1
|
Han J, Tang H, Zhao S, Foley SL. Salmonella enterica virulence databases and bioinformatic analysis tools development. Sci Rep 2024; 14:25228. [PMID: 39448688 PMCID: PMC11502889 DOI: 10.1038/s41598-024-74124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Salmonella enterica, a prominent foodborne pathogen, contributes significantly to global foodborne illnesses annually. This species exhibits significant genetic diversity, potentially impacting its infectivity, disease severity, and antimicrobial resistance. Whole genome sequencing (WGS) offers comprehensive genetic insights that can be utilized for virulence assessment. However, existing bioinformatic tools for studying Salmonella virulence have notable limitations. To address this gap, a Salmonella Virulence Database with a non-redundant, comprehensive list of putative virulence factors was constructed. Two bioinformatic analysis tools, Virulence Factor Profile Assessment and Virulence Factor Profile Comparison tools, were developed. The former provides data on similarity to the reference genes, e-value, and bite score, while the latter assesses the presence/absence of virulence genes in Salmonella isolates and facilitates comparison of virulence profiles across multiple sequences. To validate the database and associated bioinformatic tools, WGS data from 43,853 Salmonella isolates spanning 14 serovars was extracted from GenBank, and WGS data previously generated in our lab was used. Overall, the Salmonella Virulence database and our bioinformatic tools effectively facilitated virulence assessment, enhancing our understanding of virulence profiles among Salmonella isolates and serovars. The public availability of these resources will empower researchers to assess Salmonella virulence comprehensively, which could inform strategies for pathogen control and risk evaluations associated with human illnesses.
Collapse
Affiliation(s)
- Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| | - Hailin Tang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, Food and Drug Administration, Laurel, MD, 20708, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| |
Collapse
|
2
|
Wei Q, Yin Y, Tong Q, Gong Z, Shi Y. Multi-omics analysis of excessive nitrogen fertilizer application: Assessing environmental damage and solutions in potato farming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116916. [PMID: 39181078 DOI: 10.1016/j.ecoenv.2024.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Potatoes (Solanum tuberosum L.) are the third largest food crop globally and are pivotal for global food security. Widespread N fertilizer waste in potato cultivation has caused diverse environmental issues. This study employed microbial metagenomic sequencing to analyze the causes behind the declining N use efficiency (NUE) and escalating greenhouse gas emissions resulting from excessive N fertilizer application. Addressing N fertilizer inefficiency through breeding has emerged as a viable solution for mitigating overuse in potato cultivation. In this study, transcriptome and metabolome analyses were applied to identify N fertilizer-responsive genes. Metagenomic sequencing revealed that excessive N fertilizer application triggered alterations in the population dynamics of 11 major bacterial phyla, consequently affecting soil microbial functions, particularly N metabolism pathways and bacterial secretion systems. Notably, the enzyme levels associated with NO3- increased, and those associated with NO and N2O increased. Furthermore, excessive N fertilizer application enhanced soil virulence factors and increased potato susceptibility to diseases. Transcriptome and metabolome sequencing revealed significant impacts of excessive N fertilizer use on lipid and amino acid metabolism pathways. Weighted gene co‑expression network analysis (WGCNA) was adopted to identify two genes associated with N fertilizer response: PGSC0003DMG400021157 and PGSC0003DMG400009544.
Collapse
Affiliation(s)
- Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin, China
| | - Yanbin Yin
- College of Agriculture, Northeast Agricultural University, Harbin, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, China
| | - Qingsong Tong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China.
