1
|
Fang C, Wu J, Liang W. Systematic Investigation of Aluminum Stress-Related Genes and Their Critical Roles in Plants. Int J Mol Sci 2024; 25:9045. [PMID: 39201731 PMCID: PMC11354972 DOI: 10.3390/ijms25169045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Aluminum (Al) stress is a dominant obstacle for plant growth in acidic soil, which accounts for approximately 40-50% of the world's potential arable land. The identification and characterization of Al stress response (Al-SR) genes in Arabidopsis, rice, and other plants have deepened our understanding of Al's molecular mechanisms. However, as a crop sensitive to acidic soil, only eight Al-SR genes have been identified and functionally characterized in maize. In this review, we summarize the Al-SR genes in plants, including their classifications, subcellular localizations, expression organs, functions, and primarily molecular regulatory networks. Moreover, we predict 166 putative Al-SR genes in maize based on orthologue analyses, facilitating a comprehensive understanding of the impact of Al stress on maize growth and development. Finally, we highlight the potential applications of alleviating Al toxicity in crop production. This review deepens our understanding of the Al response in plants and provides a blueprint for alleviating Al toxicity in crop production.
Collapse
Affiliation(s)
- Chaowei Fang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Jiajing Wu
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China;
| | - Weihong Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
2
|
Li Z, Bai H, Bai Z, Han J, Luo D, Bai L. Multi-omics analysis identifies EcCS4 is negatively regulated in response to phytotoxin isovaleric acid stress in Echinochloa crus-galli. PEST MANAGEMENT SCIENCE 2024; 80:1957-1967. [PMID: 38088480 DOI: 10.1002/ps.7927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Knowledge of herbicidal targets is critical for weed management and food safety. The phytotoxin isovaleric acid (ISA) is effective against weeds with a broad spectrum, carries low environmental risks, and is thus an excellent herbicide lead. However, the biochemical and molecular mechanisms underlying the action of ISA remain unclear. RESULTS Multi-omics data showed that acetyl coenzyme A (acetyl-CoA) was the key affected metabolite, and that citrate synthase (CS) 4 was substantially down-regulated under ISA treatment in Echinochloa crus-galli leaves. In particular, the transcript level of EcCS4 was the most significantly regulated among the six genes involved in the top 10 different pathways. The EcCS4 encodes a protein of 472 amino acids and is localized to the cell membrane and mitochondria, similar to the CS4s of other plants. The protein content of EcCS4 was down-regulated after ISA treatment at 0.5 h. ISA markedly inhibited the CS4 activity in vitro in a concentration-dependent manner (IC50 = 41.35 μM). In addition, the transgenic rice plants overexpressing EcCS4 (IC50 = 111.8 mM for OECS4-8 line) were more sensitive, whereas loss-of-function rice mutant lines (IC50 = 746.5 mM for oscs4-19) were more resistant to ISA, compared to wild type (WT) plants (IC50 = 355.6 mM). CONCLUSION CS4 was first reported as a negative regulator of plant responses to ISA. These results highlight that CS4 is a candidate target gene for the development of novel herbicides and for breeding herbicide-resistant crops. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Dingfeng Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lianyang Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
3
|
Dong B, Meng D, Song Z, Cao H, Du T, Qi M, Wang S, Xue J, Yang Q, Fu Y. CcNFYB3-CcMATE35 and LncRNA CcLTCS-CcCS modules jointly regulate the efflux and synthesis of citrate to enhance aluminium tolerance in pigeon pea. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:181-199. [PMID: 37776153 PMCID: PMC10754017 DOI: 10.1111/pbi.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023]
Abstract
Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.
