1
|
Sant’Anna TBF, Martins TLS, dos Santos Carneiro MA, Teles SA, Caetano KAA, de Araujo NM. First Detection of Hepatitis B Virus Subgenotype A5, and Characterization of Occult Infection and Hepatocellular Carcinoma-Related Mutations in Latin American and African Immigrants in Brazil. Int J Mol Sci 2024; 25:8602. [PMID: 39201291 PMCID: PMC11354843 DOI: 10.3390/ijms25168602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
This study aims to characterize the molecular profile of the hepatitis B virus (HBV) among socially vulnerable immigrants residing in Brazil to investigate the introduction of uncommon HBV strains into the country. Serum samples from 102 immigrants with positive serology for the HBV core antibody (anti-HBc) were tested for the presence of HBV DNA by PCR assays. Among these, 24 were also positive for the HBV surface antigen (HBsAg). The full or partial genome was sequenced to determine genotype by phylogenetic analysis. Participants were from Haiti (79.4%), Guinea-Bissau (11.8%), Venezuela (7.8%), and Colombia (1%). Of the 21 HBV DNA-positive samples, subgenotypes A1 (52.4%), A5 (28.6%), E (9.5%), F2 (4.8%), and F3 (4.8%) were identified. Among the 78 HBsAg-negative participants, four were positive for HBV DNA, resulting in an occult HBV infection rate of 5.1%. Phylogenetic analysis suggested that most strains were likely introduced to Brazil by migration. Importantly, 80% of A5 sequences had the A1762T/G1764A double mutation, linked to an increased risk of hepatocellular carcinoma development. In conclusion, this study is the first report of HBV subgenotype A5 in Brazil, shedding new light on the diversity of HBV strains circulating in the country. Understanding the genetic diversity of HBV in immigrant communities can lead to better prevention and control strategies, benefiting both immigrants and wider society.
Collapse
Affiliation(s)
| | | | | | - Sheila Araujo Teles
- Faculty of Nursing, Federal University of Goiás, Goiania 74605-080, Brazil; (T.L.S.M.); (S.A.T.); (K.A.A.C.)
| | | | - Natalia Motta de Araujo
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
2
|
Assefa A, Getie M, Getie B, Yazie T, Enkobahry A. Molecular epidemiology of hepatitis B virus (HBV) in Ethiopia: A review article. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105618. [PMID: 38857639 DOI: 10.1016/j.meegid.2024.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Hepatitis B virus (HBV) belongs to the family Hepadnaviridae and is the smallest human DNA virus, with a genome that is only 3200 nucleotides long. The absence of proofreading function in HBV reverse transcriptase provides a wide range of genetic variants for targeted outgrowth at different stages of infection. A number of sub genotypes and ten HBV genotypes (A through J) have been identified through analyses of the divergence of HBV genomic sequences. Numerous clinical outcomes, including the emergence of chronicity, the course of the disease, the effectiveness of treatment, and the response to vaccination, have been related to differences in genotype between HBV isolates. There are just seven studies that have been done in Ethiopia that examine the molecular epidemiology of HBV. Moreover, these studies haven't been compiled and reviewed yet. In this review, we looked at the genetic diversity and molecular epidemiology of HBV, the relationship between HBV genotypes and clinical outcomes, the immunopathogenesis of HBV, and finally the molecular epidemiology of HBV in Ethiopia. PubMed, Embase, and Google Scholar search engines were used to find relevant articles for the review. By using HBV genotyping, clinicians can better tailor vaccination decisions and antiviral therapy for patients with chronic hepatitis B who are more likely to experience the disease's progression.
Collapse
Affiliation(s)
- Ayenew Assefa
- Unit of Immunology, Department of Medical Laboratory Science, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Molla Getie
- College of Medicine and Health Science, Medical Laboratory Science Department, Injibara University, Injibara, Ethiopia
| | - Birhanu Getie
- Unit of Medical Microbiology, Department of Medical Laboratory Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Takilosimeneh Yazie
- College of Health Science, Department of Pharmacy, Debre Tabor University, Debre Tabor, Ethiopia
| | - Aklesya Enkobahry
- College of Medicine and Health Science, Department of Biomedical Science, Injibara University, Injibara, Ethiopia
| |
Collapse
|
3
|
Zhu SQ, Liao XH, Jiang WW, Sun Y, Xu HL, Chen XJ, Zheng BH. Effect of male HBV infection on the outcomes of IVF/ICSI cycles: a retrospective cohort study based on propensity score matching. Asian J Androl 2024; 26:415-420. [PMID: 38353463 PMCID: PMC11280202 DOI: 10.4103/aja202382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 07/02/2024] Open
Abstract
This study aimed to investigate the effects of male hepatitis B virus (HBV) infection on male fertility, embryonic development, and in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes. We performed a retrospective cohort study that included 3965 infertile couples who received fresh embryo transfer cycles for the first time at the Fujian Maternity and Child Health Hospital (Fuzhou, China) from January 2018 to January 2021. Infertile couples were categorized based on their HBV infection status into the HBV group (HBV-positive men and HBV-negative women) and the control group (HBV-negative couples). A 1:1 propensity score matching was performed with relatively balanced covariates. Baseline characteristics, semen parameters, laboratory outcomes, clinical outcomes, and obstetric and neonatal outcomes were compared between groups. After propensity score matching, 821 couples were included in each group. Both groups had similar semen parameters and obstetric and neonatal outcomes. The HBV group showed a significantly lower live birth rate than the control group ( P < 0.05). The HBV group had a significantly higher abortion rate than the control group ( P < 0.05). The rates of high-quality embryos and blastocyst formation were significantly lower in the HBV group than those in the control group (both P < 0.05). In conclusion, in couples who undergo IVF/ICSI, male HBV infection reduces the live birth rate and increases the risk of miscarriage. However, the incidence of low birth weight in women with IVF/ICSI does not increase with male HBV infection.
Collapse
Affiliation(s)
- Su-Qin Zhu
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou 350001, China
| | - Xiu-Hua Liao
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Wen-Wen Jiang
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Hui-Ling Xu
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Xiao-Jing Chen
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Bei-Hong Zheng
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou 350001, China
| |
Collapse
|
4
|
Hu JL, Huang AL. Classifying hepatitis B therapies with insights from covalently closed circular DNA dynamics. Virol Sin 2024; 39:9-23. [PMID: 38110037 PMCID: PMC10877440 DOI: 10.1016/j.virs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The achievement of a functional cure for chronic hepatitis B (CHB) remains limited to a minority of patients treated with currently approved drugs. The primary objective in developing new anti-HBV drugs is to enhance the functional cure rates for CHB. A critical prerequisite for the functional cure of CHB is a substantial reduction, or even eradication of covalently closed circular DNA (cccDNA). Within this context, the changes in cccDNA levels during treatment become as a pivotal concern. We have previously analyzed the factors influencing cccDNA dynamics and introduced a preliminary classification of hepatitis B treatment strategies based on these dynamics. In this review, we employ a systems thinking perspective to elucidate the fundamental aspects of the HBV replication cycle and to rationalize the classification of treatment strategies according to their impact on the dynamic equilibrium of cccDNA. Building upon this foundation, we categorize current anti-HBV strategies into two distinct groups and advocate for their combined use to significantly reduce cccDNA levels within a well-defined timeframe.
Collapse
Affiliation(s)
- Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Xu L, Xu Y, Zhang F, Xu P, Wang L. Immunological pathways in viral hepatitis-induced hepato-cellular carcinoma. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:64-72. [PMID: 38426692 PMCID: PMC10945487 DOI: 10.3724/zdxbyxb-2023-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/25/2023] [Indexed: 03/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is a serious neoplastic disease with increasing incidence and mortality, accounting for 90% of all liver cancers. Hepatitis viruses are the major causative agents in the development of HCC. Hepatitis A virus (HAV) primarily causes acute infections, which is associated with HCC to a certain extent, as shown by clinicopathological studies. Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infections lead to persistent liver inflammation and cirrhosis, disrupt multiple pathways associated with cellular apoptosis and proliferation, and are the most common viral precursors of HCC. Mutations in the HBV X protein (HBx) gene are closely associated with the incidence of HCC, while the expression of HCV core proteins contributes to hepatocellular lipid accumulation, thereby promoting tumorigenesis. In the clinical setting, hepatitis D virus (HDV) frequently co-infects with HBV, increasing the risk of chronic hepatitis. Hepatitis E virus (HEV) usually causes acute infections. However, chronic infections of HEV have been increasing recently, particularly in immuno-compromised patients and organ transplant recipients, which may increase the risk of progression to cirrhosis and the occurrence of HCC. Early detection, effective intervention and vaccination against these viruses may significantly reduce the incidence of liver cancer, while mechanistic insights into the interplay between hepatitis viruses and HCC may facilitate the development of more effective intervention strategies. This article provides a comprehensive overview of hepatitis viruses and reviews recent advances in research on aberrant hepatic immune responses and the pathogenesis of HCC due to viral infection.
Collapse
Affiliation(s)
- Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yifan Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fei Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Lie Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
6
|
Zulian V, Fiscon G, Paci P, Garbuglia AR. Hepatitis B Virus and microRNAs: A Bioinformatics Approach. Int J Mol Sci 2023; 24:17224. [PMID: 38139051 PMCID: PMC10743825 DOI: 10.3390/ijms242417224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In recent decades, microRNAs (miRNAs) have emerged as key regulators of gene expression, and the identification of viral miRNAs (v-miRNAs) within some viruses, including hepatitis B virus (HBV), has attracted significant attention. HBV infections often progress to chronic states (CHB) and may induce fibrosis/cirrhosis and hepatocellular carcinoma (HCC). The presence of HBV can dysregulate host miRNA expression, influencing several biological pathways, such as apoptosis, innate and immune response, viral replication, and pathogenesis. Consequently, miRNAs are considered a promising biomarker for diagnostic, prognostic, and treatment response. The dynamics of miRNAs during HBV infection are multifaceted, influenced by host variability and miRNA interactions. Given the ability of miRNAs to target multiple messenger RNA (mRNA), understanding the viral-host (human) interplay is complex but essential to develop novel clinical applications. Therefore, bioinformatics can help to analyze, identify, and interpret a vast amount of miRNA data. This review explores the bioinformatics tools available for viral and host miRNA research. Moreover, we introduce a brief overview focusing on the role of miRNAs during HBV infection. In this way, this review aims to help the selection of the most appropriate bioinformatics tools based on requirements and research goals.
