1
|
Ru Q, Wang Y, Zhou E, Chen L, Wu Y. The potential therapeutic roles of Rho GTPases in substance dependence. Front Mol Neurosci 2023; 16:1125277. [PMID: 37063367 PMCID: PMC10097952 DOI: 10.3389/fnmol.2023.1125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Rho GTPases family are considered to be molecular switches that regulate various cellular processes, including cytoskeleton remodeling, cell polarity, synaptic development and maintenance. Accumulating evidence shows that Rho GTPases are involved in neuronal development and brain diseases, including substance dependence. However, the functions of Rho GTPases in substance dependence are divergent and cerebral nuclei-dependent. Thereby, comprehensive integration of their roles and correlated mechanisms are urgently needed. In this review, the molecular functions and regulatory mechanisms of Rho GTPases and their regulators such as GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs) in substance dependence have been reviewed, and this is of great significance for understanding their spatiotemporal roles in addictions induced by different addictive substances and in different stages of substance dependence.
Collapse
Affiliation(s)
| | | | | | - Lin Chen
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| | - Yuxiang Wu
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| |
Collapse
|
2
|
Tristán‐Noguero A, Fernández‐Carasa I, Calatayud C, Bermejo‐Casadesús C, Pons‐Espinal M, Colini Baldeschi A, Campa L, Artigas F, Bortolozzi A, Domingo‐Jiménez R, Ibáñez S, Pineda M, Artuch R, Raya Á, García‐Cazorla À, Consiglio A. iPSC-based modeling of THD recapitulates disease phenotypes and reveals neuronal malformation. EMBO Mol Med 2023; 15:e15847. [PMID: 36740977 PMCID: PMC9994475 DOI: 10.15252/emmm.202215847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023] Open
Abstract
Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls. Consistent with patients, THD iPSC-DAn displayed lower levels of DA metabolites and reduced TH expression, when compared to controls. Moreover, THD iPSC-DAn showed abnormal morphology, including reduced total neurite length and neurite arborization defects, which were not evident in DAn differentiated from control-iPSC. Treatment of THD-iPSC-DAn with L-Dopa rescued the neuronal defects and disease phenotype only in THDA-DAn. Interestingly, L-Dopa treatment at the stage of neuronal precursors could prevent the alterations in THDB-iPSC-DAn, thus suggesting the existence of a critical developmental window in THD. Our iPSC-based model recapitulates THD disease phenotypes and response to treatment, representing a promising tool for investigating pathogenic mechanisms, drug screening, and personalized management.
Collapse
Affiliation(s)
- Alba Tristán‐Noguero
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology DepartmentInstitut Pediàtric de Recerca, Hospital Sant Joan de DéuBarcelonaSpain
| | - Irene Fernández‐Carasa
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Carles Calatayud
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
- Regenerative Medicine ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Program for Translation of Regenerative Medicine in Catalonia (P‐[CMRC])Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
| | - Cristina Bermejo‐Casadesús
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology DepartmentInstitut Pediàtric de Recerca, Hospital Sant Joan de DéuBarcelonaSpain
| | - Meritxell Pons‐Espinal
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Arianna Colini Baldeschi
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Leticia Campa
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)BarcelonaSpain
- Institut d'Investigacions August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIIIMadridSpain
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)BarcelonaSpain
- Institut d'Investigacions August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIIIMadridSpain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC)BarcelonaSpain
- Institut d'Investigacions August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIIIMadridSpain
| | - Rosario Domingo‐Jiménez
- Department of Pediatric NeurologyHospital Virgen de la ArrixacaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB)MurciaSpain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER)MadridSpain
| | - Salvador Ibáñez
- Department of Pediatric NeurologyHospital Virgen de la ArrixacaMurciaSpain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB)MurciaSpain
| | - Mercè Pineda
- Fundació Sant Joan de Déu (FSJD), Hospital Sant Joan de Déu (HSJD)BarcelonaSpain
| | - Rafael Artuch
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER)MadridSpain
- Metabolic Unit, Departments of Neurology, Nutrition Biochemistry and GeneticsInstitut Pediàtric de Recerca, Hospital San Joan de DéuBarcelonaSpain
| | - Ángel Raya
- Regenerative Medicine ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
- Program for Translation of Regenerative Medicine in Catalonia (P‐[CMRC])Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Àngels García‐Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology DepartmentInstitut Pediàtric de Recerca, Hospital Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER)MadridSpain
| | - Antonella Consiglio
- Department of Pathology and Experimental TherapeuticsBellvitge University Hospital‐IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
3
|
