica extract on prostate cancer cells: a promising source for natural chemotherapeutics. Chem Biodivers 2024; 21:e202301747. [PMID: 38161146 DOI: 10.1002/cbdv.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/03/2024]
Abstract
This research investigates the potential use of Jurinea mesopotamica Hand.-Mazz. (Asteraceae) in cancer treatment. In this study, a plant extract was prepared using all parts of J. mesopotamica, and its effect on the proliferation of cancer and normal cells was tested using the MTT method. It was found to have a selective cytotoxic effect on prostate cancer cells, with the lowest IC50 (half-maximal inhibitory concentration) of 10μg/mL found in the butanol extract (JMBE). The extract suppressed the proliferation of prostate cancer cells (67 %), disrupted organelle integrity (49 %), increased reactive oxidative stress (66 %), and triggered cell death (51 %). In addition, apoptotic gene expressions and protein levels increased, and the profile of amino acids related to energy metabolism was elevated. Based on LC-MS/MS results, the plant contained higher levels of flavonoids, including isoquercitrin, cosmosiin, astragalin, nicotiflorin, luteolin, and apigenin. These results suggest that J. mesopotamica has a selective effect on prostate cancer due to its high flavonoid content and might be a promising natural alternative for cancer treatment.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Fatma Seker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa, Turkey
| | - M Maruf Balos
- Sanliurfa Provincial Directorate of National Education, Sanliurfa, Turkey
| | - Feridun Akkafa
- Department of Medical Biology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - M Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
4
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Baguma-Nibasheka M, Kablar B. Mechanics of Lung Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:131-150. [PMID: 37955774 DOI: 10.1007/978-3-031-38215-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Collapse
Affiliation(s)
- Mark Baguma-Nibasheka
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Chen X, Ye Q, Zhao W, Chi X, Xie C, Wang X. RBCK1 promotes hepatocellular carcinoma metastasis and growth by stabilizing RNF31. Cell Death Discov 2022; 8:334. [PMID: 35869046 PMCID: PMC9307510 DOI: 10.1038/s41420-022-01126-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractRNF31 (HOIP), RBCK1 (HOIL-1L), and SHARPIN are subunits of the linear ubiquitin chain assembly complex. Their function and specific molecular mechanisms in hepatocellular carcinoma (HCC) have not been reported previously. Here, we investigated the role of RNF31 and RBCK1 in HCC. We showed that RNF31 and RBCK1 were overexpressed in HCC and that upregulation of RNF31 and RBCK1 indicated poor clinical outcomes in patients with HCC. RNF31 overexpression was significantly associated with more satellite foci and vascular invasion in patients with HCC. Additionally, RBCK1 expression correlated positively with RNF31 expression in HCC tissues. Functionally, RBCK1 and RNF31 promote the metastasis and growth of HCC cells. Moreover, the RNF31 inhibitor gliotoxin inhibited the malignant behavior of HCC cells. Mechanistically, RBCK1 interacted with RNF31 and repressed its ubiquitination and proteasomal degradation. In summary, the present study revealed an oncogenic role and regulatory relationship between RBCK1 and RNF31 in facilitating proliferation and metastasis in HCC, suggesting that they are potential prognostic markers and therapeutic targets for HCC.
Collapse
|
7
|
Sandwich biosensing on a nanodiamond-modified interdigitated electrode for monitoring the occurrence of osteosarcoma. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Wang G, Zhuang Z, Cheng J, Yang F, Zhu D, Jiang Z, Du W, Shen S, Huang J, Hua L, Chen Y. Overexpression of SHARPIN promotes tumor progression in ovarian cancer. Exp Mol Pathol 2022:104806. [PMID: 35798064 DOI: 10.1016/j.yexmp.2022.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
SHARPIN (Shank-associated RH domain interacting protein) plays an important role in tumorigenesis. However, its role in ovarian cancer remains largely unknown. To investigate this issue, we systematically analyzed the amplification and expression of the SHARPIN in the TCGA database. From the database, we found that SHARPIN was amplified in ovarian cancer compared to normal ovarian tissue, and the mRNA level of SHARPIN was significantly elevated in ovarian cancer compared to non-tumorigenic ovarian tissue. In addition, we observed similar results from ovarian cancer cell lines and clinical samples from ovarian cancer patients, which indicated that increased SHARPIN expression is associated with tumorigenesis in ovarian cancer. SHARPIN knockdown inhibited the migration and invasion of ovarian cancer cells, also inhibited cell cycle and promoted apoptosis, thereby suppressing cell proliferation. RNA-seq results showed that SHARPIN significantly increased the expression of P53 and P21 and decreased the expression of Cyclin D1 and c-Myc, all of which are involved in the regulation of cell proliferation. Subsequent mechanistic exploration revealed that SHARPIN knockdown increased the expression of caspases 3 and 9, leading to apoptosis of ovarian cancer cells. We also found that high expression of SHARPIN was associated with poor prognosis of ovarian cancer patients. Collectively, we demonstrated a positive correlation between SHARPIN and ovarian cancer progression and provide a basis for combined targeted therapy strategies for future ovarian cancer treatment.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi Zhuang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianxiang Cheng
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fan Yang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dachun Zhu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyuan Jiang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wensheng Du
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siyuan Shen
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ju Huang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Hua
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
He J, Wang J, Li T, Chen K, Li S, Zhang S. SIPL1, Regulated by MAZ, Promotes Tumor Progression and Predicts Poor Survival in Human Triple-Negative Breast Cancer. Front Oncol 2022; 11:766790. [PMID: 34976812 PMCID: PMC8718759 DOI: 10.3389/fonc.2021.766790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer owing to a lack of effective targeted therapy and acquired chemoresistance. Here, we explored the function and mechanism of shank-interacting protein-like 1 (SIPL1) in TNBC progression. METHODS SIPL1 expression was examined in human TNBC tissues and cell lines by quantitative reverse transcription PCR, western blot, and immunohistochemistry. SIPL1 overexpression and silenced cell lines were established in BT-549 and MDA-MB-231 cells. The biological functions of SIPL1 in TNBC were studied in vitro using the CCK-8 assay, CellTiter-Glo Luminescent Cell Viability assay, caspase-3/8/9 assay, wound healing assay, and transwell assay and in vivo using a nude mouse model. The potential mechanisms underlying the effects of SIPL1 on TNBC progression were explored using bioinformatics analysis, luciferase reporter assays, and chromatin immunoprecipitation followed by qPCR. RESULTS SIPL1 expression was higher in human TNBC tissues and cell lines than in adjacent normal tissues and a breast epithelial cell line (MCF10A). High expression of SIPL1 was positively correlated with poor overall and disease-free survival in patients with TNBC. SIPL1 overexpression elevated and SIPL1 silencing repressed the malignant phenotypes of TNBC cells in vitro. SIPL1 overexpression promoted xenograft tumor growth in vivo. Myc-associated zinc-finger protein (MAZ) transcriptionally activated SIPL1. Finally, we found that SIPL1 promoted TNBC malignant phenotypes via activation of the AKT/NF-κB signaling pathways. CONCLUSIONS These results indicate that the MAZ/SIPL1/AKT/NF-κB axis plays a crucial role in promoting the malignant phenotypes of TNBC cells.
Collapse
Affiliation(s)
- Juanjuan He
- Department of Breast Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Breast Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Teng Li
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Songchao Li
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shaojin Zhang
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Shu H, Zhao L, Li X, Gong J, Yin G, Chen H. Silica nanoparticle-modified microcomb electrode for voltammetry detection of osteopontin with high sensitivity. Biotechnol Appl Biochem 2021; 69:1733-1740. [PMID: 34423464 DOI: 10.1002/bab.2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Osteosarcoma is a commonly occurring bone malignancy, and it is the second most common cause of cancer deaths in adolescents and children. A sensitive silica nanoparticle (Si-NP) modified current-volt sensor was introduced to identify the osteopontin antigen, a well-known biomarker for osteosarcoma. Si-NP was extracted from the rice husk ash and utilized for the surface functionalization on the interdigitated microelectrode sensing surface. Extracted Si-NP has a spherical shape with uniform distribution, and it is confirmed by field emission scanning electron microscopy and field-emission transmission electron microscopy. Si-NP was layered on the electrode surface through a (3-aminopropyl)triethoxysilane amine linker, and the antibody was immobilized on Si-NP through a glutaraldehyde linker. Osteopontin was effectively detected on the antibody-attached surface, and the determination limit was 0.6 ng/mL. The regression was determined as y = 0.9366x - 1.1113 and the R2 value was 0.9331 and the detection limit of osteopontin was 0.6 ng/mL in the range between 0.3 and 5 ng/mL. In addition, control performance with nonimmune antibodies and albumin did not change the current volt, showing the specific osteopontin identification. This research work brings out the easy and cost-effective method to diagnose osteosarcoma and its etiology.
