1
|
Duarte-Silva E, Maes M, Alves Peixoto C. Iron metabolism dysfunction in neuropsychiatric disorders: Implications for therapeutic intervention. Behav Brain Res 2025; 479:115343. [PMID: 39557130 DOI: 10.1016/j.bbr.2024.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Iron is a trace metal that takes part in the maintenance of body homeostasis by, for instance, aiding in energy production and immunity. A body of evidence now demonstrates that dysfunction in iron metabolism can have detrimental effects and is intricately associated with the development of neuropsychiatric disorders, including Major Depressive Disorder (MDD), anxiety, and schizophrenia. For instance, changes in serum and central nervous system (CNS) levels of iron and in proteins mediating iron metabolism have been documented in patients grappling with the aforementioned diseases. By contrast, targeting iron metabolism by using iron chelators, for instance, has proven to be effective in alleviating disease burden. Therefore, here we review the state-of-the-art regarding the role of iron metabolism and its dysfunction in the context of neuropsychiatric disorders. Furthermore, we discuss how targeting iron metabolism can be an effective therapeutic option to tackle this class of diseases. Finally, we discuss the mechanisms linking this dysfunction to behavioral changes in these disorders. Harnessing the knowledge of iron metabolism is not only key to the characterization of novel molecular targets and disease biomarkers but also crucial to drug repurposing and drug design.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Department of Pharmacology, University of São Paulo, São Paulo, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Ribeirão Preto, SP, Brazil.
| | - Michael Maes
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu 611731, China; Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia; Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Li X, Li Y, Xu J, Lu X, Ma S, Sun L, Chang C, Min L, Fan C. Terahertz Wave Desensitizes Ferroptosis by Inhibiting the Binding of Ferric Ions to the Transferrin. ACS NANO 2025; 19:6876-6889. [PMID: 39752147 DOI: 10.1021/acsnano.4c13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe3+ binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis. Here, we reported a nonpharmaceutical, noninvasive, and Tf-targeted electromagnetic intervention technique capable of desensitizing ferroptosis with directivity. First, we revealed that the THz radiation had the ability to significantly decrease binding affinity between the Fe3+ and Tf via molecular dynamics simulations, and the modulation was strongly wavelength-dependent. This result provides theoretical feasibility for the THz modulation-based ferroptosis intervention. Subsequent extracellular and cellular chromogenic activity assays indicated that the THz field at 8.7 μm (i.e., 34.5 THz) inhibited the most Fe3+ bound to the Tf, and the wavelength was in good agreement with the simulated one. Then, functional assays demonstrated that levels of intracellular Fe2+, lipid peroxidation, malondialdehyde (MDA) and cell death were all significantly reduced in cells treated with this 34.5 THz wave. Furthermore, the iron deposition, lipid peroxidation, and MDA in the ferroptosis disease model induced by ischemia-reperfusion injury could be nearly eliminated by the same radiation, validating THz wave-induced desensitization of ferroptosis in vivo. Together, this work provides a preclinical exemplar for electromagnetic irradiation-stimulated desensitization of ferroptosis and predicts an innovative, THz wave-based therapeutic method for ferroptosis-associated diseases in the future.
Collapse
Affiliation(s)
- Xiangji Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
| | - Junxuan Xu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Xinlian Lu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, P. R. China
| | - Shixiang Ma
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing 102206, P. R. China
| | - Lan Sun
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Li Min
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Gu M, Sun L, Yang J, Wang K, Wu F, Zheng L, Shen X, Lai X, Gong L, Peng Y, Xu S, Yang J, Yang C. Ditan Decoction ameliorates vascular dementia-induced cognitive dysfunction through anti-ferroptosis via the HIF1α pathway: Integrating network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119459. [PMID: 39978449 DOI: 10.1016/j.jep.2025.119459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vascular dementia (VaD) represents a frequently seen cognitive dysfunction syndrome and has ranks second among dementia subtypes following Alzheimer's disease. At present, Ditan Decoction (DTD), the traditional Chinese herbal prescription, is clinically applied in treating VaD. However, the material basis of its efficacy and therapeutic mechanism still remain unknown. AIM OF THE STUDY This experiment investigated the protection induced by DTD against VaD and the associated mechanism through network pharmacology, mass spectrometry analysis, and in vivo validation. MATERIALS AND METHODS We induced VaD in a rat model using bilateral common carotid artery ligation method (2-VO) and administered DTD at doses of 2.14, 4.28 and 8.55 g/kg, with Memantine (0.9 mg/kg) being the positive control. Following oral administration with DTD or Memantine for 4 weeks, behavioral tests were used for assessing cognitive function. H&E and Nissl staining was used for evaluating hippocampal pathology. TEM was used to visualize the ultrastructure of the hippocampal tissue. ELISA was carried out for measuring inflammatory factor levels in rat serum, and biochemical assays were employed to assess oxidative stress levels. Ferroptosis in the hippocampus was examined through analyzing corresponding biomarkers and protein expression. Additionally, HPLC-Q-Exactive-MS technology was employed for identifying DTD components, whereas network pharmacology was conducted for predicting DTD's targets for treating VaD. HIF1α expression levels were assessed by Western blotting and immunofluorescence. We also further validated whether the protective effects of DTD on VaD were mediated through the HIF1α-regulated ferroptosis signaling pathway by using an HIF1α inhibitor in rats. RESULTS DTD demonstrated protective effects against 2VO-induced hippocampal injury through alleviating oxidative stress, lowering systemic inflammation, while preventing ferroptosis of hippocampal tissue. As revealed by network pharmacology, DTD probably executes its function in VaD by activating HIF1α pathway. According to immunofluorescence and Western blotting, DTD activated HIF1α within hippocampal tissue. Furthermore, DTD's protection against VaD and ferroptosis was reversed when an HIF1α inhibitor was applied. CONCLUSION These findings suggested that DTD rescued cognitive dysfunction in VaD by inhibiting ferroptosis via activating HIF1α pathway.
Collapse
Affiliation(s)
- Mengyu Gu
- Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Lieqian Sun
- Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Jie Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Kaiyi Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Fan Wu
- Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Li Zheng
- Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Xiangzhong Shen
- Hubei University of Chinese Medicine, Wuhan, 430065, China; Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Xing Lai
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Lili Gong
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Ying Peng
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Shujie Xu
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430022, China.
| |
Collapse
|
4
|
Xu S, Wang Q, Qin Y, Yang Q, Xu Y, Zhou Z. Dl-3-n-butylphthalein inhibits neuronal apoptosis and ferroptosis after cerebral ischemia-reperfusion injury in rats by regulating CXCR4. Neurotoxicol Teratol 2025; 108:107434. [PMID: 39956404 DOI: 10.1016/j.ntt.2025.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
OBJECTIVE To investigate the anti-apoptosis and anti-ferroptosis effects of dl-3-n-butylphthalide (dl-NBP) on cerebral ischemia-reperfusion injury (CIRI) in rats, and the potential involvement of cysteine-X-cysteine chemokine receptor 4 (CXCR4). METHODS The differentially expressed genes between healthy people and stroke patients were screened by GEO database. A transient middle cerebral artery occlusion rat model was used to induce CIRI in vivo. Rats were randomly divided into sham group, tMCAO group, and dl-NBP + tMCAO group. The therapeutic effect of dl-NBP in vivo and its effect on apoptosis and ferroptosis in brain tissues were evaluated. An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to simulate CIRI in cultured PC12 cells, and the effects of dl-NBP on apoptosis and ferroptosis were examined. In this model, CXCR4 expression was assessed by western blotting and its involvement in dl-NBP-mediated protection assessed by inhibition with AMD3100. RESULTS In the stroke-related GSE22255 and GSE66724 datasets, a total of six genes with increased co-expression were found, including CXCR4. Dl-NBP treatment significantly reduced both the volume of cerebral infarction and the degree of cerebral edema, and improved neurological function in rats. dl-NBP reduced the degree of apoptosis and ferroptosis and alleviated CIRI both in vivo and in vitro. The pro-survival effects of dl-NBP were significantly reversed after CXCR4 inhibition with AMD3100. CONCLUSION Dl-NBP has anti-apoptotic and anti-ferroptotic effects on CIRI both in vivo and in vitro, and this effect is mediated by CXCR4.
Collapse
Affiliation(s)
- Sifan Xu
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Qi Wang
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Yu Qin
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Qian Yang
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Yang Xu
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China..
| | - Zhiming Zhou
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China..