Li J, Wu Y, Xue T, He J, Zhang L, Liu Y, Zhao J, Chen Z, Xie M, Xiao B, Ye Y, Qin S, Tang Q, Huang M, Zhu H, Liu N, Guo F, Zhang L, Zhang L. Cdc42 signaling regulated by dopamine D2 receptor correlatively links specific brain regions of hippocampus to cocaine addiction. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166569. [PMID: 36243293 DOI: 10.1016/j.bbadis.2022.166569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hippocampus plays critical roles in drug addiction. Cocaine-induced modifications in dopamine receptor function and the downstream signaling are important regulation mechanisms in cocaine addiction. Rac regulates actin filament accumulation while Cdc42 stimulates the formation of filopodia and neurite outgrowth. Based on the region specific roles of small GTPases in brain, we focused on the hippocampal subregions to detect the regulation of Cdc42 signaling in long-term morphological and behavioral adaptations to cocaine. METHODS Genetically modified mouse models of Cdc42, dopamine receptor D1 (D1R) and D2 (D2R) and expressed Cdc42 point mutants that are defective in binding to and activation of its downstream effector molecules PAK and N-WASP were generated, respectively, in CA1 or dentate gyrus (DG) subregion. RESULTS Cocaine induced upregulation of Cdc42 signaling activity. Cdc42 knockout or mutants blocked cocaine-induced increase in spine plasticity in hippocampal CA1 pyramidal neurons, leading to a decreased conditional place preference (CPP)-associated memories and spatial learning and memory in water maze. Cdc42 knockout or mutants promoted cocaine-induced loss of neurogenesis in DG, leading to a decreased CPP-associated memories and spatial learning and memory in water maze. Furthermore, by using D1R knockout, D2R knockout, and D2R/Cdc42 double knockout mice, we found that D2R, but not D1R, regulated Cdc42 signaling in cocaine-induced neural plasticity and behavioral changes. CONCLUSIONS Cdc42 acts downstream of D2R in the hippocampus and plays an important role in cocaine-induced neural plasticity through N-WASP and PAK-LIMK-Cofilin, and Cdc42 signaling pathway correlatively links specific brain regions (CA1, dentate gyrus) to cocaine-induced CPP behavior.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Wu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tao Xue
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yutong Liu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Zhao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhong Chen
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Minjuan Xie
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Xiao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingshan Ye
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sifei Qin
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingqiu Tang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengfan Huang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangfei Zhu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Elderly Health Services Research Center, Southern Medical University, Guangzhou 510515, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, School of Basic Medical Sciences, Center for Orthopaedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Obray JD, Landin JD, Vaughan DT, Scofield MD, Chandler LJ. Adolescent alcohol exposure reduces dopamine 1 receptor modulation of prelimbic neurons projecting to the nucleus accumbens and basolateral amygdala. ADDICTION NEUROSCIENCE 2022; 4:100044. [PMID: 36643604 PMCID: PMC9836047 DOI: 10.1016/j.addicn.2022.100044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Department of Anesthesiology, Medical University of South Carolina, Charleston SC, USA
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Corresponding author. (L.J. Chandler)
| |
Collapse
|
5
|
Glutamate Receptor Interacting Protein 1 in the Dorsal CA1 Drives Alpha-amino-3-hydroxy-5-methyl-4-Isoxazolepropionic Acid Receptor Endocytosis and Exocytosis Bidirectionally and Mediates Forgetting, Exploratory, and Anxiety-like Behavior. Neuroscience 2022; 498:235-248. [PMID: 35863680 DOI: 10.1016/j.neuroscience.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023]
Abstract
Endocytosis of GluA2-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in CA1 of the hippocampus regulates forgetting; deficits in forgetting nociceptive memory can induce serious stress disorders. As a transporter of GluA2-containing AMPAR, the functions of glutamate receptor interacting protein 1 (GRIP1) in forgetting and possible stress responses remain unclear. Lentivirus-mediated interference of GRIP1 expression or function in the dorsal CA1 of the hippocampus in mice indicated that GRIP1 overexpression enhanced spatial memory, impaired forgetting in a Barnes maze, and induced anxiety-like behavior in the open field and elevated plus-maze test. In contrast, GRIP1 knockdown impaired learning capacity. Furthermore, inhibition of the PDZ2 and PDZ4/5 domains of GRIP1 and GluA2-dn enhanced learning capacity, whereas GluA2-dn impaired spatial memory; inhibition of the PDZ2 and PDZ4/5 domains of GRIP1 also decreased forgetting capacity to some extent. Importantly, inhibition of both the PDZ2 and PDZ4/5 domains of GRIP1 induced anxiety-like behavior but not GluA2-dn. Furthermore, optogenetic control of both GluA1 and GluA2 insertion into the postsynaptic membrane impaired memory and induced anxiety-like behavior. In vitro experiments showed that GRIP1-ov and -dn, inhibition of PDZ2 and PDZ4/5 domains of GRIP1, and GluA2-dn decreased glycine-induced GluA1 and GluA2 exocytosis; meanwhile, GRIP1-ov and -dn, and interference of PDZ2 and PDZ4/5 domains of GRIP1 blocked AMPA- and NMDA-induced GluA1 and GluA2 endocytosis. Overall, these results suggest that GRIP1 drives AMPA receptor endocytosis and exocytosis bidirectionally; furthermore, GRIP1-induced stabilization of anchoring postsynaptic GluA1 and GluA2 impairs forgetting and induces anxiety-like behavior. GRIP1 may provide a potential therapeutic target in posttraumatic syndromes and anxiety disorders.