Collapse
Affiliation(s)
- Hexi Shu
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Liangliang Zhao
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Xiaoxia Li
- Department of Respiratory Medicine, Dezhou Municipal Hospital, Dezhou City, China
| | - Jinpeng Gong
- The First Department of Trauma, Eastern Hospital, Yantaishan Hospital, Yantai City, China
| | - Guorui Yin
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Hulin Chen
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| |
Collapse
|
11
|
Zhao D, Zhang R, Xu M, Xiao X, Zhao H, Huang X. Multifunctional Biomedical Applications of Nitrogen and Sulfur Co-Doped Carbon Dots. J Biomed Nanotechnol 2021; 17:1598-1611. [PMID: 34544537 DOI: 10.1166/jbn.2021.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Multifunctional carbon dots have drawn considerable attention due to their potential biomedical application value. We report the preparation of blue-green fluorescence-emitting, multifunctional, nitrogen-and-sulfur co-doped carbon dots (N, S-CDs) synthesized via a one-step process using 1-thioglycerol as a sulfur source, glucose and citric acid as carbon sources, and polyethyleneimine as a nitrogen source. Because of abundant amino and sulfur content, the CDs exhibited high sensibility and selectivity for detecting Cu2+ (detection limit: 0.01 μM, linear range: 0.025 to 50 μM). Fast and sensitive detection of tiopronin was also achieved on the basis of the fluorescence "off-on" mode considering the strong affinity between tiopronin and Cu2+. The N, S-CDs exhibited good biocompatibility as determined by fluorescence imaging using onion epidermal cells and gram-positive bacteria. The CDs also exhibited excellent antimicrobial ability against the gram-positive bacteria. Our results indicate that these novel N, S-CDs could be ideal candidates for several biochemical applications such as antibacterial treatment and detection of small biomolecules.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Rui Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Xianju Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| |
Collapse
|
12
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
13
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2021; 42:1267-1281. [PMID: 33400084 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
14
|
El-Guendy N. Prostate Apoptosis Response-4 in Inflammation. TUMOR SUPPRESSOR PAR-4 2021:25-40. [DOI: 10.1007/978-3-030-80558-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Liu Q, Gu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26:2038-2056. [PMID: 32250210 DOI: 10.2174/1381612826666200403131514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients' survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: "biomarkers", "cancer stem cells", "targeting/targeted therapy", "prostate cancer", bladder cancer" and "kidney cancer". We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.
Collapse
Affiliation(s)
- Qiang Liu
- Yaopharma Co., Ltd. Chongqing, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Guo M, Gao X, Song H, Gu Y, Christie P, Wu S, Fan X. Anti-tumor effect of synthetic baicalin-rare earth metal complex drugs on SMMC-7721 cells. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3851-3864. [PMID: 32607700 DOI: 10.1007/s10653-020-00630-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Baicalin (BC)-rare earth metal complexes [BMCs (BC-Ce, BC-La, and BC-Y)] were synthesized by a complexation coordination method. A mouse tumor model with SMMC-7721 cells was used to examine BMCs for their anti-tumor activities in vivo. The results show that the three new BMCs, Na3Ce (C21H16O11)3·10H2O, Na2La (C21H16O11)2·8H2O, and Na2Y (C21H16O11)2·6H2O significantly inhibited SMMC-7721 cell proliferation, since the BMCs may induce the tumor apoptosis in a dose-dependent manner through decreasing cell membrane fluidity and mitochondrial membrane potential depolarization, blocking of the cell cycle at the G2/M phase, and increasing the expression of Bax and reducing the expression of Bcl-2. The effectiveness order of these three BCMs was as follows: BC-Ce > BC-La > BC-Y > BC. It is concluded that BC-Ce, BC-La, and BC-Y possess potent anti-tumor effects and may be a novel group of anti-tumor drugs. The novel baicalin-rare earth metal complexes (BMC) were synthesized, the anti-tumor effects of the BMC on SMMC-7721 cell analyzed comprehensively.
Collapse
Affiliation(s)
- Ming Guo
- School of Science, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaoyan Gao
- School of Science, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Houhui Song
- School of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yi Gu
- School of Science, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Peter Christie
- School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shengchun Wu
- School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaoyue Fan
- School of Science, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
17
|
Li Q, Shi Y, Sa R, Hao J, Hu J, Xiao M, Wang C, Yan L, Qiao B, Chen G. Altered staining patterns and expression level of Engrailed-2 in benign prostatic hyperplasia and prostate Cancer predict prostatic disease progression. BMC Cancer 2020; 20:555. [PMID: 32539763 PMCID: PMC7296936 DOI: 10.1186/s12885-020-07049-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PC), a common malignant tumor, is the second-leading cause of cancer death among American men. Its successful treatment greatly relies on the early diagnose. Engrailed-2 (EN2) has been confirmed being existed with a high level in the urine of PC patients. In this study, to explore the application of EN2 in PC, we detected the immunohistochemical staining difference and EN2 expression level between benign prostatic hyperplasia (BPH) and PC. METHODS We developed a monoclonal antibody against the helix 3 in EN2 and confirmed its specificity with Western blotting (WB) and immunofluorescence detecting the subcellular localization of endogenous and exogenous EN2 in three PC cell lines (LNCap, PC3, and DU145). We conducted immunohistochemical staining using this homemade antibody, and RT-PCR to detect the expression of EN2 in 25 PC and 25 BPH cases, and analyzed the correlation of EN2 expression and PC clinical staging. RESULTS The results of WB and immunofluorescence showed our homemade EN2 monoclonal antibody could specifically bind endogenous and exogenous EN2 protein in three different PC cell lines. Endogenous EN2 was generally expressed in the cytoplasm and exogenous EN2 mostly existed in the nucleus of these cell lines. Immunohistochemical staining in PC had extremely stronger signals than that in BPH, suggesting a higher EN2 expression level in PC, which was confirmed by RT-PCR. Interestingly, the stained areas in BPH tissues were mainly in nucleus and cytoplasm, while in PC tissues were mainly on cytomembrane. Moreover, the expression level of EN2 was positively correlated with the PC clinical staging. CONCLUSION Using our homemade EN2 antibody, we have found different staining patterns and expression level of EN2 in BPH and PC,which may be helpful to predict prostatic disease progression.
Collapse
Affiliation(s)
- Qi Li
- grid.412633.1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Yibo Shi
- grid.412633.1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Rigai Sa
- Beijing Gegen biotechnology co., LTD, Beijing, China
| | - Jun Hao
- grid.169077.e0000 0004 1937 2197Interdisciplinary life science, Purdue University, West Lafayette, IN USA
| | - Jinhao Hu
- grid.412633.1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Mulun Xiao
- grid.412633.1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Chaoliang Wang
- grid.412633.1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Liang Yan
- grid.412633.1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Baoping Qiao
- grid.412633.1Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Guoxun Chen
- grid.411461.70000 0001 2315 1184Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN USA
| |
Collapse
|
18
|
Zhang HL, Zhang Y, Yan XL, Xiao LG, Hu DX, Yu Q, An LK. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg Med Chem 2020; 28:115527. [PMID: 32345458 DOI: 10.1016/j.bmc.2020.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Based on DNA topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibition of the ethanol extract of the roots of Isodon ternifolius (D. Don) Kudo (Labiatae), its secondary metabolites has been studied. Two new compounds, an ent-abietane diterpenoid isodopene A (1) and a 2,3-seco-triterpene isodopene B (13), along with 25 known compounds were isolated. Their structures were elucidated by spectroscopic analysis and theoretical calculations. The enzyme-based assays indicated that 1 and 13 showed strong (+++) and moderate (++) TOP1 inhibition, respectively. Two chalcone derivatives 11 and 12 were firstly found as dual TDP1 and TOP1 natural inhibitors, and showed synergistic effect with the clinical TOP1 inhibitors topotecan in MCF-7 cells. Compounds 8, 16, and 22 acted as TOP1 catalytic inhibitors with equipotent TOP1 inhibition to camptothecin (++++). Compounds 7 and 8 exhibited significant cytotoxicity against MCF-7, A549, and HCT116 cells with GI50 values in the range of 2.2-4.8 μM. This work would provide valuable information that secondary metabolites from I. ternifolius could be developed as anticancer agents.