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin, China.
| |
Collapse
|
3
|
Uzzal Hossain M, Khan Tanvir N, Naimur Rahman ABZ, Mahmud Chowdhury Z, Shahadat Hossain M, Dey S, Bhattacharjee A, Ahammad I, Salma Zohora U, Hashem A, Chandra Das K, Ara Keya C, Salimullah M. From sequence to significance: A thorough investigation of the distinctive genome features uncovered in C. Werkmanii strain NIB003. Gene 2024; 933:148965. [PMID: 39332601 DOI: 10.1016/j.gene.2024.148965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Citrobacter werkmanii (C. werkmanii), an opportunistic urinary bacterium that causes diarrhea, is poorly understood. Our research focuses on genetic features that are crucial to disease development, such as pathogenic interactions, antibiotic resistance, virulence genes and genetic variation. Following its morphological, biochemical, and molecular identification, the whole genome of C. werkmanii strain NIB003 was sequenced in Bangladesh for the first time. Despite having around 80% whole genome conservation, the research shows that the Bangladeshi strain forms a separate phylogenetic cluster. This emphasises the genetic variability within C. werkmanii, resulting in particular modifications at the strain level and changes in its ability to cause disease. The results of the genetic diversity analysis indicate that the Bangladeshi sequenced genome is more diverse than the other strains due to the existence of unique features, such as the presence of t-RNA binding domain and N-6 adenine-specific DNA methylases.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Neyamat Khan Tanvir
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - A B Z Naimur Rahman
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Md Shahadat Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shajib Dey
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Umme Salma Zohora
- Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Md Salimullah
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh.
| |
Collapse
|
4
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
5
|
Oliveira AM, Oliveira A, Vidal R, Gonçalves-Pereira J. Infectious Foci, Comorbidities and Its Influence on the Outcomes of Septic Critically Ill Patients. Microorganisms 2024; 12:1705. [PMID: 39203547 PMCID: PMC11357211 DOI: 10.3390/microorganisms12081705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Sepsis is among the most frequent diagnoses on admission to the intensive care unit (ICU). A systemic inflammatory response, activated by uncontrolled infection, fosters hypoperfusion and multiorgan failure and often leads to septic shock and mortality. These infections arise from a specific anatomic source, and how the infection foci influence the outcomes is unknown. All patients admitted to the ICU of Hospital de Vila Franca de Xira, between 1 January 2017 and 31 June 2023, were screened for sepsis and categorized according to their infection foci. During the study period, 1296 patients (32.2%) had sepsis on admission. Their mean age was 67.5 ± 15.3 and 58.1% were male; 73.0% had community-acquired infections. The lung was the main focus of infection. Septic shock was present in 37.9% of the patients and was associated with hospital mortality. Severe imbalances were noted in its incidence, and there was lower mortality in lung infections. The hospital-acquired infections had a slightly higher mortality but, after adjustment, this difference was non-significant. Patients with secondary bacteremia had a worse prognosis (one-year adjusted hazard ratio of 1.36, 95% confidence interval 1.06-1.74, p = 0.015), especially those with an isolated non-fermenting Gram-negative infection. Lung, skin, and skin structure infections and peritonitis had a worse prognosis, whilst urinary, biliary tract, and other intra-abdominal infections had a better one-year outcome.
Collapse
Affiliation(s)
- Ana Maria Oliveira
- Unidade Cuidados Intensivos, Unidade Local de Saúde Estuário do Tejo, 2600-009 Vila Franca de Xira, Portugal; (A.M.O.); (A.O.)
| | - André Oliveira
- Unidade Cuidados Intensivos, Unidade Local de Saúde Estuário do Tejo, 2600-009 Vila Franca de Xira, Portugal; (A.M.O.); (A.O.)
| | - Raquel Vidal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - João Gonçalves-Pereira
- Unidade Cuidados Intensivos, Unidade Local de Saúde Estuário do Tejo, 2600-009 Vila Franca de Xira, Portugal; (A.M.O.); (A.O.)