| |
Collapse
|
5
|
Zhao Y, Zhao B. Protection of Green Tea Polyphenols against Neurodegenerative Diseases: Evidence and Possible Mechanisms. J Nutr 2025:S0022-3166(25)00092-6. [PMID: 39956389 DOI: 10.1016/j.tjnut.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Aging is a major risk factor for neurodegenerative diseases. With aging of the global population, the prevalence of neurodegenerative diseases, such as Alzheimer disease (AD) and Parkinson disease (PD), has increased worldwide. Unfortunately, the available therapeutic options for these neurodegenerative diseases are limited, most of which only provide symptomatic relief and have potentially serious side effects. Epidemiologic studies have shown that green tea consumption is associated with a lower prevalence of cognitive decline and decreased risk of AD and PD, providing an attractive preventive and therapeutic option. Polyphenols are major bioactive components in green tea, which contribute to the beneficial effects of green tea. Accumulating data suggest that green tea polyphenols (GTPs) have neuroprotective properties that inhibit the pathological development of neurodegenerative diseases; however, the underlying mechanisms are not yet completely understood. This paper reviews both in vitro and in vivo evidence that demonstrates the neuroprotective effects of GTPs against neurodegenerative diseases, with the main focus on AD and PD, and summarizes the possible molecular mechanisms by which GTPs impede the progression of neurodegeneration. In particular, this review highlights the modulation of GTPs on the common mechanisms involved in pathogenesis of neurodegenerative diseases, including oxidative stress-mediated neuronal toxicity, impaired proteostasis, and metal ion dyshomeostasis. The potential of using GTPs in the intervention of neurodegenerative diseases is also discussed, hopefully, providing useful insights into novel preventive and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai, China
| | - Baolu Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Yang Q, Wang C, Cao J, Tang Z, Duan S. AKR1C1 protects against intracerebral hemorrhage by suppressing neuronal cell death via the P53/SLC7A11/GPX4 axis. Brain Res Bull 2025; 222:111254. [PMID: 39938753 DOI: 10.1016/j.brainresbull.2025.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Intracerebral hemorrhage (ICH) is associated with the highest rates of mortality and residual disability. To date, effective treatments to delay or prevent ICH are still lacking. Multiple forms of neuronal cell death have been discovered following ICH, including apoptosis, necrosis, autophagy, and ferroptosis. Aldo-keto reductase family 1 member C1 (AKR1C1) has been identified to act as a protective factor in ferroptosis. However, whether AKR1C1 was involved in the development of ICH was unknown. In this study, the left cerebral striatum of the Sprague-Dawley rat was injected with collagenase type IV to induce an in vivo model. Primary rat cortical neurons treated with oxygen hemoglobin (OxyHb) were applied to as an in vitro model. AKR1C1 was found to be downregulated and immunoreactivity colocalized with NeuN-positive neurons in the perihematomal region. Rats injected with lentiviral particles overexpressing AKR1C1 showed the reduction of cerebral hematoma and the remission of blood-brain barrier disruption. Moreover, AKR1C1 upregulation repressed cell apoptosis and ferroptosis induced by ICH through downregulating the expression of pro-apoptotic factors, inhibiting iron accumulation and lipid peroxidation, along with increasing the expression of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4). The results of in vitro assays were consistent with results from the in vivo. Mechanistically, P53 overexpression augmented the cellular damage in OxyHb-stimulated neurons when AKR1C1 was overexpressed. Taken together, AKR1C1 improves ICH injury by inhibiting neuronal cell death via negatively regulating P53 expression and affecting the SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Qiyu Yang
- Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China; Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Chunyan Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Jingwei Cao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Zhanbin Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Shurong Duan
- Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China; Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China.
| |
Collapse
|
7
|
Liu Q, Han Z, Li T, Meng J, Zhu C, Wang J, Wang J, Zhang Z, Wu H. Microglial HO-1 aggravates neuronal ferroptosis via regulating iron metabolism and inflammation in the early stage after intracerebral hemorrhage. Int Immunopharmacol 2025; 147:113942. [PMID: 39740507 DOI: 10.1016/j.intimp.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Heme oxygenase 1 (HO-1), an enzyme involved in heme catabolism, has been shown upregulated in microglia cells and plays a critical roles in neurological damages after intracerebral hemorrhage (ICH). However, the mechanisms by which HO-1 mediates the neuronal damages are still obscure. Here, our findings demonstrate that HO-1 over-expression exacerbates the pro-inflammatory response of microglia and induces neuronal ferroptosis through promoting intracellular iron deposition in the ICH model both in vitro and in vivo. Furthermore, in the co-cultured ICH model in vitro, we verify that HO-1 over-expression disrupts the balance of iron metabolism in microglia, which increases the iron efflux to the extracellular space and promotes iron ion uptake in neurons, leading to lipid peroxidation injury and further contributing to neuronal ferroptosis. Moreover, the specific ferroptosis inhibitor Ferrostatin-1 (Fer-1) treatment could mitigate the damages in the co-cultured HT22 cells that caused by HO-1 over-expression in microglia, and improve the neurological function in the ICH model in mice. By shedding light on the mechanisms of aggravating neuronal ferroptosis due to HO-1 overexpression in the early stages after ICH, our study provides insights into the potential therapy of targeting HO-1 to treat ICH.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ziyi Han
- College of Medical Laboratory Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jincheng Meng
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenwei Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Zhen Zhang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - He Wu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
8
|
Zhang X, Li H, Zhao Y, Zhao T, Wang Z, Tang Q. Neuronal Injury after Ischemic Stroke: Mechanisms of Crosstalk Involving Necroptosis. J Mol Neurosci 2025; 75:15. [PMID: 39903429 DOI: 10.1007/s12031-025-02313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide, largely due to its increasing incidence associated with an aging population. This condition results from arterial obstruction, significantly affecting patients' quality of life and imposing a substantial economic burden on healthcare systems. While current treatments primarily focus on the rapid restoration of blood flow through thrombolytic therapy or surgical interventions, a limited understanding of neuronal injury mechanisms hampers the development of more effective treatments.This article explores the interplay among various cell death pathways-necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis-in the context of ischemic stroke to identify novel therapeutic targets. Each mode of cell death displays unique characteristics and roles post-stroke, and the activation of these pathways may vary across different animal models, complicating the translation of therapeutic strategies to clinical settings. Notably, the interaction between apoptosis and necroptosis is highlighted; inhibiting apoptosis might heighten the risk of necroptosis. Therefore, a balanced regulation of these pathways could promote enhanced neuronal survival.Additionally, we introduce PANoptosis, a form of cell death that encompasses pyroptosis, apoptosis, and necroptosis, emphasizing the complexity and potential therapeutic implications of these interactions. In summary, understanding the relationships among these cell death mechanisms in ischemic stroke is vital for developing new neuroprotective agents. Future research should aim for combinatorial interventions targeting multiple pathways to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Xuanning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yaowei Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Tingting Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Zhihao Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
9
|
Fu Y, Huang G, Cai Y, Ren M, Cheng R, Chai Y, Wang Y, An Y, Yan T, Zhu L, Liu X. Integrated network pharmacology, bioinformatics, and experiment analysis to decipher the molecular mechanism of Salidroside on Gastric cancer via targeting NCOA4-mediated ferritinophagy. Chem Biol Interact 2025; 407:111368. [PMID: 39746501 DOI: 10.1016/j.cbi.2024.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
Gastric cancer (GC) is a highly aggressive and heterogeneous malignancy. The process of ferroptosis regulates tumor growth and represents a promising therapeutic target for GCs. Despite Salidroside (Sal) being able to regulate ferroptosis in a variety of diseases, there are still limited reports on its therapeutic effects and potential targets in treating GC. This study aimed to investigate the potential mechanism of Sal-induced ferroptosis in GC. Our analysis, integrating databases like PharmMapper, Swiss Target Prediction, TargetNet, GeneCards, TTD, OMIM, STRING, and DAVID. Human gastric cancer MGC803 cells and tumor-bearing mice were used to evaluate the anti-tumor effect of Sal on GC in vitro and in vivo. CCK-8, LDH, and Calcein-AM/PI were used to assess cell viability and damage. FerroOrange, Lillie's Ferrous Iron Stain, MDA, ROS, BODIPY™ 581/591C11, GSH, and GPxs were used to detect intracellular Fe2+ concentration, lipid peroxidation level, and antioxidant defense system. qRT-PCR and Western blot were performed to explore relevant mechanism studies. Network pharmacology results showed that Sal shares 322 targets with GC, which have biological functions related to lipid metabolism, cell death, and lipid peroxidation. Experiments further confirmed that Sal inhibits MGC803 cells by inducing ferroptosis, as evidenced by the induction of elevated Fe2+ and increased lipid peroxidation. Fer-1, an inhibitor of ferroptosis, reversed the anti-GC effect of Sal in MGC803 cells and GC tumor-bearing mice. Further confirmation of the association between Sal and ferroptosis in GC. Subsequently, bioinformatics and machine learning algorithms identified nuclear receptor coactivator 4 (NCOA4) as a candidate signature gene associated with ferroptosis in GC, and molecular docking shows that NCOA4 binds Sal. We then performed in vivo and in vitro experiments to elucidate that Sal targeting NCOA4, a cargo receptor mediating ferritinophagy, mediates autophagic degradation of ferritin heavy chain 1 (FTH1, Fe2+ storage protein), which further increases Fe2+ and lipid peroxidation. In addition, Sal induces mitochondrial dysfunction and increases mitochondrial ROS levels, which activates autophagy and triggers autophagic degradation of FTH1. Taken together, we revealed that NCOA4 is a new target for Sal-anchored GC and that Sal may be a potential therapeutic drug for the treatment of GC.
Collapse
Affiliation(s)
- Yu Fu
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China
| | - Guiqin Huang
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China
| | - Yawen Cai
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China
| | - Menghui Ren
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China
| | - Run Cheng
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China
| | - Yuhui Chai
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China
| | - Yingdi Wang
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China
| | - Yunqi An
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, United States
| | - Tianhua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, Jiangsu, China.