Collapse
Affiliation(s)
- Verdiana Zulian
- Virology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| | - Giulia Fiscon
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (P.P.)
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (P.P.)
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy
| | - Anna Rosa Garbuglia
- Virology Laboratory, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| |
Collapse
|
7
|
Wongtrakul W, Charoenngam N, Ponvilawan B, Rujirachun P, Wattanachayakul P, Srikulmontri T, Hong N, Rai P, Ungprasert P. Hepatitis B virus infection and risk of gastric cancer: a systematic review and meta-analysis. Minerva Gastroenterol (Torino) 2023; 69:546-552. [PMID: 34240593 DOI: 10.23736/s2724-5985.21.02946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Hepatitis B virus (HBV) infection is a well-established risk factor for hepatocellular carcinoma. Recent studies have also suggested a higher risk of several extrahepatic cancers in patients with chronic HBV infection, including gastric cancer, even though the results are somewhat inconsistent. The current study was conducted to comprehensively investigate whether patients with HBV infection are at a higher risk of incident gastric cancer compared with individuals without HBV infection using systematic review and meta-analysis technique. EVIDENCE ACQUISITION Systemic literature review was conducted using Embase and Medline database up to December 2019. Eligible studies had to be cohort studies that consisted of one group of patients with HBV infection and another group of individuals without HBV infection. Relative risk of incident gastric cancer between the groups must be reported. Point estimates and standard errors from each eligible study were combined together using the generic inverse variance method of DerSimonian and Laird. EVIDENCE SYNTHESIS A total of 36,812 articles were identified. After two rounds of review, five articles with six cohorts of 120,995 HBV infected patients were included into the meta-analysis. The pooled analysis found that patients with HBV infection had a significantly higher risk of incident gastric cancer than individuals without HBV infection with the pooled risk ratio of 1.49 (95% CI: 1.20-1.85; I2=38%). CONCLUSIONS A significantly increased risk of incident gastric cancer among patients with chronic HBV infection was observed in this systematic review and meta-analysis.
Collapse
Affiliation(s)
- Wasit Wongtrakul
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipith Charoenngam
- Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ben Ponvilawan
- Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongprueth Rujirachun
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phuuwadith Wattanachayakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nutchaphon Hong
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pavarist Rai
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA -
| |
Collapse
|
8
|
Korkmaz P, Asan A, Karakeçili F, Tekin S, Demirtürk N. New Treatment Options in Chronic Hepatitis B: How Close Are We to Cure? INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:267-280. [PMID: 38633851 PMCID: PMC10986727 DOI: 10.36519/idcm.2023.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic liver disease worldwide. HBV-infected patients are at a lifetime risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). Today, pegylated interferon (Peg-IFN) and nucleos(t)ide analogs (NAs) are used in the treatment of patients with chronic hepatitis B (CHB). Both treatment options have limitations. Despite effective viral suppression, NAs have little effect on covalently closed circular DNA (cccDNA), the stable episomal form of the HBV genome in hepatocytes. Therefore, the cure rate with NAs is low, and long-term treatment is required. Although the cure rate is better with Peg-IFN, it is difficult to tolerate due to drug side effects. Therefore, new treatment options are needed in the treatment of HBV infection. We can group new treatments under two headings: those that interfere with the viral life cycle and spread and those that modulate the immune response. Clinical studies show that combinations of treatments that directly target the viral life cycle and treatments that regulate the host immune system will be among the important treatment strategies in the future. As new direct-acting antiviral (DAA) and immunomodulatory therapies continue to emerge and evolve, functional cures in HBV treatment may be an achievable goal.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Ali Asan
- Department of Infectious Diseases and Clinical Microbiology, Bursa Health Sciences University School of Medicine, Bursa, Türkiye
| | - Faruk Karakeçili
- Department of Infectious Diseases and Clinical Microbiology, Erzincan Binali Yıldırım University School of Medicine, Erzincan, Türkiye
| | - Süda Tekin
- Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, İstanbul, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University, School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|
9
|
Liao F, Xie J, Du R, Gao W, Lan L, Wang M, Rong X, Fu Y, Wang H. Replication and Expression of the Consensus Genome of Hepatitis B Virus Genotype C from the Chinese Population. Viruses 2023; 15:2302. [PMID: 38140543 PMCID: PMC10747539 DOI: 10.3390/v15122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) genotype C is a prevalent HBV genotype in the Chinese population. Although genotype C shows higher sequence heterogeneity and more severe liver disease than other genotypes, its pathogenesis and immunological traits are not yet fully elucidated. In this study, we first established and chemically synthesized the consensus sequence based on representative 138 full-length HBV genotype C genomes from the Chinese population. The pHBV1.3C plasmid system, containing a 1.3-fold full-length HBV genotype C consensus sequence, was constructed for subsequent validation. Next, we performed functional assays to investigate the replicative competence of pHBV1.3C in vitro through the transient transfection of HepG2 and Huh7 cells and validated the in vivo function via a hydrodynamic injection to BALB/c recipient mice. The in vitro investigation revealed that the extracellular HBV DNA and intracellular replicative intermediate (i.e., pregenomic RNA, pgRNA) were apparently measurable at 48 h, and the HBsAg and HBcAg were still positive in hepatoma cells at 96 h. We also found that HBsAg and HBeAg accumulated at the extracellular and intracellular levels in a time-dependent manner. The in vivo validation demonstrated that pHBV1.3C plasmids induced HBV viremia, triggered morphological changes and HBsAg- or HBcAg- positivity of hepatocytes, and ultimately caused inflammatory infiltration and focal or piecemeal necrosis in the livers of the murine recipients. HBV protein (HBsAg) colocalized with CD8+ T cells or CD4+ T cells in the liver. F4/80+ Kupffer cells were abundantly recruited around the altered murine hepatocytes. Taken together, our results indicate that the synthetic consensus sequence of HBV genotype C is replication-competent in vitro and in vivo. This genotype C consensus genome supports the full HBV life cycle, which is conducive to studying its pathogenesis and immune response, screening novel antiviral agents, and further optimizing testing and therapeutics.
Collapse
Affiliation(s)
- Fenfang Liao
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Junmou Xie
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Rongsong Du
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Wenbo Gao
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Lanyin Lan
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Hao Wang
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| |
Collapse
|
10
|
Boni C, Rossi M, Montali I, Tiezzi C, Vecchi A, Penna A, Doselli S, Reverberi V, Ceccatelli Berti C, Montali A, Schivazappa S, Laccabue D, Missale G, Fisicaro P. What Is the Current Status of Hepatitis B Virus Viro-Immunology? Clin Liver Dis 2023; 27:819-836. [PMID: 37778772 DOI: 10.1016/j.cld.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The natural history of hepatitis B virus (HBV) infection is closely dependent on the dynamic interplay between the host immune response and viral replication. Spontaneous HBV clearance in acute self-limited infection is the result of an adequate and efficient antiviral immune response. Instead, it is widely recognized that in chronic HBV infection, immunologic dysfunction contributes to viral persistence. Long-lasting exposure to high viral antigens, upregulation of multiple co-inhibitory receptors, dysfunctional intracellular signaling pathways and metabolic alterations, and intrahepatic regulatory mechanisms have been described as features ultimately leading to a hierarchical loss of effector functions up to full T-cell exhaustion.
Collapse
Affiliation(s)
- Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sara Doselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Schivazappa
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
11
|
Lok J, Guerra Veloz MF, Agarwal K. Overview of New Targets for Hepatitis B Virus: Immune Modulators, Interferons, Bifunctional Peptides, Therapeutic Vaccines and Beyond. Clin Liver Dis 2023; 27:857-876. [PMID: 37778774 DOI: 10.1016/j.cld.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Nucleos(t)ide analogs are the cornerstone of treatment against hepatitis B virus; however, they have no direct effect on its transcriptional template (ie, covalently closed circular DNA) and so functional cure is rarely achieved. Over recent years, there has been a significant improvement in our understanding of the viral life cycle and its mechanisms of immune evasion. In this review article, we will explore novel therapeutic targets, discuss the latest data from clinical trials, and highlight future research priorities.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | | | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
12
|
Patel A, Dossaji Z, Gupta K, Roma K, Chandler TM, Minacapelli CD, Catalano K, Gish R, Rustgi V. The Epidemiology, Transmission, Genotypes, Replication, Serologic and Nucleic Acid Testing, Immunotolerance, and Reactivation of Hepatitis B Virus. GASTRO HEP ADVANCES 2023; 3:139-150. [PMID: 39129942 PMCID: PMC11307719 DOI: 10.1016/j.gastha.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 08/13/2024]
Abstract
The epidemiology of Hepatitis B virus (HBV) has drastically changed in recent decades due to public health initiatives, including universal infant vaccination programs,urbanization driving global travel, and migration patterns. Despite screening of pregnant women and newborns significantly reducing the rate of perinatal transmission in certain parts of the world, other, perhaps more uncommon, routes (e.g., parenteral) have led to outbreaks in specific areas affected by the opioid epidemic and injection drug use. Although our current understanding of the effect of genetic variants of HBV is lacking, we review current knowledge and patterns of genetic variants with geographical predominance, pathophysiology, and clinical manifestations. Serologic and molecular markers are used to screen, identify phase and activity of infection, and monitor response to antivirals and/or reactivation. This review will provide the most up-to-date summary of the epidemiology, transmission, genotype, replication, and current methods of screening to follow the various phases of HBV, including immunotolerance and reactivation.
