1
|
Taisei Ito, Ohuchi K, Kurita H, Murakami T, Takizawa S, Fujimaki A, Murata J, Oida Y, Hozumi I, Kitaichi K, Inden M. Neuroprotective effects of activated fibroblast growth factor receptor 1 via the suppression of p53 accumulation against poly-PR-mediated toxicity. Biochem Biophys Res Commun 2024; 743:151181. [PMID: 39693933 DOI: 10.1016/j.bbrc.2024.151181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
A GGGGCC hexanucleotide repeat expansion (HRE) within the C9orf72 gene is a major causative factor in amyotrophic lateral sclerosis (ALS). This aberrant HRE results in the generation of five distinct dipeptide repeat proteins (DPRs). Among the DPRs, poly-PR accumulates in the nucleus and exhibits particularly strong toxicity to motor and cortical neurons. Fibroblast growth factor receptor 1 (FGFR1) is known to promote neurogenesis and inhibit apoptosis in neurons. Nevertheless, there has been no previous report of its neuroprotective effects against poly-PR toxicity. The objective of this study was to investigate the neuroprotective effects of FGFR1 activation in poly-PR-expressing NSC34 motor neuron-like cells. RT-qPCR analysis in NSC34 cells showed that Fgfr1 was the most highly expressed member of the Fgfr family in NSC34 cells. The activation of FGFR1 by FGF2, a common ligand for all FGFRs, exerted neuroprotective effects against the toxicity of poly-PR. Additionally, FGFR1 activation was observed to enhance cell viability through the PI3K-AKT pathway, while the contribution of the MEK-ERK pathway was found to be limited. Furthermore, FGFR1 activation suppressed the accumulation of p53 protein and promoted its degradation through increased murine double minute 2 (MDM2), an E3 ubiquitin ligase that targets p53. The neuroprotective effects were attenuated by PD173074, a selective FGFR1 inhibitor or Nutlin-3a, an inhibitor of the p53-MDM2 interaction. Overall, these findings suggest that FGFR1 activation provides neuroprotection against poly-PR toxicity. Consequently, this study suggests the potential utility of FGFR1 activation as a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Taisei Ito
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan; Laboratory of Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Takanori Murakami
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | | | - Ayaka Fujimaki
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Junya Murata
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Yasuhisa Oida
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan.
| |
Collapse
|
2
|
Cariba S, Srivastava A, Bronsema K, Kouthouridis S, Zhang B, Payne SL. Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. ACS Biomater Sci Eng 2024; 10:7566-7576. [PMID: 39601321 PMCID: PMC11633653 DOI: 10.1021/acsbiomaterials.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Cutaneous wound healing is a complex process involving various cellular and molecular interactions, resulting in the formation of a collagen-rich scar with imperfect function and morphology. Dermal fibroblasts are crucial to successful wound healing, migrating to the wound site where they are activated to provide extracellular matrix remodeling and wound closure. Peripheral nerves have been shown to play an important role in wound healing, with loss or damage to these nerves often leading to impaired healing and the formation of chronic nonhealing wounds. Previous research has suggested that sensory nerves secrete trophic factors that can regulate wound healing, including fibroblast activation; however, the direct cell-cell interaction between nerves and fibroblasts has not been extensively studied. To address this knowledge gap, we developed an in vitro co-culture model using a device called the IFlowPlate. This model supports the long-term viability of multiple cell types while allowing for direct contact between sensory nerve cells and dermal fibroblasts. Using the IFlowPlate, we demonstrate that co-culture of dorsal root ganglia with dermal fibroblasts increases fibroblast proliferation, collagen and α-smooth muscle actin expression, and secretion of pro-wound healing factors, suggesting that nerves can promote wound healing by modulating fibroblast activation. The IFlowPlate offers a user-friendly and high-throughput platform to study the in vitro interactions between nerves and a variety of cell types that can be applied to wound healing and other important biological processes.
Collapse
Affiliation(s)
- Solsa Cariba
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Avika Srivastava
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Kendra Bronsema
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Sonya Kouthouridis
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Boyang Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Samantha L. Payne
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
3
|
Liu X, Zhao X, Qiu M, Yang J. Cell surface receptor-mediated signaling in CNS regeneration. Neuroscience 2024; 562:198-208. [PMID: 39486572 DOI: 10.1016/j.neuroscience.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Degenerative diseases and injuries of central nervous system (CNS) often cause nerve cell apoptosis and neural dysfunction. Protection of surviving cells or inducing the differentiation of stem cells into functional cells is considered to be an important way of neurorepair. In addition, transdifferentiation technology emerged recently is expected to provide new solutions for nerve regeneration. Cell surface receptors are transmembrane proteins embedded in cytoplasmic membrane, and play crucial roles in maintaining communication between extracellular signals and intracellular signaling processes. The extracellular microenvironment changed dramatically upon neural lesion, exploring the biological function of signals mediated by cell surface receptors will help to develop molecular strategies for nerve regeneration. An increasing number of studies have reported that cell surface receptor-mediated signaling affects the survival, differentiation, and functioning of neural cells, and even regulate their trans-lineage reprogramming. Here, we provide a review on the roles of cell surface receptors in CNS regeneration, thus providing new cues for better treatment of neurodegenerative diseases or nerve injury.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Immunology and International Cancer Center, Shenzhen University Medical School, Shenzhen 518000, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| | - Junlin Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| |
Collapse
|
4
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
5
|
Rehman R, Froehlich A, olde Heuvel F, Elsayed L, Boeckers T, Huber-Lang M, Morganti-Kossmann C, Roselli F. The FGFR inhibitor Rogaratinib reduces microglia reactivity and synaptic loss in TBI. Front Immunol 2024; 15:1443940. [PMID: 39635532 PMCID: PMC11614719 DOI: 10.3389/fimmu.2024.1443940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Traumatic brain injury (TBI) induces an acute reactive state of microglia, which contribute to secondary injury processes through phagocytic activity and release of cytokines. Several receptor tyrosine kinases (RTK) are activated in microglia upon TBI, and their blockade may reduce the acute inflammation and decrease the secondary loss of neurons; thus, RTKs are potential therapeutic targets. We have previously demonstrated that several members of the Fibroblast Growth Factor Receptor (FGFR) family are transiently phosporylated upon TBI; the availability for drug repurposing of FGFR inhibitors makes worthwhile the elucidation of the role of FGFR in the acute phases of the response to TBI and the effect of FGFR inhibition. Methods A closed, blunt, weight-drop mild TBI protocol was employed. The pan-FGFR inhibitor Rogaratinib was administered to mice 30min after the TBI and daily up to 7 days post injury. Phosphor-RTK Arrays and proteomic antibody arrays were used to determine target engagement and large-scale impact of the FGFR inhibitor. pFGFR1 and pFGFR3 immunostaining were employed for validation. As outcome parameters of the TBI injury immunostainings for NeuN, VGLUT1, VGAT at 7dpi were considered. Results Inhibition of FGFR during TBI restricted phosphorylation of FGFR1, FGFR3, FGFR4 and ErbB4. Phosphorylation of FGFR1 and FGFR3 during TBI was traced back to Iba1+ microglia. Rogaratinib substantially dowregulated the proteomic signature of the neuroimmunological response to trauma, including the expression of CD40L, CXCR3, CCL4, CCR4, ILR6, MMP3 and OPG. Prolonged Rogaratinib treatment reduced neuronal loss upon TBI and prevented the loss of excitatory (vGLUT+) synapses. Conclusion The FGFR family is involved in the early induction of reactive microglia in TBI. FGFR inhibition selectively prevented FGFR phosphorylation in the microglia, dampened the overall neuroimmunological response and enhanced the preservation of neuronal and synaptic integrity. Thus, FGFR inhibitors may be relevant targets for drug repurposing aimed at modulating microglial reactivity in TBI.
