1
|
Zhang Q, Yang S, Chen X, Wang H, Li K, Zhang C, Liao S, Qin L, Hou Q. Identification of novel TMEM231 gene splice variants and pathological findings in a fetus with Meckel Syndrome. Front Genet 2023; 14:1252873. [PMID: 37736303 PMCID: PMC10509762 DOI: 10.3389/fgene.2023.1252873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Background: Meckel Syndrome (MKS, OMIM #249000) is a rare and fatal autosomal recessive ciliopathy with high clinical and genetic heterogeneity. MKS shows complex allelism with other related ciliopathies such as Joubert Syndrome (JBTS, OMIM #213300). In MKS, the formation and function of the primary cilium is defective, resulting in a multisystem disorder including occipital encephalocele, polycystic kidneys, postaxial polydactyly, liver fibrosis, central nervous system malformations and genital anomalies. This study aimed to analyze the genotype of MKS patients and investigate the correlation between genotype and phenotype. Methods: A nonconsanguineous couple who conceived four times with a fetus affected by multiorgan dysfunction and intrauterine fetal death was studied. Whole exome sequencing (WES) was performed in the proband to identify the potentially pathogenic variant. Sanger sequencing was performed in family members. In silico tools were used to analyse the pathogenicity of the identified variants. cDNA TA-cloning sequencing was performed to validate the effects of intronic variants on mRNA splicing. Quantitative real-time PCR was performed to investigate the effect of the variants on gene expression. Immunofluorescence was performed to observe pathological changes of the primary cilium in kidney tissue from the proband. Results: Two splice site variants of TMEM231 (NM_001077418.2, c.583-1G>C and c.583-2_588delinsTCCTCCC) were identified in the proband, and the two variants have not been previously reported. The parents were confirmed as carriers. The two variants were predicted to be pathogenic by in silico tools and were classified as pathogenic/likely pathogenic variants according to the American College of Medical Genetics and Genomics guideline. cDNA TA cloning analysis showed that both splice site variants caused a deletion of exon 5. RT-PCR revealed that the expression of TMEM231 was significantly decreased and immunofluorescence showed that the primary cilium was almost absent in the proband's kidney tissue. Conclusion: We reported the clinical, genetic, molecular and histochemical characterisation of a family affected by MKS. Our findings not only extended the mutation spectrum of the TMEM231 gene, but also revealed for the first time the pathological aetiology of primary cilia in humans and provide a basis for genetic counselling of the parents to their offspring.
Collapse
Affiliation(s)
- Qian Zhang
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Shuya Yang
- People’s Hospital of Henan University, Henan University, Zhengzhou, China
| | - Xin Chen
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Hongdan Wang
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Keyan Li
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Chaonan Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Shixiu Liao
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Litao Qin
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Qiaofang Hou
- Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
- People’s Hospital of Henan University, Henan University, Zhengzhou, China
| |
Collapse
|
2
|
Moreno-Leon L, Quezada-Ramirez MA, Bilsbury E, Kiss C, Guerin A, Khanna H. Prenatal phenotype analysis and mutation identification of a fetus with meckel gruber syndrome. Front Genet 2022; 13:982127. [PMID: 36061204 PMCID: PMC9437271 DOI: 10.3389/fgene.2022.982127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Ciliopathies are a class of inherited severe human disorders that occur due to defective formation or function of cilia. The RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein1-like) gene encodes for a ciliary protein involved in regulating cilia formation and function. Mutations in RPGRIP1L cause ciliopathies associated with severe embryonic defects, such as Meckel-Gruber Syndrome (MKS). Here we report RPGRIP1L mutation analysis in a family diagnosed with MKS. The clinical manifestations of the fetus included thoraco-lumbar open neural tube defect with associated Chiari type II malformation and hydrocephalus, bilateral club feet, and single right kidney/ureter. Analysis of the parental DNA samples revealed that the father carried a previously reported mutation R1236C/+ whereas the mother had a novel splice site mutation IVS6+1 G > A/+ in RPGRIP1L. The splice site mutation resulted in the exclusion of in-frame exon 6 of RPGRIP1L (RPGRIP1L-∆Ex6) but expressed a stable protein in fibroblasts derived from the parents’ skin biopsies. The GFP-RPGRIP1L-∆Ex6 mutant protein exhibited relatively reduced ciliary localization in transiently-transfected cultured RPE-1 cells. Taken together, this study identifies a novel RPGRIP1L variant RPGRIP1L-∆Ex6, which in combination with RPGRIP1L-R1236C is associated with MKS. We also suggest that the deletion of exon 6 of RPGRIP1L leads to reduced ciliary localization of RPGRIP1L, indicating a plausible mechanism of associated disease.
Collapse
Affiliation(s)
- Laura Moreno-Leon
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Marco A. Quezada-Ramirez
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Evan Bilsbury
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Courtney Kiss
- Kingston Health Sciences Centre, Queen’s Medical School, Kingston, ON, Canada
| | - Andrea Guerin
- Kingston Health Sciences Centre, Queen’s Medical School, Kingston, ON, Canada
| | - Hemant Khanna
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
- *Correspondence: Hemant Khanna, ,
| |
Collapse
|
3
|
Peng M, Han S, Sun J, He X, Lv Y, Yang L. Evaluation of novel compound variants of CEP290 in prenatally suspected case of Meckel syndrome through whole exome sequencing. Mol Genet Genomic Med 2022; 10:e1935. [PMID: 35352487 PMCID: PMC9034663 DOI: 10.1002/mgg3.1935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Meckel syndrome (MKS) is a fatal disease characterized by multisystem fibrosis during the prenatal or perinatal period. It has an autosomal recessive genetic pattern and is characterized by meningo occipital encephalocele, polycystic kidney dysplasia, polydactyly, and hepatobiliary ductal plate malformation. Germline variations in CEP290 have been shown to cause MKS4. Methods In this study, a 23‐year‐old Chinese woman who was 18 weeks pregnant was examined. The pregnancy was terminated due to occipital meningocele and enlarged cystic dysplastic kidney revealed by ultrasonography. In addition, the patient had a history of adverse pregnancy whereby the fetus presented with double kidney enlargement. Karyotype analysis and chromosomal microarray examination (CMA) were carried out using amniotic fluid samples. Whole exome sequencing (WES) was performed using tissue specimens of the aborted fetus. Results Karyotype and CMA analyses showed normal results. However, compound heterozygous mutations of CEP290 c.3175dup and CEP290 c.1201dup were detected through WES. CEP290 c.1201dup is a novel heterozygous mutation of CEP290 that has not been reported previously. Conclusions The findings of this study provide information on the correlation between MKS phenotype and genotype in CEP290. In addition, these findings indicate that WES is an effective method for detecting genetic causes of multiple structural defects especially those showing normal karyotype and CMA results.