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
7
|
Kho CJY, Lau MML, Chung HH, Fukui K. Selection of vaccine candidates against Pseudomonas koreensis using reverse vaccinology and a preliminary efficacy trial in Empurau (Tor tambroides). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109688. [PMID: 38857817 DOI: 10.1016/j.fsi.2024.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
This study marks the first utilization of reverse vaccinology to develop recombinant subunit vaccines against Pseudomonas koreensis infection in Empurau (Tor tambroides). The proteome (5538 proteins) was screened against various filters to prioritize proteins based on features that are associated with virulence, subcellular localization, transmembrane helical structure, antigenicity, essentiality, non-homology with the host proteome, molecular weight, and stability, which led to the identification of eight potential vaccine candidates. These potential vaccine candidates were cloned and expressed, with six achieving successful expression and purification. The antigens were formulated into two distinct vaccine mixtures, Vac A and Vac B, and their protective efficacy was assessed through in vivo challenge experiments. Vac A and Vac B demonstrated high protective efficacies of 100 % and 81.2 %, respectively. Histological analyses revealed reduced tissue damage in vaccinated fish after experimental infection, with Vac A showing no adverse effects, whereas Vac B exhibited mild degenerative changes. Quantitative real-time PCR results showed a significant upregulation of TNF-α and downregulation of IL-1β in the kidneys, spleen, gills, and intestine in both Vac A- and Vac B-immunized fish after challenged with P. koreensis. Additionally, IL-8 exhibits tissue-specific differential expression, with significant upregulation in the kidney, gills, and intestine, and downregulation in the spleen, particularly notable in Vac A-immunized fish. The research underscores the effectiveness of the reverse vaccinology approach in fish and demonstrates the promising potential of Vac A and Vac B as recombinant subunit vaccines.
Collapse
Affiliation(s)
- Cindy Jia Yung Kho
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Melinda Mei Lin Lau
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Hung Hui Chung
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama, 337-8570, Japan.
| |
Collapse
|
8
|
Kanaan H, Chapalain A, Chokr A, Doublet P, Gilbert C. Legionella pneumophila cell surface RtxA release by LapD/LapG and its role in virulence. BMC Microbiol 2024; 24:266. [PMID: 39026145 PMCID: PMC11264772 DOI: 10.1186/s12866-024-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Legionella pneumophila is a Gram-negative intracellular bacillus and is the causative agent of a severe form of pneumonia called Legionnaires' disease which accounts for 2-9% of cases of community acquired pneumonia. It produces an extremely large protein belonging to the RTX (Repeats in ToXin) family, called RtxA, and we previously reported that RtxA is transported by a dedicated type 1 secretion system (T1SS) to the cell surface. RTX proteins have been shown to participate in the virulence or biofilm formation of various bacteria, the most studied models being the pore forming hemolysin A (HlyA) of Escherichia coli and the biofilm associated protein LapA of P. fluorescens. LapA localization depends on the enzymatic release by LapD/LapG complex activity. This study aimed to elucidate the dual localization (cell surface associated or released state) of L. pneumophila RTX protein (RtxA) and whether this released versus sequestered state of RtxA plays a role in L. pneumophila virulence. RESULTS The hereby work reveals that, in vitro, LapG periplasmic protease cleaves RtxA N-terminus in the middle of a di-alanine motif (position 108-109). Consistently, a strain lacking LapG protease maintains RtxA on the cell surface, whereas a strain lacking the c-di-GMP receptor LapD does not exhibit cell surface RtxA because of its continuous cleavage and release, as in the LapA-D-G model of Pseudomonas fluorescens. Interestingly, our data point out a key role of RtxA in enhancing the infection process of amoeba cells, regardless of its location (embedded or released); therefore, this may be the result of a secondary role of this surface protein. CONCLUSIONS This is the first experimental identification of the cleavage site within the RTX protein family. The primary role of RtxA in Legionella is still questionable as in many other bacterial species, hence it sounds reasonable to propose a major function in biofilm formation, promoting cell aggregation when RtxA is embedded in the outer membrane and facilitating biofilm dispersion in case of RtxA release. The role of RtxA in enhancing the infection process may be a result of its action on host cells (i.e., PDI interaction or pore-formation), and independently of its status (embedded or released).