Collapse
Affiliation(s)
- Ankoor Patel
- Internal Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, New Brunswick, New Jersey
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Zahra Dossaji
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Kapil Gupta
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Katerina Roma
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Toni-Marie Chandler
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Carlos D. Minacapelli
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Kaitlyn Catalano
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Robert Gish
- Hepatitis B Foundation, Doylestown, Pennsylvania
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
13
|
Kobayakawa T, Amano M, Nakayama M, Tsuji K, Ishii T, Miura Y, Shinohara K, Yamamoto K, Matsuoka M, Tamamura H. Development of anti-HBV agents targeting HBV capsid proteins. RSC Med Chem 2023; 14:1973-1980. [PMID: 37859721 PMCID: PMC10583812 DOI: 10.1039/d3md00258f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Hepatitis B is a viral hepatitis, which is caused by infection of hepatitis B virus (HBV). This disease progresses to chronic hepatitis, cirrhosis and liver cancer. To treat hepatitis B, exclusion of virus and covalently closed circular DNA (cccDNA) that is formed in hepatocyte nucleus is necessary. A hepatitis B capsid protein (HBc) is an indispensable protein, which forms the capsid that encapsulates viral DNA. Since HBc is correlated to the transcriptional regulation of cccDNA, this protein would be an attractive target for complete cure of hepatitis B. By in silico screening of a library of compounds, a small compound, Cpd4 (1), which binds to a hydrophobic cavity located in the inner pocket on the tetramer interface of HBc proteins, was identified. In anti-HBV assays, this synthetic compound, Cpd4 (1) decreased the amount of HBV core related antigen (HBcrAg), which has been correlated with the proliferation of HBV, and decreased the amount of HBV surface antigen (HBsAg), which is correlated with the amount of cccDNA. Based on Cpd4 (1) as a lead compound, 20 derivatives of 1 were designed and synthesized and their structure-activity relationships were examined. As a result, specific interactions between each compound and amino acid residues of the target protein appeared to be unimportant but the shape/size of compounds which can bind to the hydrophobic cavity might be important in the expression of high anti-HBV activity, and a more potent derivative, TKB-HBV-CA-001 (3b), was discovered. These results will be useful in the development of novel anti-HBV agents for a complete cure of hepatitis B.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masayuki Amano
- Department of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto and Kagoshima Universities Kumamoto 860-0811 Japan
- Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University Kumamoto 860-8556 Japan
| | - Miyuki Nakayama
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Yutaro Miura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Kouki Shinohara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Kenichi Yamamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University Kumamoto 860-8556 Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
14
|
Song Z, Lin S, Wu X, Ren X, Wu Y, Wen H, Qian B, Lin H, Huang Y, Zhao C, Wang N, Huang Y, Peng B, Li X, Peng H, Shen S. Hepatitis B virus-related intrahepatic cholangiocarcinoma originates from hepatocytes. Hepatol Int 2023; 17:1300-1317. [PMID: 37368186 PMCID: PMC10522522 DOI: 10.1007/s12072-023-10556-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the most common risk factors for intrahepatic cholangiocarcinoma (ICC). However, there is no direct evidence of a causal relationship between HBV infection and ICC. In this study, we attempted to prove that ICC may originate from hepatocytes through a pathological study involving ICC tissue-derived organoids. METHOD The medical records and tumor tissue samples of 182 patients with ICC after hepatectomy were collected. The medical records of 182 patients with ICC were retrospectively analyzed to explore the prognostic factors. A microarray of 182 cases of ICC tumor tissue and 6 cases of normal liver tissue was made, and HBsAg was stained by immunohistochemistry (IHC) to explore the factors closely related to HBV infection. Fresh ICC tissues and corresponding adjacent tissues were collected to make paraffin sections and organoids. Immunofluorescence (IF) staining of factors including HBsAg, CK19, CK7, Hep-Par1 and Albumin (ALB) was performed on both fresh tissues and organoids. In addition, we collected adjacent nontumor tissues of 6 patients with HBV (+) ICC, from which biliary duct tissue and normal liver tissue were isolated and RNA was extracted respectively for quantitative PCR assay. In addition, the expression of HBV-DNA in organoid culture medium was detected by quantitative PCR and PCR electrophoresis. RESULTS A total of 74 of 182 ICC patients were HBsAg positive (40.66%, 74/182). The disease-free survival (DFS) rate of HBsAg (+) ICC patients was significantly lower than that of HBsAg (-) ICC patients (p = 0.0137). IF and IHC showed that HBsAg staining was only visible in HBV (+) ICC fresh tissues and organoids, HBsAg expression was negative in bile duct cells in the portal area. Quantitative PCR assay has shown that the expression of HBs antigen and HBx in normal hepatocytes were significantly higher than that in bile duct epithelial cells. Combined with the IF and IHC staining, it was confirmed that HBV does not infect normal bile duct epithelial cells. In addition, IF also showed that the staining of bile duct markers CK19 and CK7 were only visible in ICC fresh tissue and organoids, and the staining of hepatocyte markers Hep-Par1 and ALB was only visible in normal liver tissue fresh tissue. Real-time PCR and WB had the same results. High levels of HBV-DNA were detected in the culture medium of HBV (+) organoids but not in the culture medium of HBV (-) organoids. CONCLUSION HBV-related ICC might be derived from hepatocytes. HBV (+) ICC patients had shorter DFS than HBV (-) ICC patients.
Collapse
Affiliation(s)
- Zimin Song
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Shuirong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiwen Wu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
- Department of Clinical Nutrition, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yifan Wu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Haoxiang Wen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Baifeng Qian
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Haozhong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yihao Huang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Chenfeng Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Nian Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yan Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Baogang Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiaoxing Li
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| | - Hong Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| |
Collapse
|
15
|
Wardhani SW, Tummaruk P, Piewbang C, Techangamsuwan S. Quantification of domestic cat hepadnavirus DNA in various body fluid specimens of cats: the potential viral shedding routes. Front Vet Sci 2023; 10:1248445. [PMID: 37732146 PMCID: PMC10507184 DOI: 10.3389/fvets.2023.1248445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Domestic cat hepadnavirus (DCH) belongs to the Hepadnaviridae family together with human hepatitis B virus (HBV) that remains to be a major health problem worldwide. The transmission of HBV infectious virion has been one of the essential factors that contribute to high number of HBV infection in humans. It has been long known that various body fluid specimens of human with chronic HBV infection contain HBV DNA and demonstrated to be infectious. In contrast to this knowledge, the detection of DCH in various body fluid specimens of cats, has not been reported. This study explored the detection of DCH DNA in various body fluid specimens of cats by quantitative polymerase chain reaction (qPCR) and investigated whether the detection of DCH DNA from broader routes was correlated with any genomic diversity by phylogenetic analysis. A total of 1,209 body fluid specimens were included, and DCH DNA was detected not only in 4.70% (25/532) of blood samples; but also in 12.5% (1/8), 1.14% (1/88), 2.54% (10/394), and 1.65% (3/182) of auricular swab (AS), nasal swab (NS), oral swab (OS), and rectal swab (RS) specimens, respectively. Furthermore, the level of DCH DNA detected in the blood was significantly correlated with DCH DNA detection in OS (P = 0.02) and RS (P = 0.04) specimens. Genomic analysis revealed that there was no notable genomic diversity within the complete genome sequences obtained in this study. In conclusion, this study highlighted the presence of DCH DNA in various body fluid specimens of cats, and the potential role of these specimens in DCH horizontal transmission within the cat population warrants further studies.
Collapse
Affiliation(s)
- Sabrina Wahyu Wardhani
- The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Padet Tummaruk
- Department of Obstetrics, Gynaecology, and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Detta E, Corcuera A, Urban A, Goldner T, Bonsmann S, Engel F, May MM, Buschmann H, Fianchini M, Alza E, Pericàs MA, Pushkarev PA, Varenyk AO, Yakovyuk TY, Homon AA, Sokoliuk PA, Smaliy R, Donald A. Structure-based Design of Novel Hepatitis B Virus Capsid Assembly Modulators. Bioorg Med Chem Lett 2023; 93:129412. [PMID: 37499987 DOI: 10.1016/j.bmcl.2023.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Small-molecule capsid assembly modulators (CAMs) have been recently recognized as promising antiviral agents for curing chronic hepatitis B virus (HBV) infection. A target-based in silico screening study is described, aimed towards the discovery of novel HBV CAMs. Initial optimization of four weakly active screening hits was performed via focused library synthesis. Lead compound 42 and close analogues 56 and 57 exhibited in vitro potency in the sub- and micromolar range along with good physico-chemical properties and were further evaluated in molecular docking and mechanism of action studies.