Collapse
Affiliation(s)
- Meilian Peng
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shuai Han
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Juan Sun
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaodong He
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yaer Lv
- Center for Reproductive Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Liwei Yang
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
4
|
Lin T, Ma Y, Zhou D, Sun L, Chen K, Xiang Y, Tong K, Jia C, Jiang K, Liu D, Huang G. Case Report: Preimplantation Genetic Testing for Meckel Syndrome Induced by Novel Compound Heterozygous Mutations of MKS1. Front Genet 2022; 13:843931. [PMID: 35360848 PMCID: PMC8963843 DOI: 10.3389/fgene.2022.843931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Meckel syndrome (MKS), also known as the Meckel–Gruber syndrome, is a severe pleiotropic autosomal recessive developmental disorder caused by dysfunction of the primary cilia during early embryogenesis. The diagnostic criteria are based on clinical variability and genetic heterogeneity. Mutations in the MKS1 gene constitute approximately 7% of all MKS cases. Herein, we present a non-consanguineous couple with three abnormal pregnancies as the fetuses showed MKS-related phenotypes of the central nervous system malformation and postaxial polydactyly. Whole-exome sequencing identified two novel heterozygous mutations of MKS1: c.350C>A and c.1408-14A>G. The nonsense mutation c.350C>A produced a premature stop codon and induced the truncation of the MKS1 protein (p.S117*). Reverse-transcription polymerase chain reaction (RT-PCR) showed that c.1408-14A>G skipped exon 16 and encoded the mutant MKS1 p.E471Lfs*92. Functional studies showed that these two mutations disrupted the B9–C2 domain of the MKS1 protein and attenuated the interactions with B9D2, the essential component of the ciliary transition zone. The couple finally got a healthy baby through preimplantation genetic testing for monogenic disorder (PGT-M) with haplotype linkage analysis. Thus, this study expanded the mutation spectrum of MKS1 and elucidated the genetic heterogeneity of MKS1 in clinical cases.
Collapse
Affiliation(s)
- Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yongyi Ma
- The Southwest Hospital of Army Medical University, Chongqing, China
| | - Danni Zhou
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Liwei Sun
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ke Chen
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yezhou Xiang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Keya Tong
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chaoli Jia
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Kean Jiang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Dongyun Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Dongyun Liu, ; Guoning Huang,
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
- Reproductive and Genetic Institute, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Dongyun Liu, ; Guoning Huang,
| |
Collapse
|
5
|
Three Novel Variants of CEP290 and CC2D2DA and a Link Between ZNF77 and SHH Signaling Pathway Are Found in Two Meckel-Gruber Syndrome Fetuses. Reprod Sci 2022; 29:2322-2332. [PMID: 34981460 PMCID: PMC9352615 DOI: 10.1007/s43032-021-00835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
Meckel-Gruber syndrome (MKS) is a rare lethal autosomal recessive inherited disorder. Missed diagnosis might happen in clinical works due to an unclear genotype–phenotype correlation. We analyzed two families visiting our center; the parents are normal; each of the family aborted a fetus at 12WG. Following ultrasonography and pathological examination, both were diagnosed as MKS. Whole exome sequencing identified a compound heterozygous of two novel variants of CEP290 and a heterozygous of a novel variant of CC2D2A. Frameshift mutations in ZNF77 were also detected. Western blot analyzing whole-brain tissue showed that the expression of ZNF77, CC2D2A, and CEP290 was enhanced. HEK293T transfected with over-expression wildtype/mutated ZNF77 plasmid showed that SHH was increased in wildtype ZNF77 cells, while SHH and CC2D2A were increased in mutated ZNF77 cells. Our research provided two novel pathogenic variants of CEP290 and CC2D2A and suggested that ZNF77 might promote the expression of CC2D2A and regulate the amount of SHH.
Collapse
|
6
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
8
|
Rolo A, Galea GL, Savery D, Greene NDE, Copp AJ. Novel mouse model of encephalocele: post-neurulation origin and relationship to open neural tube defects. Dis Model Mech 2019; 12:dmm.040683. [PMID: 31628096 PMCID: PMC6899037 DOI: 10.1242/dmm.040683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Encephalocele is a clinically important birth defect that can lead to severe disability in childhood and beyond. The embryonic and early fetal pathogenesis of encephalocele is poorly understood and, although usually classified as a 'neural tube defect', there is conflicting evidence on whether encephalocele results from defective neural tube closure or is a post-neurulation defect. It is also unclear whether encephalocele can result from the same causative factors as anencephaly and open spina bifida, or whether it is aetiologically distinct. This lack of information results largely from the scarce availability of animal models of encephalocele, particularly ones that resemble the commonest, nonsyndromic human defects. Here, we report a novel mouse model of occipito-parietal encephalocele, in which the small GTPase Rac1 is conditionally ablated in the (non-neural) surface ectoderm. Most mutant fetuses have open spina bifida, and some also exhibit exencephaly/anencephaly. However, a proportion of mutant fetuses exhibit brain herniation, affecting the occipito-parietal region and closely resembling encephalocele. The encephalocele phenotype does not result from defective neural tube closure, but rather from a later disruption of the surface ectoderm covering the already closed neural tube, allowing the brain to herniate. The neuroepithelium itself shows no downregulation of Rac1 and appears morphologically normal until late gestation. A large skull defect overlies the region of brain herniation. Our work provides a new genetic model of occipito-parietal encephalocele, particularly resembling nonsyndromic human cases. Although encephalocele has a different, later-arising pathogenesis than open neural tube defects, both can share the same genetic causation.