Collapse
Affiliation(s)
- Hong-Li Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Long-Gao Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Clinical Pharmacy (School of Integrative Pharmacy, Institute of Integrative Pharmaceutical Research), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China.
| |
Collapse
|
19
|
Yang Y, Liang YH, Zheng Y, Tang LJ, Zhou ST, Zhu JN. SHARPIN regulates cell proliferation of cutaneous basal cell carcinoma via inactivation of the transcriptional factors GLI2 and c‑JUN. Mol Med Rep 2020; 21:1799-1808. [PMID: 32319607 PMCID: PMC7057814 DOI: 10.3892/mmr.2020.10981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
SHANK‑associated RH domain‑interacting protein (SHARPIN) is a component of the linear ubiquitin chain assembly complex that can enhance the NF‑κB and JNK signaling pathways, acting as a tumor‑associated protein in a variety of cancer types. The present study investigated the role of SHARPIN in cutaneous basal cell carcinoma (BCC). Human BCC (n=26) and normal skin (n=5) tissues, and BCC (TE354.T) and normal skin (HaCaT) cell lines were used to evaluate SHARPIN expression level using immunohistochemistry and western blotting, respectively. A lentivirus carrying SHARPIN‑targeting or negative control short hairpin RNA was infected into TE354.T cells, and the infected stable cells were assayed to analyze tumor cell proliferation, cell cycle, apoptosis, migration and invasion by Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assays, flow cytometry and Transwell assays. Western blotting was performed to assess the protein expression levels of gene signaling in SHARPIN‑silenced BCC cells. SHARPIN protein expression levels were downregulated or absent in BCC cancer nests and precancerous lesions compared with normal skin samples. In addition, SHARPIN expression levels were lower in TE354.T cells compared with HaCaT cells. SHARPIN shRNA enhanced tumor cell proliferation and the S phase of the cell cycle, whereas BCC cell apoptotic rates, and migratory and invasive abilities were not significantly altered. The expression levels of cyclin D1, cyclin‑dependent kinase 4, phosphorylated‑c‑JUN and GLI family zinc finger 2 proteins were increased, whereas Patched 1 (PTCH1) and PTCH2 were decreased in the SHARPIN‑shRNA‑infected BCC cells. Therefore, the present results suggested that SHARPIN may act as a tumor suppressor during BCC development.
Collapse
Affiliation(s)
- Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan-Hua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ling-Jie Tang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Si-Tong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Jing-Na Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| |
Collapse
|
20
|
Zhang A, Wang W, Chen Z, Pang D, Zhou X, Lu K, Hou J, Wang S, Gao C, Lv B, Yan Z, Chen Z, Zhu J, Wang L, Zhuang T, Li X. SHARPIN Inhibits Esophageal Squamous Cell Carcinoma Progression by Modulating Hippo Signaling. Neoplasia 2019; 22:76-85. [PMID: 31884247 PMCID: PMC6939053 DOI: 10.1016/j.neo.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer is one of the leading malignancies worldwide, while around sixty percent of newly diagnosed cases are in China. In recent years, genome-wide sequencing studies and cancer biology studies show that Hippo signaling functions a critical role in esophageal squamous cell carcinoma (ESCC) progression, which could be a promising therapeutic targets in ESCC treatment. However, the detailed mechanisms of Hippo signaling dys-regulation in ESCC remain not clear. Here we identify SHARPIN protein as an endogenous inhibitor for YAP protein. SHARPIN depletion significantly decreases cell migration and invasion capacity in ESCC, which effects could be rescued by further YAP depletion. Depletion SHARPIN increases YAP protein level and YAP/TEAD target genes, such as CTGF and CYR61 in ESCC. Immuno-precipitation assay shows that SHARPIN associates with YAP, promoting YAP degradation possibly via inducing YAP K48-dependent poly-ubiquitination. Our study reveals a novel post-translational mechanism in modulating Hippo signaling in ESCC. Overexpression or activation of SHARPIN could be a promising strategy to target Hippo signaling for ESCC patients.
Collapse
Affiliation(s)
- Aijia Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Weilong Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhijun Chen
- Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Dan Pang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Xiaofeng Zhou
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Kui Lu
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jinghan Hou
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Sujie Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Can Gao
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Benjie Lv
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Ziyi Yan
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Zhen Chen
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Lidong Wang
- Henan Key Laboratory for Esophageal Cancer Research and State Key Laboratory for Esophageal Cancer Prevention & Treatment of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|
21
|
Leite DM, Zvar Baskovic B, Civita P, Neto C, Gumbleton M, Pilkington GJ. A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics. FASEB J 2019; 34:1710-1727. [PMID: 31914660 DOI: 10.1096/fj.201901858rr] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Despite the importance of the tumor microenvironment in regulating tumor progression, few in vitro models have been developed to understand the effects of non-neoplastic cells and extracellular matrix (ECM) on drug resistance in glioblastoma (GBM) cells. Using CellTrace-labeled human GBM and microglial (MG) cells, we established a 2D co-culture including various ratios of the two cell types. Viability, proliferation, migration, and drug response assays were carried out to assess the role of MG. A 3D model was then established using a hyaluronic acid-gelatin hydrogel to culture a mixture of GBM and MG and evaluate drug resistance. A contact co-culture of fluorescently labeled GBM and MG demonstrated that MG cells modestly promoted tumor cell proliferation (17%-30% increase) and greater migration of GBM cells (>1.5-fold increase). Notably, the presence of MG elicited drug resistance even when in a low ratio (10%-20%) relative to co-cultured tumor cells. The protective effect of MG on GBM was greater in the 3D model (>100% survival of GBM when challenged with cytotoxics). This new 3D human model demonstrated the influence of non-neoplastic cells and matrix on chemoresistance of GBM cells to three agents with different mechanisms of action suggesting that such sophisticated in vitro approaches may facilitate improved preclinical testing.
Collapse
Affiliation(s)
- Diana M Leite
- Brain Tumour Research Centre, Institute of Biological and Biomolecular Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomolecular Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Genomics Section, Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Catia Neto
- School of Pharmacy and Pharmaceutical Sciences, University of Cardiff, Cardiff, UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, University of Cardiff, Cardiff, UK
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre, Institute of Biological and Biomolecular Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
22
|
Mashayekhi V, Hoog CO‘, Oliveira S. Vascular targeted photodynamic therapy: A review of the efforts towards molecular targeting of tumor vasculature. J PORPHYR PHTHALOCYA 2019; 23:1229-1240. [PMID: 33568892 PMCID: PMC7116708 DOI: 10.1142/s1088424619300180] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The therapeutic value of vascular targeted photodynamic therapy (VTP) for cancer has already been recognized in the clinic: TOOKAD® has been clinically approved in Europe and Israel for treatment of men with low-risk prostate cancer. When light is applied shortly after intravenous administration of the photosensitizer, the damage is primarily done to the vasculature. This results in vessel constriction, blood flow stasis, and thrombus formation. Subsequently, the tumor is killed due to oxygen and nutrient deprivation. To further increase treatment specificity and to reduce undesired side effects such as damaging to the surrounding healthy tissues, efforts have been made to selectively target the PS to the tumor vasculature, an approach named molecular targeted VTP (molVTP). Several receptors have already been explored for this approach, namely CD13, CD276, Extra domains of fibronectin (A, B), Integrin αvβ3, Neuropilin-1, Nucleolin, PDGFRβ, tissue factor, and VEGFR-2, which are overexpressed on tumor vasculature. Preclinical studies have shown promising results, further encouraging the investigation and future application of molVTP, to improve selectivity and efficacy of cancer treatment. This strategy will hopefully lead to even more selective treatments for many cancer patients.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Charlotte Op ‘t Hoog
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sabrina Oliveira
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
23
|
Mohamad Hanif EA. Dysregulation of non-histone molecule miR205 and LRG1 post-transcriptional de-regulation by SETD1A in triple negative breast cancer. Mol Biol Rep 2019; 46:6617-6624. [DOI: 10.1007/s11033-019-05079-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/13/2019] [Indexed: 11/24/2022]
|
24
|
Chen B, Zheng Y, Zhu J, Liang Y. SHARPIN overexpression promotes TAK1 expression and activates JNKs and NF-κB pathway in Mycosis Fungoides. Exp Dermatol 2019; 28:1279-1288. [PMID: 31461795 DOI: 10.1111/exd.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Mycosis Fungoides (MF) is the most common subtype of cutaneous T-cell lymphomas (CTCL). Shank-associated RH domain-interacting protein (SHARPIN) participates in the initiation and development of multiple tumors. However, the clinical significance of SHARPIN in MF hasn't been investigated. The c-Jun N-terminal kinases (JNKs) pathway is a member of mitogen-activated protein kinases (MAPKs). Its dysregulation is observed in various tumors including CTCL, whereas the roles of JNKs pathway in MF remain largely unknown, the relationship between SHARPIN and JNKs pathway remains elusive. Herein, we showed that upregulated expression of SHARPIN was related to poor prognosis of MF patients. In vitro experiments found increased SHARPIN expression and activation of JNKs pathway in MF cell line MyLa2059. SHARPIN induced transforming growth factor β activated kinase-1 (TAK1) transcription, which is an upstream kinase of JNKs, NF-κB and p38 pathway, leading to activation of JNKs and NF-κB pathway. SHARPIN also promoted p38 signalling independent of TAK1 expression, by which overexpression of SHARPIN induced cell proliferation, inhibited apoptosis, enhanced migration and invasion of MyLa2059. Our work provided direct evidences for effects of SHARPIN on JNKs and NF-κB pathway, and the contributing roles of JNKs, NF-κB and p38 pathway regulated by SHARPIN in the development of MF.