Collapse
Affiliation(s)
- Biying Dong
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Dong Meng
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Zhihua Song
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Hongyan Cao
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Tingting Du
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Meng Qi
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Shengjie Wang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Jingyi Xue
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Qing Yang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| | - Yujie Fu
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain WetlandsNational Forestry and Grassland Administration, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
4
|
Wang P, Cao H, Quan S, Wang Y, Li M, Wei P, Zhang M, Wang H, Ma H, Li X, Yang ZB. Nitrate improves aluminium resistance through SLAH-mediated citrate exudation from roots. PLANT, CELL & ENVIRONMENT 2023; 46:3518-3541. [PMID: 37574955 DOI: 10.1111/pce.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Aluminium (Al) toxicity is one of the major constraint for crop production in acidic soil, and the inappropriate utilization of nitrogen fertilizer can accelerate soil acidification. Despite previous studies investigating the regulation of nitrogen forms in Al toxicity of plants, the underlying mechanism, particularly at the molecular level, remains unclear. This study aims to uncover the potentially regulatory mechanism of nitrate (NO3 - ) in the Al resistance of maize and Arabidopsis. NO3 - conservatively improves Al resistance in maize and Arabidopsis, with nitrate-elevated citrate synthesis and exudation potentially playing critical roles in excluding Al from the root symplast. ZmSLAH2 in maize and AtSLAH1 in Arabidopsis are essential for the regulation of citrate exudation and NO3 - -promoted Al resistance, with ZmMYB81 directly targeting the ZmSLAH2 promoter to activate its activity. Additionally, NO3 - transport is necessary for NO3 - -promoted Al resistance, with ZmNRT1.1A and AtNRT1.1 potentially playing vital roles. The suppression of NO3 - transport in roots by ammonium (NH4 + ) may inhibit NO3 - -promoted Al resistance. This study provides novel insights into the understanding of the crucial role of NO3 - -mediated signalling in the Al resistance of plants and offers guidance for nitrogen fertilization on acid soils.
Collapse
Affiliation(s)
- Peng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Hongrui Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Mu Li
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Ping Wei
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Meng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Hui Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Hongyu Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| | - Xiaofeng Li
- College of Agronomy, Guangxi University, Nanning, China
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
5
|
Zhang Y, Fernie AR. The Role of TCA Cycle Enzymes in Plants. Adv Biol (Weinh) 2023; 7:e2200238. [PMID: 37341441 DOI: 10.1002/adbi.202200238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/29/2023] [Indexed: 06/22/2023]
Abstract
As one of the iconic pathways in plant metabolism, the tricarboxylic acid (TCA) cycle is commonly thought to not only be responsible for the oxidization of respiratory substrate to drive ATP synthesis but also provide carbon skeletons to anabolic processes and contribute to carbon-nitrogen interaction and biotic stress responses. The functions of the TCA cycle enzymes are characterized by a saturation transgenesis approach, whereby the constituent expression of proteins is knocked out or reduced in order to investigate their function in vivo. The alteration of TCA cycle enzyme expression results in changed plant growth and photosynthesis under controlled conditions. Moreover, improvements in plant performance and postharvest properties are reported by overexpression of either endogenous forms or heterologous genes of a number of the enzymes. Given the importance of the TCA cycle in plant metabolism regulation, here, the function of each enzyme and its roles in different tissues are discussed. This article additionally highlights the recent finding that the plant TCA cycle, like that of mammals and microbes, dynamically assembles functional substrate channels or metabolons and discusses the implications of this finding to the current understanding of the metabolic regulation of the plant TCA cycle.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
6
|
Vega A, Delgado N, Handford M. Increasing Heavy Metal Tolerance by the Exogenous Application of Organic Acids. Int J Mol Sci 2022; 23:5438. [PMID: 35628249 PMCID: PMC9141679 DOI: 10.3390/ijms23105438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Several metals belong to a group of non-biodegradable inorganic constituents that, at low concentrations, play fundamental roles as essential micronutrients for the growth and development of plants. However, in high concentrations they can have toxic and/or mutagenic effects, which can be counteracted by natural chemical compounds called chelators. Chelators have a diversity of chemical structures; many are organic acids, including carboxylic acids and cyclic phenolic acids. The exogenous application of such compounds is a non-genetic approach, which is proving to be a successful strategy to reduce damage caused by heavy metal toxicity. In this review, we will present the latest literature on the exogenous addition of both carboxylic acids, including the Kreb's Cycle intermediates citric and malic acid, as well as oxalic acid, lipoic acid, and phenolic acids (gallic and caffeic acid). The use of two non-traditional organic acids, the phytohormones jasmonic and salicylic acids, is also discussed. We place particular emphasis on physiological and molecular responses, and their impact in increasing heavy metal tolerance, especially in crop species.