Collapse
Affiliation(s)
- Elena Detta
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany; Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Angelica Corcuera
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Andreas Urban
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Thomas Goldner
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany.
| | - Susanne Bonsmann
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Florian Engel
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Marina M May
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Helmut Buschmann
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Esther Alza
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Miquel A Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
| | | | | | | | - Anton A Homon
- Enamine Ltd, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | | | - Radomyr Smaliy
- Enamine Ltd, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Alastair Donald
- AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str.475, 42117 Wuppertal, Germany
| |
Collapse
|
17
|
Gürpınar Tosun B, Karagözlü Akgül A, Almus E, Abidoğlu S, Turan S, Bereket A, Güran T. Non-hormonal Clitoromegaly due to Clitoral Priapism Caused by Appendicitis/Appendectomy. J Clin Res Pediatr Endocrinol 2023; 15:324-328. [PMID: 34866370 PMCID: PMC10448556 DOI: 10.4274/jcrpe.galenos.2021.2021-8-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/17/2021] [Indexed: 12/01/2022] Open
Abstract
Clitoromegaly usually develops due to hyperandrogenism. There are a few cases of clitoromegaly described without clinical and biochemical hyperandrogenism. Clitoromegaly due to clitoral priapism and clitoral priapism after appendectomy have not been reported previously. A 7-year-old girl was referred for enlargement of the clitoris. She reported having a mild, pulsating clitoral pain starting three days after an appendectomy operation. Subsequently, painful swelling and an increase in the size of the clitoris was observed. Her growth and physical examination were otherwise normal. Causes of the clitoromegaly due to androgen excess were excluded after a comprehensive work-up. Color Doppler ultrasound revealed a high peak systolic velocity and resistance in the cavernosal artery, consistent with clitoral priapism. The clitoromegaly and associated symptoms improved significantly with oral pseudoephedrine and intracavernosal aspiration. This unique case illustrates that clitoral priapism is a rare, non-hormonal cause of clitoromegaly and may occur after appendectomy. Pseudoephedrine treatment is helpful in alleviating the symptoms.
Collapse
Affiliation(s)
- Büşra Gürpınar Tosun
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Ahsen Karagözlü Akgül
- Marmara University Faculty of Medicine, Department of Pediatric Urology, İstanbul, Turkey
| | - Eda Almus
- Marmara University Faculty of Medicine, Department of Pediatric Radiology, İstanbul, Turkey
| | - Sadık Abidoğlu
- Marmara University Faculty of Medicine, Department of Pediatric Urology, İstanbul, Turkey
| | - Serap Turan
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Abdullah Bereket
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Tülay Güran
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| |
Collapse
|
18
|
Montoya-Guzman M, Martinez J, Castro-Arroyave D, Rojas C, Navas MC. Epidemiology and Genetic Diversity of Hepatitis B Virus and Hepatitis Delta Virus Infection in Indigenous Communities in Colombia. Microorganisms 2023; 11:1739. [PMID: 37512911 PMCID: PMC10386745 DOI: 10.3390/microorganisms11071739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the universal vaccination program, there are still regions and territories with a high prevalence of Hepatitis B Virus infection (HBV), such as the Amazon basin, where several indigenous communities live. Additionally, Hepatitis Delta Virus (HDV) is a defective that requires the hepatitis B surface antigen (HBsAg) for the assembly and release of de novo viral particles. Therefore, hepatitis D could be the result of HBV/HDV coinfection or HDV superinfection in individuals with chronic hepatitis B. Among the high prevalence HDV populations are indigenous communities of America. This study aims to describe and characterize the frequency of HBV and HDV infection, viral genotypes and HBV immune escape mutants in indigenous populations from different regions of Colombia. The diagnosis of hepatitis B and hepatitis D was confirmed by serological markers. Moreover, the HBV and HDV genome were amplified by PCR and RT-PCR, respectively, and, subsequently, the phylogenetic analysis was performed. We characterized 47 cases of chronic hepatitis B, 1 case of reactivation and 2 cases of occult hepatitis B infection (OBI). Furthermore, a high prevalence of HDV infection was identified in the study population (29.33%, 22/75) and the circulation of several HBV genotypes and subgenotypes (F1b, F3, F4, and D). Interestingly, this is the first report of the HDV genotype I circulation in this country. These findings demonstrated that HBV and HDV infections are still public health problems in indigenous communities in Colombia.
Collapse
Affiliation(s)
- Melissa Montoya-Guzman
- Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Jaime Martinez
- Grupo Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Diana Castro-Arroyave
- Grupo de Estudio en Pedagogía, Infancia y Desarrollo Humano (GEPIDH), Facultad de Educación, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Carlos Rojas
- Grupo Epidemiología, Facultad Nacional de Salud Pública, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Maria-Cristina Navas
- Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| |
Collapse
|
19
|
Ranga A, Gupta A, Yadav L, Kumar S, Jain P. Advancing beyond reverse transcriptase inhibitors: The new era of hepatitis B polymerase inhibitors. Eur J Med Chem 2023; 257:115455. [PMID: 37216809 DOI: 10.1016/j.ejmech.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Hepatitis B virus (HBV) is a genetically diverse blood-borne virus responsible for chronic hepatitis B. The HBV polymerase plays a key role in viral genome replication within the human body and has been identified as a potential drug target for chronic hepatitis B therapeutics. However, available nucleotide reverse transcriptase inhibitors only target the reverse transcriptase domain of the HBV polymerase; they also pose resistance issues and require lifelong treatment that can burden patients financially. In this study, various chemical classes are reviewed that have been developed to target different domains of the HBV polymerase: Terminal protein, which plays a vital role in the formation of the viral DNA; Reverse transcriptase, which is responsible for the synthesis of the viral DNA from RNA, and; Ribonuclease H, which is responsible for degrading the RNA strand in the RNA-DNA duplex formed during the reverse transcription process. Host factors that interact with the HBV polymerase to achieve HBV replication are also reviewed; these host factors can be targeted by inhibitors to indirectly inhibit polymerase functionality. A detailed analysis of the scope and limitations of these inhibitors from a medicinal chemistry perspective is provided. The structure-activity relationship of these inhibitors and the factors that may affect their potency and selectivity are also examined. This analysis will be useful in supporting the further development of these inhibitors and in designing new inhibitors that can inhibit HBV replication more efficiently.
Collapse
Affiliation(s)
- Abhishek Ranga
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Aarti Gupta
- Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Laxmi Yadav
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| | - Priti Jain
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| |
Collapse
|
20
|
Yang H, Yao W, Yang J. Overview of the development of HBV small molecule inhibitors. Eur J Med Chem 2023; 249:115128. [PMID: 36709647 DOI: 10.1016/j.ejmech.2023.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
Like tuberculosis and Acquired Immune Deficiency Syndrome (AIDS), hepatitis B is a globally recognized major public health threat. Although there are many small-molecule drugs for the treatment of hepatitis B, the approved drugs cannot eradicate the pathogenic culprit covalently closed circular DNA in patients, so the patients need long-term medication to control HBV amplification. Driven by a high unmet medical need, many pharmaceutical companies and research institutions have been engaged in the development of anti-HBV drugs to achieve a functional cure for chronic hepatitis B as soon as possible. This review summarizes the pathogenesis of hepatitis B virus and the research progress in the development of anti-HBV small molecule drugs, and introduces the cccDNA formation and transcription inhibitors and core inhibitors in detail, especially emphasizes the role of chinese herbal medicine in the treatment of chronic hepatitis B. Furthermore, this review proposes three potential strategies for cccDNA eradication in the future. We believe this review will provide meaningful guidance to achieve a functional cure for viral hepatitis B in the future.
Collapse
Affiliation(s)
- Huihui Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Weiwei Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| |
Collapse
|
21
|
Zhang B, Wang Y, Wang F, Zhang Y, Hao H, Lv X, Hao L, Shi Y. Microencapsulated phage composites with increased gastrointestinal stability for the oral treatment of Salmonella colonization in chicken. Front Vet Sci 2023; 9:1101872. [PMID: 36713855 PMCID: PMC9875011 DOI: 10.3389/fvets.2022.1101872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Salmonella infection, one of the common epidemics in the livestock and poultry breeding industry, causes great economic losses worldwide. At present, antibiotics are the most commonly used treatment for Salmonella infection, but the widespread use of antibiotics has increased drug resistance to Salmonella. Phage therapy has gradually become an alternative method to control Salmonella infection. However, phage, a specific virus that can infect bacteria, has poor stability and is prone to inactivation during treatment. Microencapsulated phage microspheres can effectively solve this problem. Accordingly, in this study, Salmonella phages were microencapsulated, using the xanthan gum/sodium alginate/CaCl2/chitooligosaccharides method, to improve their gastrointestinal stability. Furthermore, microencapsulated phages were evaluated for in vitro temperature and storage stability and in vivo therapeutic effect. Phage microspheres prepared with 1 g/100 mL xanthan gum, 2 g/100 mL sodium alginate, 2 g/100 mL CaCl2, and 0.6 g/100 mL chitooligosaccharides were regular in shape and stable in the temperature range of 10-30°C. Also, microencapsulated phages showed significantly improved stability in the simulated gastric juice environment than the free phages (p < 0.05). In the simulated intestinal fluid, microencapsulated phages were completely released after 4 h. Moreover, microencapsulated phages showed good storage stability at 4°C. In the in vivo experiments detecting Salmonella colonization in the intestinal tract of chicks, microencapsulated phages showed a better therapeutic effect than the free phages. In conclusion, microencapsulated phages exhibited significantly improved stability, gastric acid resistance, and thereby efficacy than the free phages. Microencapsulated phages can be potentially used as biological control agents against bacterial infections.
Collapse
Affiliation(s)
- Bo Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yongxia Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Fangfang Wang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yongying Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - He Hao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xingbang Lv
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Liuhang Hao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei, China,Engineering Research Center for Poultry Diseases of Hebei Province, Handan, Hebei, China,*Correspondence: Yuxiang Shi ✉
| |
Collapse
|
22
|
Current progress in the development of prophylactic and therapeutic vaccines. SCIENCE CHINA. LIFE SCIENCES 2022; 66:679-710. [PMID: 36469218 PMCID: PMC9734355 DOI: 10.1007/s11427-022-2230-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.