Collapse
Affiliation(s)
- Biao Chen
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingna Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
25
|
Gao J, Bao Y, Ge S, Sun P, Sun J, Liu J, Chen F, Han L, Cao Z, Qin J, White GC, Xu Z, Ma YQ. Sharpin suppresses β1-integrin activation by complexing with the β1 tail and kindlin-1. Cell Commun Signal 2019; 17:101. [PMID: 31429758 PMCID: PMC6700787 DOI: 10.1186/s12964-019-0407-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022] Open
Abstract
Background Previously sharpin has been identified as an endogenous inhibitor of β1-integrin activation by directly binding to a conserved region in the cytoplasmic tails (CTs) of the integrin β1-associated α subunits. Methods Here we employed biochemical approaches and cellular analyses to evaluate the function and molecular mechanism of the sharpin-kindlin-1 complex in regulating β1-integrin activation. Results In this study, we found that although the inhibition of sharpin on β1-integrin activation could be confirmed, sharpin had no apparent effect on integrin αIIbβ3 activation in CHO cell system. Notably, a direct interaction between sharpin and the integrin β1 CT was detected, while the interaction of sharpin with the integrin αIIb and the β3 CTs were substantially weaker. Importantly, sharpin was able to inhibit the talin head domain binding to the integrin β1 CT, which can mechanistically contribute to inhibiting β1-integrin activation. Interestingly, we also found that sharpin interacted with kindlin-1, and the interaction between sharpin and the integrin β1 CT was significantly enhanced when kindlin-1 was present. Consistently, we observed that instead of acting as an activator, kindlin-1 actually suppressed the talin head domain mediated β1-integrin activation, indicating that kindlin-1 may facilitate recruitment of sharpin to the integrin β1 CT. Conclusion Taken together, our findings suggest that sharpin may complex with both kindlin-1 and the integrin β1 CT to restrict the talin head domain binding, thus inhibiting β1-integrin activation.
Collapse
Affiliation(s)
- Juan Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Yun Bao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Shushu Ge
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Peisen Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Jiaojiao Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Jianmin Liu
- Department of Molecular Cardiology, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Feng Chen
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Li Han
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Zhongyuan Cao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Gilbert C White
- Blood Research Institute, Versiti, 8727 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Milwaukee, WI, USA
| | - Zhen Xu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China. .,Blood Research Institute, Versiti, 8727 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Yan-Qing Ma
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China. .,Blood Research Institute, Versiti, 8727 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Biochemistry, Medical College of Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Li W, Chen Y, Sun X, Yang J, Zhang DY, Wang D, Suo J. Protein expression profiles and clinicopathologic characteristics associate with gastric cancer survival. Biol Res 2019; 52:42. [PMID: 31399040 PMCID: PMC6689162 DOI: 10.1186/s40659-019-0249-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prognosis remains one of most crucial determinants of gastric cancer (GC) treatment, but current methods do not predict prognosis accurately. Identification of additional biomarkers is urgently required to identify patients at risk of poor prognoses. METHODS Tissue microarrays were used to measure expression of nine GC-associated proteins in GC tissue and normal gastric tissue samples. Hierarchical cluster analysis of microarray data and feature selection for factors associated with survival were performed. Based on these data, prognostic scoring models were established to predict clinical outcomes. Finally, ingenuity pathway analysis (IPA) was used to identify a biological GC network. RESULTS Eight proteins were upregulated in GC tissues versus normal gastric tissues. Hierarchical cluster analysis and feature selection showed that overall survival was worse in cyclin dependent kinase (CDK)2, Akt1, X-linked inhibitor of apoptosis protein (XIAP), Notch4, and phosphorylated (p)-protein kinase C (PKC) α/β2 immunopositive patients than in patients that were immunonegative for these proteins. Risk score models based on these five proteins and clinicopathological characteristics were established to determine prognoses of GC patients. These proteins were found to be involved in cancer related-signaling pathways and upstream regulators were identified. CONCLUSION This study identified proteins that can be used as clinical biomarkers and established a risk score model based on these proteins and clinicopathological characteristics to assess GC prognosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.,Jilin Province Key Laboratory of Bioinformatics for Gastrointestinal Tumor, Changchun, Jilin, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xuan Sun
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jupeng Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - David Y Zhang
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Jian Suo
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China. .,Jilin Province Key Laboratory of Bioinformatics for Gastrointestinal Tumor, Changchun, Jilin, China.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Research has evaluated the potential impact of folate on cancer risk with conflicting findings. Studies have demonstrated increased risk, no effect, and decreased risk. This review summarizes findings of mixed results between folate intake, serum levels, gene polymorphisms, and cancer risk based on meta-analyses from the past five years. RECENT FINDING Low or deficient folate status is associated with increased risk of many cancers. Folic acid supplementation and higher serum levels are associated with increased risk of prostate cancer. Gene polymorphisms may impact risk in certain ethnic groups. Folate has been studied extensively due to its role in methylation and nucleotide synthesis. Further prospective studies are needed to clarify optimal levels for nutrient remediation and risk reduction in those at risk, as well as elucidate the association between high intake, high serum levels, and prostate cancer risk. Future considerations for cancer risk may include gene interactions with nutrients and environmental factors.
Collapse
Affiliation(s)
- Renee Pieroth
- Department of Nutrition, Cancer Treatment Centers of America, 1331 East Wyoming Ave, Philadelphia, PA, 19124, USA
| | - Stephanie Paver
- , RD, LLC 10645 N. Tatum Blvd., Suite 200, Mailbox 122, Phoenix, Arizona, 85028, USA
| | - Sharon Day
- Department of Nutrition, Cancer Treatment Centers of America, 14200 W. Celebrate Life Way, Goodyear, Arizona, 85338, USA
| | - Carolyn Lammersfeld
- Department of Medicine and Science, Cancer Treatment Centers of America, 2610 Sheridan Road, Zion, IL, 60099, USA.
| |
Collapse
|
28
|
Sharapov MG, Novoselov VI. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:79-100. [PMID: 31216969 DOI: 10.1134/s0006297919020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
29
|
Han IH, Kim JH, Jang KS, Ryu JS. Inflammatory mediators of prostate epithelial cells stimulated with Trichomonas vaginalis promote proliferative and invasive properties of prostate cancer cells. Prostate 2019; 79:1133-1146. [PMID: 31050003 DOI: 10.1002/pros.23826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Trichomonas vaginalis (Tv) is the most common sexually transmitted parasite. It is detected in prostatic tissue of benign prostatic hyperplasia, prostatitis, and prostate cancer (PCa) and has been suggested to cause chronic prostatitis. Moreover, up to 20% of all cancers worldwide are associated with chronic inflammation. Here, we investigated whether inflammatory mediators produced by normal human prostate epithelial cells (RWPE-1) stimulated with Tv could promote growth and invasiveness of PCa cells. METHODS Conditioned medium of RWPE-1 cells was prepared by stimulating them with Tv (trichomonad-conditioned medium [TCM]) and without Tv (conditioned medium [CM]). Promotion of PCa cells (PC3, DU145, and LNCaP) was assessed by wound healing, proliferation, and invasion assays. RESULTS We observed that the production of interleukin (IL)-1β, IL-6, CCL2, CXCL8, prostaglandin-E2 (PGE2 ), and COX2 by RWPE-1 cells was increased by stimulating them with Tv. When PCa cells were incubated with TCM, their proliferation, invasion, and migration increased. Moreover, they showed increased epithelial-mesenchymal transition (EMT)-related markers by a reduction in epithelial markers and an increase in mesenchymal markers. In vivo, xenograft tumor tissues injected with TCM also showed increased expression of cyclin D1 and proliferating cell nuclear antigen, as well as induction of EMT. Receptors and signal molecules of PCa cells increased in response to exposure to TCM, and blocking receptors (CXCR1, CXCR2, C-C chemokine receptor 2, glycoprotein 130, EP2, and EP4) reduced the proliferation of PCa cells with decreased production of cytokines (CCL2, IL-6, and CXCL8) and PGE2 , and expression of NF-κB and Snail1. CONCLUSIONS Our results suggest that Tv infection may be one of the factors creating the supportive microenvironment to promote proliferation and invasiveness of PCa cells.