Collapse
Affiliation(s)
- Ana Rolo
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Dawn Savery
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
9
|
Radhakrishnan P, Nayak SS, Shukla A, Lindstrand A, Girisha KM. Meckel syndrome: Clinical and mutation profile in six fetuses. Clin Genet 2019; 96:560-565. [PMID: 31411728 DOI: 10.1111/cge.13623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
Abstract
Meckel syndrome (MKS) is a perinatally lethal, genetically heterogeneous, autosomal recessive condition caused by defective primary cilium formation leading to polydactyly, multiple cysts in kidneys and malformations of nervous system. We performed exome sequencing in six fetuses from six unrelated families with MKS. We identified seven novel variants in B9D2, TNXDC15, CC2D2A, CEP290 and TMEM67. We describe the second family with MKS due to a homozygous variant in B9D2 and fifth family with bi-allelic variant in TXNDC15. Our data validates the causation of MKS by pathogenic variation in B9D2 and TXNDC15 and also adds novel variants in CC2D2A, CEP290 and TMEM67 to the literature.
Collapse
Affiliation(s)
- Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
10
|
Talati AN, Webster CM, Vora NL. Prenatal genetic considerations of congenital anomalies of the kidney and urinary tract (CAKUT). Prenat Diagn 2019; 39:679-692. [PMID: 31343747 DOI: 10.1002/pd.5536] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute 20% of all congenital malformations occurring in one in 500 live births. Worldwide, CAKUT are responsible for 40% to 50% of pediatric and 7% of adult end-stage renal disease. Pathogenic variants in genes causing CAKUT include monogenic diseases such as polycystic kidney disease and ciliopathies, as well as syndromes that include isolated kidney disease in conjunction with other abnormalities. Prenatal diagnosis most often occurs using ultrasonography; however, further genetic diagnosis may be made using a variety of testing strategies. Family history and pathologic examination can also provide information to improve the ability to make a prenatal diagnosis of CAKUT. Here, we provide a comprehensive overview of genetic considerations in the prenatal diagnosis of CAKUT disorders. Specifically, we discuss monogenic causes of CAKUT, associated ultrasound characteristics, and considerations for genetic diagnosis, antenatal care, and postnatal care.
Collapse
Affiliation(s)
- Asha N Talati
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carolyn M Webster
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neeta L Vora
- Department of Obstetrics and Gynecology, DRAFT, Division of Maternal Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
12
|
Stayner C, Poole CA, McGlashan SR, Pilanthananond M, Brauning R, Markie D, Lett B, Slobbe L, Chae A, Johnstone AC, Jensen CG, McEwan JC, Dittmer K, Parker K, Wiles A, Blackburne W, Leichter A, Leask M, Pinnapureddy A, Jennings M, Horsfield JA, Walker RJ, Eccles MR. An ovine hepatorenal fibrocystic model of a Meckel-like syndrome associated with dysmorphic primary cilia and TMEM67 mutations. Sci Rep 2017; 7:1601. [PMID: 28487520 PMCID: PMC5431643 DOI: 10.1038/s41598-017-01519-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023] Open
Abstract
Meckel syndrome (MKS) is an inherited autosomal recessive hepatorenal fibrocystic syndrome, caused by mutations in TMEM67, characterized by occipital encephalocoele, renal cysts, hepatic fibrosis, and polydactyly. Here we describe an ovine model of MKS, with kidney and liver abnormalities, without polydactyly or occipital encephalocoele. Homozygous missense p.(Ile681Asn; Ile687Ser) mutations identified in ovine TMEM67 were pathogenic in zebrafish phenotype rescue assays. Meckelin protein was expressed in affected and unaffected kidney epithelial cells by immunoblotting, and in primary cilia of lamb kidney cyst epithelial cells by immunofluorescence. In contrast to primary cilia of relatively consistent length and morphology in unaffected kidney cells, those of affected cyst-lining cells displayed a range of short and extremely long cilia, as well as abnormal morphologies, such as bulbous regions along the axoneme. Putative cilia fragments were also consistently located within the cyst luminal contents. The abnormal ciliary phenotype was further confirmed in cultured interstitial fibroblasts from affected kidneys. These primary cilia dysmorphologies and length control defects were significantly greater in affected cells compared to unaffected controls. In conclusion, we describe abnormalities involving primary cilia length and morphology in the first reported example of a large animal model of MKS, in which we have identified TMEM67 mutations.
Collapse
Affiliation(s)
- C Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - C A Poole
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,150 Warren Street, Wanaka, 9305, New Zealand
| | - S R McGlashan
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - M Pilanthananond
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - D Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - B Lett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - L Slobbe
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Chae
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A C Johnstone
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - C G Jensen
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - J C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - K Dittmer
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - K Parker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Wiles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - W Blackburne
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Pinnapureddy
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Jennings
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - J A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
13
|
Wanka H, Lutze P, Staar D, Peters B, Morch A, Vogel L, Chilukoti RK, Homuth G, Sczodrok J, Bäumgen I, Peters J. (Pro)renin receptor (ATP6AP2) depletion arrests As4.1 cells in the G0/G1 phase thereby increasing formation of primary cilia. J Cell Mol Med 2017; 21:1394-1410. [PMID: 28215051 PMCID: PMC5487920 DOI: 10.1111/jcmm.13069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
The (pro)renin receptor [(P)RR, ATP6AP2] is a multifunctional transmembrane protein that activates local renin-angiotensin systems, but also interacts with Wnt pathways and vacuolar H+ -ATPase (V-ATPase) during organogenesis. The aim of this study was to characterize the role of ATP6AP2 in the cell cycle in more detail. ATP6AP2 down-regulation by siRNA in renal As4.1 cells resulted in a reduction in the rate of proliferation and a G0/G1 phase cell cycle arrest. We identified a number of novel target genes downstream of ATP6AP2 knock-down that were related to the primary cilium (Bbs-1, Bbs-3, Bbs-7, Rabl5, Ttc26, Mks-11, Mks-5, Mks-2, Tctn2, Nme7) and the cell cycle (Pierce1, Clock, Ppif). Accordingly, the number of cells expressing the primary cilium was markedly increased. We found no indication that these effects were dependent of V-ATPase activity, as ATP6AP2 knock-down did not affect lysosomal pH and bafilomycin A neither influenced the ciliary expression pattern nor the percentage of ciliated cells. Furthermore, ATP6AP2 appears to be essential for mitosis. ATP6AP2 translocated from the endoplasmatic reticulum to mitotic spindle poles (pro-, meta- and anaphase) and the central spindle bundle (telophase) and ATP6AP2 knock-down results in markedly deformed spindles. We conclude that ATP6AP2 is necessary for cell division, cell cycle progression and mitosis. ATP6AP2 also inhibits ciliogenesis, thus promoting proliferation and preventing differentiation.