Collapse
Affiliation(s)
- Hussein Kanaan
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Annelise Chapalain
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Patricia Doublet
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Christophe Gilbert
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France.
| |
Collapse
|
9
|
Hintzen JCJ, Abujubara H, Tietze D, Tietze AA. The Complete Assessment of Small Molecule and Peptidomimetic Inhibitors of Sortase A Towards Antivirulence Treatment. Chemistry 2024; 30:e202401103. [PMID: 38716707 DOI: 10.1002/chem.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 06/20/2024]
Abstract
This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Helal Abujubara
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Daniel Tietze
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Alesia A Tietze
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| |
Collapse
|
10
|
Shi Z, Lan Y, Wang Y, Yan X, Ma X, Hassan FU, Rushdi HE, Xu Z, Wang W, Deng T. Multi-omics strategy reveals potential role of antimicrobial resistance and virulence factor genes responsible for Simmental diarrheic calves caused by Escherichia coli. mSystems 2024; 9:e0134823. [PMID: 38742910 PMCID: PMC11237395 DOI: 10.1128/msystems.01348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Escherichia coli (E. coli) is reported to be an important pathogen associated with calf diarrhea. Antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) pose a considerable threat to both animal and human health. However, little is known about the characterization of ARGs and VFGs presented in the gut microbiota of diarrheic calves caused by E. coli. In this study, we used multi-omics strategy to analyze the ARG and VFG profiles of Simmental calves with diarrhea caused by E. coli K99. We found that gut bacterial composition and their microbiome metabolic functions varied greatly in diarrheic calves compared to healthy calves. In total, 175 ARGs were identified, and diarrheal calves showed a significantly higher diversity and abundance of ARGs than healthy calves. Simmental calves with diarrhea showed higher association of VFGs with pili function, curli assembly, and ferrienterobactin transport of E. coli. Co-occurrence patterns based on Pearson correlation analysis revealed that E. coli had a highly significant (P < 0.0001) correlation coefficient (>0.8) with 16 ARGs and 7 VFGs. Metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Phylotype analysis of E. coli genomes showed that the predominant phylogroup B1 in diarrheic Simmental calves was associated with 10 ARGs and 3 VFGs. These findings provide an overview of the diversity and abundance of the gut microbiota in diarrheic calves caused by E. coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the calves affected with diarrhea.IMPORTANCESimmental is a well-recognized beef cattle breed worldwide. They also suffer significant economic losses due to diarrhea. In this study, fecal metagenomic analysis was applied to characterize the antibiotic resistance gene (ARG) and virulence factor gene (VFG) profiles of diarrheic Simmental calves. We identified key ARGs and VFGs correlated with Escherichia coli isolated from Simmental calves. Additionally, metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Our findings provide an insight into the diversity and abundance of the gut microbiota in diarrheic calves caused by Escherichia coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the diarrheal calves from cattle hosts.
Collapse
Affiliation(s)
- Zhihai Shi
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yali Lan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yazhou Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangzhou Yan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenjia Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
11
|
Zhou Y, Liu X, Chen H, Zhao J, Zhang H, Chen W, Yang B. Isolation and Characterisation of Streptococcus spp. with Human Milk Oligosaccharides Utilization Capacity from Human Milk. Foods 2024; 13:1291. [PMID: 38731662 PMCID: PMC11083076 DOI: 10.3390/foods13091291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Human milk oligosaccharides (HMO) that promote the growth of beneficial gut microbes in infants are abundant in human milk. Streptococcus, one of the dominant genera in human milk microbiota, is also highly prevalent in the infant gut microbiota, possibly due to its adeptness at utilizing HMOs. While previous studies have mainly focused on HMO interactions with gut bacteria like Bifidobacterium and Bacteroides spp., the interaction with Streptococcus spp. has not been fully explored. In this study, Streptococcus spp. was isolated from human milk and identified to exhibit extensive capabilities in utilizing HMOs. Their consumption rates of 2'-fucosyllactose (2'-FL), 6'-sialyllactose (6'-SL), and lacto-N-tetraose (LNT) closely matched those of Bifidobacterium longum subsp. infantis ATCC 15697. Furthermore, we assessed the safety-related genes in the genomes of the Streptococcus species capable of utilizing HMOs, revealing potential virulence and resistance genes. In addition, no haemolytic activity was observed. These findings expand the knowledge of metabolic interactions and networks within the microbiota of human milk and the early life human gut.