Collapse
Affiliation(s)
- Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Ki-Seok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Simsek C, Esin E, Yalcin S. Metronomic Chemotherapy: A Systematic Review of the Literature and Clinical Experience. JOURNAL OF ONCOLOGY 2019; 2019:5483791. [PMID: 31015835 PMCID: PMC6446118 DOI: 10.1155/2019/5483791] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Metronomic chemotherapy, continuous and dose-dense administration of chemotherapeutic drugs with lowered doses, is being evaluated for substituting, augmenting, or appending conventional maximum tolerated dose regimens, with preclinical and clinical studies for the past few decades. To date, the principle mechanisms of its action include impeding tumoral angiogenesis and modulation of hosts' immune system, affecting directly tumor cells, their progenitors, and neighboring stromal cells. Its better toxicity profile, lower cost, and easier use are main advantages over conventional therapies. The evidence of metronomic chemotherapy for personalized medicine is growing, starting with unfit elderly patients and also for palliative treatment. The literature reviewed in this article mainly demonstrates that metronomic chemotherapy is advantageous for selected patients and for certain types of malignancies, which make it a promising therapeutic approach for filling in the gaps. More clinical studies are needed to establish a solidified role for metronomic chemotherapy with other treatment models in modern cancer management.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey
| | - Ece Esin
- Department of Medical Oncology, A.Y. Ankara Training Hospital, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
31
|
Siitonen R, Peuhu E, Autio A, Liljenbäck H, Mattila E, Metsälä O, Käkelä M, Saanijoki T, Dijkgraaf I, Jalkanen S, Ivaska J, Roivainen A. 68Ga-DOTA-E[c(RGDfK)] 2 PET Imaging of SHARPIN-Regulated Integrin Activity in Mice. J Nucl Med 2019; 60:1380-1387. [PMID: 30850498 DOI: 10.2967/jnumed.118.222026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Shank-associated RH domain-interacting protein (SHARPIN) is a cytosolic protein that plays a key role in activation of nuclear factor κ-light-chain enhancer of activated B cells and regulation of inflammation. Furthermore, SHARPIN controls integrin-dependent cell adhesion and migration in several normal and malignant cell types, and loss of SHARPIN correlates with increased integrin activity in mice. Arginyl-glycyl-aspartic acid (RGD), a cell adhesion tripeptide motif, is an integrin recognition sequence that facilitates PET imaging of integrin upregulation during tumor angiogenesis. We hypothesized that increased integrin activity due to loss of SHARPIN protein would affect the uptake of αvβ3-selective cyclic, dimeric peptide 68Ga-DOTA-E[c(RGDfK)]2, where E[c(RGDfk)]2 = glutamic acid-[cyclo(arginyl-glycyl-aspartic acid-D-phenylalanine-lysine)], both in several tissue types and in the tumor microenvironment. To test this hypothesis, we used RGD-based in vivo PET imaging to evaluate wild-type (wt) and SHARPIN-deficient mice (Sharpin cpdm , where cpdm = chronic proliferative dermatitis in mice) with and without melanoma tumor allografts. Methods: Sharpin cpdm mice with spontaneous null mutation in the Sharpin gene and their wt littermates with or without B16-F10-luc melanoma tumors were studied by in vivo imaging and ex vivo measurements with cyclic-RGD peptide 68Ga-DOTA-E[c(RGDfK)]2 After the last 68Ga-DOTA-E[c(RGDfK)]2 peptide PET/CT, tumors were cut into cryosections for autoradiography, histology, and immunohistochemistry. Results: The ex vivo uptake of 68Ga-DOTA-E[c(RGDfK)]2 in the mouse skin and tumor was significantly higher in Sharpin cpdm mice than in wt mice. B16-F10-luc tumors were detected 4 d after inoculation, without differences in volume or blood flow between the mouse strains. PET imaging with 68Ga-DOTA-E[c(RGDfK)]2 peptide at day 10 after inoculation revealed significantly higher uptake in the tumors transplanted into Sharpin cpdm mice than in wt mice. Furthermore, tumor vascularization was increased in the Sharpin cpdm mice. Conclusion: Sharpin cpdm mice demonstrated increased integrin activity and vascularization in B16-F10-luc melanoma tumors, as demonstrated by RGD-based in vivo PET imaging. These data indicate that SHARPIN, a protein previously associated with increased cancer growth and metastasis, may also have important regulatory roles in controlling the tumor microenvironment.
Collapse
Affiliation(s)
| | - Emilia Peuhu
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Anu Autio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Elina Mattila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli Metsälä
- Turku PET Centre, University of Turku, Turku, Finland
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Ingrid Dijkgraaf
- Department of Biochemistry, University of Maastricht, Maastricht, the Netherlands
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biochemistry, University of Turku, Turku, Finland; and
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland .,Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
32
|
A Systems Pharmacology Approach for Identifying the Multiple Mechanisms of Action of the Wei Pi Xiao Decoction for the Treatment of Gastric Precancerous Lesions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1562707. [PMID: 30854000 PMCID: PMC6378068 DOI: 10.1155/2019/1562707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
The Wei Pi Xiao (WPX) decoction, based on the theory of traditional Chinese medicine, has been widely used for the treatment of gastric precancerous lesions (GPL). Although WPX is known to be effective for the treatment of GPL, its active ingredients, cellular targets, and the precise molecular mechanism of action are not known. This study aimed to identify the multiple mechanisms of action of the WPX decoction in the treatment of GPL. The active compounds, drug targets, and the key pathways involved in the therapeutic effect of WPX in the treatment of GPL were analyzed by an integrative analysis pipeline. The information pertaining to the compounds present in WPX and their disease targets was obtained from TCMSP and GeneCards, respectively. The mechanisms underlying the therapeutic effect of WPX were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A total of 82 bioactive compounds and 146 related targets were identified in this study. Following target analyses, the targets were further mapped to 26 key biological processes and 21 related pathways to construct a target-pathway network and an integrated GPL pathway. The study demonstrated that the WPX formula primarily treats the dysfunctions of GPL arising from cell proliferation, apoptosis, and mucosal inflammation, which offered a novel insight into the pathogenesis of GPL and revealed the molecular mechanism underlying the therapeutic effects of the WPX formula in GPL. This study offers a novel approach for the systematic investigation of the mechanisms of action of herbal medicines, which will provide an impetus to the GPL drug development pipeline.