Collapse
Affiliation(s)
- Rida Rehman
- Department of Neurology, Ulm University, Ulm, Germany
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Lobna Elsayed
- Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias Boeckers
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
- Institute of Anatomy and Cell biology, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Translational Trauma Immunology, Ulm University, Ulm, Germany
| | - Cristina Morganti-Kossmann
- Department of Child Health, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| |
Collapse
|
6
|
Bertacchi M, Maharaux G, Loubat A, Jung M, Studer M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife 2024; 13:e98096. [PMID: 39485283 PMCID: PMC11581432 DOI: 10.7554/elife.98096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.
Collapse
Affiliation(s)
- Michele Bertacchi
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Gwendoline Maharaux
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Agnès Loubat
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Matthieu Jung
- GenomEast platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Michèle Studer
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| |
Collapse
|
7
|
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:11043. [PMID: 39456824 PMCID: PMC11507918 DOI: 10.3390/ijms252011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (H.J.)
| |
Collapse
|
8
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. Toxicol Sci 2024; 201:263-281. [PMID: 38995845 PMCID: PMC11424889 DOI: 10.1093/toxsci/kfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with an increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 wk of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points-birth, 6, 12, and 36 wk old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of differential modification of cytosines with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late-life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Sierra L Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI 49503, United States
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
9
|
Guo X, Xu Y, Cui Y, Zhang G, Shi Z, Song X. Fibroblast growth factor 3 contributes to neuropathic pain through Akt/mTOR signaling in mouse primary sensory neurons. Neurotherapeutics 2024; 21:e00383. [PMID: 38955643 PMCID: PMC11579880 DOI: 10.1016/j.neurot.2024.e00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Xinying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yingyi Xu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yanhua Cui
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Gaolong Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xingrong Song
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Zheng Y, Liu WH, Yang B, Milman Krentsis I. Primer on fibroblast growth factor 7 (FGF 7). Differentiation 2024; 139:100801. [PMID: 39048474 DOI: 10.1016/j.diff.2024.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Fibroblast growth factor 7 (FGF7), also known as keratinocyte growth factor (KGF), is an important member of the FGF family that is mainly expressed by cells of mesenchymal origin while affecting specifically epithelial cells. Thus, FGF7 is widely expressed in diverse tissues, especially in urinary system, gastrointestinal tract (GI-tract), respiratory system, skin, and reproductive system. By interacting specifically with FGFR2-IIIb, FGF7 activates several downstream signal pathways, including Ras, PI3K-Akt, and PLCs. Previous studies of FGF7 mutants also have implicated its roles in various biological processes including development of essential organs and tissue homeostasis in adults. Moreover, more publications have reported that FGF7 and/or FGF7/FGFR2-IIIb-associated signaling pathway are involved in the progression of various heritable or acquired human diseases: heritable conditions like autosomal dominant polycystic kidney disease (ADPKD) and non-syndromic cleft lip and palate (NS CLP), where it promotes cyst formation and affects craniofacial development, respectively; acquired non-malignant diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), mucositis, osteoarticular disorders, and metabolic diseases, where it influences inflammation, repair, and metabolic control; and tumorigenesis and malignant diseases, including benign prostatic hyperplasia (BPH), prostate cancer, gastric cancer, and ovarian cancer, where it enhances cell proliferation, invasion, and chemotherapy resistance. Targeting FGF7 pathways holds therapeutic potential for managing these conditions, underscoring the need for further research to explore its clinical applications. Having more insights into the function and underlying molecular mechanisms of FGF7 is warranted to facilitate the development of effective treatments in the future. Here, we discuss FGF7 genomic structure, signal pathway, expression pattern during embryonic development and in adult organs and mutants along with phenotypes, as well as associated diseases.
Collapse
Affiliation(s)
- Yangxi Zheng
- UT Health Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Hsin Liu
- UT Health Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boxuan Yang
- UT Health Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irit Milman Krentsis
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
12
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
13
|
Jiang A, You L, Handley RR, Hawkins V, Reid SJ, Jacobsen JC, Patassini S, Rudiger SR, Mclaughlan CJ, Kelly JM, Verma PJ, Bawden CS, Gusella JF, MacDonald ME, Waldvogel HJ, Faull RLM, Lehnert K, Snell RG. Single nuclei RNA-seq reveals a medium spiny neuron glutamate excitotoxicity signature prior to the onset of neuronal death in an ovine Huntington's disease model. Hum Mol Genet 2024; 33:1524-1539. [PMID: 38776957 PMCID: PMC11336116 DOI: 10.1093/hmg/ddae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, 130 Dong'an Road, Shanghai 200032, China
| | - Renee R Handley
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Victoria Hawkins
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Suzanne J Reid
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Jessie C Jacobsen
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Stefano Patassini
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Skye R Rudiger
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - Clive J Mclaughlan
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - Jennifer M Kelly
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - Paul J Verma
- Aquatic and Livestock Sciences, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - C Simon Bawden
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States
- Department of Neurology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Henry J Waldvogel
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Russell G Snell
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial responses and alters cellular signaling in an Alzheimer's disease mouse model. Nat Commun 2024; 15:7028. [PMID: 39147742 PMCID: PMC11327341 DOI: 10.1038/s41467-024-51163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. The complement pathway has been proposed as a therapeutic target. C5aR1 inhibition reduces plaque load, gliosis, and memory deficits in animal models, however, the cellular bases underlying this neuroprotection were unclear. Here, we show that the C5aR1 antagonist PMX205 improves outcomes in the Arctic48 mouse model of AD. A combination of single cell and single nucleus RNA-seq analysis of hippocampi derived from males and females identified neurotoxic disease-associated microglia clusters in Arctic mice that are C5aR1-dependent, while microglial genes associated with synapse organization and transmission and learning were overrepresented in PMX205-treated mice. PMX205 also reduced neurotoxic astrocyte gene expression, but clusters associated with protective responses to injury were unchanged. C5aR1 inhibition promoted mRNA-predicted signaling pathways between brain cell types associated with cell growth and repair, while suppressing inflammatory pathways. Finally, although hippocampal plaque load was unaffected, PMX205 prevented deficits in short-term memory in female Arctic mice. In conclusion, C5aR1 inhibition prevents cognitive loss, limits detrimental glial polarization while permitting neuroprotective responses, as well as leaving most protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for AD.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Heidi Y Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.