Collapse
Affiliation(s)
- Heike Wanka
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Philipp Lutze
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Doreen Staar
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Barbara Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Anica Morch
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Lukas Vogel
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Jaroslaw Sczodrok
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Inga Bäumgen
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jörg Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| |
Collapse
|
14
|
Oud MM, Lamers IJC, Arts HH. Ciliopathies: Genetics in Pediatric Medicine. J Pediatr Genet 2016; 6:18-29. [PMID: 28180024 DOI: 10.1055/s-0036-1593841] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
Ciliary disorders, which are also referred to as ciliopathies, are a group of hereditary disorders that result from dysfunctional cilia. The latter are cellular organelles that stick up from the apical plasma membrane. Cilia have important roles in signal transduction and facilitate communications between cells and their surroundings. Ciliary disruption can result in a wide variety of clinically and genetically heterogeneous disorders with overlapping phenotypes. Because cilia occur widespread in our bodies many organs and sensory systems can be affected when they are dysfunctional. Ciliary disorders may be isolated or syndromic, and common features are cystic liver and/or kidney disease, blindness, neural tube defects, brain anomalies and intellectual disability, skeletal abnormalities ranging from polydactyly to abnormally short ribs and limbs, ectodermal defects, obesity, situs inversus, infertility, and recurrent respiratory tract infections. In this review, we summarize the features, frequency, morbidity, and mortality of each of the different ciliopathies that occur in pediatrics. The importance of genetics and the occurrence of genotype-phenotype correlations are indicated, and advances in gene identification are discussed. The use of next-generation sequencing by which a gene panel or all genes can be screened in a single experiment is highlighted as this technology significantly lowered costs and time of the mutation detection process in the past. We discuss the challenges of this new technology and briefly touch upon the use of whole-exome sequencing as a diagnostic test for ciliary disorders. Finally, a perspective on the future of genetics in the context of ciliary disorders is provided.
Collapse
Affiliation(s)
- Machteld M Oud
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ideke J C Lamers
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heleen H Arts
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Shim H, Kim JH, Kim CY, Hwang S, Kim H, Yang S, Lee JE, Lee I. Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource. Nucleic Acids Res 2016; 44:9611-9623. [PMID: 27903883 PMCID: PMC5175370 DOI: 10.1093/nar/gkw897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
Whole exome sequencing (WES) accelerates disease gene discovery using rare genetic variants, but further statistical and functional evidence is required to avoid false-discovery. To complement variant-driven disease gene discovery, here we present function-driven disease gene discovery in zebrafish (Danio rerio), a promising human disease model owing to its high anatomical and genomic similarity to humans. To facilitate zebrafish-based function-driven disease gene discovery, we developed a genome-scale co-functional network of zebrafish genes, DanioNet (www.inetbio.org/danionet), which was constructed by Bayesian integration of genomics big data. Rigorous statistical assessment confirmed the high prediction capacity of DanioNet for a wide variety of human diseases. To demonstrate the feasibility of the function-driven disease gene discovery using DanioNet, we predicted genes for ciliopathies and performed experimental validation for eight candidate genes. We also validated the existence of heterozygous rare variants in the candidate genes of individuals with ciliopathies yet not in controls derived from the UK10K consortium, suggesting that these variants are potentially involved in enhancing the risk of ciliopathies. These results showed that an integrated genomics big data for a model animal of diseases can expand our opportunity for harnessing WES data in disease gene discovery.
Collapse
Affiliation(s)
- Hongseok Shim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Ji Hyun Kim
- Department of Health Sciences & Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Chan Yeong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sohyun Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyojin Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sunmo Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Ji Eun Lee
- Department of Health Sciences & Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea .,Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Abstract
Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.
Collapse
|
17
|
Yuksel MA, Mammadov Z, Sofiyeva N, Alici Davutoglu E, Temel Yuksel I, Madazli R. An unusual case of Meckel-Gruber syndrome (MKS) associated with visceroatrial heterotaxy and facial anomalies. J OBSTET GYNAECOL 2016; 36:524-5. [PMID: 26982535 DOI: 10.3109/01443615.2015.1110123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mehmet Aytac Yuksel
- a Department of Obstetrics and Gynecology , Cerrahpasa School of Medicine, Istanbul University , Istanbul , Turkey and
| | - Zahid Mammadov
- a Department of Obstetrics and Gynecology , Cerrahpasa School of Medicine, Istanbul University , Istanbul , Turkey and
| | - Nigar Sofiyeva
- a Department of Obstetrics and Gynecology , Cerrahpasa School of Medicine, Istanbul University , Istanbul , Turkey and
| | - Ebru Alici Davutoglu
- a Department of Obstetrics and Gynecology , Cerrahpasa School of Medicine, Istanbul University , Istanbul , Turkey and
| | - Ilkbal Temel Yuksel
- b Department of Obstetrics and Gynecology , Istanbul Okmeydani Research and Training Hospital , Istanbul , Turkey
| | - Riza Madazli
- a Department of Obstetrics and Gynecology , Cerrahpasa School of Medicine, Istanbul University , Istanbul , Turkey and
| |
Collapse
|
18
|
Pinnapureddy AR, Stayner C, McEwan J, Baddeley O, Forman J, Eccles MR. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease. Orphanet J Rare Dis 2015; 10:107. [PMID: 26329332 PMCID: PMC4557632 DOI: 10.1186/s13023-015-0327-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022] Open
Abstract
Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.
Collapse
Affiliation(s)
- Ashish R Pinnapureddy
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand.
| | - Olivia Baddeley
- New Zealand Organisation for Rare Disorders, Wellington, New Zealand.
| | - John Forman
- New Zealand Organisation for Rare Disorders, Wellington, New Zealand.