Collapse
|
33
|
Yu YH, Wei CY, Qin QH, Mo QG, Huang Z, Lian B. Efficacy of Iodine-125 Seed Implantation in Locoregionally Recurrent and Unresectable Breast Cancer: a Retrospective Study. Pathol Oncol Res 2019; 25:327-332. [PMID: 29116622 PMCID: PMC6330559 DOI: 10.1007/s12253-017-0361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/27/2017] [Indexed: 12/26/2022]
Abstract
The management of locoregionally recurrent and unresectable breast cancer is a therapeutic challenge. This retrospective study aimed to assess the efficacy of 125I seed implantation brachytherapy as a palliative management in locoregionally recurrent breast cancer. We analyzed 36 locoregionally recurrent and unresectable breast cancers in our hospital between 2012 and 2016. All patients were treated with CT-guided 125I seed permanent implantation. The dose distribution of 125I seeds was calculated using a computerized treatment planning system. Complete response, partial response, stable disease, and local tumor control rates were calculated. Long-term efficacy was assessed based on survival rates ranging from 1 to 4 years. The follow-up period ranged from 6 to 53 months. The median local control was 28 months (95% CI: 16.2-39.8 months). The percentage of patients who showed 6-month, 1-year, 2-year, and 3-year local control was 97.2%, 77.8%, 52.8%, and 33.3%, respectively. Median survival time for all patients was 48 months (95% CI: 40.9-55.1 months); 1-year, 2-year, 3-year, and 4-year survival rates were 97.2%, 80.6%, 63.9%, and 46.5%, respectively. Pain relief response rate was 88.9%. No serious complications were detected during the follow-up period. The results of this study demonstrate that 125I seed implantation could be considered a feasible and promising minimally invasive therapy for locoregionally recurrent and unresectable breast carcinoma.
Collapse
Affiliation(s)
- Ying-hua Yu
- Departmant of Breast Surgery of Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi 530021 People’s Republic of China
| | - Chang-yuan Wei
- Departmant of Breast Surgery of Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi 530021 People’s Republic of China
| | - Qing-hong Qin
- Departmant of Breast Surgery of Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi 530021 People’s Republic of China
| | - Qin-guo Mo
- Departmant of Breast Surgery of Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi 530021 People’s Republic of China
| | - Zhen Huang
- Departmant of Breast Surgery of Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi 530021 People’s Republic of China
| | - Bin Lian
- Departmant of Breast Surgery of Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi 530021 People’s Republic of China
| |
Collapse
|
34
|
Acuña UM, Mo S, Zi J, Orjala J, DE Blanco EJC. Hapalindole H Induces Apoptosis as an Inhibitor of NF-ĸB and Affects the Intrinsic Mitochondrial Pathway in PC-3 Androgen-insensitive Prostate Cancer Cells. Anticancer Res 2018; 38:3299-3307. [PMID: 29848677 DOI: 10.21873/anticanres.12595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prostate cancer presents the highest incidence rates among all cancers in men. Hapalindole H (Hap H), isolated from Fischerella muscicola (UTEX strain number LB1829) as part of our natural product anticancer drug discovery program, was found to be significantly active against prostate cancer cells. MATERIALS AND METHODS In this study, Hap H was tested for nuclear factor-kappa B (NF-ĸB) inhibition and selective cytotoxic activity against different cancer cell lines. The apoptotic effect was assessed on PC-3 prostate cancer cells by fluorescence-activated cell sorting analysis. The underlying mechanism that induced apoptosis was studied and the effect of Hap H on mitochondria was evaluated and characterized using western blot and flow cytometric analysis. RESULTS Hap H was identified as a potent NF-ĸB inhibitor (0.76 μM) with selective cytotoxicity against the PC-3 prostate cancer cell line (0.02 μM). The apoptotic effect was studied on PC-3 cells. The results showed that treatment of PC-3 cells with Hap H reduced the formation of NAD(P)H, suggesting that the function of the outer mitochondrial membrane was negatively affected. Thus, the mitochondrial transmembrane potential was assessed in Hap H treated cells. The results showed that the outer mitochondrial membrane was disrupted as an increased amount of JC-1 monomers were detected in treated cells (78.3%) when compared to untreated cells (10.1%), also suggesting that a large number of treated cells went into an apoptotic state. CONCLUSION Hap H was found to have potent NF-ĸB p65-inhibitory activity and induced apoptosis through the intrinsic mitochondrial pathway in hormone-independent PC-3 prostate cancer cells.
Collapse
Affiliation(s)
- Ulyana Muñoz Acuña
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A.,Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Shunyan Mo
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - Jiachen Zi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, U.S.A
| | - Esperanza J Carcache DE Blanco
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A. .,Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
35
|
The natural phenolic peperobtusin A induces apoptosis of lymphoma U937 cells via the Caspase dependent and p38 MAPK signaling pathways. Biomed Pharmacother 2018; 102:772-781. [DOI: 10.1016/j.biopha.2018.03.141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
|
36
|
Role of IGF-1R in ameliorating apoptosis of GNE deficient cells. Sci Rep 2018; 8:7323. [PMID: 29743626 PMCID: PMC5943343 DOI: 10.1038/s41598-018-25510-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
Sialic acids (SAs) are nine carbon acidic amino sugars, found at the outermost termini of glycoconjugates performing various physiological and pathological functions. SA synthesis is regulated by UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) that catalyzes rate limiting steps. Mutations in GNE result in rare genetic disorders, GNE myopathy and Sialuria. Recent studies indicate an alternate role of GNE in cell apoptosis and adhesion, besides SA biosynthesis. In the present study, using a HEK cell-based model for GNE myopathy, the role of Insulin-like Growth Factor Receptor (IGF-1R) as cell survival receptor protein was studied to counter the apoptotic effect of non-functional GNE. In the absence of functional GNE, IGF-1R was hyposialylated and transduced a downstream signal upon IGF-1 (IGF-1R ligand) treatment. IGF-1 induced activation of IGF-1R led to AKT (Protein Kinase B) phosphorylation that may phosphorylate BAD (BCL2 Associated Death Promoter) and its dissociation from BCL2 to prevent apoptosis. However, reduced ERK (Extracellular signal-regulated kinases) phosphorylation in GNE deficient cells after IGF-1 treatment suggests downregulation of the ERK pathway. A balance between the ERK and AKT pathways may determine the cell fate towards survival or apoptosis. Our study suggests that IGF-1R activation may rescue apoptotic cell death of GNE deficient cell lines and has potential as therapeutic target.
Collapse
|
37
|
Shen K, Johnson DW, Vesey DA, McGuckin MA, Gobe GC. Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress Chaperones 2018; 23:317-334. [PMID: 28952072 PMCID: PMC5904077 DOI: 10.1007/s12192-017-0844-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.
Collapse
Affiliation(s)
- Kunyu Shen
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - David W Johnson
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michael A McGuckin
- Mucosal Disease Inflammatory Disease Biology and Therapeutics Group, UQ Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Group, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
38
|
Moosavi MA, Haghi A, Rahmati M, Taniguchi H, Mocan A, Echeverría J, Gupta VK, Tzvetkov NT, Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Lett 2018; 424:46-69. [PMID: 29474859 DOI: 10.1016/j.canlet.2018.02.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran.
| | - Atousa Haghi
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Gheorghe Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, Sofia 1618, Bulgaria
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
39
|
Tamiya H, Kim H, Klymenko O, Kim H, Feng Y, Zhang T, Han JY, Murao A, Snipas SJ, Jilaveanu L, Brown K, Kluger H, Zhang H, Iwai K, Ronai ZA. SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth. J Clin Invest 2018; 128:517-530. [PMID: 29227283 PMCID: PMC5749505 DOI: 10.1172/jci95410] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/31/2017] [Indexed: 02/05/2023] Open
Abstract
SHARPIN, an adaptor for the linear ubiquitin chain assembly complex (LUBAC), plays important roles in NF-κB signaling and inflammation. Here, we have demonstrated a LUBAC-independent role for SHARPIN in regulating melanoma growth. We observed that SHARPIN interacted with PRMT5, a type II protein arginine methyltransferase, and increased its multiprotein complex and methyltransferase activity. Activated PRMT5 controlled the expression of the transcription factors SOX10 and MITF by SHARPIN-dependent arginine dimethylation and inhibition of the transcriptional corepressor SKI. Activation of PRMT5 by SHARPIN counteracted PRMT5 inhibition by methylthioadenosine, a substrate of methylthioadenosine phosphorylase, which is codeleted with cyclin-dependent kinase inhibitor 2A (CDKN2A) in approximately 15% of human cancers. Collectively, we identified a LUBAC-independent role for SHARPIN in enhancing PRMT5 activity that contributes to melanomagenesis through the SKI/SOX10 regulatory axis.