| |
Collapse
|
15
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
16
|
D'Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Kesdoğan AB, Neureiter A, Gaebler AJ, Kalia AK, Körner J, Lampert A. Analgesic effect of Botulinum toxin in neuropathic pain is sodium channel independent. Neuropharmacology 2024; 253:109967. [PMID: 38657946 DOI: 10.1016/j.neuropharm.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Botulinum neurotoxin type A BoNT/A is used off-label as a third line therapy for neuropathic pain. However, the mechanism of action remains unclear. In recent years, the role of voltage-gated sodium channels (Nav) in neuropathic pain became evident and it was suggested that block of sodium channels by BoNT/A would contribute to its analgesic effect. We assessed sodium channel function in the presence of BoNT/A in heterologously expressed Nav1.7, Nav1.3, and the neuronal cell line ND7/23 by high throughput automated and manual patch-clamp. We used both the full protein and the isolated catalytic light chain LC/A for acute or long-term extracellular or intracellular exposure. To assess the toxin's effect in a human cellular system, we differentiated induced pluripotent stem cells (iPSC) into sensory neurons from a healthy control and a patient suffering from a hereditary neuropathic pain syndrome (inherited erythromelalgia) carrying the Nav1.7/p.Q875E-mutation and carried out multielectrode-array measurements. Both BoNT/A and the isolated catalytic light chain LC/A showed limited effects in heterologous expression systems and the neuronal cell line ND7/23. Spontaneous activity in iPSC derived sensory neurons remained unaltered upon BoNT/A exposure both in neurons from the healthy control and the mutation carrying patient. BoNT/A may not specifically be beneficial in pain syndromes linked to sodium channel variants. The favorable effects of BoNT/A in neuropathic pain are likely based on mechanisms other than sodium channel blockage and new approaches to understand BoNT/A's therapeutic effects are necessary.
Collapse
Affiliation(s)
- Aylin B Kesdoğan
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Scientific Center for Neuropathic Pain Research Aachen, SCN(Aachen), RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Anika Neureiter
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Arnim J Gaebler
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Anil K Kalia
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jannis Körner
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Department of Anesthesiology, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Department of Intensive and Intermediate Care, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Scientific Center for Neuropathic Pain Research Aachen, SCN(Aachen), RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Angelika Lampert
- Institute of Neurophysiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany; Scientific Center for Neuropathic Pain Research Aachen, SCN(Aachen), RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
18
|
Alaiya A, Alharbi BM, Shinwari Z, Rashid M, Albinhassan TH, Bouchama A, Alwesmi MB, Mohammad S, Malik SS. Proteomics Analysis of Proteotoxic Stress Response in In-Vitro Human Neuronal Models. Int J Mol Sci 2024; 25:6787. [PMID: 38928492 PMCID: PMC11204259 DOI: 10.3390/ijms25126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heat stroke, a hazardous hyperthermia-related illness, is characterized by CNS injury, particularly long-lasting brain damage. A root cause for hyperthermic neurological damage is heat-induced proteotoxic stress through protein aggregation, a known causative agent of neurological disorders. Stress magnitude and enduring persistence are highly correlated with hyperthermia-associated neurological damage. We used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify and characterize time-series proteome-wide changes in dose-responsive proteotoxic stress models in medulloblastoma [Daoy], neuroblastoma [SH-SY5Y], and differentiated SH-SY5Y neuron-like cells [SH(D)]. An integrated analysis of condition-time datasets identified global proteome-wide differentially expressed proteins (DEPs) as part of the heat-induced proteotoxic stress response. The condition-specific analysis detected higher DEPs and upregulated proteins in extreme heat stress with a relatively conservative and tight regulation in differentiated SH-SY5Y neuron-like cells. Functional network analysis using ingenuity pathway analysis (IPA) identified common intercellular pathways associated with the biological processes of protein, RNA, and amino acid metabolism and cellular response to stress and membrane trafficking. The condition-wise temporal pathway analysis in the differentiated neuron-like cells detects a significant pathway, functional, and disease association of DEPs with processes like protein folding and protein synthesis, Nervous System Development and Function, and Neurological Disease. An elaborate dose-dependent stress-specific and neuroprotective cellular signaling cascade is also significantly activated. Thus, our study provides a comprehensive map of the heat-induced proteotoxic stress response associating proteome-wide changes with altered biological processes. This helps to expand our understanding of the molecular basis of the heat-induced proteotoxic stress response with potential translational connotations.
Collapse
Affiliation(s)
- Ayodele Alaiya
- Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Zakia Shinwari
- Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mamoon Rashid
- Department of AI and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia
| | - Tahani H. Albinhassan
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Mai B. Alwesmi
- Medical-Surgical Nursing Department, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
19
|
Kochmanski J, Virani M, Kuhn NC, Boyd SL, Becker K, Adams M, Bernstein AI. Developmental origins of Parkinson's disease risk: perinatal exposure to the organochlorine pesticide dieldrin leads to sex-specific DNA modifications in critical neurodevelopmental pathways in the mouse midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590998. [PMID: 38746441 PMCID: PMC11092502 DOI: 10.1101/2024.04.26.590998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril (α-syn PFF) and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 weeks of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points - birth, 6 weeks, 12 weeks, and 36 weeks old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of DMCs with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late life diseases, including PD.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C. Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Sierra L. Boyd
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Katelyn Becker
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Alison I. Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
20
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-Cell Analysis of Rohon-Beard Neurons Implicates Fgf Signaling in Axon Maintenance and Cell Survival. J Neurosci 2024; 44:e1600232024. [PMID: 38423763 PMCID: PMC11026351 DOI: 10.1523/jneurosci.1600-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
Affiliation(s)
- Adam M Tuttle
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lauren N Miller
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lindsey J Royer
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Hua Wen
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Jimmy J Kelly
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Nicholas L Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239
| | - Laura M Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239
| | - Alex V Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
21
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
22
|
Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte Involvement in Blood-Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int J Mol Sci 2023; 24:17146. [PMID: 38138976 PMCID: PMC10743219 DOI: 10.3390/ijms242417146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Neurological disorders have been linked to a defective blood-brain barrier (BBB), with dysfunctions triggered by stage-specific disease mechanisms, some of these being generated through interactions in the neurovascular unit (NVU). Advanced knowledge of molecular and signaling mechanisms in the NVU and the emergence of improved experimental models allow BBB permeability prediction and the development of new brain-targeted therapies. As NVU constituents, astrocytes are the most numerous glial cells, characterized by a heterogeneity that occurs as a result of developmental and context-based gene expression profiles and the differential expression of non-coding ribonucleic acids (RNAs). Due to their heterogeneity and dynamic responses to different signals, astrocytes may have a beneficial or detrimental role in the BBB's barrier function, with deep effects on the pathophysiology of (and on the progression of) central nervous system diseases. The implication of astrocytic-derived extracellular vesicles in pathological mechanisms, due to their ability to pass the BBB, must also be considered. The molecular mechanisms of astrocytes' interaction with endothelial cells at the BBB level are considered promising therapeutic targets in different neurological conditions. Nevertheless, a personalized and well-founded approach must be addressed, due to the temporal and spatial heterogeneity of reactive astrogliosis states during disease.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
| | - Mark Slevin
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (D.R.M.); (M.S.)