Collapse
|
6
|
Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Raj P, Rathipriya AG, Qoronfleh MW, Essa MM, Chidambaram SB. Impact of Pharmacological and Non-Pharmacological Modulators on Dendritic Spines Structure and Functions in Brain. Cells 2021; 10:3405. [PMID: 34943913 PMCID: PMC8699406 DOI: 10.3390/cells10123405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Praveen Raj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
| | | | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Biomedical Sciences Department, University of Pacific, Sacramento, CA 95211, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
7
|
Caesarean section and offspring's emotional development: Sex differences and the role of key neurotransmitters. Brain Res 2021; 1767:147562. [PMID: 34144003 DOI: 10.1016/j.brainres.2021.147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/08/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Increasing caesarean section (CS) rates are of global concern not only for health care providers but also from a more general public health point of view. Growing concern on the association between CS and offspring's neurodevelopmental outcomes have been raised in recent years, but the effect of CS on offspring's emotional development is rarely reported. By using mice models, we have set up two groups, ie. offspring born via CS and in-fostered by dams with vaginal delivery (VD), and offspring born via VD and in-fostered by their non-biological mothers. Depression-like behavioral was evaluated by sucrose preference test and forced swimming test, and anxiety-like behavioral was evaluated by open-field test and elevated plus maze test, respectively during offspring's adolescence and adulthood. Offspring's prefrontal cortex was collected for HE staining and assessment for DA, HVA, 5-HT, 5-HIAA. It was found that offspring born of CS have anxiety-like and depression-like behaviors in adolescence and adulthood. Male offspring was sensitive to be depressive and female offspring tended to be anxious. Although no significant sex difference was observed, there existed edema and nuclear retraction of neurons in the prefrontal cortex in offspring via CS during adolescence and adulthood. Compared with offspring born via VD, offspring through CS had shown higher DA and HVA levels while lower 5-HT and 5-HIAA levels in adolescence and adulthood, and this difference was observed in female offspring. The findings highlight the sex-specific effect of CS on offspring's emotional development. Variations in key neurotransmitters in the prefrontal cortex may partly explain the association between CS and offspring's emotional symptoms.
Collapse
|
8
|
ABCC1 regulates cocaine-associated memory, spine plasticity and GluA1 and GluA2 surface expression. Neuroreport 2021; 32:833-839. [PMID: 34029289 DOI: 10.1097/wnr.0000000000001657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ATP-binding cassettes C1 (ABCC1s) are expressed in the neurons of the brain, but their function in neurological diseases is far from clear. In this study, we investigated the role of ABCC1 in the hippocampus in cocaine-associated memory and spine plasticity. We also investigated the role of ABCC1 in AMPA receptors (AMPARs) surface expression in primary prefrontal cortex (PFC) neurons following dopamine treatment, which was used to mimic exposure to cocaine. We found that cocaine increased ABCC1 expression in the hippocampus, and ABCC1-siRNA blocked cocaine-induced place preference. Furthermore, a morphological study showed that ABCC1-siRNA reduced the total spine density, including thin, stubby and mushroom spines in both cocaine and basal treatments compared with controls. Meanwhile, in vitro tests showed that ABCC1-siRNA decreased GluA1 and GluA2 surface expression induced by dopamine, while a decreased number of synapses in primary PFC neurons was observed following dopamine treatment. The data show that ABCC1 in the hippocampus is critically involved in cocaine-associated memory and spine plasticity and that dopamine induces AMPARs surface expression in primary PFC neurons. ABCC1 is thus presented as a new signaling molecule involved in cocaine addiction, which may provide a new target for the treatment of cocaine addiction.