Collapse
Affiliation(s)
- Hironari Tamiya
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Hyungsoo Kim
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Oleksiy Klymenko
- Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, Israel
| | - Heejung Kim
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yongmei Feng
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jee Yun Han
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ayako Murao
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Scott J. Snipas
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lucia Jilaveanu
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, Connecticut, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, Laboratory of Translational Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Harriet Kluger
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, Connecticut, USA
| | - Hao Zhang
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ze’ev A. Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Zhao S, Tian Y, Liu W, Su Y, Zhang Y, Teng Z, Zhao Y, Wang S, Lu G, Yu Z. High and low molecular weight hyaluronic acid-coated gold nanobipyramids for photothermal therapy. RSC Adv 2018; 8:9023-9030. [PMID: 35539858 PMCID: PMC9078663 DOI: 10.1039/c7ra11667e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/21/2018] [Indexed: 11/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. It is known that hyaluronic acid (HA) binds CD44 receptors, which are overexpressed on the surface of TNBC cells. To optimize the targeting ability of HA, in this study we coated gold nanobipyramids (GBPs) with high and low molecular weight HA (380 kDa and 102 kDa), named GBPs@h-HA and GBPs@l-HA, respectively. GBPs@l-HA and GBPs@h-HA had excellent stability when dispersed in water and PBS (pH 7.4) for seven days. The HA density was calculated by the ratio of HA to GBPs@l-HA and GBPs@h-HA, which was 13.22 and 4.77, respectively. The two nanoparticles displayed good photostability, which was evaluated by their photothermal performance and similar biocompatibility. Inductively coupled plasma atomic emission spectrometry (ICP-AES) revealed superior cellular uptake of GBPs@h-HA over GBPs@l-HA. Upon 808 nm laser irradiation, the GBPs@h-HA also showed higher therapeutic efficacy than GBPs@l-HA both in vitro and in vivo. Overall, our study demonstrates that the molecular weight of HA plays an important role in the targeting ability and thus photothermal therapeutic efficacy of HA-coated gold nanobipyramids. Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Hyaluronic acid (HA) could bind CD44 receptors, which are overexpressed on the surface of TNBC cells. Upon 808 nm laser irradiation, the GBPs@HA showed high therapeutic efficacy in vivo.![]()
Collapse
|
41
|
Ojo D, Wu Y, Bane A, Tang D. A role of SIPL1/SHARPIN in promoting resistance to hormone therapy in breast cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1864:735-745. [PMID: 29248549 DOI: 10.1016/j.bbadis.2017.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
SIPL1 inhibits PTEN function and stimulates NF-κB signaling; both processes contribute to resistance to hormone therapy in estrogen receptor positive breast cancer (ER+ BC). However, whether SIPL1 promotes tamoxifen resistance in BC remains unclear. We report here that SIPL1 enhances tamoxifen resistance in ER+ BC. Overexpression of SIPL1 in MCF7 and TD47 cells conferred tamoxifen resistance. In MCF7 cell-derived tamoxifen resistant (TAM-R) cells, SIPL1 expression was upregulated and knockdown of SIPL1 in TAM-R cells re-sensitized the cells to tamoxifen. Furthermore, xenograft tumors produced by MCF7 SIPL1 cells but not by MCF7 empty vector cells resisted tamoxifen treatment. Collectively, we demonstrated a role of SIPL1 in promoting tamoxifen resistance in BC. Increases in AKT activation and NF-κB signaling were detected in both MCF7 SIPL1 and TAM-R cells; using specific inhibitors and unique SIPL1 mutants to inhibit either pathway significantly reduced tamoxifen resistance. A SIPL1 mutant defective in activating both pathways was incapable of conferring resistance to tamoxifen, showing that both pathways contributed to SIPL1-derived resistance to tamoxifen in ER+ BCs. Using the Curtis dataset of breast cancer (n=1980) within the cBioPortal database, we examined a correlation of SIPL1 expression with ER+ BC and resistance to hormone therapy. SIPL1 upregulation strongly associates with reductions in overall survival in BC patients, particularly in patients with hormone naïve ER+ BCs. Taken together, we provide data suggesting that SIPL1 contributes to promote resistance to tamoxifen in BC cells through both AKT and NF-κB actions.
Collapse
Affiliation(s)
- Diane Ojo
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Ying Wu
- Department of Pathology and Molecular Medicine, Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Anita Bane
- Department of Pathology and Molecular Medicine, Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Father Sean O'Sullivan Research Institute, Hamilton, Ontario, Canada; the Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
42
|
Khan MH, Salomaa SI, Jacquemet G, Butt U, Miihkinen M, Deguchi T, Kremneva E, Lappalainen P, Humphries MJ, Pouwels J. The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex. J Cell Sci 2017; 130:3094-3107. [PMID: 28775156 PMCID: PMC5612173 DOI: 10.1242/jcs.200329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Sharpin, a multifunctional adaptor protein, regulates several signalling pathways. For example, Sharpin enhances signal-induced NF-κB signalling as part of the linear ubiquitin assembly complex (LUBAC) and inhibits integrins, the T cell receptor, caspase 1 and PTEN. However, despite recent insights into Sharpin and LUBAC function, a systematic approach to identify the signalling pathways regulated by Sharpin has not been reported. Here, we present the first 'Sharpin interactome', which identifies a large number of novel potential Sharpin interactors in addition to several known ones. These data suggest that Sharpin and LUBAC might regulate a larger number of biological processes than previously identified, such as endosomal trafficking, RNA processing, metabolism and cytoskeleton regulation. Importantly, using the Sharpin interactome, we have identified a novel role for Sharpin in lamellipodium formation. We demonstrate that Sharpin interacts with Arp2/3, a protein complex that catalyses actin filament branching. We have identified the Arp2/3-binding site in Sharpin and demonstrate using a specific Arp2/3-binding deficient mutant that the Sharpin-Arp2/3 interaction promotes lamellipodium formation in a LUBAC-independent fashion.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meraj H Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Siiri I Salomaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Umar Butt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Takahiro Deguchi
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
- Laboratory of Biophysics, University of Turku, Turku 20520, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
43
|
Anti-inflammatory activity of coptisine free base in mice through inhibition of NF-κB and MAPK signaling pathways. Eur J Pharmacol 2017. [DOI: 10.1016/j.ejphar.2017.06.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Majeed I, Nadeem MA, Kanodarwala FK, Hussain E, Badshah A, Hussain I, Stride JA, Nadeem MA. Controlled Synthesis of TiO2Nanostructures: Exceptional Hydrogen Production in Alcohol-Water Mixtures over Cu(OH)2-Ni(OH)2/TiO2Nanorods. ChemistrySelect 2017. [DOI: 10.1002/slct.201701080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Imran Majeed
- Catalysis and Nanomaterials Lab 27; Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Muhammad A. Nadeem
- Department of Environmental Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan, Present address SABIC- Corporate Research and Development (CRD) at KAUST, Thuwal 23955, Saudi Arabia
| | | | - Ejaz Hussain
- Catalysis and Nanomaterials Lab 27; Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Amin Badshah
- Catalysis and Nanomaterials Lab 27; Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Irshad Hussain
- Department of Chemistry; SBA School of Science and Engineering (SBASSE); Lahore University of Management Sciences (LUMS); Lahore Pakistan
| | - John A. Stride
- School of Chemistry; University of New South Wales; Sydney, NSW 2052 Australia
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27; Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
45
|
Ojo D, Seliman M, Tang D. Signatures derived from increase in SHARPIN gene copy number are associated with poor prognosis in patients with breast cancer. BBA CLINICAL 2017; 8:56-65. [PMID: 28879097 PMCID: PMC5582379 DOI: 10.1016/j.bbacli.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022]
Abstract
We report three signatures produced from SHARPIN gene copy number increase (GCN-Increase) and their effects on patients with breast cancer (BC). In the Metabric dataset (n = 2059, cBioPortal), SHARPIN GCN-Increase occurs preferentially or mutual exclusively with mutations in TP53, PIK3CA, and CDH1. These genomic alterations constitute a signature (SigMut) that significantly correlates with reductions in overall survival (OS) in BC patients (n = 1980; p = 1.081e − 6). Additionally, SHARPIN GCN-Increase is associated with 4220 differentially expressed genes (DEGs). These DEGs are enriched in activation of the pathways regulating cell cycle progression, RNA transport, ribosome biosynthesis, DNA replication, and in downregulation of the pathways related to extracellular matrix. These DEGs are thus likely to facilitate the proliferation and metastasis of BC cells. Additionally, through forward (FWD) and backward (BWD) stepwise variate selections among the top 160 downregulated and top 200 upregulated DEGs using the Cox regression model, a 6-gene (SigFWD) and a 50-gene (SigBWD) signature were derived. Both signatures robustly associate with decreases in OS in BC patients within the Curtis (n = 1980; p = 6.16e − 11 for SigFWD; p = 1.06e − 10, for SigBWD) and TCGA cohort (n = 817; p = 4.53e − 4 for SigFWD and p = 0.00525 for SigBWD). After adjusting for known clinical factors, SigMut (HR 1.21, p = 0.0297), SigBWD (HR 1.25, p = 0.0263), and likely SigFWD (HR 1.17, p = 0.062) remain independent risk factors of BC deaths. Furthermore, the proportion of patients positive for these signatures is significantly increased in ER −, Her2-enriched, basal-like, and claudin-low BCs compared to ER + and luminal BCs. Collectively, these SHARPIN GCN-Increase-derived signatures may have clinical applications in management of patients with BC. SHARPIN genomic increase correlates with poor prognosis in breast cancer patients SHARPIN genomic increase associates with enrichment of mutations in TP53 and others SHARPIN genomic increases occur along with many differentially expressed genes (DEGs) These DEGs enhance breast cancer cell proliferation and reduces extracellular matrix Enriched mutations and DEGs strongly associate with reductions in overall survival