Collapse
Affiliation(s)
| | | | - Michael Handford
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile; (A.V.); (N.D.)
| |
Collapse
|
7
|
Abd El-Moneim D, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C. Repression of Mitochondrial Citrate Synthase Genes by Aluminum Stress in Roots of Secale cereale and Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 13:832981. [PMID: 35463451 PMCID: PMC9021840 DOI: 10.3389/fpls.2022.832981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Aluminum (Al) toxicity in acid soils influences plant development and yield. Almost 50% of arable land is acidic. Plants have evolved a variety of tolerance mechanisms for Al. In response to the presence of Al, various species exudate citrate from their roots. Rye (Secale cereale L.) secretes both citrate and malate, making it one of the most Al-tolerant cereal crops. However, no research has been done on the role of the mitochondrial citrate synthase (mCS) gene in Al-induced stress in the rye. We have isolated an mCS gene, encoding a mitochondrial CS isozyme, in two S. cereale cultivars (Al-tolerant cv. Ailés and Al-sensitive inbred rye line Riodeva; ScCS4 gene) and in two Brachypodium distachyon lines (Al-tolerant ABR8 line and Al-sensitive ABR1 line; BdCS4 gene). Both mCS4 genes have 19 exons and 18 introns. The ScCS4 gene was located on the 6RL rye chromosome arm. Phylogenetic studies using cDNA and protein sequences have shown that the ScCS4 gene and their ScCS protein are orthologous to mCS genes and CS proteins of different Poaceae plants. Expression studies of the ScCS4 and BdSC4 genes show that the amount of their corresponding mRNAs in the roots is higher than that in the leaves and that the amounts of mRNAs in plants treated and not treated with Al were higher in the Al-tolerant lines than that in the Al-sensitive lines of both species. In addition, the levels of ScCS4 and BdCS4 mRNAs were reduced in response to Al (repressive behavior) in the roots of the tolerant and sensitive lines of S. cereale and B. distachyon.
Collapse
|
8
|
Liu J, Shi B, Zhang M, Liu G, Ding Z, Tian H. Transition Zone1 Negatively Regulates Arabidopsis Aluminum Resistance Through Interaction With Aconitases. FRONTIERS IN PLANT SCIENCE 2022; 12:827797. [PMID: 35154218 PMCID: PMC8829429 DOI: 10.3389/fpls.2021.827797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The soluble form of aluminum (Al) is a major constraint to crop production in acidic soils. The Al exclusion correlated with the Al-induced organic acid is considered as an important mechanism of Al resistance. The regulation of organic acid exudation in response to Al stress mediated by the root organic acid transporters has been extensively studied. However, how plants respond to Al stress through the regulation of organic acid homeostasis is not well understood. In this study, we identified the functionally unknown Transition zone1 (TZ1) as an Al-inducible gene in the root transition zone, the most sensitive region to Al stress, in Arabidopsis. tz1 mutants showed enhanced Al resistance and displayed greatly reduced root growth inhibition. Furthermore, TZ1 was found to interact with the aconitases (ACOs) which can catalyze the conversion from citrate, one of the most important organic acids, into isocitrate. Consistently, in tz1 mutants, the citric acid content was highly increased. Collectively, this study provides evidence to show that TZ1 negatively regulates root growth response to Al stress through interacting with ACOs and regulating citric acid homeostasis.