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Laura Barcutean
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Timea Forro
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Tudor Boghitoiu
- Psychiatry II Clinic, County Clinical Hospital, 540072 Targu Mures, Romania;
| | - Rodica Balasa
- Neurology 1 Clinic, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
23
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
24
|
Rajendran R, Rajendran V, Böttiger G, Stadelmann C, Shirvanchi K, von Au L, Bhushan S, Wallendszus N, Schunin D, Westbrock V, Liebisch G, Ergün S, Karnati S, Berghoff M. The small molecule fibroblast growth factor receptor inhibitor infigratinib exerts anti-inflammatory effects and remyelination in a model of multiple sclerosis. Br J Pharmacol 2023; 180:2989-3007. [PMID: 37400950 DOI: 10.1111/bph.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Fibroblast growth factors and receptors (FGFR) have been shown to modulate inflammation and neurodegeneration in multiple sclerosis (MS). The selective FGFR inhibitor infigratinib has been shown to be effective in cancer models. Here, we investigate the effects of infigratinib on prevention and suppression of first clinical episodes of myelin oligodendrocyte glycoprotein (MOG)35-55 -induced experimental autoimmune encephalomyelitis (EAE) in mice. EXPERIMENTAL APPROACH The FGFR inhibitor infigratinib was given over 10 days from the time of experimental autoimmune encephalomyelitis induction or the onset of symptoms. The effects of infigratinib on proliferation, cytotoxicity and FGFR signalling proteins were studied in lymphocyte cell lines and microglial cells. KEY RESULTS Administration of infigratinib prevented by 40% and inhibited by 65% first clinical episodes of the induced experimental autoimmune encephalomyelitis. In the spinal cord, infiltration of lymphocytes and macrophages/microglia, destruction of myelin and axons were reduced by infigratinib. Infigratinib enhanced the maturation of oligodendrocytes and increased remyelination. In addition, infigratinib resulted in an increase of myelin proteins and a decrease in remyelination inhibitors. Further, lipids associated with neurodegeneration such as lysophosphatidylcholine and ceramide were decreased as were proliferation of T cells and microglial cells. CONCLUSION AND IMPLICATIONS This proof of concept study demonstrates the therapeutic potential of targeting FGFRs in a disease model of multiple sclerosis. Application of oral infigratinib resulted in anti-inflammatory and remyelinating effects. Thus, infigratinib may have the potential to slow disease progression or even to improve the disabling symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Ranjithkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gregor Böttiger
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kian Shirvanchi
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Laureen von Au
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Natascha Wallendszus
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Darja Schunin
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Victor Westbrock
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
25
|
Chandrashekar PB, Alatkar S, Wang J, Hoffman GE, He C, Jin T, Khullar S, Bendl J, Fullard JF, Roussos P, Wang D. DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype-phenotype prediction. Genome Med 2023; 15:88. [PMID: 37904203 PMCID: PMC10617196 DOI: 10.1186/s13073-023-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Genotypes are strongly associated with disease phenotypes, particularly in brain disorders. However, the molecular and cellular mechanisms behind this association remain elusive. With emerging multimodal data for these mechanisms, machine learning methods can be applied for phenotype prediction at different scales, but due to the black-box nature of machine learning, integrating these modalities and interpreting biological mechanisms can be challenging. Additionally, the partial availability of these multimodal data presents a challenge in developing these predictive models. METHOD To address these challenges, we developed DeepGAMI, an interpretable neural network model to improve genotype-phenotype prediction from multimodal data. DeepGAMI leverages functional genomic information, such as eQTLs and gene regulation, to guide neural network connections. Additionally, it includes an auxiliary learning layer for cross-modal imputation allowing the imputation of latent features of missing modalities and thus predicting phenotypes from a single modality. Finally, DeepGAMI uses integrated gradient to prioritize multimodal features for various phenotypes. RESULTS We applied DeepGAMI to several multimodal datasets including genotype and bulk and cell-type gene expression data in brain diseases, and gene expression and electrophysiology data of mouse neuronal cells. Using cross-validation and independent validation, DeepGAMI outperformed existing methods for classifying disease types, and cellular and clinical phenotypes, even using single modalities (e.g., AUC score of 0.79 for Schizophrenia and 0.73 for cognitive impairment in Alzheimer's disease). CONCLUSION We demonstrated that DeepGAMI improves phenotype prediction and prioritizes phenotypic features and networks in multiple multimodal datasets in complex brains and brain diseases. Also, it prioritized disease-associated variants, genes, and regulatory networks linked to different phenotypes, providing novel insights into the interpretation of gene regulatory mechanisms. DeepGAMI is open-source and available for general use.
Collapse
Affiliation(s)
- Pramod Bharadwaj Chandrashekar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Sayali Alatkar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chenfeng He
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Ting Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Department of Psychiatry and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53076, USA.
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53076, USA.
| |
Collapse
|
26
|
Tomé D, Dias MS, Correia J, Almeida RD. Fibroblast growth factor signaling in axons: from development to disease. Cell Commun Signal 2023; 21:290. [PMID: 37845690 PMCID: PMC10577959 DOI: 10.1186/s12964-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/18/2023] Open
Abstract
The fibroblast growth factor (FGF) family regulates various and important aspects of nervous system development, ranging from the well-established roles in neuronal patterning to more recent and exciting functions in axonal growth and synaptogenesis. In addition, FGFs play a critical role in axonal regeneration, particularly after spinal cord injury, confirming their versatile nature in the nervous system. Due to their widespread involvement in neural development, the FGF system also underlies several human neurological disorders. While particular attention has been given to FGFs in a whole-cell context, their effects at the axonal level are in most cases undervalued. Here we discuss the endeavor of the FGF system in axons, we delve into this neuronal subcompartment to provide an original view of this multipurpose family of growth factors in nervous system (dys)function. Video Abstract.
Collapse
Affiliation(s)
- Diogo Tomé
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S Dias
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Joana Correia
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal.
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
27
|
Vogt M, Unnikrishnan MK, Heinig N, Schumann U, Schmidt MHH, Barth K. c-Cbl Regulates Murine Subventricular Zone-Derived Neural Progenitor Cells in Dependence of the Epidermal Growth Factor Receptor. Cells 2023; 12:2400. [PMID: 37830613 PMCID: PMC10572332 DOI: 10.3390/cells12192400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
The localization, expression, and physiological role of regulatory proteins in the neurogenic niches of the brain is fundamental to our understanding of adult neurogenesis. This study explores the expression and role of the E3-ubiquitin ligase, c-Cbl, in neurogenesis within the subventricular zone (SVZ) of mice. In vitro neurosphere assays and in vivo analyses were performed in specific c-Cbl knock-out lines to unravel c-Cbl's role in receptor tyrosine kinase signaling, including the epidermal growth factor receptor (EGFR) pathway. Our findings suggest that c-Cbl is significantly expressed within EGFR-expressing cells, playing a pivotal role in neural stem cell proliferation and differentiation. However, c-Cbl's function extends beyond EGFR signaling, as its loss upon knock-out stimulated progenitor cell proliferation in neurosphere cultures. Yet, this effect was not detected in hippocampal progenitor cells, reflecting the lack of the EGFR in the hippocampus. In vivo, c-Cbl exerted only a minor proneurogenic influence with no measurable impact on the formation of adult-born neurons. In conclusion, c-Cbl regulates neural stem cells in the subventricular zone via the EGFR pathway but, likely, its loss is compensated by other signaling modules in vivo.