| | - Lingpeng Zhu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Xinxin Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, General Surgery Department, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Liu F, Chen Y, Huang K. Electro-acupuncture Suppresses Ferroptosis to Alleviate Cerebral Ischemia-Reperfusion Injury Through KAT3B-Mediated Succinylation of ACSL4. Appl Biochem Biotechnol 2025; 197:989-1001. [PMID: 39340629 DOI: 10.1007/s12010-024-05063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Electro-acupuncture (EA) is identified as an effective therapeutic method for cerebral ischemia/reperfusion injury (CIRI), which is a combination of Chinese traditional acupuncture and modern electro-therapy. However, the downstream molecular mechanisms of EA in CIRI process remains largely unknown. The purpose of the present study is to unveil the therapeutic effect of EA on CIRI rat and its regulatory mechanisms. At first, we constructed middle cerebral artery occlusion (MCAO) rat models and then treated them with EA to observe the pathological changes. The results indicated that EA decreased the infarct volume (43.81 ± 3.34 vs 15.96 ± 2.22) and the neurological scores (3.33 ± 0.52 vs 1.67 ± 0.52) and suppressed the apoptosis in MCAO model rats. For ferroptosis analysis, EA decreased the Fe2 + (0.08 ± 0.01 vs 0.06 ± 0.01), MDA (36.61 ± 4.29 vs 21.72 ± 2.79), and LPS (5.25 ± 0.69 vs 2.89 ± 0.42) contents and increased the GSH (4.94 ± 1.04 vs 11.69 ± 1.88) content in MCAO model rats. We next detected whether succinylation mediated EA-treated I/R injury. According to immunoprecipitation and western blot analysis, EA treatment could lower both levels of succinylation and KAT3B in MCAO rats. Moreover, mechanism experiments unveiled that KAT3B promoted the succinylation of the ferroptosis-related protein ACSL4 at K661 site and thus stabilizing ACSL4. Finally, EA-treated MCAO rats were further injected with KAT3B expression vector. The results showed that KAT3B overexpression increased the infarct volume (31.44 ± 3.92 vs 7.94 ± 2.84) and the neurological scores (2.67 ± 0.51 vs 1.33 ± 0.51) and promoted the apoptosis in EA treated MCAO model rats. For ferroptosis analysis, KAT3B overexpression increased the Fe2 + (0.08 ± 0.01 vs 0.05 ± 0.01), MDA (29.24 ± 4.30 vs 22.06 ± 1.89), and LPO (5.07 ± 0.45 vs 2.88 ± 0.49) contents and decreased the GSH (7.86 ± 1.09 vs 11.06 ± 1.76) content in EA treated MCAO model rats. Collectively, our study demonstrates that EA plays a therapeutic role in CIRI through suppressing KAT3B-induced stabilization of ACSL4 to inhibit ferroptosis. These findings contribute to our understanding of the molecular mechanisms underlying the neuroprotective effects of EA and open new avenues for the development of innovative therapeutic strategies for CIRI.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Chen
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Kangbai Huang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
11
|
Liu L, Jia P, Liu T, Liang J, Dang Y, Rastegar-Kashkooli Y, Li Q, Liu J, Man J, Zhao T, Xing N, Wang F, Chen X, Zhang J, Jiang C, Zille M, Zhang Z, Fan X, Wang J, Wang J. Metabolic dysfunction contributes to mood disorders after traumatic brain injury. Ageing Res Rev 2025; 104:102652. [PMID: 39746403 DOI: 10.1016/j.arr.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Traumatic brain injury (TBI) presents significant risks concerning mortality and morbidity. Individuals who suffer from TBI may exhibit mood disorders, including anxiety and depression. Both preclinical and clinical research have established correlations between TBI and disturbances in the metabolism of amino acids, lipids, iron, zinc, and copper, which are implicated in the emergence of mood disorders post-TBI. The purpose of this review is to elucidate the impact of metabolic dysfunction on mood disorders following TBI and to explore potential strategies for mitigating anxiety and depression symptoms. We researched the PubMed and Web of Science databases to delineate the mechanisms by which metabolic dysfunction contributes to mood disorders in the context of TBI. Particular emphasis was placed on the roles of glutamate, kynurenine, lipids, iron, zinc, and copper metabolism. Metabolic dysfunction is linked to mood disorders post-TBI through multiple pathways, encompassing the glutamatergic system, the kynurenine pathway, endocannabinoids, iron deposition, iron-related ferroptosis, zinc deficiency, and copper dysregulation. Furthermore, this review addresses the influence of metabolic dysfunction on mood disorders in the elderly demographic following TBI. Targeting metabolic dysfunction for therapeutic intervention appears promising in alleviating symptoms of anxiety and depression that arise after TBI. While further investigation is warranted to delineate the underlying pathophysiologic mechanisms of mood disorders post-TBI, current evidence underscores the potential contribution of metabolic dysfunction to these conditions. Therefore, rectifying metabolic dysfunction represents a viable and strategic approach to addressing mood disorders following TBI.
Collapse
Affiliation(s)
- Lang Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Tongzhou Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiaxin Liang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yijia Dang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Qiang Li
- Department of Neurology, Shanghai Gongli Hospital of Pudong New Area, Shanghai 200135, China.
| | - Jingqi Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiang Man
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Ting Zhao
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan 610060, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiewen Zhang
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Chao Jiang
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria.
| | - Zhenhua Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
12
|
Chen T, Zhang B, Zhang X, Tang L, Wang C. Electroacupuncture improves postoperative cognitive dysfunction by inhibiting ferroptosis via the TFR1-DMT1-FPN pathway. Acupunct Med 2025:9645284241302816. [PMID: 39754452 DOI: 10.1177/09645284241302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
OBJECTIVE The aim of this study was to investigate the role of ferroptosis in the occurrence of postoperative cognitive dysfunction (POCD) using a mouse model and to elucidate whether electroacupuncture (EA) can improve POCD by suppressing ferroptosis via the transferrin receptor 1 (TFR1)-divalent metal transporter 1 (DMT1)-ferroportin (FPN) pathway. METHODS The experiment involved three groups: the control group, the POCD group and the POCD + EA group. The POCD animal model was established using sevoflurane anesthesia and tibial fracture. Cognitive and behavioral changes in mice were assessed using the novel object recognition test (NORT) and the Morris water maze (MWM) test, 1 and 3 days after surgery. Transmission electron microscopy was performed to observe changes in the mitochondrial structure of hippocampal tissue. Enzyme-linked immunosorbent assay was conducted to determine the levels of glutathione (GSH) and iron ion (Fe) concentrations. Western blot analysis was used to measure the expression of TFR1, DMT1 and iron pump protein. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to detect the mRNA levels of DMT1 and FPN. RESULTS Based on the experimental results of the MWM test and the NORT, we found that EA can improve POCD in mice. Observation by projection electron microscopy showed that EA improved the mitochondrial structure in the hippocampus. The enzyme-linked immunosorbent assay (ELISA) results showed that EA suppressed ferroptosis in the hippocampal area. The qRT-PCR and Western blot results suggested that EA suppresses ferroptosis by regulating the TFR1-DMT1-FPN pathway. CONCLUSION This study reveals that sevoflurane and tibial fractures cause cognitive damage through the mechanism of ferroptosis, while EA may inhibit ferroptosis through the TFR1-DMT1-FPN pathway and improve POCD when induced in this way.
Collapse
Affiliation(s)
- Tianren Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Binsen Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojia Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Lu Tang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunai Wang
- Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
13
|
Zhou C, Lian F, Li H, Deng F. tsRNA-5006c regulates hippocampal neurons ferroptosis to ameliorate perioperative neurocognitive disorders in aged male mice. 3 Biotech 2025; 15:16. [PMID: 39711920 PMCID: PMC11655729 DOI: 10.1007/s13205-024-04176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The aim of this research is to investigate whether ferroptosis occurs in the pathogenesis of perioperative neurocognitive disorders (PND), and to explore the function and underlying molecular mechanism of tsRNA in the regulation of ferroptosis in PND. A PND aged mice model was established and behavioral changes and ferroptosis occurrence were confirmed. The effect of ferroptosis inhibitor ferrostatin-1 (Fer-1) on PND mice was detected. tsRNA expression profile in PND mice and the effect of tsRNA on ferroptosis in vitro were perfomed. We found that anxious exploration behavior and short-term working memory was declined in PND mice compared with control mice, and the levels of S100β and IL-6 were increased. Meanwhile, hippocampal neurons of PND mice were damaged and accompanied by ferroptosis. Fer-1 can improve cognitive impairment in PND mice, as reflected by improved anxious exploration behavior and short-term working memory, and the levels of S100β and IL-6 were decreased. The expression profile of tsRNA in PND mice is disordered, and the dysregulated tsRNAs were mainly enriched in biologic functions related to neuronal development and ferroptosis. The tsRNA-5006c, identified as a pivotal player, significantly suppressed ferroptosis in primary mice neurons. This study shows for the first time that the pathophysiological process of PND is accompanied by ferroptosis of neurons, and reveals that tsRNA-5006c regulates ferroptosis of hippocampal neurons to ameliorate PND, which is of great significance for the development of new treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04176-3.
Collapse
Affiliation(s)
- Chuanlin Zhou
- Queen Mary School, Nanchang University, Nanchang, 330006 Jiangxi China
| | - Fang Lian
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Hejian Li
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Fumou Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| |
Collapse
|
14
|
Carrazana E, Salvadores N. Therapeutic implications of necroptosis activation in Alzheimer´s disease. Alzheimers Res Ther 2024; 16:275. [PMID: 39726013 DOI: 10.1186/s13195-024-01649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
In recent years, a growing body of research has unveiled the involvement of the necroptosis pathway in the pathogenesis of Alzheimer's disease (AD). This evidence has shed light on the mechanisms underlying neuronal death in AD, positioning necroptosis at the forefront as a potential target for therapeutic intervention. This review provides an update on the current knowledge on this emerging, yet rapidly advancing topic, encompassing all published studies that present supporting proof of the role of the necroptosis pathway in the neurodegenerative processes of AD. The implication of misfolded tau and amyloid-β (Aβ) aggregates is highlighted, with evidence suggesting their direct or indirect involvement in necroptosis activation. In summary, the review underscores the significance of understanding the complex interplay between necroptosis, protein aggregates, and neurodegeneration in AD. The findings advocate for a comprehensive approach, combining therapeutic and early diagnostic strategies, to intervene in the disease process before irreversible damage occurs.
Collapse
Affiliation(s)
- Elizabeth Carrazana
- Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile
| | - Natalia Salvadores
- Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile.
| |
Collapse
|
15
|
Zhu Y, Cao C, Li Z, Xu Z, Qian S, Zhang J, Li M, Hu X, Zhang A, Du N, Pan X, Wang X, Sun Y, Wang J, Huang Y. ASIC1a regulates ferroptosis in hepatic stellate cells via the Hippo/Yap-1 pathway in liver fibrosis. Int Immunopharmacol 2024; 143:113226. [PMID: 39353388 DOI: 10.1016/j.intimp.2024.113226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Liver fibrosis is a sustained process of liver tissue damage and repair caused by various physiological and pathological factors, with the activation and proliferation of hepatic stellate cells being central. Therefore, understanding and clarifying the relevant mechanisms of hepatic stellate cell activation and death is of great clinical significance for the treatment of liver fibrosis diseases. METHODS In vivo, recombinant adeno-associated virus was used to infect the liver of experimental mice, overexpressing ASIC1a, and based on this, a liver fibrosis model treated with sorafenib was constructed. In vitro, using RNA plasmid technology to transfect HSC-T6 cells, ASIC1a was overexpressed or silenced in the cells, and on this basis, PDGF-BB and Sorafenib were used to stimulate HSC-T6 cells, causing activated HSC-T6 to undergo ferroptosis. RESULTS The ferroptosis inducers Sorafenib and erastin can induce ferroptosis in HSCs, effectively inhibiting or reversing the progression of liver fibrosis. We found that the expression level of ASIC1a was significantly reduced in the livers of mice with liver fibrosis treated with Sorafenib. After treatment with an adeno-associated virus overexpressing ASIC1a, the therapeutic effect of Sorafenib was inhibited, and the level of ferroptosis induced by Sorafenib was also inhibited. The induction of ferroptosis in hepatic stellate cells in vitro depends on the presence of ASIC1a. By further exploring the potential mechanism, we observed that the overexpression of ASIC1a can promote an increase in YAP nuclear translocation, thereby regulating the activity of Hippo/YAP pathway signaling. After treatment with Sorafenib, the influx of Ca2+ significantly increased when ASIC1a was overexpressed, and BAPTA-AM intervention eliminated the intracellular Ca2+ accumulation induced by ASIC1a overexpression. CONCLUSIONS This indicated that the activation of YAP depends on the calcium ion influx induced by ASIC1a, which regulates ferroptosis in hepatic stellate cells by regulating the calcium ion-dependent Hippo/YAP pathway.