Collapse
|
23
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
24
|
Wang S, Bai Y, Yuan F, Wang T, Luo W, Luo C, Wang Q, Wang D. Effects of hepatitis B vaccination on hepatitis B surface antigen in neonates and its change in vivo. ASIAN BIOMED 2022; 16:265-272. [PMID: 37551314 PMCID: PMC10321203 DOI: 10.2478/abm-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background Vaccination is effective to prevent hepatitis B virus (HBV) infection. However, there is still a risk of infection after vaccination. In clinical work, we found that newborns were positive for HBV surface antigen (HBsAg) after vaccination. Objectives To determine the effect of hepatitis B vaccination on the detection of HBsAg trend in newborns. Methods We collected data at birth, history of vaccination for hepatitis B, quantitative HBsAg results, and other information about newborns born in our hospital from July 2017 to July 2020. Serum samples from healthy neonates were randomly selected to be supplemented with recombinant hepatitis B vaccine on a concentration gradient, and HBsAg was measured quantitatively. Results Data from 1417 neonates were included in the study; 306 (21.6%) were HBsAg positive within 8 d after vaccination, with levels ranging from 0.104 IU/mL to 0.339 IU/mL. The proportion of neonates with HBsAg-positive serum was significantly correlated with the level of hepatitis B surface antibodies (anti-HBs) in the serum of their mothers (P < 0.01). Experiments in vitro showed that the proportion of neonates with HBsAg-positive serum was correlated with the dose of the hepatitis B vaccine, and when the concentration of the hepatitis B vaccine reached 5 ng/mL and 10 ng/mL, the serum HBsAg levels showed a significant negative correlation with the original concentration of serum anti-HBs. Conclusions Hepatitis B vaccination can affect the level of HBsAg detected in neonatal serum, and the effect could be mitigated by delaying the measurement. Moreover, maternal anti-HBs offset the effects of neonatal vaccination on HBsAg serum levels.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan637000, China
| | - Yuting Bai
- North Sichuan Medical College, Nanchong, Sichuan637000, China
| | - Fangyuan Yuan
- North Sichuan Medical College, Nanchong, Sichuan637000, China
| | - Ting Wang
- North Sichuan Medical College, Nanchong, Sichuan637000, China
| | - Wenyi Luo
- North Sichuan Medical College, Nanchong, Sichuan637000, China
| | - Can Luo
- North Sichuan Medical College, Nanchong, Sichuan637000, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan637000, China
- North Sichuan Medical College, Nanchong, Sichuan637000, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan610041, China
| |
Collapse
|
25
|
Core promoter mutation of nucleotides A1762T and G1764A of hepatitis B virus increases core promoter transactivation by hepatocyte nuclear factor 1. J Microbiol 2022; 60:1039-1047. [DOI: 10.1007/s12275-022-1675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
|
26
|
Li S, Li N, Yang S, Deng H, Li Y, Wang Y, Yang J, Lv J, Dong L, Yu G, Hou X, Wang G. The study of immune checkpoint inhibitors in chronic hepatitis B virus infection. Int Immunopharmacol 2022; 109:108842. [DOI: 10.1016/j.intimp.2022.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
|
27
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus’s suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus’s life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
28
|
Martins TLS, Silva GRDCE, Silva CDA, Gomes DO, Diniz e Silva BV, Carneiro MADS, Pacheco LR, de Araujo NM, Zanchetta MS, Teles SA, Caetano KAA. Hepatitis B and C in Immigrants and Refugees in Central Brazil: Prevalence, Associated Factors, and Immunization. Viruses 2022; 14:1534. [PMID: 35891514 PMCID: PMC9321471 DOI: 10.3390/v14071534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction: Eliminating hepatitis B and C in immigrant and refugee populations is a significant challenge worldwide. Given the lack of information in Brazil, this study aimed to estimate the prevalence of infections caused by hepatitis B and C viruses and factors associated with hepatitis B in immigrants and refugees residing in central Brazil. Methods: An observational, cross-sectional, and analytical study was conducted from July 2019 to January 2020 with 365 immigrants and refugees. Hepatitis B was detected by a rapid immunochromatographic test, enzyme immunoassay, and chemiluminescence, and hepatitis C by rapid immunochromatographic test. Multiple analysis was used to assess factors associated with hepatitis B infection. Results: Of the participants, 57.8% were from Haiti and 35.6% were from Venezuela. Most had been in Brazil for less than 2 years (71.2%). The prevalence of HBV infection and exposure was 6.6% (95% CI: 4.5-9.6%) and 27.9% (95% CI: 23.6-2.8%), respectively, and 34% had isolated anti-HBs positivity. Reporting a sexually transmitted infection was statistically associated with HBV infection (OR: 7.8; 95% CI: 2.3-26.4). No participant with positive anti-HCV serology was found. Conclusions: The study showed that participants were outside the reach of prevention and control actions for hepatitis B. Therefore, public health strategies must be designed to reach, inform, and vaccinate this group.
Collapse
Affiliation(s)
- Thaynara Lorrane Silva Martins
- Faculty of Nursing, Federal University of Goias, Goiania 74605-080, Brazil; (T.L.S.M.); (G.R.d.C.e.S.); (C.d.A.S.); (D.O.G.); (L.R.P.); (S.A.T.)
| | - Grazielle Rosa da Costa e Silva
- Faculty of Nursing, Federal University of Goias, Goiania 74605-080, Brazil; (T.L.S.M.); (G.R.d.C.e.S.); (C.d.A.S.); (D.O.G.); (L.R.P.); (S.A.T.)
| | - Carla de Almeida Silva
- Faculty of Nursing, Federal University of Goias, Goiania 74605-080, Brazil; (T.L.S.M.); (G.R.d.C.e.S.); (C.d.A.S.); (D.O.G.); (L.R.P.); (S.A.T.)
| | - Davi Oliveira Gomes
- Faculty of Nursing, Federal University of Goias, Goiania 74605-080, Brazil; (T.L.S.M.); (G.R.d.C.e.S.); (C.d.A.S.); (D.O.G.); (L.R.P.); (S.A.T.)
| | - Bruno Vinícius Diniz e Silva
- Institute of Tropical Medicine and Public Health, Federal University of Goias, Goiania 74605-050, Brazil; (B.V.D.e.S.); (M.A.d.S.C.)
| | | | - Leonora Rezende Pacheco
- Faculty of Nursing, Federal University of Goias, Goiania 74605-080, Brazil; (T.L.S.M.); (G.R.d.C.e.S.); (C.d.A.S.); (D.O.G.); (L.R.P.); (S.A.T.)
| | | | | | - Sheila Araujo Teles
- Faculty of Nursing, Federal University of Goias, Goiania 74605-080, Brazil; (T.L.S.M.); (G.R.d.C.e.S.); (C.d.A.S.); (D.O.G.); (L.R.P.); (S.A.T.)
| | - Karlla Antonieta Amorim Caetano
- Faculty of Nursing, Federal University of Goias, Goiania 74605-080, Brazil; (T.L.S.M.); (G.R.d.C.e.S.); (C.d.A.S.); (D.O.G.); (L.R.P.); (S.A.T.)
| |
Collapse
|
29
|
(-)-Lariciresinol Isolated from the Roots of Isatis indigotica Fortune ex Lindl. Inhibits Hepatitis B Virus by Regulating Viral Transcription. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103223. [PMID: 35630700 PMCID: PMC9143483 DOI: 10.3390/molecules27103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Chronic hepatitis induced by hepatitis B virus (HBV) infection is a serious public health problem, leading to hepatic cirrhosis and liver cancer. Although the currently approved medications can reliably decrease the virus load and prevent the development of hepatic diseases, they fail to induce durable off-drug control of HBV replication in the majority of patients. The roots of Isatis indigotica Fortune ex Lindl., a traditional Chinese medicine, were frequently used for the prevention of viral disease in China. In the present study, (-)-lariciresinol ((-)-LRSL), isolated from the roots of Isatis indigotica Fortune ex Lindl., was found to inhibit HBV DNA replication of both wild-type and nucleos(t)ide analogues (NUCs)-resistant strains in vitro. Mechanism studies revealed that (-)-LRSL could block RNA production after treatment, followed by viral proteins, and then viral particles and DNA. Promoter reporter assays and RNA decaying dynamic experiments indicated that (-)-LRSL mediated HBV RNA reduction was mainly due to transcriptional inhibition rather than degradation. Moreover, (-)-LRSL in a dose-dependent manner also inhibited other animal hepadnaviruses, including woodchuck hepatitis virus (WHV) and duck hepatitis B virus (DHBV). Combining the analysis of RNA-seq, we further found that the decrease in HBV transcriptional activity by (-)-LRSL may be related to hepatocyte nuclear factor 1α (HNF1α). Taken together, (-)-LRSL represents a novel chemical entity that inhibits HBV replication by regulating HNF1α mediated HBV transcription, which may provide a new perspective for HBV therapeutics.
Collapse
|
30
|
Scavone D, Lauzi S, Stranieri A, Tramontano G, Ratti G, Paltrinieri S. Evaluating the presence of domestic cat hepadnavirus viraemia in cats with biochemical alterations suggestive of liver disease. Vet Rec 2022; 191:e1626. [PMID: 35393638 DOI: 10.1002/vetr.1626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND The association between domestic cat hepadnavirus (DCH) infection and feline chronic hepatitis and hepatocellular carcinoma has been suggested. However, studies focused on the association between DCH infection and clinicopathological changes consistent with liver disease in cats are not available. METHODS This retrospective investigation included sera obtained from 96 cats that had the serum activity of at least alanine aminotransferase or alkaline phosphatase measured during initial diagnostic work-up. Based on these haematobiochemical results, cats were categorised according to their likelihood of having liver disease (absent, low, intermediate or high). DCH DNA was detected using real-time PCR, nested PCR and sequencing. RESULTS Overall, potential liver damage was observed in 44 cats, including cats with low (n = 14), intermediate (n = 10) and high (n = 20) likelihood of liver disease. Four cats (4.2%) were DCH-positive, with three positive cats belonging to the liver disease group (two with low and one with intermediate likelihood of liver disease). CONCLUSIONS Although the pathogenic potential of DCH in cats still has to be clarified, these results suggest that DCH testing should not be based only on the presence of biochemical changes potentially consistent with liver disease.