Collapse
|
28
|
Kim S, An S, Lee J, Jeong Y, You C, Kim H, Bae J, Yun C, Ryu D, Bae G, Kang J. Cdon ablation in motor neurons causes age-related motor neuron degeneration and impaired sciatic nerve repair. J Cachexia Sarcopenia Muscle 2023; 14:2239-2252. [PMID: 37559423 PMCID: PMC10570074 DOI: 10.1002/jcsm.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The functional deterioration and loss of motor neurons are tightly associated with degenerative motor neuron diseases and aging-related muscle wasting. Motor neuron diseases or aging-related muscle wasting in turn contribute to increased risk of adverse health outcomes in the elderly. Cdon (cell adhesion molecule-downregulated oncogene) belongs to the immunoglobulin superfamily of cell adhesion molecule and plays essential roles in multiple signalling pathways, including sonic hedgehog (Shh), netrin, and cadherin-mediated signalling. Cdon as a Shh coreceptor plays a critical role in motor neuron specification during embryonic development. However, its role in adult motor neuron function is unknown. METHODS Hb9-Cre recombinase-driven motor neuron-specific Cdon deficient mice (mnKO) and a compound mutant mice (mnKO::SOD1G93A ) were generated to investigate the role of Cdon in motor neuron degeneration. Motor neuron regeneration was examined by using a sciatic nerve crush injury model. To investigate the phenotype, physical activity, compound muscle action potential, immunostaining, and transmission electron microscopy were carried out. In the mechanism study, RNA sequencing and RNA/protein analyses were employed. RESULTS Mice lacking Cdon in motor neurons exhibited middle age onset lethality and aging-related decline in motor function. In the sciatic nerve crush injury model, mnKO mice exhibited an impairment in motor function recovery evident by prolonged compound muscle action potential duration (4.63 ± 0.35 vs. 3.93 ± 0.22 s for f/f, P < 0.01) and physical activity. Consistently, neuromuscular junctions of mnKO muscles were incompletely occupied (49.79 ± 5.74 vs. 79.39 ± 3.77% fully occupied neuromuscular junctions for f/f, P < 0.0001), suggesting an impaired reinnervation. The transmission electron microscopy analysis revealed that mnKO sciatic nerves had smaller axon diameter (0.88 ± 0.13 vs. 1.43 ± 0.48 μm for f/f, P < 0.0001) and myelination defects. RNA sequencing of mnKO lumbar spinal cords showed alteration in genes related to neurogenesis, inflammation and cell death. Among the altered genes, ErbB4 and FgfR expressions were significantly altered in mnKO as well as in Cdon-depleted NSC34 motor neuron cells. Consistently, Cdon-depleted NSC34 cells exhibited elevated levels of cleaved Caspase3 and γH2AX proteins, as well as Bax transcription. Cdon-depleted NSC34 cells also exhibited impaired activation of Akt in response to neuregulin-1 (NRG1) treatment. CONCLUSIONS Our current data demonstrate the functional importance of Cdon in motor neuron function and nerve repair. Cdon ablation causes alterations in neurotrophin signalling that leads to motor neuron degeneration.
Collapse
Affiliation(s)
- Sunghee Kim
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Subin An
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Jinwoo Lee
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Research Institute of Animuscure INCSuwonSouth Korea
| | - Yideul Jeong
- Research Institute of Animuscure INCSuwonSouth Korea
| | - Chang‐Lim You
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Hyebeen Kim
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Ju‐Hyeon Bae
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Chae‐Eun Yun
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Dongryul Ryu
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
| | - Gyu‐Un Bae
- College of PharmacySookmyung Women's UniversitySeoulSouth Korea
| | - Jong‐Sun Kang
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| |
Collapse
|
29
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
30
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-cell analysis of Rohon-Beard neurons implicates Fgf signaling in axon maintenance and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554953. [PMID: 37693470 PMCID: PMC10491107 DOI: 10.1101/2023.08.26.554953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
|
31
|
Thompson D, Odufuwa AE, Brissette CA, Watt JA. Transcriptome and methylome of the supraoptic nucleus provides insights into the age-dependent loss of neuronal plasticity. Front Aging Neurosci 2023; 15:1223273. [PMID: 37711995 PMCID: PMC10498476 DOI: 10.3389/fnagi.2023.1223273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
The age-dependent loss of neuronal plasticity is a well-known phenomenon that is poorly understood. The loss of this capacity for axonal regeneration is emphasized following traumatic brain injury, which is a major cause of disability and death among adults in the US. We have previously shown the intrinsic capacity of magnocellular neurons within the supraoptic nucleus to undergo axonal regeneration following unilateral axotomization in an age-dependent manner. The aim of this research was to determine the age-dependent molecular mechanisms that may underlie this phenomenon. As such, we characterized the transcriptome and DNA methylome of the supraoptic nucleus in uninjured 35-day old rats and 125-day old rats. Our data indicates the downregulation of a large number of axonogenesis related transcripts in 125-day old rats compared to 35-day old rats. Specifically, several semaphorin and ephrin genes were downregulated, as well as growth factors including FGF's, insulin-like growth factors (IGFs), and brain-derived neurotrophic factor (BDNF). Differential methylation analysis indicates enrichment of biological processes involved in axonogenesis and axon guidance. Conversely, we observed a robust and specific upregulation of MHCI related transcripts. This may involve the activator protein 1 (AP-1) transcription factor complex as motif analysis of differentially methylated regions indicate enrichment of AP-1 binding sites in hypomethylated regions. Together, our data suggests a loss of pro-regenerative capabilities with age which would prevent axonal growth and appropriate innervation following injury.
Collapse
Affiliation(s)
| | | | | | - John A. Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
32
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial gene expression and alters cellular signaling in an aggressive Alzheimer's model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554306. [PMID: 37662399 PMCID: PMC10473603 DOI: 10.1101/2023.08.22.554306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. Pharmacologic inhibition of C5aR1 reduces plaque load, gliosis and memory deficits in animal models. However, the cellular basis underlying this neuroprotection and which processes were the consequence of amyloid reduction vs alteration of the response to amyloid were unclear. In the Arctic model, the C5aR1 antagonist PMX205 did not reduce plaque load, but deficits in short-term memory in female mice were prevented. Hippocampal single cell and single nucleus RNA-seq clusters revealed C5aR1 dependent and independent gene expression and cell-cell communication. Microglial clusters containing neurotoxic disease-associated microglial genes were robustly upregulated in Arctic mice and drastically reduced with PMX205 treatment, while genes in microglia clusters that were overrepresented in the Arctic-PMX205 vs Arctic group were associated with synapse organization and transmission and learning. PMX205 treatment also reduced some A-1 astrocyte genes. In spite of changes in transcript levels, overall protein levels of some reactive glial markers were relatively unchanged by C5aR1 antagonism, as were clusters associated with protective responses to injury. C5aR1 inhibition promoted signaling pathways associated with cell growth and repair, such as TGFβ and FGF, in Arctic mice, while suppressing inflammatory pathways including PROS, Pecam1, and EPHA. In conclusion, pharmacologic C5aR1 inhibition prevents cognitive loss, limits microglial polarization to a detrimental inflammatory state and permits neuroprotective responses, as well as leaving protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for individuals with AD.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
33
|
Cui Y, Yang B, Lin S, Huang L, Xie F, Feng W, Lin Z. FGF23 alleviates neuronal apoptosis and inflammation, and promotes locomotion recovery via activation of PI3K/AKT signalling in spinal cord injury. Exp Ther Med 2023; 26:340. [PMID: 37383378 PMCID: PMC10294607 DOI: 10.3892/etm.2023.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/24/2023] [Indexed: 06/30/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) regulates neuronal morphology, synaptic growth and inflammation; however, its involvement in spinal cord injury (SCI) remains unclear. Therefore, the present study aimed to investigate the effect of FGF23 on neuronal apoptosis, inflammation and locomotion recovery, as well as its underlying mechanism in experimental SCI models. Primary rat neurons were stimulated with H2O2 to establish an in vitro model of SCI and were then transfected with an FGF23 overexpression (oeFGF23) or short hairpin RNA (shFGF23) adenovirus-associated virus and treated with or without LY294002 (a PI3K/AKT inhibitor). Subsequently, an SCI rat model was constructed, followed by treatment with oeFGF23, LY294002 or a combination of the two. FGF23 overexpression (oeFGF23 vs. oeNC) decreased the cell apoptotic rate and cleaved-caspase3 expression, but increased Bcl-2 expression in H2O2-stimulated neurons, whereas shFGF23 transfection (shFGF23 vs. shNC) exhibited the opposite effect (all P<0.05). Furthermore, FGF23 overexpression (oeFGF23 vs. oeNC) could activate the PI3K/AKT signalling pathway, whereas treatment with the PI3K/AKT inhibitor (LY294002) (oeFGF23 + LY294002 vs. LY294002) attenuated these effects in H2O2-stimulated neurons (all P<0.05). In SCI model rats, FGF23 overexpression (oeFGF23 vs. oeNC) reduced the laceration and inflammatory cell infiltration in injured tissue, decreased TNF-α and IL-1β levels, and improved locomotion recovery (all P<0.05); these effects were attenuated by additional administration of LY294002 (oeFGF23 + LY294002 vs. LY294002) (all P<0.05). In conclusion, FGF23 alleviated neuronal apoptosis and inflammation, and promoted locomotion recovery via activation of the PI3K/AKT signalling pathway in SCI, indicating its potential as a treatment option for SCI; however, further studies are warranted for validation.