Collapse
Affiliation(s)
- Diane Ojo
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Maryam Seliman
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
- The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
- Corresponding author at: St. Joseph's Hospital, T3310, 50 Charlton Ave East, Hamilton, Ontario L8N 4A6, Canada.St. Joseph's HospitalT3310, 50 Charlton Ave EastHamiltonOntarioL8N 4A6Canada
| |
Collapse
|
46
|
A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion. Oncotarget 2017; 8:54809-54820. [PMID: 28903384 PMCID: PMC5589623 DOI: 10.18632/oncotarget.18957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
SHARPIN (Shank-associated RH domain interacting protein) is the main component of the linear ubiquitin chain activation complex (LUBAC). SHARPIN is involved in regulating inflammation and cancer progression. However, whether SHARPIN plays an important role in lung cancer metastasis and the potential underlying mechanism are still unknown. Here, for the first time, we reported that SHARPIN expression is closely related to lung cancer progression. Moreover, SHARPIN plays a central role in controlling lung cancer cell metastasis. Mechanistic studies further revealed that PRMT5 (Protein arginine methyltransferase 5), responsible for catalyzing arginine methylation on histones, is a novel cofactor of SHARPIN. This finding provides the basis for further study of the crosstalk between protein ubiquitination and histone methylation. We further found that SHARPIN-PRMT5 is essential for the monomethylation of histones of chromatins at key metastasis-related genes, defining a new mechanism regulating cancer invasion. A novel MLL complex (ASH2 and WDR5) was implied in the link between histone arginine2 monomethylation (H3R2me1) and histone lysine4 trimethylation (H3K4me3) for the activation of metastasis-related genes. These novel findings establish a new epigenetic paradigm in which SHARPIN-PRMT5 has distinct roles in orchestrating chromatin environments for cancer-related genes via integrating signaling between H3R2me1 and H3K4me3.
Collapse
|
47
|
Han J, Li J, Ho JC, Chia GS, Kato H, Jha S, Yang H, Poellinger L, Lee KL. Hypoxia is a Key Driver of Alternative Splicing in Human Breast Cancer Cells. Sci Rep 2017. [PMID: 28642487 PMCID: PMC5481333 DOI: 10.1038/s41598-017-04333-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adaptation to hypoxia, a hallmark feature of many tumors, is an important driver of cancer cell survival, proliferation and the development of resistance to chemotherapy. Hypoxia-induced stabilization of hypoxia-inducible factors (HIFs) leads to transcriptional activation of a network of hypoxia target genes involved in angiogenesis, cell growth, glycolysis, DNA damage repair and apoptosis. Although the transcriptional targets of hypoxia have been characterized, the alternative splicing of transcripts that occurs during hypoxia and the roles they play in oncogenesis are much less understood. To identify and quantify hypoxia-induced alternative splicing events in human cancer cells, we performed whole transcriptome RNA-Seq in breast cancer cells that are known to provide robust transcriptional response to hypoxia. We found 2005 and 1684 alternative splicing events including intron retention, exon skipping and alternative first exon usage that were regulated by acute and chronic hypoxia where intron retention was the most dominant type of hypoxia-induced alternative splicing. Many of these genes are involved in cellular metabolism, transcriptional regulation, actin cytoskeleton organisation, cancer cell proliferation, migration and invasion, suggesting they may modulate or be involved in additional features of tumorigenic development that extend beyond the known functions of canonical full-length transcripts.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jolene Caifeng Ho
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Grace Sushin Chia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Hiroyuki Kato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
| |
Collapse
|
48
|
Huang H, Du T, Zhang Y, Lai Y, Li K, Fan X, Zhu D, Lin T, Xu K, Huang J, Liu L, Guo Z. Elevation of SHARPIN Protein Levels in Prostate Adenocarcinomas Promotes Metastasis and Impairs Patient Survivals. Prostate 2017; 77:718-728. [PMID: 28230260 DOI: 10.1002/pros.23302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND SHARPIN, SHANK-associated RH domain interacting protein, associates with a linear ubiquitin chain assembly complex (LUBAC) to regulate inflammation and immunity. It has been reported that SHARPIN is highly expressed in several human tumors including ovarian cancer and liver cancer. We found that SHARPIN is also highly expressed in prostate cancer cell lines of DU145, LNCAP, and PC-3. Suppression of SHARPIN caused an inhibition of NF-κB signal and decreases in tumorigenesis of cultured cells in NOD/SCID mouse model. Overexpression of SHARPIN in prostate cancer cells promoted cell growth and reduced apoptosis through NF-kB/ERK/Akt pathway and apoptosis-associated proteins. METHODS We analyzed the expression of SHARPIN in prostate cancer tissues from 95 patients and its relationship with other clinical characteristics associated with PCA malignancies and patient survivals, and examined the impacts of SHARPIN suppression with siRNA on proliferation, angiogenesis, invasion, and expression levels of MMP-9 of prostate cancer cells and metastasis to lung by these cells in nude mice. RESULTS High levels of SHARPIN were associated with high malignancies of PCA and predicted shorter survivals of PCA patients. Suppression of SHARPIN impaired cell proliferation, angiogenesis, and invasion and reduced levels of MMP-9 in prostate cancer cells and reduced the size of metastatic lung tumors induced by these cells in mice. CONCLUSIONS SHARPIN enhances the metastasis of prostate cancer and impair patient survivals. Prostate 77:718-728, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hai Huang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Tao Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
- Department of Gynecology & Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Zhang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaiwen Li
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxing Fan
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dingjun Zhu
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kewei Xu
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leyuan Liu
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Houston, Texas
| | - Zhenghui Guo
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Romney AL, Podrabsky JE. Transcriptomic analysis of maternally provisioned cues for phenotypic plasticity in the annual killifish, Austrofundulus limnaeus. EvoDevo 2017; 8:6. [PMID: 28439397 PMCID: PMC5401559 DOI: 10.1186/s13227-017-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifish Austrofundulus limnaeus is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause. Alternately, embryos can be programmed to “escape” from diapause and develop directly by both maternal factors and embryonic incubation conditions. Thus, maternally packaged gene products are hypothesized to regulate developmental trajectory and perhaps the other unique developmental characters in this species. Results Using high-throughput RNA sequencing, we generated transcriptomic profiles of mRNAs, long non-coding RNAs and small non-coding RNAs (sncRNAs) in 1–2 cell stage embryos of A. limnaeus. Transcriptomic analyses suggest maternal programming of embryos through alternatively spliced mRNAs and antisense sncRNAs. Comparison of these results to those of comparable studies on zebrafish and other fishes reveals a surprisingly high abundance of transcripts involved in the cellular response to stress and a relatively lower expression of genes required for rapid transition through the cell cycle. Conclusions Maternal programming of developmental trajectory is unlikely accomplished by differential expression of diapause-specific genes. Rather, evidence suggests a role for trajectory-specific splice variants of genes expressed in both phenotypes. In addition, based on comparative studies with zebrafish, the A. limnaeus 1–2 cell stage transcriptome is unique in ways that are consistent with their unique life history. These results not only impact our understanding of the genetic mechanisms that regulate entrance into diapause, but also provide insight into the epigenetic regulation of gene expression during development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0069-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amie L Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| |
Collapse
|
50
|
Ceyhan Bilgici M, Sağlam D, Delibalta S, Yücel S, Tomak L, Elmalı M. Shear wave velocity of the healthy thyroid gland in children with acoustic radiation force impulse elastography. J Med Ultrason (2001) 2017; 45:75-80. [DOI: 10.1007/s10396-017-0788-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
|