Collapse
Affiliation(s)
- Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Benhui Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Mengxin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Guangchao Liu
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Singh CK, Singh D, Sharma S, Chandra S, Taunk J, Konjengbam NS, Singh D, Kumar A, Upadhyaya KC, Pal M. Morpho-physiological characterization coupled with expressional accord of exclusion mechanism in wild and cultivated lentil under aluminum stress. PROTOPLASMA 2021; 258:1029-1045. [PMID: 33598755 DOI: 10.1007/s00709-021-01619-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Aluminum stress deteriorates lentil production under acidic soils. Enhanced insight into Al tolerance traits is needed to improve its productivity. Therefore, Al-resistant (L-4602, PAL-8) and Al-sensitive (BM-4, EC-223229) cultivars along with a resistant wild (ILWL-15) were characterized for morpho-physiological traits viz. seedling root architecture (SRA), Al accumulation, and localization via fluorescent and non-fluorescent staining under control and Al-treated conditions. Also, antioxidant activities and organic acid secretion were quantified, and expressions of 10 associated genes were analyzed. Roots of Al-resistant cultivars and wild genotype showed higher root growth, antioxidant enzyme activities, and organic acid secretion than Al-sensitive ones. Among these traits, higher organic acid secretion was influenced by enhanced expression of genes, especially-aluminum sensitive-3 (ALS 3), aluminum-activated malate transporter (ALMT), multidrug and toxic compound extrusion (MATE), citrate synthase (CS), and phospho enol pyruvate carboxylase (PEPC)-which helped in reducing Al and callose accumulation. These genes were located on lentil chromosomes via sequence alignment with lentil draft genome. A strong link between morpho-physiological variation and organic acid secretion was noted which reinforced the prominence of exclusion mechanism. It was complemented by enhanced antioxidant activities at seedling stage which mitigated Al stress effects on SRA. Wild outperformed over cultivars indicating its impregnable evolution which can be exploited to better understand tolerance mechanisms. Al-resistant cultivars had significantly higher seed yield than Al-sensitive and national checks on Al-toxic fields, confirming-tolerance is sustained till reproductive stage in lentil. This study elucidated role of gene families in eliminating Al toxicity that will assist breeders to formulate strategies for developing Al-resistant cultivars.
Collapse
Affiliation(s)
- Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shivani Chandra
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Jyoti Taunk
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, (Central Agricultural University - Imphal), Umiam, Meghalaya, 793103, India
| | - Deepti Singh
- Depatment of Botany, Meerut College, Meerut, Uttar Pradesh, 250001, India
| | - Arun Kumar
- National Phytotron Facility, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - K C Upadhyaya
- INSA Senior Scientist, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
10
|
Chauhan DK, Yadav V, Vaculík M, Gassmann W, Pike S, Arif N, Singh VP, Deshmukh R, Sahi S, Tripathi DK. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol 2021; 41:715-730. [PMID: 33866893 DOI: 10.1080/07388551.2021.1874282] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients. Moreover, a micromolar concentration of Al present in the soil is enough to induce several irreversible toxicity symptoms such as the rapid and transient over-generation of reactive oxygen species (ROS) such as superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), resulting in oxidative bursts. In addition, significant reductions in water and nutrient uptake occur which imposes severe stress in the plants. However, some plants have developed Al-tolerance by stimulating the secretion of organic acids like citrate, malate, and oxalate, from plant roots. Genes responsible for encoding such organic acids, play a critical role in Al tolerance. Several transporters involved in Al resistance mechanisms are members of the Aluminum-activated Malate Transporter (ALMT), Multidrug and Toxic compound Extrusion (MATE), ATP-Binding Cassette (ABC), Natural resistance-associated macrophage protein (Nramp), and aquaporin gene families. Therefore, in the present review, the discussion of the global extension and probable cause of Al in the environment and mechanisms of Al toxicity in plants are followed by detailed emphasis on tolerance mechanisms. We have also identified and categorized the important transporters that secrete organic acids and outlined their role in Al stress tolerance mechanisms in crop plants. The information provided here will be helpful for efficient exploration of the available knowledge to develop Al tolerant crop varieties.