Collapse
Affiliation(s)
- Ye Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.Z.); (X.L.); (H.C.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.Z.); (X.L.); (H.C.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.Z.); (X.L.); (H.C.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.Z.); (X.L.); (H.C.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.Z.); (X.L.); (H.C.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.Z.); (X.L.); (H.C.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.Z.); (X.L.); (H.C.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Alqahtani M, Almukainzi M, Alghoribi MF, El-Mahdy AM. Antivirulence Effects of Trans-Resveratrol and Curcumin on Methicillin-Resistant Staphylococcus aureus (MRSA) from Saudi Arabia. Life (Basel) 2024; 14:491. [PMID: 38672761 PMCID: PMC11051421 DOI: 10.3390/life14040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common resistant bacterium, whose resistance has expanded to commonly used antibiotics. It is crucial to create novel treatments to tackle bacterial resistance. Trans-resveratrol and curcumin are naturally occurring phenolic compounds, whose effects on MRSA virulence are the subject of this investigation. Sub-MICs of trans-resveratrol and curcumin were tested on the virulence factors of 50 MRSA clinical isolates (CIs), including biofilm, hemolysin, hemagglutination, protease, and lecithinase. The distribution of the virulence factors of the CIs was as follows: hemolysin: 98%, hemagglutination: 70%, protease: 62%, biofilm: 56%, and lecithinase: 52%. The sub-MIC that could reduce the effect of the tested virulence factors by 50% or more (IC50) was observed in the strains that showed susceptibility to the individual administration of trans-resveratrol at 50 µg/mL and curcumin at 20 µg/mL. Hemagglutination and hemolysin activity were inhibited by at least 50% in the majority of CIs (57-94%). Meanwhile, the IC50 for protease and biofilm was observed in 6.5-17.8% of the CIs. A few of the CIs were susceptible to lecithinase inhibition, but all showed a full inhibition. This research supports the possibility of the use of these compounds to reduce the bacterial virulence that can reduce antibiotic utilization, and eventually, they can become a potential alternative treatment in combating bacterial resistance.
Collapse
Affiliation(s)
- Maisa Alqahtani
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Areej M. El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
13
|
Banerjee R, Robinson SM, Lahiri A, Verma P, Banerjee AK, Basak S, Basak K, Paul S. Exploring the resistome and virulome in major sequence types of Acinetobacter baumannii genomes: Correlations with genome divergence and sequence types. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105579. [PMID: 38417638 DOI: 10.1016/j.meegid.2024.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
The increasing global prevalence of antimicrobial resistance in Acinetobacter baumannii has led to concerns regarding the effectiveness of infection treatment. Moreover, the critical role of virulence factor genes in A. baumannii's pathogenesis and its propensity to cause severe disease is of particular importance. Comparative genomics, including multi-locus sequence typing (MLST), enhances our understanding of A. baumannii epidemiology. While there is substantial documentation on A. baumannii, a comprehensive study of the antibiotic-resistant mechanisms and the virulence factors contributing to pathogenesis, and their correlation with Sequence Types (STs) remains incompletely elucidated. In this study, we aim to explore the relationship between antimicrobial resistance genes, virulence factor genes, and STs using genomic data from 223 publicly available A. baumannii strains. The core phylogeny analysis revealed five predominant STs in A. baumannii genomes, linked to their geographical sources of isolation. Furthermore, the resistome and virulome of A. baumannii followed an evolutionary pattern consistent with their pan-genome evolution. Among the major STs, we observed significant variations in resistant genes against "aminoglycoside" and "sulphonamide" antibiotics, highlighting the role of genotypic variations in determining resistance profiles. Furthermore, the presence of virulence factor genes, particularly exotoxin and nutritional / metabolic factor genes, played a crucial role in distinguishing the major STs, suggesting a potential link between genetic makeup and pathogenicity. Understanding these associations can provide valuable insights into A. baumannii's virulence potential and clinical outcomes, enabling the development of effective strategies to combat infections caused by this opportunistic pathogen.