Collapse
Affiliation(s)
- Yan Cui
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bin Yang
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shaoyi Lin
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Luqiang Huang
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Feibin Xie
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Wei Feng
- Department of Neurosurgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Zhenzong Lin
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
34
|
Zhang W, Luo P, Liu X, Cheng R, Zhang S, Qian X, Liu F. Roles of Fibroblast Growth Factors in the Axon Guidance. Int J Mol Sci 2023; 24:10292. [PMID: 37373438 DOI: 10.3390/ijms241210292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been widely studied by virtue of their ability to regulate many essential cellular activities, including proliferation, survival, migration, differentiation and metabolism. Recently, these molecules have emerged as the key components in forming the intricate connections within the nervous system. FGF and FGF receptor (FGFR) signaling pathways play important roles in axon guidance as axons navigate toward their synaptic targets. This review offers a current account of axonal navigation functions performed by FGFs, which operate as chemoattractants and/or chemorepellents in different circumstances. Meanwhile, detailed mechanisms behind the axon guidance process are elaborated, which are related to intracellular signaling integration and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Weiyun Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Peiyi Luo
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaohan Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ruoxi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Shuxian Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiao Qian
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Fang Liu
- Department of Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
35
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
36
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
37
|
Zhang Q, Chen Z, Zhang K, Zhu J, Jin T. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther 2023; 29:1497-1511. [PMID: 36924298 PMCID: PMC10173727 DOI: 10.1111/cns.14176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With millions of victims worldwide, multiple sclerosis is the second most common cause of disability among young adults. Although formidable advancements have been made in understanding the disease, the neurodegeneration associated with multiple sclerosis is only partially counteracted by current treatments, and effective therapy for progressive multiple sclerosis remains an unmet need. Therefore, new approaches are required to delay demyelination and the resulting disability and to restore neural function by promoting remyelination and neuronal repair. AIMS The article reviews the latest literature in this field. MATERIALS AND METHODS The fibroblast growth factor (FGF) signaling pathway is a promising target in progressive multiple sclerosis. DISCUSSION FGF signal transduction contributes to establishing the oligodendrocyte lineage, neural stem cell proliferation and differentiation, and myelination of the central nervous system. Furthermore, FGF signaling is implicated in the control of neuroinflammation. In recent years, interventions targeting FGF, and its receptor (FGFR) have been shown to ameliorate autoimmune encephalomyelitis symptoms in multiple sclerosis animal models moderately. CONCLUSION Here, we summarize the recent findings and investigate the role of FGF/FGFR signaling in the onset and progression, discuss the potential therapeutic advances, and offer fresh insights into managing multiple sclerosis.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Kaili Zhang
- Stomatology College of Inner Mongolia Medical University, Hohhot, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Chronic Voluntary Alcohol Consumption Alters Promoter Methylation and Expression of Fgf-2 and Fgfr1. Int J Mol Sci 2023; 24:ijms24043336. [PMID: 36834747 PMCID: PMC9963845 DOI: 10.3390/ijms24043336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Alcohol abuse accounts for 3.3 million deaths annually, rendering it a global health issue. Recently, fibroblast growth factor 2 (FGF-2) and its target, fibroblast growth factor receptor 1 (FGFR1), were discovered to positively regulate alcohol-drinking behaviors in mice. We tested whether alcohol intake and withdrawal alter DNA methylation of Fgf-2 and Fgfr1 and if there is a correlation regarding mRNA expression of these genes. Blood and brain tissues of mice receiving alcohol intermittently over a six-week period were analyzed using direct bisulfite sequencing and qRT-PCR analysis. Assessment of Fgf-2 and Fgfr1 promoter methylation revealed changes in the methylation of cytosines in the alcohol group compared with the control group. Moreover, we showed that the altered cytosines coincided with binding motives of several transcription factors. We also found that Fgf-2 and Fgfr1 gene expression was significantly decreased in alcohol-receiving mice compared with control littermates, and that this effect was specifically detected in the dorsomedial striatum, a brain region involved in the circuitry of the reward system. Overall, our data showed alcohol-induced alterations in both mRNA expression and methylation pattern of Fgf-2 and Fgfr1. Furthermore, these alterations showed a reward system regional specificity, therefore, resembling potential targets for future pharmacological interventions.
Collapse
|
39
|
Nematode-Induced Growth Factors Related to Angiogenesis in Autoimmune Disease Attenuation. Life (Basel) 2023; 13:life13020321. [PMID: 36836678 PMCID: PMC9959133 DOI: 10.3390/life13020321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Accumulating data suggest an important role of growth factors in autoimmune diseases and parasitic nematode infections. Nematodes are used in clinical studies of autoimmune diseases and parasite-derived molecules are widely studied for their therapeutic potential in various types of disorders. However, the effect of nematode infection on growth factors in autoimmune disorders has not been studied. The objective of this study was to evaluate the influence of infection with the intestinal nematode Heligmosomoides polygyrus in murine autoimmune models on the production of growth factors. Here, the level of a variety of growth factors related mainly to angiogenesis was evaluated by protein array in the intestinal mucosa of C57BL/6 dextran sodium sulfate-induced colitic mice and in cerebral spinal fluid of experimental autoimmune encephalomyelitis (EAE) mice infected with nematodes. In addition, vessel formation was evaluated in the brains of EAE mice infected with H. polygyrus. A significant influence of nematode infection on the level of angiogenic factors was observed. Parasitic infection of colitic mice resulted in upregulation of mucosal AREG, EGF, FGF-2, and IGFBP-3 in the intestine of the host and better adaptation (infectivity). In EAE mice, infection increased the level of FGF-2 and FGF-7 in CSF. In addition, remodeling of brain vessels was observed, with a higher density of long vessels. Nematode-derived factors are promising tools to fight autoimmune diseases and to study angiogenesis.