Collapse
Affiliation(s)
- Donatella Scavone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Angelica Stranieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Giada Tramontano
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Gabriele Ratti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| |
Collapse
|
31
|
Lavine N, Ohayon A, Mahroum N. Renal autoimmunity: The role of bacterial and viral infections, an extensive review. Autoimmun Rev 2022; 21:103073. [PMID: 35245692 DOI: 10.1016/j.autrev.2022.103073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
Autoimmunity is a process by which the loss of self-tolerance results in an immune attack against the body own tissues and organs. For autoimmunity to occur, various elements serving as triggers were described by which infections are considered one of the leading factors. In turn, renal involvement in autoimmune diseases, whether by an organ-specific attack, or as part of a systemic disease process, is well known. As bacterial and viral infections are considered to be common triggers for autoimmunity in general, we aimed to study their association with renal autoimmunity in particular. We performed an extensive search of the recent and relevant medical literature regarding renal autoimmunity syndromes such as infection-associated glomerulonephritis and vasculitis, associated with bacterial and viral infections. By utilizing PubMed and Google Scholar search engines, over 200 articles and case reports were reviewed. Among other mechanisms, direct infection of the renal parenchyma, molecular mimicry, induction of B-cells or secretion of superantigens, bacterial and viral pathogens were found to correlate with the development of renal autoimmunity. Nevertheless, this was not true for all pathogens, as some mimic autoimmune diseases and others show a surprisingly protective effect. The exact immunopathogenesis is yet to be determined, however. For conclusion, bacterial and viral infections are linked to renal autoimmunity by both direct damage and as mediators of systemic diseases. Further research particularly on the immunopathogenetic mechanisms of renal autoimmunity associated with infections is required.
Collapse
Affiliation(s)
- Noy Lavine
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel.
| | - Aviran Ohayon
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Naim Mahroum
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel; International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
32
|
Abstract
Abstract
Viruses completely rely on the energy and metabolic systems of host cells for life activities. Viral infections usually lead to cytopathic effects and host diseases. To date, there are still no specific clinical vaccines or drugs against most viral infections. Therefore, understanding the molecular and cellular mechanisms of viral infections is of great significance to prevent and treat viral diseases. A variety of viral infections are related to the p38 MAPK signalling pathway, and p38 is an important host factor in virus-infected cells. Here, we introduce the different signalling pathways of p38 activation and then summarise how different viruses induce p38 phosphorylation. Finally, we provide a general summary of the effect of p38 activation on virus replication. Our review provides integrated data on p38 activation and viral infections and describes the potential application of targeting p38 as an antiviral strategy.
Collapse
|
33
|
Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021; 32:14-28. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After almost a decade of using CRISPR/Cas9 systems to edit target genes, CRISPR/Cas9 and related technologies are rapidly moving to clinical trials. Hepatitis B virus (HBV), which causes severe liver disease, cannot be cleared by modern antivirals, but represents an ideal target for CRISPR/Cas9 systems. Early studies demonstrated very high antiviral potency of CRISPR/Cas9 and supported its use for developing a cure against chronic HBV infection. This review discusses the key issues that must be solved to make CRISPR/Cas9 an anti-HBV therapy.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Natalia Ponomareva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
34
|
Abstract
The hepatitis B virus (HBV) is a member of the Hepadnaviridae family, which includes small DNA enveloped viruses that infect primates, rodents, and birds and is the causative factor of chronic hepatitis B. A common feature of all these viruses is their great specificity by species and cell type, as well as a peculiar genomic and replication organization similar to that of retroviruses. The HBV virion consists of an external lipid envelope and an internal icosahedral protein capsid containing the viral genome and a DNA polymerase, which also functions as a reverse transcriptase.
Collapse
Affiliation(s)
- Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Mauro Viganò
- Hepatology Division, San Giuseppe Hospital Multimedica Spa, Via San Vittore 12, 20123 Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, University of Milan, Via F. Sforza 35, Milan 20122, Italy.
| |
Collapse
|
35
|
Effect of Radiofrequency Ablation with Interventional Therapy of Hepatic Artery on the Recurrence of Primary Liver Cancer and the Analysis of Influencing Factors. JOURNAL OF ONCOLOGY 2021; 2021:3392433. [PMID: 34691177 PMCID: PMC8528625 DOI: 10.1155/2021/3392433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Background The probability of liver cancer recurring in patients after surgery is a serious threat to liver cancer patients. Radiofrequency ablation is widely employed in liver cancer cases. We explored the therapeutic effects and influencing factors of radiofrequency ablation combined with hepatic artery intervention in patients with recurrence of primary liver cancer surgery. Methods 90 patients with primary liver cancer postoperative recurrence admitted to our hospital from January 2014 to February 2017 were selected as the research objects. The patients were randomly divided into the control group (n = 45) and combined treatment group (n = 45). The combined treatment group received radiofrequency ablation combined with hepatic artery interventional therapy, and the control group received hepatic artery interventional therapy. The short-term efficacy, AFP levels before and after treatment, and long-term survival results of the two groups were compared. Single-factor and multifactor analyses of the clinical information of the combined treatment group were carried out to find out the factors affecting the therapeutic effect of radiofrequency ablation combined with hepatic artery intervention on patients with recurrence of primary liver cancer. Results The total effective rate of short-term curative effect of the combined treatment group was higher than the control group, and there was a statistically significant difference existing (P < 0.05). After treatment, two groups of patients' AFP levels were greatly lower than before treatment, the AFP levels of the combined treatment group were significantly lower than the control group, and there was a statistically significant difference (P < 0.05). The survival rates of patients in the combined treatment group at the sixth month, the first year, and the second year after treatment were significantly higher than those of the control group, and there was a statistically significant difference (P < 0.05). The univariate results showed that, in the combined treatment group, there were statistically significant differences between the effective group and the ineffective group in tumor diameter, intact capsule, liver cirrhosis, intrahepatic spread, and tumor adjacent to large blood vessels (P < 0.05). The outcomes of multivariate analysis indicated that tumor diameter ≥ 3 cm, incomplete capsule, intrahepatic spread, and tumor adjacent to large blood vessels were risk factors for ineffective recurrence of patients with primary liver cancer after radiofrequency ablation combined with hepatic artery intervention (P < 0.05). Discussion. Tumor diameter ≥ 3 cm, incomplete capsule, intrahepatic spread, and tumor adjacent to large blood vessels are risk factors for the ineffectiveness of radiofrequency ablation combined with hepatic artery interventional therapy for patients with recurrence of primary liver cancer. It is necessary to increase the range of radiofrequency treatment, increase the temperature of the radiofrequency needle, and strengthen postoperative follow-up interventions based on the specific conditions of the patient's tumor.
Collapse
|
36
|
Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virol Sin 2021; 36:1303-1314. [PMID: 34580816 PMCID: PMC8692646 DOI: 10.1007/s12250-021-00450-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
37
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
38
|
Wang Y, Wang S, Che Y, Chen D, Liu Y, Shi Y. Exploring new targets for the treatment of hepatitis-B virus and hepatitis-B virus-associated hepatocellular carcinoma: A new perspective in bioinformatics. Medicine (Baltimore) 2021; 100:e26917. [PMID: 34414947 PMCID: PMC8376394 DOI: 10.1097/md.0000000000026917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hepatitis B Virus (HBV) infection is a global public health problem. After infection, patients experience a natural course from chronic hepatitis to cirrhosis and even Hepatitis B associated Hepatocellular Carcinoma (HBV-HCC). With the multi-omics research, many differentially expressed genes from chronic hepatitis to HCC stages have been discovered. All these provide important clues for new biomarkers and therapeutic targets. The purpose of this study is to explore the differential gene expression of HBV and HBV-related liver cancer, and analyze their enrichments and significance of related pathways. METHODS In this study, we downloaded four microarray datasets GSE121248, GSE67764, GSE55092, GSE55092 and GSE83148 from the Gene Expression Omnibus (GEO) database. Using these four datasets, patients with chronic hepatitis B (CHB) differentially expressed genes (CHB DEGs) and patients with HBV-related HCC differentially expressed genes (HBV-HCC DEGs) were identified. Then Protein-protein Interaction (PPI) network analysis, Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to excavate the functional interaction of these two groups of DEGs and the common DEGs. Finally, the Kaplan website was used to analyze the role of these genes in HCC prognostic. RESULTS A total of 241 CHB DEGs, 276 HBV-HCC DEGs, and 4 common DEGs (cytochrome P450 family 26 subfamily A member 1 (CYP26A1), family with sequence similarity 110 member C(FAM110C), SET and MYND domain containing 3(SMYD3) and zymogen granule protein 16(ZG16)) were identified. CYP26A1, FAM110C, SMYD3 and ZG16 exist in 4 models and interact with 33 genes in the PPI network of CHB and HBV-HCC DEGs,. GO function analysis showed that: CYP26A1, FAM110C, SMYD3, ZG16, and the 33 genes in their models mainly affect the regulation of synaptic vesicle transport, tangential migration from the subventricular zone to the olfactory bulb, cellular response to manganese ion, protein localization to mitochondrion, cellular response to dopamine, negative regulation of neuron death in the biological process of CHB. In the biological process of HBV-HCC, they mainly affect tryptophan catabolic process, ethanol oxidation, drug metabolic process, tryptophan catabolic process to kynurenine, xenobiotic metabolic process, retinoic acid metabolic process, steroid metabolic process, retinoid metabolic process, steroid catabolic process, retinal metabolic process, and rogen metabolic process. The analysis of the 4 common DEGs related to the prognosis of liver cancer showed that: CYP26A1, FAM110C, SMYD3 and ZG16 are closely related to the development of liver cancer and patient survival. Besides, further investigation of the research status of the four genes showed that CYP26A1 and SMYD3 could also affect HBV replication and the prognosis of liver cancer. CONCLUSION CYP26A1, FAM110C, SMYD3 and ZG16 are unique genes to differentiate HBV infection and HBV-related HCC, and expected to be novel targets for HBV-related HCC occurrence and prognostic judgement.