Collapse
Affiliation(s)
- Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Vaishali Yadav
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Institute of Botany, Plant Science and Biodiversity Centre of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Walter Gassmann
- Division of Plant Sciences, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sharon Pike
- Division of Plant Sciences, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Namira Arif
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Vijay Pratap Singh
- C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | | | - Shivendra Sahi
- University of the Sciences in Philadelphia (USP), Philadelphia, PA, USA
| | | |
Collapse
|
11
|
Riaz M, Yan L, Wu X, Hussain S, Aziz O, Jiang C. Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:25-35. [PMID: 30173023 DOI: 10.1016/j.ecoenv.2018.08.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 05/24/2023]
Abstract
Aluminum is a major limiting abiotic factor for plant growth and productivity on acidic soils. The primary disorder of aluminum toxicity is the rapid cessation of root elongation. The root apex is the most sensitive part of this organ. Although significant literature evidence and hypothesis exist on aluminum toxicity, the explicit mechanism through which aluminum ceases root growth is still indefinable. The mechanisms of tolerance in plants have been the focus of intense research. Some plant species growing on acidic soils have developed tolerance mechanisms to overcome and mitigate aluminum toxicity, either by avoiding entry of Al3+ into roots (exclusion mechanism) or by being able to counterbalance toxic Al3+ engrossed by the root system (internal tolerance mechanism). Genes belonging to ALMT (Aluminum-activated malate transporter) and MATE (Multidrug and toxin compounds extrusion) have been identified that are involved in the aluminum-activated secretion of organic acids from roots. However, different plant species show different gene expression pattern. On the other hand, boron (B) (indispensable micronutrient) is a promising nutrient in the tolerance to aluminum toxicity. It not only hinders the adsorption of aluminum to the cell wall but also improves plant growth. This review mainly explains the critical roles of organic acid and B-induced tolerance to aluminum by summarizing the mechanisms of ALMT, MATE, internal detoxification, molecular traits and genetic engineering of crops.
Collapse
Affiliation(s)
- Muhammad Riaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lei Yan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiuwen Wu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Punjab, Pakistan
| | - Omar Aziz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
12
|
Zhang Y, Fernie AR. On the role of the tricarboxylic acid cycle in plant productivity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1199-1216. [PMID: 29917310 DOI: 10.1111/jipb.12690] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
The tricarboxylic acid (TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function. Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
13
|
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. FRONTIERS IN PLANT SCIENCE 2017; 8:1767. [PMID: 29075280 PMCID: PMC5643487 DOI: 10.3389/fpls.2017.01767] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/27/2017] [Indexed: 05/11/2023]
Abstract
Aluminum (Al) is the most abundant metal in the earth's crust, but its availability depends on soil pH. Despite this abundance, Al is not considered an essential element and so far no experimental evidence has been put forward for a biological role. In plants and other organisms, Al can have a beneficial or toxic effect, depending on factors such as, metal concentration, the chemical form of Al, growth conditions and plant species. Here we review recent advances in the study of Al in plants at physiological, biochemical and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation of root growth, increased nutrient uptake, the increase in enzyme activity, and others). In addition, we discuss the possible mechanisms involved in improving the growth of plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic effect of Al.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- CONACYT-Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, La Piedad, Mexico
| | - Camilo Escalante-Magaña
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Manuel Martínez-Estévez,
| |
Collapse
|
14
|
Zhou Y, Yang Z, Xu Y, Sun H, Sun Z, Lin B, Sun W, You J. Soybean NADP-Malic Enzyme Functions in Malate and Citrate Metabolism and Contributes to Their Efflux under Al Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:2246. [PMID: 29367856 PMCID: PMC5767732 DOI: 10.3389/fpls.2017.02246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/21/2017] [Indexed: 05/20/2023]
Abstract
Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots (GmME1-OE) produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1, with or without Al treatment. GmME1-OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1-OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.