Collapse
|
9
|
Zingales V, Torrisi SA, Leggio GM, Bucolo C, Drago F, Salomone S. Pharmacological and Genetic Evidence of Dopamine Receptor 3-Mediated Vasoconstriction in Isolated Mouse Aorta. Biomolecules 2021; 11:418. [PMID: 33799860 PMCID: PMC8001456 DOI: 10.3390/biom11030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Dopamine receptors (DRs) are generally considered as mediators of vasomotor functions. However, when used in pharmacological studies, dopamine and/or DR agonists may not discriminate among different DR subtypes and may even stimulate alpha1 and beta-adrenoceptors. Here, we tested the hypothesis that D2R and/or D3R may specifically induce vasoconstriction in isolated mouse aorta. Aorta, isolated from wild-type (WT) and D3R-/- mice, was mounted in a wire myograph and challenged with cumulative concentrations of phenylephrine (PE), acetylcholine (ACh), and the D3R agonist 7-hydrxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT), with or without the D2R antagonist L741,626 and the D3R antagonist SB-277011-A. The vasoconstriction to PE and the vasodilatation to ACh were not different in WT and D3R-/-; in contrast, the contractile responses to 7-OH-DPAT were significantly weaker in D3R-/-, though not abolished. L741,626 did not change the contractile response induced by 7-OH-DPAT in WT or in D3R-/-, whereas SB-277011-A significantly reduced it in WT but did not in D3R-/-. D3R mRNA (assessed by qPCR) was about 5-fold more abundant than D2R mRNA in aorta from WT and undetectable in aorta from D3R-/-. Following transduction with lentivirus (72-h incubation) delivering synthetic microRNAs to specifically inactivate D2R (LV-miR-D2) or D3R (LV-miR-D3), the contractile response to 7-OH-DPAT was unaffected by LV-miR-D2, while it was significantly reduced by LV-miR-D3. These data indicate that, at least in mouse aorta, D3R stimulation induces vasoconstriction, while D2R stimulation does not. This is consistent with the higher expression level of D3R. The residual vasoconstriction elicited by high concentration D3R agonist in D3R-/- and/or in the presence of D3R antagonist is likely to be unrelated to DRs.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/physiology
- Indoles/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nitriles/pharmacology
- Piperidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
- Tetrahydroisoquinolines/pharmacology
- Tetrahydronaphthalenes/pharmacology
- Vasoconstriction/drug effects
- Vasoconstriction/genetics
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia 97, 95123 Catania, Italy; (V.Z.); (S.A.T.); (G.M.L.); (C.B.); (F.D.)
| |
Collapse
|
10
|
Dopamine D 1 and D 2 Receptors Differentially Regulate Rac1 and Cdc42 Signaling in the Nucleus Accumbens to Modulate Behavioral and Structural Plasticity After Repeated Methamphetamine Treatment. Biol Psychiatry 2019; 86:820-835. [PMID: 31060803 DOI: 10.1016/j.biopsych.2019.03.966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/21/2019] [Accepted: 03/03/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Methamphetamine (METH) is a highly addictive psychostimulant that strongly activates dopamine receptor signaling in the nucleus accumbens (NAc). However, how dopamine D1 and D2 receptors (D1Rs and D2Rs, respectively) as well as downstream signaling pathways, such as those involving Rac1 and Cdc42, modulate METH-induced behavioral and structural plasticity is largely unknown. METHODS Using NAc conditional D1R and D2R deletion mice, Rac1 and Cdc42 mutant viruses, and a series of behavioral and morphological methods, we assessed the effects of D1Rs and D2Rs on Rac1 and Cdc42 in modulating METH-induced behavioral and structural plasticity in the NAc. RESULTS D1Rs and D2Rs in the NAc consistently regulated METH-induced conditioned place preference, locomotor activation, and dendritic and spine remodeling of medium spiny neurons but differentially regulated METH withdrawal-induced spatial learning and memory impairment and anxiety. Interestingly, Rac1 and Cdc42 signaling were oppositely modulated by METH, and suppression of Rac1 signaling and activation of Cdc42 signaling were crucial to METH-induced conditioned place preference and structural plasticity but not to locomotor activation. D1Rs activated Rac1 and Cdc42 signaling, while D2Rs inhibited Rac1 signaling but activated Cdc42 signaling to mediate METH-induced conditioned place preference and structural plasticity but not locomotor activation. In addition, NAc D1R deletion aggravated METH withdrawal-induced spatial learning and memory impairment by suppressing Rac1 signaling but not Cdc42 signaling, while NAc D2R deletion aggravated METH withdrawal-induced anxiety without affecting Rac1 or Cdc42 signaling. CONCLUSIONS D1Rs and D2Rs differentially regulate Rac1 and Cdc42 signaling to modulate METH-induced behavioral plasticity and the structural remodeling of medium spiny neurons in the NAc.