Collapse
Affiliation(s)
- Yueqin Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Chun Cao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zihao Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhou Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shishun Qian
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Mengxue Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Du
- Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Xuesheng Pan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinchen Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Yancai Sun
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Office of Drug Clinical Trial Institutions, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
17
|
Carlos A, Mendes M, Cruz MT, Pais A, Vitorino C. Ferroptosis driven by nanoparticles for tackling glioblastoma. Cancer Lett 2024; 611:217392. [PMID: 39681210 DOI: 10.1016/j.canlet.2024.217392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and drug-resistant brain tumor. There are no effective treatment options for GBM, which usually leads to relapses that cause patients to die a few months later. Ferroptosis, a newly discovered mechanism of regulated cell death, has been identified as a tumor suppressor in solid tumors and represents an alternative to apoptosis resistance. This mechanism of cell death is characterized by iron overload, which is responsible for generating reactive oxygen species (ROS) in the cell. Understanding the ferroptosis pathway and its key regulators can be used to develop rational delivery systems that specifically target these regulators in GBM cells and promote cell death. This review conducted a systematic literature search to better understand the potential of ferroptosis as a target for developing nanoparticles to tackle GBM. The mechanisms of action, design parameters, efficacy, and safety concerns of 16 nanoparticles were evaluated, demonstrating the potential of combining ferroptosis inducers with nanocarriers to promote a selective delivery to the tumor microenvironment.
Collapse
Affiliation(s)
- Ana Carlos
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neurosciences and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
18
|
Ma S, Xie F, Wen X, Adzavon YM, Zhao R, Zhao J, Li H, Li Y, Liu J, Liu C, Yi Y, Zhao P, Wang B, Zhao W, Ma X. GSTA1/CTNNB1 axis facilitates sorafenib resistance via suppressing ferroptosis in hepatocellular carcinoma. Pharmacol Res 2024; 210:107490. [PMID: 39510148 DOI: 10.1016/j.phrs.2024.107490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The emergence of sorafenib resistance has become a predominant impediment and formidable dilemma in the therapeutic approach for hepatocellular carcinoma (HCC). Although the approval of next-generation drugs as alternatives to sorafenib is a significant development, the concurrent use of inhibitors that target additional key molecular pathways remains an effective strategy to mitigate the acquisition of resistance. Here, we identified Glutathione S-Transferase Alpha 1 (GSTA1) as a critical modulator of sorafenib resistance (SR) in hepatocellular carcinoma (HCC) based on our findings from experiments conducted on recurrent liver cancer tissues, xenograft mouse models, organoids, and sorafenib-resistant cells. Elevated GSTA1 levels are strongly associated with adverse clinical prognoses. The knockout of GSTA1 reinstates sorafenib sensitivity, whereas its overexpression attenuates drug efficacy. Mechanistically, GSTA1 enhances the accumulation of lipid peroxides and suppresses ferroptosis by exerting its peroxidase function to regulate the SR. Notably, the upregulation of GSTA1 expression is mediated by the transcription factor CTNNB1 (β-catenin), resulting in the formation of a cytoplasmic complex between GSTA1 and CTNNB1. This complex facilitates the nuclear translocation of CTNNB1, establishing a positive feedback loop. The combined use of GSTA1 and CTNNB1 inhibitors demonstrated synergistic anti-tumour effects through the induction of ferroptosis both in vitro and in vivo. Our findings reveal a novel regulatory role of the GSTA1/CTNNB1 axis in ferroptosis, suggesting that targeting GSTA1 and CTNNB1 could be a promising strategy to circumvent sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shiwen Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China; Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Xie
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xiaohu Wen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China; Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yao Mawulikplimi Adzavon
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ruping Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jinyi Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Han Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yanqi Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chen Liu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yang Yi
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| |
Collapse
|
19
|
Qian S, Long Y, Tan G, Li X, Xiang B, Tao Y, Xie Z, Zhang X. Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e70024. [PMID: 39619229 PMCID: PMC11604731 DOI: 10.1002/mco2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Programmed cell death represents a precisely regulated and active cellular demise, governed by a complex network of specific genes and proteins. The identification of multiple forms of programmed cell death has significantly advanced the understanding of its intricate mechanisms, as demonstrated in recent studies. A thorough grasp of these processes is essential across various biological disciplines and in the study of diseases. Nonetheless, despite notable progress, the exploration of the relationship between programmed cell death and disease, as well as its clinical application, are still in a nascent stage. Therefore, further exploration of programmed cell death and the development of corresponding therapeutic methods and strategies holds substantial potential. Our review provides a detailed examination of the primary mechanisms behind apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Following this, the discussion delves into biological functions and diseases associated dysregulated programmed cell death. Finally, we highlight existing and potential therapeutic targets and strategies focused on cancers and neurodegenerative diseases. This review aims to summarize the latest insights on programmed cell death from mechanisms to diseases and provides a more reliable approach for clinical transformation.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Long
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Guolin Tan
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine, Shanghai Key LabShanghaiChina
| | - Bo Xiang
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Furong LaboratoryCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
20
|
Dai S, Xu Y, Yang T, Wang F, Jiang Y. Identification and Correlation Analysis of Ferroptosis-Related Genes in Three Brain Regions of Patients with Schizophrenia. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:800-809. [PMID: 39665607 PMCID: PMC11636541 DOI: 10.62641/aep.v52i6.1740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
BACKGROUND Schizophrenia (SZ) is a severe mental disorder that is marked by hallucinations and cognitive impairments. Ferroptosis is a type of cell death that is associated with iron and lipid peroxidation; it may play a role in SZ etiology. The present study aimed to explore the correlations between ferroptosis-related genes and SZ in three brain regions. METHODS We used the Gene Expression Omnibus dataset GSE80655 to analyze brain samples from SZ patients and controls; specifically, we evaluated the anterior cingulate cortex (Ancg), dorsolateral prefrontal cortex (DLPFC), and nucleus accumbens (nAcc). The data were preprocessed in R, and ferroptosis-related differentially expressed genes (DEGs) were identified. Pearson correlation analysis was then performed to assess correlations between these DEGs and age at death, postmortem interval, or brain pH. To identify important ferroptosis-related genes, we created a protein-protein interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and visualized it using Cytoscape software. Moreover, the pROC package was used to calculate the area under the receiver operating characteristic curves for these important genes. Finally, gene set variation analysis was used for the pathway enrichment analysis of ferroptosis-related pathways, followed by the Wilcoxon rank-sum test. RESULTS Nine ferroptosis-related DEGs were upregulated in the Ancg region and one was downregulated in the nAcc region. In the Ancg region, the SZ group had four ferroptosis-related DEGs that were negatively correlated with postmortem interval, and the control group had five ferroptosis-related DEGs that were negatively correlated with brain pH. The protein-protein interaction network analysis of the Ancg region revealed seven significant interacting genes; tissue inhibitor of metalloproteinases 1 (TIMP1) and galectin 3 (LGALS3) were the hub genes. Gene set variation analysis revealed substantial changes in the glycolysis pathway in the Ancg region, and in the glutamate transmembrane transport pathway and unsaturated fatty acid biosynthesis process pathway in the nAcc region, in SZ patients compared with controls. CONCLUSIONS The correlation between ferroptosis and SZ appears to be stronger in the Ancg than in the nAcc or dorsolateral prefrontal cortex. This association may be mediated by TIMP1 and LGALS3 as well as by the glycolysis pathway, indicating that these might be possible biomarkers for SZ.
Collapse
Affiliation(s)
- Shiqin Dai
- Prevention and Treatment Department, Shanghai Minhang District Mental Health Center, 201112 Shanghai, China
| | - Yong Xu
- School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Tingting Yang
- General Office, Shanghai Clinical Laboratory Center, 200126 Shanghai, China
| | - Feng Wang
- Prevention and Treatment Department, Shanghai Minhang District Mental Health Center, 201112 Shanghai, China
| | - Yihua Jiang
- Prevention and Treatment Department, Shanghai Minhang District Mental Health Center, 201112 Shanghai, China
| |
Collapse
|
21
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
22
|
He C, Zeng Z, Yang Y, Ye S, Wu Q, Liu X, Liu C, Zeng W, Liu S. Silencing of CircTRIM25/miR-138-5p/CREB1 axis promotes chondrogenesis in osteoarthritis. Autoimmunity 2024; 57:2361749. [PMID: 39007896 DOI: 10.1080/08916934.2024.2361749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Dysregulated circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. OBJECTIVE We aimed to explore the effect of hsa_circ_0044719 (circTRIM25) on the ferroptosis of chondrocytes. METHODS Chondrocytes were treated with interleukin (IL)-1β to generate cell model. Cellular behaviours were measured using cell counting kit-8, enzyme-linked immunosorbent assay, relevant kits, propidium iodide staining, and immunofluorescence assay. Quantitative real-time polymerase chain reaction was performed to examine the expression of circTRIM25, miR-138-5p, and cAMP responsive element binding protein 1 (CREB1), and their interactions were assessed using luciferase reporter analysis and RNA pull-down assay. RESULTS CircTRIM25 was upregulated in OA tissues and IL-1β-stimulated chondrocytes. Knockdown of circTRIM25 facilitated the viability and suppressed ferroptosis and inflammation of IL-1β-induced cells. CircTRIM25 served as a sponge of miR-138-5p, which directly targets CREB1. Downregulation of miR-138-5p abrogated the effect induced by knockdown of circTRIM25. Furthermore, enforced CREB1 reversed the miR-138-5p induced effect. Moreover, knockdown of circTRIM25 attenuated cartilage injury in vivo. CONCLUSION Silencing of circTRIM25 inhibited ferroptosis of chondrocytes via the miR-138-5p/CREB axis and thus attenuated OA progression.