Collapse
|
15
|
Sade H, Meriga B, Surapu V, Gadi J, Sunita MSL, Suravajhala P, Kavi Kishor PB. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals 2016; 29:187-210. [PMID: 26796895 DOI: 10.1007/s10534-016-9910-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
16
|
Nunes-Nesi A, Santos Brito D, Inostroza-Blancheteau C, Fernie AR, Araújo WL. The complex role of mitochondrial metabolism in plant aluminum resistance. TRENDS IN PLANT SCIENCE 2014; 19:399-407. [PMID: 24462392 DOI: 10.1016/j.tplants.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 05/18/2023]
Abstract
The majority of soils in tropical and subtropical regions are acidic, rendering the soil a major limitation to plant growth and food production in many developing countries. High concentrations of soluble aluminum cations, particularly Al3+, are largely responsible for reducing root elongation and disrupting nutrient and water uptake. Two mechanisms, namely, the exclusion mechanism and tolerance mechanism, have been proposed to govern Al3+ resistance in plants. Both mechanisms are related to mitochondrial activity as well as to mitochondrial metabolism and organic acid transport. Here, we review the considerable progress that has been made towards developing an understanding of the physiological role of mitochondria in the aluminum response and discuss the potential for using this knowledge in next-generation engineering.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| | - Danielle Santos Brito
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Núcleo de Investigación en Producción Alimentaría, Facultad de Recursos Naturales, Escuela de Agronomía, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil.
| |
Collapse
|
17
|
Sun L, Liang C, Chen Z, Liu P, Tian J, Liu G, Liao H. Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1. THE NEW PHYTOLOGIST 2014; 202:209-219. [PMID: 24325195 DOI: 10.1111/nph.12629] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/06/2013] [Indexed: 05/18/2023]
Abstract
Stylosanthes (stylo) is a dominant leguminous forage in the tropics. Previous studies suggest that stylo has great potential for aluminium (Al) tolerance, but little is known about the underlying mechanism. A novel malic enzyme, SgME1, was identified from the Al-tolerant genotype TPRC2001-1 after 72 h Al exposure by two-dimensional electrophoresis, and the encoding gene was cloned and characterized via heterologous expression in yeast, Arabidopsis thaliana and bean (Phaseolus vulgaris) hairy roots. Internal Al detoxification might be mainly responsible for the 72 h Al tolerance of TPRC2001-1, as indicated by 5.8-fold higher root malate concentrations and approximately two-fold higher Al concentrations in roots and root symplasts of TPRC2001-1 than those of the Al-sensitive genotype Fine-stem. An accompanying increase in malate secretion might also reduce a fraction of Al uptake in TPRC2001-1. Gene and protein expression of SgME1 was only enhanced in TPRC2001-1 after 72 h Al exposure. Overexpressing SgME1 enhanced malate synthesis and rescued yeast, A. thaliana and bean hairy roots from Al toxicity via increasing intracellular malate concentrations and/or accompanied malate exudation. These results provide strong evidence that superior Al tolerance of stylo is mainly conferred by Al-enhanced malate synthesis, functionally controlled by SgME1.
Collapse
Affiliation(s)
- Lili Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangdong, China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Hainan, China
| | - Cuiyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangdong, China
| | - Zhijian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangdong, China
| | - Pandao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangdong, China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Hainan, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangdong, China
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, College of Agriculture, Hainan University, Hainan, China
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangdong, China
| |
Collapse
|
18
|
Schmidtmann E, König AC, Orwat A, Leister D, Hartl M, Finkemeier I. Redox regulation of Arabidopsis mitochondrial citrate synthase. MOLECULAR PLANT 2014; 7:156-69. [PMID: 24198232 DOI: 10.1093/mp/sst144] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Citrate synthase has a key role in the tricarboxylic (TCA) cycle of mitochondria of all organisms, as it catalyzes the first committed step which is the fusion of a carbon-carbon bond between oxaloacetate and acetyl CoA. The regulation of TCA cycle function is especially important in plants, since mitochondrial activities have to be coordinated with photosynthesis. The posttranslational regulation of TCA cycle activity in plants is thus far almost entirely unexplored. Although several TCA cycle enzymes have been identified as thioredoxin targets in vitro, the existence of any thioredoxin-dependent regulation as known for the Calvin cycle, yet remains to be demonstrated. Here we have investigated the redox regulation of the Arabidopsis citrate synthase enzyme by site-directed mutagenesis of its six cysteine residues. Our results indicate that oxidation inhibits the enzyme activity by the formation of mixed disulfides, as the partially oxidized citrate synthase enzyme forms large redox-dependent aggregates. Furthermore, we were able to demonstrate that thioredoxin can cleave diverse intra- as well as intermolecular disulfide bridges, which strongly enhances the activity of the enzyme. Activity measurements with the cysteine variants of the enzyme revealed important cysteine residues affecting total enzyme activity as well as the redox sensitivity of the enzyme.