Collapse
|
11
|
Duman JG, Mulherkar S, Tu YK, Erikson KC, Tzeng CP, Mavratsas VC, Ho TSY, Tolias KF. The adhesion-GPCR BAI1 shapes dendritic arbors via Bcr-mediated RhoA activation causing late growth arrest. eLife 2019; 8:47566. [PMID: 31461398 PMCID: PMC6713510 DOI: 10.7554/elife.47566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022] Open
Abstract
Dendritic arbor architecture profoundly impacts neuronal connectivity and function, and aberrant dendritic morphology characterizes neuropsychiatric disorders. Here, we identify the adhesion-GPCR BAI1 as an important regulator of dendritic arborization. BAI1 loss from mouse or rat hippocampal neurons causes dendritic hypertrophy, whereas BAI1 overexpression precipitates dendrite retraction. These defects specifically manifest as dendrites transition from growth to stability. BAI1-mediated growth arrest is independent of its Rac1-dependent synaptogenic function. Instead, BAI1 couples to the small GTPase RhoA, driving late RhoA activation in dendrites coincident with growth arrest. BAI1 loss lowers RhoA activation and uncouples it from dendrite dynamics, causing overgrowth. None of BAI1's known downstream effectors mediates BAI1-dependent growth arrest. Rather, BAI1 associates with the Rho-GTPase regulatory protein Bcr late in development and stimulates its cryptic RhoA-GEF activity, which functions together with its Rac1-GAP activity to terminate arborization. Our results reveal a late-acting signaling pathway mediating a key transition in dendrite development.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Yen-Kuei Tu
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States
| | - Kelly C Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Christopher P Tzeng
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Vasilis C Mavratsas
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Rice University, Houston, United States
| | - Tammy Szu-Yu Ho
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
12
|
Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 2019; 203:107392. [PMID: 31299315 DOI: 10.1016/j.pharmthera.2019.07.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and DA receptors (DR) have been extensively studied in the central nervous system (CNS), but their role in the periphery is still poorly understood. Here we summarize data on DA and DRs in the eye, cardiovascular system and endocrine pancreas, three districts where DA and DA-related drugs have been studied and the expression of DR documented. In the eye, DA modulates ciliary blood flow and aqueous production, which impacts on intraocular pressure and glaucoma. In the cardiovascular system, DA increases blood pressure and heart activity, mostly through a stimulation of adrenoceptors, and induces vasodilatation in the renal circulation, possibly through D1R stimulation. In pancreatic islets, beta cells store DA and co-release it with insulin. D1R is mainly expressed in beta cells, where it stimulates insulin release, while D2R is expressed in both beta and delta cells (in the latter at higher level), where it inhibits, respectively, insulin and somatostatin release. The formation of D2R-somatostatin receptor 5 heteromers (documented in the CNS), might add complexity to the system. DA may exert both direct autocrine effects on beta cells, and indirect paracrine effects through delta cells and somatostatin. Bromocriptine, an FDA approved drug for diabetes, endowed with both D1R (antagonistic) and D2R (agonistic) actions, may exert complex effects, resulting from the integration of direct effects on beta cells and paracrine effects from delta cells. A full comprehension of peripheral DA signaling deserves further studies that may generate innovative therapeutic drugs to manage conditions such as glaucoma, cardiovascular diseases and diabetes.
Collapse
|
13
|
Cortical dendritic spine development and plasticity: insights from in vivo imaging. Curr Opin Neurobiol 2018; 53:76-82. [DOI: 10.1016/j.conb.2018.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/14/2023]
|
14
|
Dopamine Triggers the Maturation of Striatal Spiny Projection Neuron Excitability during a Critical Period. Neuron 2018; 99:540-554.e4. [PMID: 30057204 DOI: 10.1016/j.neuron.2018.06.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 06/29/2018] [Indexed: 01/11/2023]
Abstract
Neural circuits are formed and refined during childhood, including via critical changes in neuronal excitability. Here, we investigated the ontogeny of striatal intrinsic excitability. We found that dopamine neurotransmission increases from the first to the third postnatal week in mice and precedes the reduction in spiny projection neuron (SPN) intrinsic excitability during the fourth postnatal week. In mice developmentally deficient for striatal dopamine, direct pathway D1-SPNs failed to undergo maturation of excitability past P18 and maintained hyperexcitability into adulthood. We found that the absence of D1-SPN maturation was due to altered phosphatidylinositol 4,5-biphosphate dynamics and a consequent lack of normal ontogenetic increases in Kir2 currents. Dopamine replacement corrected these deficits in SPN excitability when provided from birth or during a specific period of juvenile development (P18-P28), but not during adulthood. These results identify a sensitive period of dopamine-dependent striatal maturation, with implications for the pathophysiology and treatment of neurodevelopmental disorders.