Collapse
Affiliation(s)
- Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Yadong Yang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shanshan Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wu
- Gannan Medical University, Ganzhou, China
| | - Xunzhi Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chenghong Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wanhui Zeng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Alldred MJ, Ibrahim KW, Pidikiti H, Chiosis G, Mufson EJ, Stutzmann GE, Ginsberg SD. Down syndrome frontal cortex layer III and layer V pyramidal neurons exhibit lamina specific degeneration in aged individuals. Acta Neuropathol Commun 2024; 12:182. [PMID: 39605035 PMCID: PMC11603868 DOI: 10.1186/s40478-024-01891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Selective vulnerability of neuronal populations occurs in both Down syndrome (DS) and Alzheimer's disease (AD), resulting in disproportional degeneration of pyramidal neurons (PNs) affecting memory and executive function. Elucidating the cellular mechanisms underlying the selective vulnerability of these populations will provide pivotal insights for disease progression in DS and AD. Single population RNA-sequencing analysis was performed on neurons critical for executive function, prefrontal cortex Brodmann area 9 (BA9) layer III (L3) and layer V (L5) excitatory PNs in postmortem human DS and age- and sex-matched control (CTR) brains. Data mining was performed on differentially expressed genes (DEGs) from PNs in each lamina with DEGs divergent between lamina identified and interrogated. Bioinformatic inquiry of L3 PNs revealed more unique/differentially expressed DEGs (uDEGs) than in L5 PNs in DS compared to CTR subjects, indicating gene dysregulation shows both spatial and cortical laminar projection neuron dependent dysregulation. DS triplicated human chromosome 21 (HSA21) comprised a subset of DEGs only dysregulated in L3 or L5 neurons, demonstrating partial cellular specificity in HSA21 expression. These HSA21 uDEGs had a disproportionally high number of noncoding RNAs, suggesting lamina specific dysfunctional gene regulation. L3 uDEGs revealed overall more dysregulation of cellular pathways and processes, many relevant to early AD pathogenesis, while L5 revealed processes suggestive of frank AD pathology. These findings indicate that trisomy differentially affects a subpopulation of uDEGs in L3 and L5 BA9 projection neurons in aged individuals with DS, which may inform circuit specific pathogenesis underlying DS and AD.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyrillos W Ibrahim
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Li C, Wang X, Zhu X, Liu J, Ye Y. A novel NIR fluorescent probe to image HNO during ferroptosis. Anal Chim Acta 2024; 1330:343265. [PMID: 39489948 DOI: 10.1016/j.aca.2024.343265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND As an important reactive nitrogen species (RNS), HNO has been identified as an essential signaling molecule in many physiological processes. Ferroptosis produces a large amount of reactive oxygen species and reactive nitrogen species. However, the detailed mechanism of HNO during process of ferroptosis is rarely reported, especially in the near-infrared range. So, we designed a new near-infrared (NIR) HNO fluorescent probe X-1 based on a tricyanofuran (TCF) derivative and then applied it in ferroptosis imaging. The TCF derivative was chosen as the NIR fluorophore and 2-(diphenylphosphino)benzoate was used as the recognition group. RESULTS In this paper, a novel NIR HNO fluorescent probe X-1 based on tricyanofuran (TCF) derivatives was synthesized using the Staudinger linkage reaction. X-1 exhibited high selectivity for HNO in the near-infrared region (λem = 660 nm). When the recognition group undergoes the Staudinger linkage reaction with HNO, the NIR fluorescence emission increased significantly with the enhancement of the ICT effect. The response mechanism of X-1 to HNO was verified by high-resolution mass spectrometry (HRMS). Probe X-1 has the advantages of fast response (5 min), low detection limit, a large Stokes shift (120 nm) and strong anti-interference ability for HNO recognition. CCK-8 staining result indicates that the probe X-1 has good biocompatibility and little toxic effect on the cells. The probe was successfully applied to imaging the exogenous and endogenous HNO in living cells. SIGNIFICANCE In the near-infrared range, HNO was discovered as a mediator of cellular signaling molecules, increasing in concentration during the process of ferroptosis. Furthermore, using this probe, it was further verified that sorafenib, a commonly used drug for cancer treatment, exerts its therapeutic effect by inducing ferroptosis in cancer cells, leading to cell death.
Collapse
Affiliation(s)
- Changyi Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaokai Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofei Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianfei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Zhou Z, Yu Y, Miao J, Wang G, Wang Y, Wang T, Ji H, Tan L. Research Progress of Traditional Chinese Medicine in Treating Central Nervous System Diseases by Modulating Ferroptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1989-2019. [PMID: 39558555 DOI: 10.1142/s0192415x24500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
A newly proposed form of programmed cell death, ferroptosis, is distinct in cellular morphology, biochemical characteristics, and genetic characteristics from apoptosis, autophagy, and necrosis. Its mechanisms primarily encompass iron overload, lipid peroxidation, and amino acid metabolisms. Extensive research confirms that ferroptosis is linked to the onset and progression of various diseases that pose a threat to the central nervous system (CNS), offering new directions and targets for the mechanistic study and pharmacotherapy of CNS diseases. Traditional Chinese Medicine (TCM), encompassing herbal medicines (extracts, compound formulations, injections, etc.), acupuncture, and moxibustion, boasts advantages over other treatments, such as multi-pathway and multi-target approaches and high safety. TCM has also demonstrated good efficacy in treating CNS diseases. Numerous studies indicate that TCM can modulate ferroptosis to treat CNS diseases, showing promising research prospects. This paper briefly outlines the pathways and mechanisms of ferroptosis and systematically summarizes the current status and progress of TCM in regulating various CNS diseases through the ferroptosis pathway, providing new insights and directions for future TCM treatments of CNS diseases.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yajun Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jingchao Miao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Guan Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yixi Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Tianlin Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hongchang Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Lijun Tan
- Tianjin First Hospital, Tianjin, P. R. China
| |
Collapse
|
26
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
27
|
Tao J, Li J, Fan X, Jiang C, Wang Y, Qin M, Nikfard Z, Nikfard F, Wang Y, Zhao T, Xing N, Zille M, Wang J, Zhang J, Chen X, Wang J. Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after stroke. Ageing Res Rev 2024; 101:102489. [PMID: 39277050 DOI: 10.1016/j.arr.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function. Post-translational modifications (PTMs) have been recognized as crucial regulatory mechanisms in ischemic and hemorrhagic stroke-induced brain injury. These PTMs include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and succinylation. This comprehensive review delves into recent research on the PTMs landscape associated with neuroinflammation and neuronal death specific to cerebral ischemia, ICH, and SAH. This review aims to explain the role of PTMs in regulating pathologic mechanisms and present critical techniques and proteomic strategies for identifying PTMs. This knowledge helps us comprehend the underlying mechanisms of stroke injury and repair processes, leading to the development of innovative treatment strategies. Importantly, this review underscores the significance of exploring PTMs to understand the pathophysiology of stroke.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jiaxin Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Yebin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Mengzhe Qin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zahra Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fatemeh Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yunchao Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
28
|
Zhang X, Liu Z, Li Z, Qi L, Huang T, Li F, Li M, Wang Y, Ma Z, Gao Y. Ferroptosis pathways: Unveiling the neuroprotective power of cistache deserticola phenylethanoid glycosides. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118465. [PMID: 38944360 DOI: 10.1016/j.jep.2024.118465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.
Collapse
Affiliation(s)
- Xianxie Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zuoxu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zhihui Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Ling Qi
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Tianke Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Fang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Maoxing Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yuguang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zengchun Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yue Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China.
| |
Collapse
|
29
|
Chen J, Yan L, Zhang Y, Liu X, Wei Y, Zhao Y, Li K, Shi Y, Liu H, Lai W, Tian L, Lin B. Maternal exposure to nanopolystyrene induces neurotoxicity in offspring through P53-mediated ferritinophagy and ferroptosis in the rat hippocampus. J Nanobiotechnology 2024; 22:651. [PMID: 39438901 PMCID: PMC11520165 DOI: 10.1186/s12951-024-02911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
There are increasing concerns regarding the rapid expansion of polystyrene nanoplastics (PS-NPs), which could impact human health. Previous studies have shown that nanoplastics can be transferred from mothers to offspring through the placenta and breast milk, resulting in cognitive deficits in offspring. However, the neurotoxic effects of maternal exposure on offspring and its mechanisms remain unclear. In this study, PS-NPs (50 nm) were gavaged to female rats throughout gestation and lactation to establish an offspring exposure model to study the neurotoxicity and behavioral changes caused by PS-NPs on offspring. Neonatal rat hippocampal neuronal cells were used to investigate the pathways through which NPs induce neurodevelopmental toxicity in offspring rats, using iron inhibitors, autophagy inhibitors, reactive oxygen species (ROS) scroungers, P53 inhibitors, and NCOA4 inhibitors. We found that low PS-NPs dosages can cause ferroptosis in the hippocampus of the offspring, resulting in a decline in the cognitive, learning, and memory abilities of the offspring. PS-NPs induced NOCA4-mediated ferritinophagy and promoted ferroptosis by inciting ROS production to activate P53-mediated ferritinophagy. Furthermore, the levels of the antioxidant factors glutathione peroxidase 4 (GPX4) and glutathione (GSH), responsible for ferroptosis, were reduced. In summary, this study revealed that consumption of PS-NPs during gestation and lactation can cause ferroptosis and damage the hippocampus of offspring. Our results can serve as a basis for further research into the neurodevelopmental effects of nanoplastics in offspring.