Collapse
|
40
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
41
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
42
|
Huang Q, Liu B, Wu W. Biomaterial-Based bFGF Delivery for Nerve Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8003821. [PMID: 37077657 PMCID: PMC10110389 DOI: 10.1155/2023/8003821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
Diseases in the nervous system are common in the human body. People have to suffer a great burden due to huge economic costs and poor prognosis of the diseases. Many treatment modalities are now available that can make recovery better. Managing nutritional factors is also helpful for such diseases. The basic fibroblast growth factor (bFGF) is one of the major nutritional factors, which plays a crucial role in organogenesis and tissue homeostasis. It plays a role in cell proliferation, migration, and differentiation, thereby regulating angiogenesis and wound healing and repair of the muscle, bone, and nerve. The study on how to improve the stability of bFGF to increase the treatment effect for different diseases has garnered tremendous attention. Biomaterials are the popular methods to improve the stability of bFGF because they are safe for the living body as they are biocompatible. Biomaterials can be loaded with bFGF and delivered locally to achieve the goal of sustained bFGF release. In the present review, we report different types of biomaterials that are used for bFGF delivery for nerve repair and briefly report how the introduced bFGF can function in the nervous system. We aim to provide summative guidance for future studies about nerve injury using bFGF.
Collapse
Affiliation(s)
- Qinying Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| | - Bo Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, China
| |
Collapse
|
43
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
44
|
Garré JM, Bukauskas FF, Bennett MVL. Single channel properties of pannexin-1 and connexin-43 hemichannels and P2X7 receptors in astrocytes cultured from rodent spinal cords. Glia 2022; 70:2260-2275. [PMID: 35915989 PMCID: PMC9560969 DOI: 10.1002/glia.24250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022]
Abstract
Astrocytes express surface channels involved in purinergic signaling. Among these channels, pannexin-1 (Px1) and connexin-43 (Cx43) hemichannels (HCs) release ATP that acts directly, or through its derivatives, on neurons and glia via purinergic receptors. Although HCs are functional, that is, open and close under physiological and pathological conditions, single channel properties of Px1 HCs in astrocytes have not been defined. Here, we developed a dual voltage clamp technique in HeLa cells expressing human Px1-YFP, and then applied this system to rodent spinal astrocytes to compare their single channel properties with other surface channels, that is, Cx43 HCs and P2X7 receptors (P2X7Rs). Channels were recorded in cell attached patches and evoked with ramp cycles applied through another pipette in whole cell voltage clamp. The mean unitary conductances of Px1 HCs were comparable in HeLa Px1-YFP cells and spinal astrocytes, ~42 and ~48 pS, respectively. Based on their unitary conductance, voltage-dependence, and unitary activity after pharmacological and gene silencing, Px1 HCs in astrocytes could be distinguished from Cx43 HCs and P2X7Rs. Channel activity of Px1 HCs and P2X7Rs was greater than that of Cx43 HCs in control astrocytes during ramps. Unitary activity of Px1 HCs was decreased and that of Cx43 HCs and P2X7Rs increased in astrocytes treated with fibroblast growth factor 1 (FGF-1). In summary, we resolved single channel properties of three different surface channels involved in purinergic signaling in spinal astrocytes, which were differentially modulated by FGF-1, a growth factor involved in neurodevelopment, inflammation and repair.
Collapse
Affiliation(s)
- Juan Mauricio Garré
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Feliksas F Bukauskas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
45
|
Quach TT, Stratton HJ, Khanna R, Mackey-Alfonso S, Deems N, Honnorat J, Meyer K, Duchemin AM. Neurodegenerative Diseases: From Dysproteostasis, Altered Calcium Signalosome to Selective Neuronal Vulnerability to AAV-Mediated Gene Therapy. Int J Mol Sci 2022; 23:ijms232214188. [PMID: 36430666 PMCID: PMC9694178 DOI: 10.3390/ijms232214188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Despite intense research into the multifaceted etiology of neurodegenerative diseases (ND), they remain incurable. Here we provide a brief overview of several major ND and explore novel therapeutic approaches. Although the cause (s) of ND are not fully understood, the accumulation of misfolded/aggregated proteins in the brain is a common pathological feature. This aggregation may initiate disruption of Ca++ signaling, which is an early pathological event leading to altered dendritic structure, neuronal dysfunction, and cell death. Presently, ND gene therapies remain unidimensional, elusive, and limited to modifying one pathological feature while ignoring others. Considering the complexity of signaling cascades in ND, we discuss emerging therapeutic concepts and suggest that deciphering the molecular mechanisms involved in dendritic pathology may broaden the phenotypic spectrum of ND treatment. An innovative multiplexed gene transfer strategy that employs silencing and/or over-expressing multiple effectors could preserve vulnerable neurons before they are lost. Such therapeutic approaches may extend brain health span and ameliorate burdensome chronic disease states.
Collapse
Affiliation(s)
- Tam T. Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
| | | | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Sabrina Mackey-Alfonso
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Deems
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jérome Honnorat
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677 Lyon, France
- SynatAc Team, Institut NeuroMyoGène, 69677 Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-293-5517; Fax: +1-614-293-7599
| |
Collapse
|
46
|
Poitras T, Zochodne DW. Unleashing Intrinsic Growth Pathways in Regenerating Peripheral Neurons. Int J Mol Sci 2022; 23:13566. [PMID: 36362354 PMCID: PMC9654452 DOI: 10.3390/ijms232113566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Common mechanisms of peripheral axon regeneration are recruited following diverse forms of damage to peripheral nerve axons. Whether the injury is traumatic or disease related neuropathy, reconnection of axons to their targets is required to restore function. Supporting peripheral axon regrowth, while not yet available in clinics, might be accomplished from several directions focusing on one or more of the complex stages of regrowth. Direct axon support, with follow on participation of supporting Schwann cells is one approach, emphasized in this review. However alternative approaches might include direct support of Schwann cells that instruct axons to regrow, manipulation of the inflammatory milieu to prevent ongoing bystander axon damage, or use of inflammatory cytokines as growth factors. Axons may be supported by a growing list of growth factors, extending well beyond the classical neurotrophin family. The understanding of growth factor roles continues to expand but their impact experimentally and in humans has faced serious limitations. The downstream signaling pathways that impact neuron growth have been exploited less frequently in regeneration models and rarely in human work, despite their promise and potency. Here we review the major regenerative signaling cascades that are known to influence adult peripheral axon regeneration. Within these pathways there are major checkpoints or roadblocks that normally check unwanted growth, but are an impediment to robust growth after injury. Several molecular roadblocks, overlapping with tumour suppressor systems in oncology, operate at the level of the perikarya. They have impacts on overall neuron plasticity and growth. A second approach targets proteins that largely operate at growth cones. Addressing both sites might offer synergistic benefits to regrowing neurons. This review emphasizes intrinsic aspects of adult peripheral axon regeneration, emphasizing several molecular barriers to regrowth that have been studied in our laboratory.
Collapse
Affiliation(s)
| | - Douglas W. Zochodne
- Neuroscience and Mental Health Institute, Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
47
|
Hu Y, Deng F, Zhang L, Hu K, Liu S, Zhong S, Yang J, Zeng X, Peng X. Depression and Quality of Life in Patients with Gliomas: A Narrative Review. J Clin Med 2022; 11:jcm11164811. [PMID: 36013047 PMCID: PMC9410515 DOI: 10.3390/jcm11164811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
In patients with gliomas, depression is a common complication that may cause severe psychological barriers and deteriorate the patient’s quality of life (QoL). Currently, the Hospital Anxiety and Depression Scale (HADS) is the most commonly used tool to diagnose depression in patients with gliomas. Female sex, unmarried status, low education level, high tumor grade, and a history of mental illness may increase the risks of depression and depressive symptoms in patients with gliomas. The QoL of patients with gliomas can be directly reduced by depression. Therefore, the evaluation and intervention of mood disorders could improve the overall QoL of patients with gliomas. Antidepressant use has become a treatment strategy for patients with gliomas and comorbid depression. This narrative review summarizes the current issues related to depression in patients with gliomas, including the prevalence, risk factors, and diagnostic criteria of depression as well as changes in QoL caused by comorbid depression and antidepressant use. The purpose of this review is to guide clinicians to assess the psychological status of patients with gliomas and to provide clinicians and oncologists with a new treatment strategy to improve the prognosis of such patients.