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
19
|
Cramer MT, Guay-Woodford LM. Cystic kidney disease: a primer. Adv Chronic Kidney Dis 2015; 22:297-305. [PMID: 26088074 DOI: 10.1053/j.ackd.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
Renal cystic diseases encompass a broad group of disorders with variable phenotypic expression. Cystic disorders can present during infancy, childhood, or adulthood. Often, but not always, they can be distinguished by the clinical features including age at presentation, renal imaging characteristics, including cyst distribution, and the presence/distribution of extrarenal manifestations. It is important to take the clinical context into consideration when assessing renal cystic disease in children and adults. For example, solitary kidney cysts may be completely benign when they develop during adulthood but may represent early polycystic kidney disease when observed during childhood. In this review, we have categorized renal cystic disease according to inherited single-gene disorders, for example, autosomal recessive polycystic kidney disease; syndromic disorders associated with kidney cysts, for example, tuberous sclerosis complex; and nongenetic forms of renal cystic disease, for example, simple kidney cysts. We present an overview of the clinical characteristics, genetics (when appropriate), and molecular pathogenesis and the diagnostic evaluation and management of each renal cystic disease. We also provide an algorithm that distinguishes kidney cysts based on their clinical features and may serve as a helpful diagnostic tool for practitioners. A review of Autosomal Dominant Polycystic Disease was excluded as this disorder was reviewed in this journal in March 2010, volume 17, issue 2.
Collapse
|
20
|
Yang Y, Chen J, Wang B, Ding C, Liu H. Association between MTHFR C677T polymorphism and neural tube defect risks: A comprehensive evaluation in three groups of NTD patients, mothers, and fathers. ACTA ACUST UNITED AC 2015; 103:488-500. [PMID: 25808073 DOI: 10.1002/bdra.23361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The C677T polymorphism in the methylenetetrahydrofolate reductase gene (MTHFR) gene has been reported to play a critical role in the pathogenesis of neural tube defects (NTDs). The association of the C677T polymorphism in the MTHFR gene and NTD susceptibility has been widely demonstrated, but the results are inconclusive. In this study, we performed a meta-analysis in three groups to investigate the association between the MTHFR C677T polymorphism and NTD risk. METHODS A computer retrieval of PubMed, Cochrane Library, CBM, and Embase for papers on the MTHFR C677T polymorphism and NTD risk was performed. All data were analyzed with STATA (Version 13.0). Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. A test for heterogeneity, a sensitivity analysis, and an assessment of publication bias were performed in our meta-analysis. RESULTS Forty articles were included in this meta-analysis: 13 studies for Group A: 1329 NTD patients versus 2965 healthy controls; 34 studies for Group B: 3018 mothers with NTD progeny versus 8746 healthy controls; three studies for Group C: 157 fathers with NTD progeny versus 705 healthy controls. The analysis results show: allele contrast in NTD patients: OR = 1.445, 95% CI [1.186, 1.760]; allele contrast in mothers: OR = 1.342, 95% CI [1.166, 1.544]; allele contrast in fathers: OR = 1.062, 95% CI [0.821, 1.374]. CONCLUSION We found no association between any of the fathers' genotypes and NTDs, whereas a significant correlation between MTHFR C677T polymorphism and NTD risk was found in NTD patients and in their mother.
Collapse
Affiliation(s)
- Yi Yang
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Chen
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Beiyu Wang
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chen Ding
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hao Liu
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
21
|
Wilde JJ, Petersen JR, Niswander L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu Rev Genet 2014; 48:583-611. [PMID: 25292356 DOI: 10.1146/annurev-genet-120213-092208] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of the embryonic brain and spinal cord begins as the neural plate bends to form the neural folds, which meet and adhere to close the neural tube. The neural ectoderm and surrounding tissues also coordinate proliferation, differentiation, and patterning. This highly orchestrated process is susceptible to disruption, leading to neural tube defects (NTDs), a common birth defect. Here, we highlight genetic and epigenetic contributions to neural tube closure. We describe an online database we created as a resource for researchers, geneticists, and clinicians. Neural tube closure is sensitive to environmental influences, and we discuss disruptive causes, preventative measures, and possible mechanisms. New technologies will move beyond candidate genes in small cohort studies toward unbiased discoveries in sporadic NTD cases. This will uncover the genetic complexity of NTDs and critical gene-gene interactions. Animal models can reveal the causative nature of genetic variants, the genetic interrelationships, and the mechanisms underlying environmental influences.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado 80045;
| | | | | |
Collapse
|
22
|
Apkon SD, Grady R, Hart S, Lee A, McNalley T, Niswander L, Petersen J, Remley S, Rotenstein D, Shurtleff H, Warner M, Walker WO. Advances in the care of children with spina bifida. Adv Pediatr 2014; 61:33-74. [PMID: 25037124 DOI: 10.1016/j.yapd.2014.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Susan D Apkon
- Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Rehabilitation Medicine, Seattle Children's Hospital, 4800 Sand Point Way Northeast, M/S OB-8414, Seattle, WA 98105, USA.
| | - Richard Grady
- Section of Pediatric Urology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Solveig Hart
- Rehabilitation Services, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Amy Lee
- Pediatric Neurosurgery, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, M/S W7729, PO Box 5371, Seattle, WA 98105, USA
| | - Thomas McNalley
- Rehabilitation Medicine, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, M/S OB-8404, Seattle, WA 98105, USA
| | - Lee Niswander
- Department of Pediatrics, Children's Hospital Colorado, Howard Hughes Medical Institute, University of Colorado School of Medicine, Mail Stop 8133, Building RC1 South, Room L18-12106, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Juliette Petersen
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus, Mail Stop 8133, Building RC1 South, L18-12400D, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Sheridan Remley
- Rehabilitation Services, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Deborah Rotenstein
- Pediatric Endocrinology, Endocrine Division, Pediatric Alliance, 1789 South Braddock Avenue, Suite 294, Pittsburgh, PA 15218, USA
| | - Hillary Shurtleff
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA; Department of Child Psychiatry, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - Molly Warner
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA; Neuropsychology Consult Service, Department of Psychiatry, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA
| | - William O Walker
- Division of Developmental Medicine, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way Northeast, M/S OC.9.940, Seattle, WA 98105, USA
| |
Collapse
|
23
|
Fong KSK, Adachi DAT, Chang SB, Lozanoff S. Midline craniofacial malformations with a lipomatous cephalocele are associated with insufficient closure of the neural tube in the tuft mouse. ACTA ACUST UNITED AC 2014; 100:598-607. [PMID: 24931720 DOI: 10.1002/bdra.23264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic variations affecting neural tube closure along the head result in malformations to the face and brain, posing a significant impact on health care costs and the quality of life. METHODS We have established a mouse line from a mutation that arose spontaneously in our wild-type colony that we called tuft. Tuft mice have heritable midline craniofacial defects featuring an anterior lipomatous cephalocele. RESULTS Whole-mount skeletal stains indicated that affected newborns had a broader interfrontal suture where the cephalocele emerged between the frontal bones. Mice with a cephalocele positioned near the rostrum also presented craniofacial malformations such as ocular hypertelorism and midfacial cleft of the nose. Gross and histological examination revealed that the lipomatous cephalocele originated as a fluid filled cyst no earlier than E14.5 while embryos with a midfacial cleft was evident during craniofacial development at E11.5. Histological sections of embryos with a midfacial cleft revealed the cephalic neuroectoderm remained proximal or fused to the frontonasal ectoderm about the closure site of the anterior neuropore, indicating a defect to neural tube closure. We found the neural folds along the rostrum of E9 to E10.5 embryos curled inward and failed to close as well as embryos with exencephaly and anencephaly at later stages. Whole-mount in situ hybridization of anterior markers Fgf8 and Sonic hedgehog indicated closure of the rostral site was compromised in severe cases. CONCLUSION We present a model demonstrating how anterior cranial cephaloceles are generated following a defect to neural tube closure and relevance to subsequent craniofacial morphogenesis in the tuft mouse.