Collapse
Affiliation(s)
- Jiang Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Licheng Yan
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Yaping Zhang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yizhe Wei
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yiming Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| |
Collapse
|
30
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Toxicity and related molecular mechanisms of Sb(III) in the embryos and larvae of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124551. [PMID: 39004205 DOI: 10.1016/j.envpol.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Antimony (Sb) pollution poses a severe threat to humans and ecosystems due to the extensive use of Sb in various fields. However, little is known about the toxic effects of Sb and its aquatic ecotoxicological mechanism. This study aimed to reveal the toxicity and related molecular mechanisms of trivalent Sb (Sb(III)) in zebrafish embryos/larvae. Sb(III) accumulated in larvae, which correlated with the exposure concentration. Although no significant lethal or teratogenic effects were observed, normal growth and development were affected. Exposure to 10 or 20 mg/L Sb(III) increased the levels of reactive oxygen species in the larvae while enhancing catalase activity and increasing cell apoptosis. Transcriptomic analysis revealed that Sb(III) promoted glutathione metabolism and the ferroptosis pathway. In addition, symptoms associated with ferroptosis, including mitochondrial damage, biochemical levels of related molecules and increased tissue iron content, were detected. Quantitative polymerase chain reaction (qPCR) analyses further confirmed that Sb(III) significantly altered the transcription levels of genes related to the ferroptosis pathway by disrupting iron homeostasis. Furthermore, ferrostatin-1 (Fer-1) mitigated the toxic effects induced by Sb(III) in zebrafish. Our research fills the gap in the literature on the toxicity and mechanism of Sb(III) in aquatic organisms, which is highly important for understanding the ecological risks associated with Sb.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Stojkovic L, Djordjevic A, Stefanovic M, Stankovic A, Dincic E, Djuric T, Zivkovic M. Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing-Remitting and Progressive Multiple Sclerosis. Int J Mol Sci 2024; 25:11024. [PMID: 39456806 PMCID: PMC11507982 DOI: 10.3390/ijms252011024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis, a lipid peroxidation- and iron-mediated type of regulated cell death, relates to both neuroinflammation, which is common in relapsing-remitting multiple sclerosis (RRMS), and neurodegeneration, which is prevalent in progressive (P)MS. Currently, findings related to the molecular markers proposed in this paper in patients are scarce. We analyzed circulatory molecular indicators of the main ferroptosis-related processes, comprising lipid peroxidation (malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and hexanoyl-lysine adduct (HEL)), glutathione-related antioxidant defense (total glutathione (reduced (GSH) and oxidized (GSSG)) and glutathione peroxidase 4 (GPX4)), and iron metabolism (iron, transferrin and ferritin) to estimate their contributions to the clinical manifestation of MS and differences between RRMS and PMS disease course. In 153 patients with RRMS and 69 with PMS, plasma/serum lipid peroxidation indicators and glutathione were quantified using ELISA and colorimetric reactions, respectively. Iron serum concentrations were determined using spectrophotometry, and transferrin and ferritin were determined using immunoturbidimetry. Compared to those with RRMS, patients with PMS had decreased 4-HNE (median, 1368.42 vs. 1580.17 pg/mL; p = 0.03). Interactive effects of MS course (RRMS/PMS) and disease-modifying therapy status on MDA (p = 0.009) and HEL (p = 0.02) levels were detected. In addition, the interaction of disease course and self-reported fatigue revealed significant impacts on 4-HNE levels (p = 0.01) and the GSH/GSSG ratio (p = 0.04). The results also show an association of MS course (p = 0.03) and EDSS (p = 0.04) with GSH levels. No significant changes were observed in the serum concentrations of iron metabolism indicators between the two patient groups (p > 0.05). We suggest circulatory 4-HNE as an important parameter related to differences between RRMS and PMS. Significant interactions of MS course and other clinically relevant parameters with changes in redox processes associated with ferroptosis support the further investigation of MS with a larger sample while taking into account both circulatory and central nervous system estimation.
Collapse
Affiliation(s)
- Ljiljana Stojkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Milan Stefanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Evica Dincic
- Clinic for Neurology, Military Medical Academy, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, 11000 Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia; (A.D.); (A.S.); (T.D.)
| |
Collapse
|
32
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
33
|
Hu H, Gao H, Wang K, Jin Z, Zheng W, Wang Q, Yang Y, Yu C, Xu K, Gao C. Effective treatment of traumatic brain injury by injection of a selenium-containing ointment. Acta Biomater 2024; 187:161-171. [PMID: 39236795 DOI: 10.1016/j.actbio.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Traumatic brain injury (TBI) is an incurable and overwhelming disease accompanied with serve disability and huge financial burden, where the overproduced reactive oxygen species (ROS) can exacerbate the secondary injury, leading to massive apoptosis of neurons. In this study, β-cyclodextrin (CD)-capped hyperbranched polymers containing selenium element (HSE-CD) were crosslinked with CD-modified hyaluronic acid (HA-CD) and amantadine-modified hyaluronic acid (HA-AD) to obtain a ROS-responsive ointment (R-O). The structures of synthesized polymers were characterized with 1H nuclear magnetic resonance, and the properties of ointment were investigated with rheology and antioxidation. Compared to non-ROS-responsive ointment (N-O), the R-O ointment had stronger efficiency in decreasing the ROS level in BV2 cells in vitro. In a controlled rat cortical impact (CCI) model, the R-O ointment could relieve the DNA damage and decrease apoptosis in injured area via reducing the ROS level. Besides, after the R-O treatment, the rats showed significantly less activated astrocytes and microglia, a lower level of pro-inflammatory cytokines and a higher ratio of M2/M1 macrophage and microglia. Moreover, compared to the TBI group the R-O ointment promoted the doublecortin (DCX) expression and tissue structure integrity around the cavity, and promoted the recovery of nerve function post TBI. STATEMENT OF SIGNIFICANCE: Traumatic brain injury (TBI) is an incurable and overwhelming disease, leading to severe disability and huge social burden, where reactive oxygen species (ROS) are considered as one of the most significant factors in the secondary injury of TBI. A ROS responsive supramolecular ointment containing di-selenide bonds was injected in rats with controlled cortical impact. It relieved the DNA damage and decreased apoptosis in the injured area via reducing the ROS levels, downregulated neuroinflammation, and improved neurological recovery of TBI in vivo. This designed self-adaptive biomaterial effectively regulated the pathological microenvironment in injured tissue, and achieved better therapeutic effect.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huan Gao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zeyuan Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufang Yang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Chaonan Yu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
34
|
Zhang W, Uyemura R, Zhong K, Guo R, Zhong L. Current Advances and Future Perspectives on Mesenchymal Stem Cell-Derived Extracellular Vesicles in Alzheimer's Disease. Aging Dis 2024; 15:2015-2027. [PMID: 38270122 PMCID: PMC11346404 DOI: 10.14336/ad.2023.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing in recent years as the world's population ages, which poses a significant challenge to public health. Due to the complexity of pathogenesis of AD, currently there is no effective treatment for it. In recent years, cell and gene therapy has attracted widespread attention in the treatment of neurodegenerative diseases. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent a novel cell-free therapy with numerous advantages over cell-based therapies owing to their low immunogenicity and high safety profile. We summarize recent progress in the application of EVs for treating AD and the specific mechanisms and outline the underlying mechanisms. We also explore various methods for optimizing the function of MSC-EVs, including gene editing, modifying stem cell culture conditions and peptide modification. In addition, we discuss the therapeutic potentials of MSC-EVs, as well as the obstacles that currently impede their clinical utilization.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russell Uyemura
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Kun Zhong
- American Center of Stem Cell Research and Regenerative Medicine, Farmington Hills, Michigan 48336, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
35
|
Jiang X, He X, Wong J, Scheeff S, Hau SCK, Wong TH, Qin Y, Fan CH, Ma B, Chung NL, Huang J, Zhao J, Yan Y, Xiao M, Song X, Hui TKC, Zuo Z, Wu WKK, Ko H, Chow KHM, Ng BWL. Lactone-to-Lactam Editing Alters the Pharmacology of Bilobalide. JACS AU 2024; 4:3537-3546. [PMID: 39328759 PMCID: PMC11423332 DOI: 10.1021/jacsau.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
Precise transformations of natural products (NPs) can fine-tune their physicochemical properties while preserving inherently complex and evolutionarily optimized parent scaffolds. Here, we report an unprecedented lactone-to-lactam transformation on bilobalide, thus improving its stability and paving the way for biological exploration of previously inaccessible chemical space that is highly representative of the parent structure. This late-stage molecular editing of bilobalide enables facile access to a unique library of lactam analogues with altered pharmacology. Through phenotypic screening, we identify BB10 as a hit compound with unexpected inhibition of ferroptotic cell death. We further reveal that BB10 suppresses ferroptosis by restoring the expression of glutathione peroxidase 4 (GPX4) in brain cells. This study highlights that even subtle changes on NP scaffolds can confer new pharmacological properties, inspiring the exploration of simple yet critical transformations on complex NPs.
Collapse
Affiliation(s)
- Xiaoding Jiang
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xu He
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jonathan Wong
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Stephan Scheeff
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sam Chun-Kit Hau
- Department
of Chemistry, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong SAR, China
| | - Tak Hin Wong
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yao Qin
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chi Hang Fan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Bowen Ma
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ngai Lam Chung
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Junzhe Huang
- Division
of Neurology, Department of Medicine and Therapeutics, Margaret K.L.
Cheung Research Centre for Management of Parkinsonism, Faculty of
Medicine, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jiajia Zhao
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yu Yan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Min Xiao
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xueqin Song
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tony K. C. Hui
- Primemax
Biotech Ltd., Wayson
Commercial House, 68-70 Lockhard Road, Wan Chai, Hong Kong SAR, China
| | - Zhong Zuo
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - William Ka-Kei Wu
- Department
of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li
Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Division
of Neurology, Department of Medicine and Therapeutics, Margaret K.L.