Collapse
|
15
|
Taufique ST, Prabhat A, Kumar V. Constant light environment suppresses maturation and reduces complexity of new born neuron processes in the hippocampus and caudal nidopallium of a diurnal corvid: Implication for impairment of the learning and cognitive performance. Neurobiol Learn Mem 2018; 147:120-127. [DOI: 10.1016/j.nlm.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
|
16
|
Role of Nicotinamide N-Methyltransferase in Dorsal Striatum in Cocaine Place Preference. Neuropsychopharmacology 2017; 42:2333-2343. [PMID: 28726800 PMCID: PMC5645739 DOI: 10.1038/npp.2017.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 02/05/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) transfers the methyl from S-adenosyl-L-methionine (SAM) to nicotinamide (NA) to produce S-adenosyl-L-homocysteine (SAH) and 1-methylnicotinamide (MeN). NNMT has been implicated in a variety of diseases; however, the role of NNMT in drug addiction is largely unknown. Here, we found that the expression of Nnmt was significantly upregulated in the dorsal striatum (DS) of cocaine-conditioned mice. Cocaine significantly decreased SAM/SAH ratio levels in the DS, which was accompanied with the decreased activities of Rac1 and RhoA. Lentivirus-mediated knockdown of Nnmt in the dorsomedial striatum (DMS) attenuated cocaine conditioned place preference (CPP) reward, but increased striatal SAM/SAH ratio levels as well as Rac1 and RhoA activities. In addition, pharmacological inhibition of NNMT through intra-DMS infusion of MeN attenuated cocaine CPP and the activities of Rac1 and RhoA, but increased SAM/SAH ratio. These results suggest that NNMT-dependent transmethylation is involved in the activation of Rac1 and RhoA, which utilize SAM as a methyl donor cofactor. Co-immunoprecipitation assay using a RhoGDIα antibody indirectly captured Rac1 or RhoA that were bound to RhoGDIα. The results showed that cocaine increased the association of RhoGDIα with Rac1 or RhoA, whereas such effect was inhibited by Nnmt knockdown. Collectively, our findings show that NNMT regulates cocaine CPP through SAM-mediated modification of Rac1 and RhoA.
Collapse
|
17
|
Nørbak-Emig H, Pinborg LH, Raghava JM, Svarer C, Baaré WFC, Allerup P, Friberg L, Rostrup E, Glenthøj B, Ebdrup BH. Extrastriatal dopamine D 2/3 receptors and cortical grey matter volumes in antipsychotic-naïve schizophrenia patients before and after initial antipsychotic treatment. World J Biol Psychiatry 2017; 18:539-549. [PMID: 27782768 DOI: 10.1080/15622975.2016.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Long-term dopamine D2/3 receptor blockade, common to all antipsychotics, may underlie progressive brain volume changes observed in patients with chronic schizophrenia. In the present study, we examined associations between cortical volume changes and extrastriatal dopamine D2/3 receptor binding potentials (BPND) in first-episode schizophrenia patents at baseline and after antipsychotic treatment. METHODS Twenty-two initially antipsychotic-naïve patients underwent magnetic resonance imaging (MRI), [123I]epidepride single-photon emission computerised tomography (SPECT), and psychopathology assessments before and after 3 months of treatment with either risperidone (N = 13) or zuclopenthixol (N = 9). Twenty healthy controls matched on age, gender and parental socioeconomic status underwent baseline MRI and SPECT. RESULTS Neither extrastriatal D2/3 receptor BPND at baseline, nor blockade at follow-up, was related to regional cortical volume changes. In post-hoc analyses excluding three patients with cannabis use we found that higher D2/3 receptor occupancy was significantly associated with an increase in right frontal grey matter volume. CONCLUSIONS The present data do not support an association between extrastriatal D2/3 receptor blockade and extrastriatal grey matter loss in the early phases of schizophrenia. Although inconclusive, our exclusion of patients tested positive for cannabis use speaks to keeping attention to potential confounding factors in imaging studies.