Collapse
Affiliation(s)
- Keith S K Fong
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii
| | | | | | | |
Collapse
|
24
|
The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells. Differentiation 2014; 87:134-146. [PMID: 24613594 DOI: 10.1016/j.diff.2014.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/23/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
Abstract
The dysfunction of the primary cilium, a complex, evolutionarily conserved, organelle playing an important role in sensing and transducing cell signals, is the unifying pathogenetic mechanism of a growing number of diseases collectively termed "ciliopathies", typically characterized by multiorgan involvement. Developmental defects of the central nervous system (CNS) characterize a subset of ciliopathies showing clinical and genetic overlap, such as Joubert syndrome (JS) and Meckel syndrome (MS). Although several knock-out mice lacking a variety of ciliary proteins have shown the importance of primary cilia in the development of the brain and CNS-derived structures, developmental in vitro studies, extremely useful to unravel the role of primary cilia along the course of neural differentiation, are still missing. Mouse embryonic stem cells (mESCs) have been recently proven to mimic brain development, giving the unique opportunity to dissect the CNS differentiation process along its sequential steps. In the present study we show that mESCs express the ciliary proteins Meckelin and Jouberin in a developmentally-regulated manner, and that these proteins co-localize with acetylated tubulin labeled cilia located at the outer embryonic layer. Further, mESCs differentiating along the neuronal lineage activate the cilia-dependent sonic hedgehog signaling machinery, which is impaired in Meckelin knock-out cells but results unaffected in Jouberin-deficient mESCs. However, both lose the ability to acquire a neuronal phenotype. Altogether, these results demonstrate a pivotal role of Meckelin and Jouberin during embryonic neural specification and indicate mESCs as a suitable tool to investigate the developmental impact of ciliary proteins dysfunction.
Collapse
|
25
|
Barker AR, Thomas R, Dawe HR. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 2013; 10:96-107. [PMID: 24322779 DOI: 10.4161/org.27375] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.
Collapse
Affiliation(s)
- Amy R Barker
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Rhys Thomas
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| | - Helen R Dawe
- College of Life and Environmental Sciences; University of Exeter; Exeter, UK
| |
Collapse
|
26
|
Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3). PLoS One 2013; 8:e73245. [PMID: 24039893 PMCID: PMC3764130 DOI: 10.1371/journal.pone.0073245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/19/2013] [Indexed: 11/20/2022] Open
Abstract
Meckel-Gruber syndrome type 3 is an autosomal recessive genetic defect caused by mutations in TMEM67 gene. In our previous study, we have identified a homozygous TMEM67 mutation in a Chinese family exhibiting clinical characteristics of MKS3, which provided a ground for further PGD procedure. Here we report the development and the first clinical application of the PGD for this MKS3 family. Molecular analysis protocol for clinical PGD procedure was established using 50 single cells in pre-clinical set-up. After whole genomic amplification by multiple displacement amplification with the DNA from single cells, three techniques were applied simultaneously to increase the accuracy and reliability of genetic diagnosis in single blastomere, including real-time PCR with Taq Man-MGB probe, haplotype analysis with polymorphic STR markers and Sanger sequencing. In the clinical PGD cycle, nine embryos at cleavage-stage were biopsied and subjected to genetic diagnosis. Two embryos diagnosed as free of TMEM67 mutation were transferred and one achieving normal pregnancy. Non-invasive prenatal assessment of trisomy 13, 18 and 21 by multiplex DNA sequencing at 18 weeks’ gestation excluded the aneuploidy of the analyzed chromosomes. A healthy boy was delivered by cesarean section at 39 weeks’ gestation. DNA sequencing from his cord blood confirmed the result of genetic analysis in the PGD cycle. The protocol developed in this study was proved to be rapid and safe for the detection of monogenic mutations in clinical PGD cycle.
Collapse
|
27
|
Vogel TW, Carter CS, Abode-Iyamah K, Zhang Q, Robinson S. The role of primary cilia in the pathophysiology of neural tube defects. Neurosurg Focus 2013; 33:E2. [PMID: 23025443 DOI: 10.3171/2012.6.focus12222] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural tube defects (NTDs) are a set of disorders that occur from perturbation of normal neural development. They occur in open or closed forms anywhere along the craniospinal axis and often result from a complex interaction between environmental and genetic factors. One burgeoning area of genetics research is the effect of cilia signaling on the developing neural tube and how the disruption of primary cilia leads to the development of NTDs. Recent progress has implicated the hedgehog (Hh), wingless-type integration site family (Wnt), and planar cell polarity (PCP) pathways in primary cilia as involved in normal neural tube patterning. A set of disorders involving cilia function, known as ciliopathies, offers insight into abnormal neural development. In this article, the authors discuss the common ciliopathies, such as Meckel-Gruber and Joubert syndromes, that are associated with NTDs, and review cilia-related signaling cascades responsible for mammalian neural tube development. Understanding the contribution of cilia in the formation of NTDs may provide greater insight into this common set of pediatric neurological disorders.