Cheung Research Centre for Management of Parkinsonism, Faculty of
Medicine, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong SAR, China
- Li
Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter
Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa
Neuroscience Institute, The Chinese University
of Hong Kong, Hong Kong SAR, China
| | - Kim Hei-Man Chow
- School
of Life Sciences, Faculty of Science, The
Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa
Neuroscience Institute, The Chinese University
of Hong Kong, Hong Kong SAR, China
| | - Billy Wai-Lung Ng
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li
Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter
Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
36
|
Wang Y, Song X, Wang R, Xu X, Du Y, Chen G, Mei J. Genome-Wide Mendelian Randomization Identifies Ferroptosis-Related Drug Targets for Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1185-1197. [PMID: 39247875 PMCID: PMC11380310 DOI: 10.3233/adr-240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD) currently lacks effective disease-modifying treatments. Recent research suggests that ferroptosis could be a potential therapeutic target. Mendelian randomization (MR) is a widely used method for identifying novel therapeutic targets. Objective Employ genetic information to evaluate the causal impact of ferroptosis-related genes on the risk of AD. Methods 564 ferroptosis-related genes were obtained from FerrDb. We derived genetic instrumental variables for these genes using four brain quantitative trait loci (QTL) and two blood QTL datasets. Summary-data-based Mendelian randomization (SMR) and two-sample MR methods were applied to estimate the causal effects of ferroptosis-related genes on AD. Using extern transcriptomic datasets and triple-transgenic mouse model of AD (3xTg-AD) to further validate the gene targets identified by the MR analysis. Results We identified 17 potential AD risk gene targets from GTEx, 13 from PsychENCODE, and 22 from BrainMeta (SMR p < 0.05 and HEIDI test p > 0.05). Six overlapping ferroptosis-related genes associated with AD were identified, which could serve as potential therapeutic targets (PEX10, CDC25A, EGFR, DLD, LIG3, and TRIB3). Additionally, we further pinpointed risk genes or proteins at the blood tissue and pQTL levels. Notably, EGFR demonstrated significant dysregulation in the extern transcriptomic datasets and 3xTg-AD models. Conclusions This study provides genetic evidence supporting the potential therapeutic benefits of targeting the six druggable genes for AD treatment, especially for EGFR (validated by transcriptome and 3xTg-AD), which could be useful for prioritizing AD drug development in the field of ferroptosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan/Wuhan First Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Song
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Wang
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinzi Xu
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Yaming Du
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Guohua Chen
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| | - Junhua Mei
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
37
|
Yu X, Wang S, Wang X, Li Y, Dai Z. Melatonin improves stroke by inhibiting autophagy-dependent ferroptosis mediated by NCOA4 binding to FTH1. Exp Neurol 2024; 379:114868. [PMID: 38901754 DOI: 10.1016/j.expneurol.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Ischemic stroke is a disease associated with high morbidity and disability rates; however, its pathogenesis remains elusive, and treatment options are limited. Ferroptosis, an iron-dependent form of cell death, represents a novel avenue for investigation. The objective of this study was to explore the role of melatonin in MCAO-induced ferroptosis and elucidate its underlying molecular mechanism. To simulate brain damage and neuronal injury caused by ischemic stroke, we established a mouse model of MCAO and an HT-22 cell model of OGD/R. The therapeutic efficacy of melatonin was assessed through measurements of infarct size, brain edema, and neurological scores. Additionally, qRT-PCR, WB analysis, and Co-IP assays were employed to investigate the impact of melatonin on ferroptosis markers such as NCOA4 and FTH1 expression levels. Confocal microscopy was utilized to confirm the colocalization between ferritin and lysosomes. Furthermore, we constructed a SIRT6 siRNA model to validate the regulatory effect exerted by SIRT6 on NCOA4 as well as their binding interaction. The present study provides initial evidence that melatonin possesses the ability to mitigate neuronal damage induced by MCAO and OGD/R. Assessment of markers for oxidative damage and ferroptosis revealed that melatonin effectively inhibits intracellular Fe2+ levels, thereby suppressing ferroptosis. Additionally, our findings demonstrate that melatonin modulates the interaction between FTH1 and NCOA4 via SIRT6, influencing ferritin autophagy without affecting cellular macroautophagy. These findings provide reliable data support for the promotion and application of melatonin in clinical practice.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Shan Wang
- Department of Echocardiography & Noninvasive Cardiology Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Xu Wang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2 Ward of Hepatobiliary Surgery, Chengdu 610072, Sichuan, China
| | - Yi Li
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| | - Zheng Dai
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| |
Collapse
|
38
|
Ma Y, Liu C, Ren L, Li J, Xu Y, Liang J, Wang P. β-1,4-Galactosyltransferase 1 protects against cerebral ischemia injury in mice by suppressing ferroptosis via the TAZ/Nrf2/HO-1 signaling pathway. CNS Neurosci Ther 2024; 30:e70030. [PMID: 39233353 PMCID: PMC11374693 DOI: 10.1111/cns.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Ischemic stroke leads a primary cause of mortality in human diseases, with a high disability rate worldwide. This study aims to investigate the function of β-1,4-galactosyltransferase 1 (B4galt1) in mouse brain ischemia/reperfusion (I/R) injury. METHODS Recombinant human B4galt1 (rh-B4galt1) was intranasally administered to the mice model of middle cerebral artery occlusion (MCAO)/reperfusion. In this study, the impact of rh-B4galt1 on cerebral injury assessed using multiple methods, including the neurological disability status scale, 2,3,5-triphenyltetrazolium chloride (TTC), Nissl and TUNEL staining. This study utilized laser speckle Doppler flowmeter to monitor the cerebral blood flow. Western blotting was performed to assess the protein expression levels, and fluorescence-labeled dihydroethidium method was performed to determine the superoxide anion generation. Assay kits were used for the measurement of iron, malondialdehyde (MDA) and glutathione (GSH) levels. RESULTS We demonstrated that rh-B4galt1 markedly improved neurological function, reduced cerebral infarct volume and preserved the completeness of blood-brain barrier (BBB) for preventing damage. These findings further illustrated that rh-B4galt1 alleviated oxidative stress, lipid peroxidation, as well as iron deposition induced by I/R. The vital role of ferroptosis was proved in brain injury. Furthermore, the rh-B4galt1 could increase the levels of TAZ, Nrf2 and HO-1 after I/R. And TAZ-siRNA and ML385 reversed the neuroprotective effects of rh-B4galt1. CONCLUSIONS The results indicated that rh-B4galt1 implements neuroprotective effects by modulating ferroptosis, primarily via upregulating TAZ/Nrf2/HO-1 pathway. Thus, B4galt1 could be seen as a promising novel objective for ischemic stroke therapy.
Collapse
Affiliation(s)
- Yao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chang Liu
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Ren
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jiachen Li
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yunhao Xu
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jia Liang
- Institute of Life Science, Jinzhou Medical University, Jinzhou, Liaoning, China
- Liaoning Provincial Key Laboratory of Neurodegenerative Diseases, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Peng Wang
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Liaoning Provincial Key Laboratory of Neurodegenerative Diseases, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
39
|
Maheshwari S, Singh A, Verma A. Ferroptosis: A Frontier in Osteoporosis. Horm Metab Res 2024; 56:625-632. [PMID: 38307092 DOI: 10.1055/a-2230-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Reduced bone mass and degeneration of the microarchitecture of bone tissue are the hallmarks of osteoporosis, a bone metabolic disease that increases skeletal fragility and fracture susceptibility. Osteoporosis is primarily caused by unbalanced bone remodeling, in which bone synthesis is outpaced by bone resorption caused by osteoclasts. Along with the bone-building vitamins calcium and vitamin D, typical medications for treating osteoporosis include bisphosphonates and calcitonin. The present therapies effectively stop osteoclast activation that is too high, however they come with varying degrees of negative effects. Numerous factors can contribute to osteoporosis, which is characterized by a loss of bone mass and density due to the deterioration of the bone's microstructure, which makes the bone more fragile. As a result, it is a systemic bone condition that makes patients more likely to fracture. Interest in the function of ferroptosis in the pathophysiology of osteoporosis is developing. In this review, we go through the shape of the cell, the fundamental mechanisms of ferroptosis, the relationship between osteoclasts and osteoblasts, the association between ferroptosis and diabetic osteoporosis, steroid-induced osteoporosis, and the relationship between ferroptosis and postmenopausal osteoporosis. The functions of ferroptosis and osteoporosis in cellular function, signaling cascades, pharmacological inhibition, and gene silencing have been better understood thanks to recent advances in biomedical research.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | - Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
40
|
Joshi DC, Joshi N, Kumar A, Maheshwari S. Recent Advances in Molecular Pathways and Therapeutic Implications for Peptic Ulcer Management: A Comprehensive Review. Horm Metab Res 2024; 56:615-624. [PMID: 38467155 DOI: 10.1055/a-2256-6592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Peptic ulcers, recognized for their erosive impact on the gastrointestinal mucosa, present a considerable challenge in gastroenterology. Epidemiological insights underscore the global prevalence of peptic ulcers, affecting 5-10+% of individuals, with a yearly incidence of 0.3 to 1.9 cases per thousand. Recent decades have witnessed a decline in complications, attributed to improved diagnostics and therapeutic advancements. The review deepens into H. pylori-associated and NSAID-induced ulcers, emphasizing their distinct prevalence in developing and industrialized nations, respectively. Despite advancements, managing peptic ulcers remains challenging, notably in H. pylori-infected individuals facing recurrence and the rise of antibiotic resistance. The pathophysiology unravels the delicate balance between protective and destructive factors, including the intricate molecular mechanisms involving inflammatory mediators such as TNF-α, ILs, and prostaglandins. Genetic and ethnic factors, rare contributors, and recent molecular insights further enhance our understanding of peptic ulcer development. Diagnostic approaches are pivotal, with upper gastrointestinal endoscopy standing as the gold standard. Current treatment strategies focus on H. pylori eradication, NSAID discontinuation, and proton pump inhibitors. Surgical options become imperative for refractory cases, emphasizing a comprehensive approach. Advances include tailored H. pylori regimens, the emergence of vonoprazan, and ongoing vaccine development. Challenges persist, primarily in antibiotic resistance, side effects of acid suppressants, and translating natural compounds into standardized therapies. Promising avenues include the potential H. pylori vaccine and the exploration of natural compounds, with monoterpenes showing therapeutic promise. This review serves as a compass, guiding healthcare professionals, researchers, and policymakers through the intricate landscape of peptic ulcer management.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Nirmal Joshi
- Department of Pharmacology, Amrapali Institute of Pharmacy and Sciences, Haldwani, India
| | - Ajeet Kumar
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | | |
Collapse
|
41
|
Kim JW, Nam SA, Koh ES, Kim HW, Kim S, Woo JJ, Kim YK. The Impairment of Endothelial Autophagy Accelerates Renal Senescence by Ferroptosis and NLRP3 Inflammasome Signaling Pathways with the Disruption of Endothelial Barrier. Antioxidants (Basel) 2024; 13:886. [PMID: 39199133 PMCID: PMC11351978 DOI: 10.3390/antiox13080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Autophagy is a cellular process that degrades damaged cytoplasmic components and regulates cell death. The homeostasis of endothelial cells (ECs) is crucial for the preservation of glomerular structure and function in aging. Here, we investigated the precise mechanisms of endothelial autophagy in renal aging. The genetic deletion of Atg7 in the ECs of Atg7flox/flox;Tie2-Cre mice accelerated aging-related glomerulopathy and tubulointerstitial fibrosis. The EC-specific Atg7 deletion in aging mice induced the detachment of EC with the disruption of glomerular basement membrane (GBM) assembly and increased podocyte loss resulting in microalbuminuria. A Transwell co-culture system of ECs and kidney organoids showed that the iron and oxidative stress induce the disruption of the endothelial barrier and increase vascular permeability, which was accelerated by the inhibition of autophagy. This resulted in the leakage of iron through the endothelial barrier into kidney organoids and increased oxidative stress, which led to ferroptotic cell death. The ferritin accumulation was increased in the kidneys of the EC-specific Atg7-deficient aging mice and upregulated the NLRP3 inflammasome signaling pathway. The pharmacologic inhibition of ferroptosis with liproxstatin-1 recovered the disrupted endothelial barrier and reversed the decreased expression of GPX4, as well as NLRP3 and IL-1β, in endothelial autophagy-deficient aged mice, which attenuated aging-related renal injury including the apoptosis of renal cells, abnormal structures of GBM, and tubulointerstitial fibrosis. Our data showed that endothelial autophagy is essential for the maintenance of the endothelial barrier during renal aging and the impairment of endothelial autophagy accelerates renal senescence by ferroptosis and NLRP3 inflammasome signaling pathways. These processes may be attractive therapeutic targets to reduce cellular injury from renal aging.