Collapse
|
39
|
Phan NMH, Faddy HM, Flower RL, Dimech WJ, Spann KM, Roulis EV. Low Genetic Diversity of Hepatitis B Virus Surface Gene amongst Australian Blood Donors. Viruses 2021; 13:1275. [PMID: 34208852 PMCID: PMC8310342 DOI: 10.3390/v13071275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Variants in the small surface gene of hepatitis B virus (HBV), which codes for viral surface antigen (HBsAg), can affect the efficacy of HBsAg screening assays and can be associated with occult HBV infection (OBI). This study aimed to characterise the molecular diversity of the HBV small surface gene from HBV-reactive Australian blood donors. HBV isolates from 16 HBsAg-positive Australian blood donors' plasma were sequenced and genotyped by phylogenies of viral coding genes and/or whole genomes. An analysis of the genetic diversity of eight HBV small surface genes from our 16 samples was conducted and compared with HBV sequences from NCBI of 164 international (non-Australian) blood donors. Genotypes A-D were identified in our samples. The region of HBV small surface gene that contained the sequence encoding the 'a' determinant had a greater genetic diversity than the remaining part of the gene. No escape mutants or OBI-related variants were observed in our samples. Variant call analysis revealed two samples with a nucleotide deletion leading to truncation of polymerase and/or large/middle surface amino acid sequences. Overall, we found that HBV small surface gene sequences from Australian donors demonstrated a lower level of genetic diversity than those from non-Australian donor population included in the study.
Collapse
Affiliation(s)
- Ngoc Minh Hien Phan
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
| | - Helen M. Faddy
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
- School of Health and Behavioural Sciences, University of Sunshine Coast, Petrie, Queensland 4502, Australia
| | - Robert L. Flower
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
| | - Wayne J. Dimech
- Scientific & Business Relations, National Serology Reference Laboratory, Fitzroy, Victoria 3065, Australia;
| | - Kirsten M. Spann
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
| | - Eileen V. Roulis
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia; (H.M.F.); (R.L.F.); (K.M.S.); (E.V.R.)
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
40
|
Tan Y, Liu J, Qin Y, Liang B, Gu Y, Liang L, Liu L, Liu Y, Su H. Glucose Homeostasis Is Dysregulated in Ducks Infected with Duck Hepatitis B Virus. Intervirology 2021; 64:185-193. [PMID: 34167117 DOI: 10.1159/000516766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The association between hepatitis B virus (HBV) infection and the development of diabetes remains controversial. This study examined the effect of HBV infection on glucose homeostasis using a duck HBV (DHBV) model. METHODS Plasma DHBV DNA was detected by quantitative polymerase chain reaction (PCR). Tissue infection of DHBV was determined by detecting DHBV covalently closed circular DNA (cccDNA) with a method of rolling circle amplification combined with cross-gap PCR, and verified by fluorescence in situ hybridization assay. An intravenous injection glucose tolerance test (GTT) was used to analyze the effect of DHBV infection on glucose tolerance. RESULTS Of the finally included 97 domestic ducks, 53 (54.6%) were congenitally infected by DHBV. The positive rate of DHBV cccDNA in the liver, kidney, pancreas, and skeletal muscle of the infected ducks was 100, 75.5, 67.9, and 47.2%, respectively. The DHBV-infected ducks had higher blood glucose levels at 15 and 30 min post-load glucose (p < 0.01 and p < 0.001, respectively) in the GTT, much more individuals with greater glucose area under curve (p < 0.01), and a 57% impaired glucose tolerance (IGT) rate, as compared with noninfected controls. In addition, the subgroups of the infected ducks with DHBV cccDNA positive in skeletal muscle maintained the higher blood glucose level up to 2 h post-load glucose during the GTT and had a 76% IGT rate. CONCLUSION These results suggest that DHBV intrahepatic and extrahepatic infection impairs glucose tolerance, and thus evidence the association of DHBV infection with the dysregulation of glucose metabolism.
Collapse
Affiliation(s)
- Yanlian Tan
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| | - Jianxiang Liu
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| | - Yingjian Qin
- Division of Medical Laboratory Science, Guilin Maternal and Child Health Care Hospital, Guilin, China
| | - Bin Liang
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| | - Yunyan Gu
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| | - Lilan Liang
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| | - Lili Liu
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| | - Yongming Liu
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| | - Heling Su
- Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China
| |
Collapse
|
41
|
Campos-Valdez M, Monroy-Ramírez HC, Armendáriz-Borunda J, Sánchez-Orozco LV. Molecular Mechanisms during Hepatitis B Infection and the Effects of the Virus Variability. Viruses 2021; 13:v13061167. [PMID: 34207116 PMCID: PMC8235420 DOI: 10.3390/v13061167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
The immunopathogenesis and molecular mechanisms involved during a hepatitis B virus (HBV) infection have made the approaches for research complex, especially concerning the patients’ responses in the course of the early acute stage. The study of molecular bases involved in the viral clearance or persistence of the infection is complicated due to the difficulty to detect patients at the most adequate points of the disease, especially in the time lapse between the onset of the infection and the viral emergence. Despite this, there is valuable data obtained from animal and in vitro models, which have helped to clarify some aspects of the early immune response against HBV infection. The diversity of the HBV (genotypes and variants) has been proven to be associated not only with the development and outcome of the disease but also with the response to treatments. That is why factors involved in the virus evolution need to be considered while studying hepatitis B infection. This review brings together some of the published data to try to explain the immunological and molecular mechanisms involved in the different stages of the infection, clinical outcomes, viral persistence, and the impact of the variants of HBV in these processes.
Collapse
Affiliation(s)
- Marina Campos-Valdez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Hugo C. Monroy-Ramírez
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
| | - Juan Armendáriz-Borunda
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45201, Jalisco, México
| | - Laura V. Sánchez-Orozco
- Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, México; (M.C.-V.); (H.C.M.-R.); (J.A.-B.)
- Correspondence: ; Tel.: +52-33-3954-5677
| |
Collapse
|
42
|
Tsounis EP, Tourkochristou E, Mouzaki A, Triantos C. Toward a new era of hepatitis B virus therapeutics: The pursuit of a functional cure. World J Gastroenterol 2021; 27:2727-2757. [PMID: 34135551 PMCID: PMC8173382 DOI: 10.3748/wjg.v27.i21.2727] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection, although preventable by vaccination, remains a global health problem and a major cause of chronic liver disease. Although current treatment strategies suppress viral replication very efficiently, the optimal endpoint of hepatitis B surface antigen (HBsAg) clearance is rarely achieved. Moreover, the thorny problems of persistent chromatin-like covalently closed circular DNA and the presence of integrated HBV DNA in the host genome are ignored. Therefore, the scientific community has focused on developing innovative therapeutic approaches to achieve a functional cure of HBV, defined as undetectable HBV DNA and HBsAg loss over a limited treatment period. A deeper understanding of the HBV life cycle has led to the introduction of novel direct-acting antivirals that exert their function through multiple mechanisms, including inhibition of viral entry, transcriptional silencing, epigenetic manipulation, interference with capsid assembly, and disruption of HBsAg release. In parallel, another category of new drugs aims to restore dysregulated immune function in chronic hepatitis B accompanied by lethargic cellular and humoral responses. Stimulation of innate immunity by pattern-recognition receptor agonists leads to upregulation of antiviral cytokine expression and appears to contribute to HBV containment. Immune checkpoint inhibitors and adoptive transfer of genetically engineered T cells are breakthrough technologies currently being explored that may elicit potent HBV-specific T-cell responses. In addition, several clinical trials are attempting to clarify the role of therapeutic vaccination in this setting. Ultimately, it is increasingly recognized that elimination of HBV requires a treatment regimen based on a combination of multiple drugs. This review describes the rationale for progressive therapeutic interventions and discusses the latest findings in the field of HBV therapeutics.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| |
Collapse
|
43
|
Goyal A. Modeling reveals no direct role of the extent of HBV DNA integrations on the outcome of infection. J Theor Biol 2021; 526:110793. [PMID: 34087271 DOI: 10.1016/j.jtbi.2021.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 11/27/2022]
Abstract
Hepatitis B virus (HBV) with its high prevalence and death toll is one of the most important infectious diseases to study. Yet, there is very little progress in the development of within-host models for HBV, which has subsequently hindered our understanding of this virus. The uncertainty around the proliferation of infected hepatocytes has been studied but never in association with other important biological continuous events such as integrations and superinfections. This is despite the fact that these processes affect the diversity and composition of infected cell population in the liver and an improved understanding of the cellular composition will undoubtedly assist in strategizing against this viral infection. Here, we developed novel mathematical models that incorporate these key biological processes and analyzed them both analytically and numerically. Unaffected by the extent of integrated DNA (IDNA), the outcome of HBV infection was primarily dictated by the balance between processes generating and killing infected hepatocytes containing covalent closed circular DNA (cccDNA). The superinfection was found to be a key process in the spread of HBV infection as its exclusion could not reproduce experimentally observed composition of infected hepatocytes at peak of acute HBV infection, a stage where our model predicts that infected hepatocytes most likely carry both cccDNA and IDNA. Our analysis further suggested the existence of some form of selective advantage of infected hepatocytes containing only IDNA to explain the viral dynamics observed during antiviral treatment and the transition from peak to acute infection. Finally, the fine line between liver destruction and resolution of acute HBV infection was found to be highly influenced by the fate of cccDNA during cellular proliferation.