Collapse
Affiliation(s)
- Timothy W Vogel
- Department of Neurosurgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
28
|
Copp AJ, Stanier P, Greene NDE. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol 2013; 12:799-810. [PMID: 23790957 DOI: 10.1016/s1474-4422(13)70110-8] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neural tube defects are severe congenital malformations affecting around one in every 1000 pregnancies. An innovation in clinical management has come from the finding that closure of open spina bifida lesions in utero can diminish neurological dysfunction in children. Primary prevention with folic acid has been enhanced through introduction of mandatory food fortification in some countries, although not yet in the UK. Genetic predisposition accounts for most of the risk of neural tube defects, and genes that regulate folate one-carbon metabolism and planar cell polarity have been strongly implicated. The sequence of human neural tube closure events remains controversial, but studies of mouse models of neural tube defects show that anencephaly, open spina bifida, and craniorachischisis result from failure of primary neurulation, whereas skin-covered spinal dysraphism results from defective secondary neurulation. Other malformations, such as encephalocele, are likely to be postneurulation disorders.
Collapse
Affiliation(s)
- Andrew J Copp
- Neural Development Unit and Newlife Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| | | | | |
Collapse
|
29
|
Wallingford JB, Niswander LA, Shaw GM, Finnell RH. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 2013; 339:1222002. [PMID: 23449594 DOI: 10.1126/science.1222002] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human birth defects are a major public health burden: The Center for Disease Control estimates that 1 of every 33 United States newborns presents with a birth defect, and worldwide the estimate approaches 6% of all births. Among the most common and debilitating of human birth defects are those affecting the formation of the neural tube, the precursor to the central nervous system. Neural tube defects (NTDs) arise from a complex combination of genetic and environmental interactions. Although substantial advances have been made in the prevention and treatment of these malformations, NTDs remain a substantial public health problem, and we are only now beginning to understand their etiology. Here, we review the process of neural tube development and how defects in this process lead to NTDs, both in humans and in the animal models that serve to inform our understanding of these processes. The insights we are gaining will help generate new intervention strategies to tackle the clinical challenges and to alleviate the personal and societal burdens that accompany these defects.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
30
|
Abdelhamed ZA, Wheway G, Szymanska K, Natarajan S, Toomes C, Inglehearn C, Johnson CA. Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects. Hum Mol Genet 2013; 22:1358-72. [PMID: 23283079 DOI: 10.1093/hmg/dds546] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The ciliopathies are a group of heterogeneous diseases with considerable variations in phenotype for allelic conditions such as Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) even at the inter-individual level within families. In humans, mutations in TMEM67 (also known as MKS3) cause both MKS and JBTS, with TMEM67 encoding the orphan receptor meckelin (TMEM67) that localizes to the ciliary transition zone. We now describe the Tmem67(tm1(Dgen/H)) knockout mouse model that recapitulates the brain phenotypic variability of these human ciliopathies, with categorization of Tmem67 mutant animals into two phenotypic groups. An MKS-like incipient congenic group (F6 to F10) manifested very variable neurological features (including exencephaly, and frontal/occipital encephalocele) that were associated with the loss of primary cilia, diminished Shh signalling and dorsalization of the caudal neural tube. The 'MKS-like' group also had high de-regulated canonical Wnt/β-catenin signalling associated with hyper-activated Dishevelled-1 (Dvl-1) localized to the basal body. Conversely, a second fully congenic group (F > 10) had less variable features pathognomonic for JBTS (including cerebellar hypoplasia), and retention of abnormal bulbous cilia associated with mild neural tube ventralization. The 'JBTS-like' group had de-regulated low levels of canonical Wnt signalling associated with the loss of Dvl-1 localization to the basal body. Our results suggest that modifier alleles partially determine the variation between MKS and JBTS, implicating the interaction between Dvl-1 and meckelin, or other components of the ciliary transition zone. The Tmem67(tm1(Dgen/H)) line is unique in modelling the variable expressivity of phenotypes in these two ciliopathies.
Collapse
Affiliation(s)
- Zakia A Abdelhamed
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Grüber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alström syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects.
Collapse
Affiliation(s)
- Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK.
| | | |
Collapse
|
32
|
Copp AJ, Greene NDE. Neural tube defects--disorders of neurulation and related embryonic processes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:213-27. [PMID: 24009034 DOI: 10.1002/wdev.71] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. 'Open' NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida), and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. 'Closed' NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. 'Herniation' NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorized through a pathological opening in the skull or vertebral column (e.g., encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signaling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the bone morphogenetic protein and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid (FA), when taken as a periconceptional supplement, can prevent many cases. Not all NTDs respond to FA, however, and adjunct therapies are required for prevention of this FA-resistant category.
Collapse
Affiliation(s)
- Andrew J Copp
- Neural Development Unit, Institute of Child Health, University College London, London, UK.
| | | |
Collapse
|
33
|
Huang L, Szymanska K, Jensen V, Janecke A, Innes A, Davis E, Frosk P, Li C, Willer J, Chodirker B, Greenberg C, McLeod D, Bernier F, Chudley A, Müller T, Shboul M, Logan C, Loucks C, Beaulieu C, Bowie R, Bell S, Adkins J, Zuniga F, Ross K, Wang J, Ban M, Becker C, Nürnberg P, Douglas S, Craft C, Akimenko MA, Hegele R, Ober C, Utermann G, Bolz H, Bulman D, Katsanis N, Blacque O, Doherty D, Parboosingh J, Leroux M, Johnson C, Boycott K. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 2011; 89:713-30. [PMID: 22152675 PMCID: PMC3234373 DOI: 10.1016/j.ajhg.2011.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/25/2011] [Accepted: 11/08/2011] [Indexed: 12/23/2022] Open
Abstract
Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes.