Collapse
Affiliation(s)
- Jin Won Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sun Ah Nam
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun-Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyung Wook Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Republic of Korea
| | - Sua Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Ju Woo
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong Kyun Kim
- Department of Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Republic of Korea
| |
Collapse
|
42
|
Hagar FF, Abbas SH, Atef E, Abdelhamid D, Abdel-Aziz M. Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016-2023). Mol Divers 2024:10.1007/s11030-024-10907-8. [PMID: 39031290 DOI: 10.1007/s11030-024-10907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman Atef
- College of Pharmacy, West Coast University, Los Angeles, CA, USA
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
43
|
Yang Y, Li Z, Fan X, Jiang C, Wang J, Rastegar-Kashkooli Y, Wang TJ, Wang J, Wang M, Cheng N, Yuan X, Chen X, Jiang B, Wang J. Nanozymes: Potential Therapies for Reactive Oxygen Species Overproduction and Inflammation in Ischemic Stroke and Traumatic Brain Injury. ACS NANO 2024; 18:16450-16467. [PMID: 38897929 DOI: 10.1021/acsnano.4c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanozymes, which can selectively scavenge reactive oxygen species (ROS), have recently emerged as promising candidates for treating ischemic stroke and traumatic brain injury (TBI) in preclinical models. ROS overproduction during the early phase of these diseases leads to oxidative brain damage, which has been a major cause of mortality worldwide. However, the clinical application of ROS-scavenging enzymes is limited by their short in vivo half-life and inability to cross the blood-brain barrier. Nanozymes, which mimic the catalytic function of natural enzymes, have several advantages, including cost-effectiveness, high stability, and easy storage. These advantages render them superior to natural enzymes for disease diagnosis and therapeutic interventions. This review highlights recent advancements in nanozyme applications for ischemic stroke and TBI, emphasizing their potential to mitigate the detrimental effect of ROS overproduction, oxidative brain damage, inflammation, and blood-brain barrier compromise. Therefore, nanozymes represent a promising treatment modality for ROS overproduction conditions in future medical practices.
Collapse
Affiliation(s)
- Yunfan Yang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zixiang Li
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
- School of International Education, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Tom J Wang
- Program in Behavioral Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xiqian Yuan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, P. R. China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
44
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
45
|
Li C, Jiang M, Chen Z, Hu Q, Liu Z, Wang J, Yin X, Wang J, Wu M. The neuroprotective effects of normobaric oxygen therapy after stroke. CNS Neurosci Ther 2024; 30:e14858. [PMID: 39009510 PMCID: PMC11250159 DOI: 10.1111/cns.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Stroke, including ischemic and hemorrhagic stroke, is a severe and prevalent acute cerebrovascular disease. The development of hypoxia following stroke can trigger a cascade of pathological events, including mitochondrial dysfunction, energy deficiency, oxidative stress, neuroinflammation, and excitotoxicity, all of which are often associated with unfavorable prognosis. Nonetheless, a noninvasive intervention, referred to as normobaric hyperoxia (NBO), is known to have neuroprotective effects against stroke. RESULTS NBO can exert neuroprotective effects through various mechanisms, such as the rescue of hypoxic tissues, preservation of the blood-brain barrier, reduction of brain edema, alleviation of neuroinflammation, improvement of mitochondrial function, mitigation of oxidative stress, reduction of excitotoxicity, and inhibition of apoptosis. These mechanisms may help improve the prognosis of stroke patients. CONCLUSIONS This review summarizes the mechanism by which hypoxia causes brain injury and how NBO can act as a neuroprotective therapy to treat stroke. We conclude that NBO has significant potential for treating stroke and may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital, Zhengzhou UniversityZhengzhouHenanChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
46
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
Affiliation(s)
- Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mei-Mei Cui
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Zheng-Hao Qiu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
47
|
Wu M, Chen L, Wang Y, Li Y, An Y, Wu R, Zhang Y, Gao J, Su K, Feng X. The Effect of Acupuncture on Brain Iron Deposition and Body Iron Metabolism in Vascular Cognitive Impairment: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e56484. [PMID: 38885500 PMCID: PMC11217710 DOI: 10.2196/56484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) persistently impairs cognition and the ability to perform activities of daily living, seriously compromising patients' quality of life. Previous studies have reported that disorders of serum iron metabolism and iron deposition in the brain can lead to inflammation, abnormal protein aggregation and degeneration, and massive neuronal apoptosis in the central nervous system, which in turn leads to a progressive decline in cognitive processes. Our previous clinical studies have found acupuncture to be a safe and effective intervention for treating VCI, but the specific mechanisms require further exploration. OBJECTIVE The objective of the trial is to evaluate the clinical efficacy of Tongdu Xingshen acupuncture and to investigate whether it can improve VCI by regulating brain iron deposition and body iron metabolism. METHODS In total, 42 patients with VCI and 21 healthy individuals will participate in this clinical trial. The 42 patients with VCI will be randomized into acupuncture and control groups, while the 21 healthy individuals will be in the healthy control group. Both the control and acupuncture groups will receive conventional medical treatment and cognitive rehabilitation training. In addition, the acupuncture group will receive electroacupuncture treatment with Tongdu Xingshen for 30 minutes each time, 6 times a week for 4 weeks. Meanwhile, the healthy control group will not receive any intervention. All 3 groups will undergo baseline assessments of brain iron deposition, serum iron metabolism, and neuropsychological tests after enrollment. The acupuncture and control groups will be evaluated again at the end of 4 weeks of treatment, as described earlier. By comparing neuropsychological test scores between groups, we will examine the efficacy of Tongdu Xingshen acupuncture in treating VCI. Additionally, we will test the correlations between neuropsychological test scores, brain iron deposition, and body iron metabolism indexes to explore the possible mechanisms of Tongdu Xingshen acupuncture in treating VCI. RESULTS Participants are currently being recruited. The first participant was enrolled in June 2023, which marked the official start of the experiment. As of the submission of the paper, there were 23 participants. The recruitment process is expected to continue until June 2025, at which point the processing and analysis of data will begin. As of May 15, 2024, up to 30 people have been enrolled in this clinical trial. CONCLUSIONS This study will provide data on the effects of Tongdu Xingshen acupuncture on cerebral iron deposition as well as somatic iron metabolism in patients with VCI. These results will help to prove whether Tongdu Xingshen acupuncture can improve VCI by regulating brain iron deposition and body iron metabolism, which will provide the clinical and theoretical basis for the wide application of acupuncture therapy in VCI rehabilitation. TRIAL REGISTRATION China Clinical Registration Agency ChiCTR2300072188; https://tinyurl.com/5fcydtkv. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/56484.
Collapse
Affiliation(s)
- Mingli Wu
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lulu Chen
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Wang
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunpeng Li
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuqi An
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruonan Wu
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuhan Zhang
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiqi Su
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodong Feng
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
- Medical College of Rehabilitation, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
48
|
Balusu S, De Strooper B. The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 147:96. [PMID: 38852117 PMCID: PMC11162975 DOI: 10.1007/s00401-024-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.
Collapse
Affiliation(s)
- Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
| |
Collapse
|
49
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
50
|
Yang Q, Ye W, Luo D, Xing J, Xiao Q, Wu H, Yao Y, Wang G, Yang L, Guo D, Wang K, He Y, Ye X, Zhang J, Jin Z, Fan Z, Wen X, Mao J, Chen X, Zhao Q. Neuroprotective effects of anti-TRAIL-ICG nanoagent and its multimodal imaging evaluation in cerebral ischemia-reperfusion injury. Mater Today Bio 2024; 26:101094. [PMID: 38854952 PMCID: PMC11157279 DOI: 10.1016/j.mtbio.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenxuan Ye
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Doudou Luo
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiwei Xing
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingqing Xiao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Huiling Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Guangxing Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Luyao Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Kun Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Yaqin He
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofeng Ye
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jinde Zhang
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, 518107, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Xiaofei Wen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingsong Mao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|