Collapse
Affiliation(s)
- Henrik Nørbak-Emig
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark.,b Faculty of Health and Medical Sciences, Department of Clinical Medicine , University of Copenhagen , Denmark
| | - Lars H Pinborg
- c Neurobiology Research Unit and Epilepsy Clinic, Rigshospitalet, University of Copenhagen , Denmark
| | - Jayachandra M Raghava
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark.,d Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet - Glostrup , University of Copenhagen , Denmark
| | - Claus Svarer
- c Neurobiology Research Unit and Epilepsy Clinic, Rigshospitalet, University of Copenhagen , Denmark
| | - William F C Baaré
- e Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen , Denmark
| | - Peter Allerup
- f Institute for Education (DPU), Aarhus University , Denmark
| | - Lars Friberg
- g Department of Clinical Physiology and Nuclear Medicine , Bispebjerg Hospital, University of Copenhagen , Denmark
| | - Egill Rostrup
- d Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet - Glostrup , University of Copenhagen , Denmark
| | - Birte Glenthøj
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark.,b Faculty of Health and Medical Sciences, Department of Clinical Medicine , University of Copenhagen , Denmark
| | - Bjørn H Ebdrup
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark
| |
Collapse
|
18
|
Effects of chronic Δ 9-tetrahydrocannabinol treatment on Rho/Rho-kinase signalization pathway in mouse brain. Saudi Pharm J 2017; 25:1078-1081. [PMID: 29158718 PMCID: PMC5681306 DOI: 10.1016/j.jsps.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/10/2017] [Indexed: 11/11/2022] Open
Abstract
Δ9-Tetrahydrocannabinol (Δ9-THC) shows its effects by activating cannabinoid receptors which are on some tissues and neurons. Cannabinoid systems have role on cell proliferation and development of neurons. Furthermore, it is interesting that cannabinoid system and rho/rho-kinase signalization pathway, which have important role on cell development and proliferation, may have role on neuron proliferation and development together. Thus, a study is planned to investigate rhoA and rho-kinase enzyme expressions and their activities in the brain of chronic Δ9-THC treated mice. One group of mice are treated with Δ9-THC once to see effects of acute treatment. Another group of mice are treated with Δ9-THC three times per day for one month. After this period, rhoA and rho-kinase enzyme expressions and their activities in mice brains are analyzed by ELISA method. Chronic administration of Δ9-THC decreased the expression of rhoA while acute treatment has no meaningful effect on it. Administration of Δ9-THC did not affect expression of rho-kinase on both chronic and acute treatment. Administration of Δ9-THC increased rho-kinase activity on both chronic and acute treatment, however, chronic treatment decreased its activity with respect to acute treatment. This study showed that chronic Δ9-THC treatment down-regulated rhoA expression and did not change the expression level of rho-kinase which is downstream effector of rhoA. However, it elevated the rho-kinase activity. Δ9-THC induced down-regulation of rhoA may cause elevation of cypin expression and may have benefit on cypin related diseases. Furthermore, use of rho-kinase inhibitors and Δ9-THC together can be useful on rho-kinase related diseases.
Collapse
|
19
|
Zang J, Liu Y, Li W, Xiao D, Zhang Y, Luo Y, Liang W, Liu F, Wei W. Voluntary exercise increases adult hippocampal neurogenesis by increasing GSK-3β activity in mice. Neuroscience 2017; 354:122-135. [PMID: 28456716 DOI: 10.1016/j.neuroscience.2017.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise has been proven to promote learning and memory, and is closely related to increased adult neurogenesis in the hippocampus. In our study, the β subunit of Glycogen synthase kinase-3 (GSK3β) can be significantly regulated by exercise, and the modulation of GSK3β activity can enhance adult neurogenesis and memory. To explore the mechanism by which exercise can improve cognitive function and adult neurogenesis, and the role GSK3β plays in this process, we established a mouse model of voluntary exercise to examine the expression and activity of GSK3β, and its associated signaling pathways, in the hippocampus dentate gyrus. The results showed an obvious increase in adult neurogenesis and cognitive functions, and the up-regulation of GSK3β, after exercise. The activity of the insulin pathway, which negatively regulates GSK3β, was also increased. Moreover, our results showed that the dopamine D1 receptor (DARP D1) pathway and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were also activated, which indicates a relationship between GSK3β and neurogenesis. Overall, our findings demonstrated that voluntary exercise promotes cognition and neurogenesis in the adult mouse dentate gyrus by the regulation of GSK3β expression and activity, which may be implemented through the DARP D1 receptor-signaling pathway.