Collapse
Affiliation(s)
- Lijia Huang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Katarzyna Szymanska
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Victor L. Jensen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Andreas R. Janecke
- Department of Pediatrics II, Innsbruck Medical University, Innsbruck 6020, Austria
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - A. Micheil Innes
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Erica E. Davis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jason R. Willer
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bernard N. Chodirker
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - Cheryl R. Greenberg
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - D. Ross McLeod
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Francois P. Bernier
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Albert E. Chudley
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| | - Thomas Müller
- Department of Pediatrics II, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Mohammad Shboul
- Institute of Medical Biology: Human Embryology, 8A Biomedical Grove, #05-40 Immunos, Singapore 138648, Singapore
| | - Clare V. Logan
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Catrina M. Loucks
- Department of Medical Genetics, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Chandree L. Beaulieu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Rachel V. Bowie
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sandra M. Bell
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Jonathan Adkins
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Freddi I. Zuniga
- Mary D. Allen Laboratory in Vision Research, Doheny Eye Institute, Departments of Ophthalmology and Cell and Neurobiology, Los Angeles, CA 90033-9224, USA
| | - Kevin D. Ross
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jian Wang
- Robarts Research Institute and University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Matthew R. Ban
- Robarts Research Institute and University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Stuart Douglas
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Cheryl M. Craft
- Mary D. Allen Laboratory in Vision Research, Doheny Eye Institute, Departments of Ophthalmology and Cell and Neurobiology, Los Angeles, CA 90033-9224, USA
| | | | - Robert A. Hegele
- Robarts Research Institute and University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Gerd Utermann
- Division of Human Genetics, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Hanno J. Bolz
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany
- Institute of Human Genetics, University Hospital of Cologne, 50931 Cologne, Germany
| | - Dennis E. Bulman
- Ottawa Hospital Research Institute and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Oliver E. Blacque
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dan Doherty
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Colin A. Johnson
- Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Kym M. Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
34
|
Farnum CE, Wilsman NJ. Axonemal positioning and orientation in three-dimensional space for primary cilia: what is known, what is assumed, and what needs clarification. Dev Dyn 2011; 240:2405-31. [PMID: 22012592 PMCID: PMC3278774 DOI: 10.1002/dvdy.22756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two positional characteristics of the ciliary axoneme--its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional (3D) space--are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations.
Collapse
Affiliation(s)
- Cornelia E Farnum
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
35
|
Marquis-Nicholson R, Aftimos S, Ashton F, Love JM, Stone P, McFarlane J, George AM, Love DR. Pseudotrisomy 13 syndrome: Use of homozygosity mapping to target candidate genes. Gene 2011; 486:37-40. [DOI: 10.1016/j.gene.2011.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/01/2022]
|
36
|
van Reeuwijk J, Arts HH, Roepman R. Scrutinizing ciliopathies by unraveling ciliary interaction networks. Hum Mol Genet 2011; 20:R149-57. [PMID: 21862450 DOI: 10.1093/hmg/ddr354] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research of cilia has gained significant momentum in the last 15 years, as an increasing number of human genetic diseases were found to be caused by disruption of a protein that localizes to cilia. These ciliopathies are as diverse as the functions of the associated proteins, covering a spectrum of overlapping phenotypes that ranges from relatively mild characteristics in isolated tissues with a late onset, to severe defects of multiple tissues with an onset early in embryogenesis that is incompatible with life. As cilia harbour many receptors and components of key signaling cascades, such as Hedgehog, Wnt, Notch and Hippo signaling, disruption of ciliary function has severe consequences. Recent (affinity) proteomics studies have focused on the composition and dynamics of ciliary protein interaction networks. This has unveiled important knowledge about the highly ordered, interconnected but very dynamic nature of the cilium as a molecular machine. Disruption of the members of the same functional modules of this machine leads to similar phenotypes, and detailed analyses of the binding repertoire, the biochemical properties and the biological functions of these modules have yielded new ciliopathy genes as well as new insights into the pathogenic mechanisms underlying ciliopathies.
Collapse
Affiliation(s)
- Jeroen van Reeuwijk
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, and Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
37
|
Pluznick JL, Rodriguez-Gil DJ, Hull M, Mistry K, Gattone V, Johnson CA, Weatherbee S, Greer CA, Caplan MJ. Renal cystic disease proteins play critical roles in the organization of the olfactory epithelium. PLoS One 2011; 6:e19694. [PMID: 21614130 PMCID: PMC3094399 DOI: 10.1371/journal.pone.0019694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/13/2011] [Indexed: 11/26/2022] Open
Abstract
It was reported that some proteins known to cause renal cystic disease (NPHP6; BBS1, and BBS4) also localize to the olfactory epithelium (OE), and that mutations in these proteins can cause anosmia in addition to renal cystic disease. We demonstrate here that a number of other proteins associated with renal cystic diseases - polycystin 1 and 2 (PC1, PC2), and Meckel-Gruber syndrome 1 and 3 (MKS1, MKS3) - localize to the murine OE. PC1, PC2, MKS1 and MKS3 are all detected in the OE by RT-PCR. We find that MKS3 localizes specifically to dendritic knobs of olfactory sensory neurons (OSNs), while PC1 localizes to both dendritic knobs and cilia of mature OSNs. In mice carrying mutations in MKS1, the expression of the olfactory adenylate cyclase (AC3) is substantially reduced. Moreover, in rats with renal cystic disease caused by a mutation in MKS3, the laminar organization of the OE is perturbed and there is a reduced expression of components of the odor transduction cascade (G(olf), AC3) and α-acetylated tubulin. Furthermore, we show with electron microscopy that cilia in MKS3 mutant animals do not manifest the proper microtubule architecture. Both MKS1 and MKS3 mutant animals show no obvious alterations in odor receptor expression. These data show that multiple renal cystic proteins localize to the OE, where we speculate that they work together to regulate aspects of the development, maintenance or physiological activities of cilia.
Collapse
Affiliation(s)
- Jennifer L. Pluznick
- Department of Cellular and Molecular
Physiology, Yale School of Medicine New Haven, Connecticut, United States of
America
| | - Diego J. Rodriguez-Gil
- Departments of Neurosurgery and Neurobiology,
Yale School of Medicine, New Haven, Connecticut, United States of
America
| | - Michael Hull
- Department of Cellular and Molecular
Physiology, Yale School of Medicine New Haven, Connecticut, United States of
America
| | - Kavita Mistry
- Department of Cellular and Molecular
Physiology, Yale School of Medicine New Haven, Connecticut, United States of
America
| | - Vincent Gattone
- Department of Anatomy & Cell Biology,
Indiana University School of Medicine, Indianapolis, Indiana, United States of
America
| | - Colin A. Johnson
- Department of Ophthalmology and Neurosciences,
Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United
Kingdom
| | - Scott Weatherbee
- Department of Genetics, Yale University School
of Medicine, New Haven, Connecticut, United States of America
| | - Charles A. Greer
- Departments of Neurosurgery and Neurobiology,
Yale School of Medicine, New Haven, Connecticut, United States of
America
| | - Michael J. Caplan
- Department of Cellular and Molecular
Physiology, Yale School of Medicine New Haven, Connecticut, United States of
America
| |
Collapse
|