Collapse
Affiliation(s)
- Elisabeth Schmidtmann
- Botany, Department I of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Zhou G, Delhaize E, Zhou M, Ryan PR. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley. ANNALS OF BOTANY 2013; 112:603-12. [PMID: 23798600 PMCID: PMC3718223 DOI: 10.1093/aob/mct135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/25/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. METHODS HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. KEY RESULTS AND CONCLUSIONS Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.
Collapse
Affiliation(s)
- Gaofeng Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, PO Box 46, Kings Meadows, TAS 7249, Australia
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, PO Box 46, Kings Meadows, TAS 7249, Australia
- For correspondence. E-mail
| | - Peter R. Ryan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
20
|
Yang LT, Qi YP, Jiang HX, Chen LS. Roles of organic acid anion secretion in aluminium tolerance of higher plants. BIOMED RESEARCH INTERNATIONAL 2012; 2013:173682. [PMID: 23509687 PMCID: PMC3591170 DOI: 10.1155/2013/173682] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 01/28/2023]
Abstract
Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.
Collapse
Affiliation(s)
- Lin-Tong Yang
- Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Huan-Xin Jiang
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Life Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Horticulture, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Inostroza-Blancheteau C, Rengel Z, Alberdi M, de la Luz Mora M, Aquea F, Arce-Johnson P, Reyes-Díaz M. Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep 2011; 39:2069-79. [PMID: 21660471 DOI: 10.1007/s11033-011-0954-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/26/2011] [Indexed: 01/05/2023]
Abstract
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.
Collapse
Affiliation(s)
- Claudio Inostroza-Blancheteau
- Programa de Doctorado en Ciencias de Recursos Naturales, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | | | | | | | | | | | | |
Collapse
|
22
|
Horst WJ, Wang Y, Eticha D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. ANNALS OF BOTANY 2010; 106:185-97. [PMID: 20237112 PMCID: PMC2889789 DOI: 10.1093/aob/mcq053] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/21/2009] [Accepted: 01/18/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aluminium (Al) toxicity is the most important soil constraint for plant growth and development in acid soils. The mechanism of Al-induced inhibition of root elongation is still not well understood, and it is a matter of debate whether the primary lesions of Al toxicity are apoplastic or symplastic. SCOPE The present review focuses on the role of the apoplast in Al toxicity and resistance, summarizing evidence from our own experimental work and other evidence published since 1995. CONCLUSIONS The binding of Al in the cell wall particularly to the pectic matrix and to the apoplastic face of the plasma membrane in the most Al-sensitive root zone of the root apex thus impairing apoplastic and symplastic cell functions is a major factor leading to Al-induced inhibition of root elongation. Although symplastic lesions of Al toxicity cannot be excluded, the protection of the root apoplast appears to be a prerequisite for Al resistance in both Al-tolerant and Al-accumulating plant species. In many plant species the release of organic acid anions complexing Al, thus protecting the root apoplast from Al binding, is a most important Al resistance mechanism. However, there is increasing physiological, biochemical and, most recently also, molecular evidence showing that the modification of the binding properties of the root apoplast contributes to Al resistance. A further in-depth characterization of the Al-induced apoplastic reaction in the most Al-sensitive zone of the root apex is urgently required, particularly to understand the Al resistance of the most Al-resistant plant species.
Collapse
Affiliation(s)
- Walter J Horst
- Institute of Plant Nutrition, Leibniz University Hannover, Hannover, Germany.
| | | | | |
Collapse
|
23
|
Vamerali T, Bandiera M, Mosca G. Field crops for phytoremediation of metal-contaminated land. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2010; 8:1-17. [PMID: 0 DOI: 10.1007/s10311-009-0268-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|