Collapse
Affiliation(s)
- Jiankun Zang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Li
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Di Xiao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Yingcheng Zhang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Yuxiang Luo
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Wanying Liang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Fei Liu
- Department of Neurochemistry, Inge-Grundke Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
20
|
Prasad A, Kulkarni R, Jiang S, Groopman JE. Cocaine Enhances DC to T-cell HIV-1 Transmission by Activating DC-SIGN/LARG/LSP1 Complex and Facilitating Infectious Synapse Formation. Sci Rep 2017; 7:40648. [PMID: 28094782 PMCID: PMC5240552 DOI: 10.1038/srep40648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023] Open
Abstract
DC-SIGN is a dendritic cell surface structure which participates in binding and transmission of HIV-1. Here, for the first time we demonstrate that cocaine induces over expression of DC-SIGN and significantly enhances virus transfer from DCs to T-cells by increasing the binding and internalization of HIV-1 in DCs. We found that cocaine activates a DC-SIGN mediated 'signalosome' complex by enhancing its association with LARG and LSP1. Further, LARG was observed to participate in DC-SIGN mediated internalization of HIV-1 in DCs. Intracellular trafficking studies of HIV-1 in cocaine treated DCs revealed increased co-localization of HIV-1 with endosomal or multi vesicular body (MVB) markers such as CD81 and VPS4 and decreased co-localization with the phagolysomal marker LAMP1; this signified altered intracellular trafficking and decreased degradation of HIV-1 in cocaine treated DCs. Furthermore, we found that cocaine induced activation of LARG which in turn activated Rho A and the focal adhesion molecules FAK, Pyk2 and paxillin. This signaling cascade enhanced the formation of an infectious synapse between DCs and T-cells. Our study provides insight into the molecular mechanisms of cocaine's contribution to key components in HIV pathogenesis and highlights novel targets for interrupting the virus life cycle in substance using hosts.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jerome E. Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
21
|
Dcf1 Triggers Dendritic Spine Formation and Facilitates Memory Acquisition. Mol Neurobiol 2017; 55:763-775. [DOI: 10.1007/s12035-016-0349-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022]
|
22
|
Fakira AK, Massaly N, Cohensedgh O, Berman A, Morón JA. Morphine-Associated Contextual Cues Induce Structural Plasticity in Hippocampal CA1 Pyramidal Neurons. Neuropsychopharmacology 2016; 41:2668-78. [PMID: 27170097 PMCID: PMC5026734 DOI: 10.1038/npp.2016.69] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/08/2023]
Abstract
In people with a prior history of opioid misuse, cues associated with previous drug intake can trigger relapse even after years of abstinence. Examining the processes that lead to the formation and maintenance of the memories between cues/context and the opioid may help to discover new therapeutic candidates to treat drug-seeking behavior. The hippocampus is a brain region essential for learning and memory, which has been involved in the mechanisms underlying opioid cravings. The formation of memories and associations are thought to be dependent on synaptic strengthening associated with structural plasticity of dendritic spines. Here, we assess how dendritic spines in the CA1 region of the hippocampus are affected by morphine-conditioning training. Our results show that morphine pairing with environmental cues (ie, the conditioned place preference (CPP) apparatus) triggers a significant decrease in the number of thin dendritic spines in the hippocampus. Interestingly, this effect was observed regardless of the expression of a conditioned response when mice were trained using an unpaired morphine CPP design and was absent when morphine was administered in the home cage. To investigate the mechanism underlying this structural plasticity, we examined the role of Rho GTPase in dendritic spine remodeling. We found that synaptic expression of RhoA increased with morphine conditioning and blocking RhoA signaling prevented the expression of morphine-induced CPP. Our findings uncover novel mechanisms in response to morphine-associated environmental cues and the underlying alterations in spine plasticity.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Nicolas Massaly
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Omid Cohensedgh
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Alexandra Berman
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jose A Morón
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA,Department of Anesthesiology, Washington University School of Medicine, Washington University Pain Center, St Louis, MO 63110, USA, Tel: +1 314 362 0078 or +1 314 362 8565, E-mail:
| |
Collapse
|
23
|
Zhu Y, Xing B, Dang W, Ji Y, Yan P, Li Y, Qiao X, Lai J. AUTS2 in the nucleus accumbens is essential for heroin-induced behavioral sensitization. Neuroscience 2016; 333:35-43. [DOI: 10.1016/j.neuroscience.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 12/01/2022]
|
24
|
Speranza L, Giuliano T, Volpicelli F, De Stefano ME, Lombardi L, Chambery A, Lacivita E, Leopoldo M, Bellenchi GC, di Porzio U, Crispino M, Perrone-Capano C. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Front Behav Neurosci 2015; 9:62. [PMID: 25814944 PMCID: PMC4356071 DOI: 10.3389/fnbeh.2015.00062] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Biology, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Teresa Giuliano
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy ; Department of Pharmacy, University of Naples Federico II Naples, Italy
| | - M Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur Fondazione Cenci Bolognetti, University of Rome La Sapienza Rome, Italy
| | - Loredana Lombardi
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur Fondazione Cenci Bolognetti, University of Rome La Sapienza Rome, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples Naples, Italy ; IRCCS, Multimedica Milano, Italy
| | - Enza Lacivita
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Bari, Italy
| | - Marcello Leopoldo
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Bari, Italy
| | - Gian C Bellenchi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Carla Perrone-Capano
- Department of Biology, University of Naples Federico II Naples, Italy ; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR Naples, Italy
| |
Collapse
|