Collapse
Affiliation(s)
- Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, United States
| |
Collapse
|
44
|
Downregulation of HBx Restrains Proliferation, Migration, and Invasion of HepG2 Cells. ACTA ACUST UNITED AC 2021; 2021:6615979. [PMID: 34094815 PMCID: PMC8140855 DOI: 10.1155/2021/6615979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 12/30/2022]
Abstract
Liver cancer is a major contributor to cancer-related death with poor survival for sufferers. Meanwhile, Hepatic B virus X protein (HBx) and XB130 are likely to participate in the pathogenesis of liver cancer. However, the detailed mechanism of HBx/XB130 in liver cancer remains to be further investigated. Our study explored the effects of HBx/XB130 on liver cancer progression. HBx and XB130 expression was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot. Overexpression of HBx and XB130 was found in liver cancer tissues and cells. Mechanistic study revealed that HBx could bind to and positively regulate XB130 in HepG2 cells. Subsequently, HBx expression was knocked down, while XB130 was overexpressed in HepG2 cells in order to observe the specific role of HBx/XB130 in liver cancer in vitro. Results of CCK-8, Transwell, wound healing, and colony formation assays suggested that HBx could mediate biological function of HepG2 cells by activating the XB130-mediated PI3K/AKT pathway. In summary, our data illustrate that inhibition of HBx effectively suppressed proliferation and metastasis and induced apoptosis of liver cancer cells, which might be partially reversed by XB130. HBx and XB130 may be potential targets for liver cancer pathogenesis.
Collapse
|
45
|
Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals (Basel) 2021; 14:417. [PMID: 34062711 PMCID: PMC8147224 DOI: 10.3390/ph14050417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a "functional cure" of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
Collapse
Affiliation(s)
- Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Erofili Giannakopoulou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Vasiliki Pardali
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| |
Collapse
|
46
|
Liu Y, Maya S, Ploss A. Animal Models of Hepatitis B Virus Infection-Success, Challenges, and Future Directions. Viruses 2021; 13:v13050777. [PMID: 33924793 PMCID: PMC8146732 DOI: 10.3390/v13050777] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects more than 250 million people worldwide, which greatly increases the risk for terminal liver diseases, such as liver cirrhosis and hepatocellular carcinoma (HCC). Even though current approved antiviral therapies, including pegylated type I interferon (IFN) and nucleos(t)ide analogs, can effectively suppress viremia, HBV infection is rarely cured. Since HBV exhibits a narrow species tropism and robustly infects only humans and higher primates, progress in HBV research and preclinical testing of antiviral drugs has been hampered by the scarcity of suitable animal models. Fortunately, a series of surrogate animal models have been developed for the study of HBV. An increased understanding of the barriers towards interspecies transmission has aided in the development of human chimeric mice and has greatly paved the way for HBV research in vivo, and for evaluating potential therapies of chronic hepatitis B. In this review, we summarize the currently available animal models for research of HBV and HBV-related hepadnaviruses, and we discuss challenges and future directions for improvement.
Collapse
|
47
|
Stalla F, Armandi A, Marinoni C, Fagoonee S, Pellicano R, Caviglia GP. Chronic hepatitis B virus infection and fibrosis: novel non-invasive approaches for diagnosis and risk stratification. Minerva Gastroenterol (Torino) 2021; 68:306-318. [PMID: 33871225 DOI: 10.23736/s2724-5985.21.02911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the availability of an effective vaccination, chronic hepatitis B virus (HBV) infection is still a major health concern worldwide. Chronic HBV infection can lead to fibrosis accumulation and overtime to cirrhosis, the principal risk factor for liver failure and hepatocellular carcinoma development. Liver biopsy is still considered the gold standard for fibrosis assessment, even though it is invasive and not exempt of complications. Overtime, several non-invasive methods for the detection of liver fibrosis have been developed and gradually introduced into clinical practice. However, their main limitation is the poor performance for the detection of intermediate stages of fibrosis. Finally, novel serological biomarkers, polygenic risk scores and imaging methods have been proposed in last years as novel promising tools to correctly identify the degree of liver fibrosis and to monitor liver disease progression. In this narrative review, we provide an overview on the novel non-invasive approaches for the evaluation of liver fibrosis and risk stratification of patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Francesco Stalla
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Marinoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Torino, Italy
| | - Rinaldo Pellicano
- Division of Gastroenterology, Molinette Hospital - Città della Salute e della Scienza di Torino, Turin, Italy
| | | |
Collapse
|
48
|
Wang G, Guan J, Khan NU, Li G, Shao J, Zhou Q, Xu L, Huang C, Deng J, Zhu H, Chen Z. Potential capacity of interferon-α to eliminate covalently closed circular DNA (cccDNA) in hepatocytes infected with hepatitis B virus. Gut Pathog 2021; 13:22. [PMID: 33845868 PMCID: PMC8040234 DOI: 10.1186/s13099-021-00421-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Interferon-alpha (IFN-α) and nucleot(s)ide analogs (NAs) are first-line drugs for the treatment of chronic hepatitis B virus (HBV) infections. Generally, NAs target the reverse transcription of HBV pregenomic RNA, but they cannot eliminate covalently-closed-circular DNA (cccDNA). Although effective treatment with NAs can dramatically decrease HBV proteins and DNA loads, and even promote serological conversion, cccDNA persists in the nucleus of hepatocytes due to the lack of effective anti-cccDNA drugs. Of the medications currently available, only IFN-α can potentially target cccDNA. However, the clinical effects of eradicating cccDNA using IFN-α in the hepatocytes of patients with HBV are not proficient as well as expected and are not well understood. Herein, we review the anti-HBV mechanisms of IFN-α involving cccDNA modification as the most promising approaches to cure HBV infection. We expect to find indications of promising areas of research that require further study to eliminate cccDNA of HBV in patients.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nazif U Khan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Guojun Li
- Institute for Hepatology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, Shenzhen, 518112, Guangdong, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, China
| | - Junwei Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qihui Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Chunhong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jingwen Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
49
|
Current Immunological and Clinical Perspective on Vaccinations in Multiple Sclerosis Patients: Are They Safe after All? Int J Mol Sci 2021; 22:ijms22083859. [PMID: 33917860 PMCID: PMC8068297 DOI: 10.3390/ijms22083859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Vaccines work by stimulating the immune system, and their immunogenicity is key in achieving protection against specific pathogens. Questions have been raised whether in Multiple Sclerosis (MS) patients they could induce disease exacerbation and whether vaccines could possibly act as a trigger in the onset of MS in susceptible populations. So far, no correlation has been found between the vaccinations against influenza, hepatitis B, tetanus, human papillomavirus, measles, mumps, rubella, varicella zoster, tuberculosis, yellow fever, or typhoid fever and the risk of MS. Further research is needed for the potential protective implications of the tetanus and Bacillus Calmette-Guerin vaccines in MS patients. Nowadays with the emerging coronavirus disease 2019 (COVID-19) and recent vaccinations approval and arrival, the risk-benefit in MS patients with regards to safety and efficacy of COVID-19 vaccination in those treated with immunosuppressive therapies is of paramount importance. In this manuscript, we demonstrate how different vaccine types could be related to the immunopathogenesis of MS and discuss the risks and benefits of different vaccinations in MS patients.
Collapse
|
50
|
Shi Y, Du L, Lv D, Li Y, Zhang Z, Huang X, Tang H. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol 2021; 56:336-349. [PMID: 33665710 PMCID: PMC8005397 DOI: 10.1007/s00535-021-01765-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023]
Abstract
Hepatitis viruses are chief pathogens of hepatitis and end-stage liver diseases. Their replication and related pathogenic process highly rely on the host micro-environment and multiple cellular elements, including exosomes. Representing with a sort of cell-derived vesicle structure, exosomes were considered to be dispensable cellular components, even wastes. Along with advancing investigation, a specific profile of exosome in driving hepatitis viruses' infection and hepatic disease progression is revealed. Exosomes greatly affect the pathogenesis of hepatitis viruses by mediating their replication and modulating the host immune responses. The characteristics of host exosomes are markedly changed after infection with hepatitis viruses. Exosomes released from hepatitis virus-infected cells can carry viral nucleic or protein components, thereby acting as an effective subterfuge for hepatitis viruses by participating in viral transportation and immune escape. On the contrary, immune cell-derived exosomes contribute toward the innate antiviral immune defense and virus eradication. There is growing evidence supporting the application of exosomal biomarkers for predicting disease progress or therapeutic outcome, while exosomal nanoshuttles are regarded as promising therapeutic options based on their delivery properties and immune compatibility. In this review, we summarize the biogenesis and secretion mechanism of exosomes, review the recent findings pertaining to the role of exosomes in the interplay between hepatitis viruses and innate immune responses, and conclude their potential in further therapeutic application.
Collapse
Affiliation(s)
- Ying Shi
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China
| | - Yan Li
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Zilong Zhang
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Xiaolun Huang
- School of Medicine, University of Electronic Science and Technology of China, No. 4 Section 2, North Jianshe Road, Chengdu, 610054, Sichuan, China
- Department of Hepatobiliary Surgery and Cell Transplantation Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, No. 32 Western Section 2, 1st Ring Rd., Chengdu, 610072, Sichuan, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|