Collapse
Affiliation(s)
- Yue Hu
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Fang Deng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 238 Shangmayuanling Lane, Changsha 410078, China
| | - Lupeng Zhang
- Department of Biochemistry and Molecular Biology, Jishou University School of Medicine, 120 Renmin South Road, Jishou 416000, China
| | - Keyue Hu
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Shiqi Liu
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Suye Zhong
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Jun Yang
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
| | - Xiaomin Zeng
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 238 Shangmayuanling Lane, Changsha 410078, China
- Correspondence: (X.Z.); (X.P.)
| | - Xiaoning Peng
- Department of Clinical Medicine, Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410006, China
- Department of Biochemistry and Molecular Biology, Jishou University School of Medicine, 120 Renmin South Road, Jishou 416000, China
- Correspondence: (X.Z.); (X.P.)
| |
Collapse
|
48
|
Pun FW, Liu BHM, Long X, Leung HW, Leung GHD, Mewborne QT, Gao J, Shneyderman A, Ozerov IV, Wang J, Ren F, Aliper A, Bischof E, Izumchenko E, Guan X, Zhang K, Lu B, Rothstein JD, Cudkowicz ME, Zhavoronkov A. Identification of Therapeutic Targets for Amyotrophic Lateral Sclerosis Using PandaOmics – An AI-Enabled Biological Target Discovery Platform. Front Aging Neurosci 2022; 14:914017. [PMID: 35837482 PMCID: PMC9273868 DOI: 10.3389/fnagi.2022.914017] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with ill-defined pathogenesis, calling for urgent developments of new therapeutic regimens. Herein, we applied PandaOmics, an AI-driven target discovery platform, to analyze the expression profiles of central nervous system (CNS) samples (237 cases; 91 controls) from public datasets, and direct iPSC-derived motor neurons (diMNs) (135 cases; 31 controls) from Answer ALS. Seventeen high-confidence and eleven novel therapeutic targets were identified and will be released onto ALS.AI (http://als.ai/). Among the proposed targets screened in the c9ALS Drosophila model, we verified 8 unreported genes (KCNB2, KCNS3, ADRA2B, NR3C1, P2RY14, PPP3CB, PTPRC, and RARA) whose suppression strongly rescues eye neurodegeneration. Dysregulated pathways identified from CNS and diMN data characterize different stages of disease development. Altogether, our study provides new insights into ALS pathophysiology and demonstrates how AI speeds up the target discovery process, and opens up new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Xi Long
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Quinlan T. Mewborne
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Anastasia Shneyderman
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Ju Wang
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Feng Ren
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Alexander Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Evelyne Bischof
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- International Center for Multimorbidity and Complexity in Medicine (ICMC), Universität Zürich, Zurich, Switzerland
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Xiaoming Guan
- 4B Technologies Limited, Suzhou BioBay, Suzhou, China
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, United States
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Merit E. Cudkowicz
- Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Merit E. Cudkowicz,
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
- Buck Institute for Research on Aging, Novato, CA, United States
- Alex Zhavoronkov,
| |
Collapse
|
49
|
León-Andrino A, Noriega DC, Lapuente JP, Pérez-Valdecantos D, Caballero-García A, Herrero AJ, Córdova A. Biological Approach in the Treatment of External Popliteal Sciatic Nerve (Epsn) Neurological Injury: Review. J Clin Med 2022; 11:2804. [PMID: 35628928 PMCID: PMC9144828 DOI: 10.3390/jcm11102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
The external popliteal sciatic nerve (EPSN) is the nerve of the lower extremity most frequently affected by compressive etiology. Its superficial and sinuous anatomical course is closely related to other rigid anatomical structures and has an important dynamic neural component. Therefore, this circumstance means that this nerve is exposed to multiple causes of compressive etiology. Despite this fact, there are few publications with extensive case studies dealing with treatment. In this review, we propose to carry out a narrative review of the neuropathy of the EPSN, including an anatomical reminder, its clinical presentation and diagnosis, as well as its surgical and biological approach. The most novel aspect we propose is the review of the possible role of biological factors in the reversal of this situation.
Collapse
Affiliation(s)
- Alejandro León-Andrino
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
| | - David C. Noriega
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan P. Lapuente
- SCO (Scientific Chief Officer) Laboratorio de Biología Molecular y Celular R4T, University Hospital of Fuenlabrada, 28942 Fuenlabrada, Spain;
| | - Daniel Pérez-Valdecantos
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Azael J. Herrero
- Department of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Alfredo Córdova
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| |
Collapse
|
50
|
Prenatal glucocorticoid exposure selectively impairs neuroligin 1-dependent neurogenesis by suppressing astrocytic FGF2-neuronal FGFR1 axis. Cell Mol Life Sci 2022; 79:294. [PMID: 35562616 PMCID: PMC9106608 DOI: 10.1007/s00018-022-04313-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
Exposure to maternal stress irreversibly impairs neurogenesis of offspring by inducing life-long effects on interaction between neurons and glia under raging differentiation process, culminating in cognitive and neuropsychiatric abnormalities in adulthood. We identified that prenatal exposure to stress-responsive hormone glucocorticoid impaired neurogenesis and induced abnormal behaviors in ICR mice. Then, we used human induced pluripotent stem cell (iPSC)-derived neural stem cell (NSC) to investigate how neurogenesis deficits occur. Following glucocorticoid treatment, NSC-derived astrocytes were found to be A1-like neurotoxic astrocytes. Moreover, cortisol-treated astrocytic conditioned media (ACM) then specifically downregulated AMPA receptor-mediated glutamatergic synaptic formation and transmission in differentiating neurons, by inhibiting localization of ionotropic glutamate receptor (GluR)1/2 into synapses. We then revealed that downregulated astrocytic fibroblast growth factor 2 (FGF2) and nuclear fibroblast growth factor receptor 1 (FGFR1) of neurons are key pathogenic factors for reducing glutamatergic synaptogenesis. We further confirmed that cortisol-treated ACM specifically decreased the binding of neuronal FGFR1 to the synaptogenic NLGN1 promoter, but this was reversed by FGFR1 restoration. Upregulation of neuroligin 1, which is important in scaffolding GluR1/2 into the postsynaptic compartment, eventually normalized glutamatergic synaptogenesis and subsequent neurogenesis. Moreover, pretreatment of FGF2 elevated neuroligin 1 expression and trafficking of GluR1/2 into the postsynaptic compartment of mice exposed to prenatal corticosterone, improving spatial memory and depression/anxiety-like behaviors. In conclusion, we identified neuroligin 1 restoration by astrocytic FGF2 and its downstream neuronal nuclear FGFR1 as a critical target for preventing prenatal stress-induced dysfunction in glutamatergic synaptogenesis, which recovered both neurogenesis and hippocampal-related behaviors.
Collapse
|