Collapse
Affiliation(s)
- Rachana Banerjee
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India.
| | - Stephy Mol Robinson
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Abhishake Lahiri
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Prateek Verma
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Ayushman Kumar Banerjee
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal 741249, India
| | - Sohom Basak
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Kausik Basak
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Sandip Paul
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| |
Collapse
|
14
|
Manjunath A, Chinmayi GVA, Renganathan S, Chandramohan V, Sabat S. Antimicrobial activity of Geranyl acetate against cell wall synthesis proteins of P. aeruginosa and S. aureus using molecular docking and simulation. J Biomol Struct Dyn 2024; 42:3030-3050. [PMID: 37199273 DOI: 10.1080/07391102.2023.2212060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
Incidences of Methicillin-Resistant Staphylococcus aureus and Multi-Drug Resistant Pseudomonas aeruginosa causing skin and soft tissue infections are becoming more prevalent due to repeated mutations and changes in the environment. Coriandrum sativum, a well-known Indian herbal medicinal plant, is shown to have antioxidant, antibacterial, and anti-inflammatory activity. This comparative study focuses on the molecular docking (PyRx v0.9.8) of ligand binding domains of WbpE Aminotransferase involved in O-antigen assembly in Pseudomonas aeruginosa (3NU7) and Beta-Lactamase found in Staphylococcus aureus (1BLC) with selected phytocompounds of Coriandrum sativum along with a known binder and a clinical reference drug. This was followed by molecular dynamics simulation studies (GROMACS v2019.4) for the docked complexes (with Geranyl acetate) with the best binding affinities (-23.4304 kJ/mol with Beta-Lactamase and -28.4512 kJ/mol with WbpE Aminotransferase) and maximum hydrogen bonds. Molecular dynamics simulation studies for both the proteins demonstrated that the complex with Geranyl acetate showed stability comparable to the complex with reference drug observed via Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and H-bond analyses. Changes in the secondary structural elements indicated that Geranyl acetate could possibly cause improper functioning of WbpE Aminotransferase leading to disrupted cell wall formation. Further, MM/PBSA analyses showed significant binding affinity of Geranyl acetate with WbpE Aminotransferase and Beta-Lactamase. This study aims to provide rationale for further studies of Coriandrum sativum as an antimicrobial, and to contextualise the results in the current scenario of growing antimicrobial resistance. HIGHLIGHTSPhytoconstituents present in Coriandrum sativum show significant binding affinity to the proteins in Pseudomonas aeruginosa and Staphylococcus aureus.Geranyl acetate exhibited the highest binding affinity with WbpE Aminotransferase involved in O-antigen assembly in Pseudomonas aeruginosa (PDB ID:3NU7) and Beta-Lactamase found in Staphylococcus aureus (PDB ID: 1BLC)Molecular dynamics simulation analyses show that the phytoconstituent, Geranyl acetate has an effect similar to the clinical reference drug, thus exhibiting potential antibacterial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Sasmita Sabat
- Department of Biotechnology, PES University, Bengaluru, India
| |
Collapse
|
15
|
Wei YM, Tong WY, Tan JS, Lim V, Leong CR, Tan WN. Effects of Phomopsidione on the Viability, Virulence, and Metabolites Profile of Methicillin-Resistant Staphylococcus aureus (MRSA). Curr Microbiol 2024; 81:108. [PMID: 38461425 DOI: 10.1007/s00284-024-03627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections have become one of the most threatening multidrug-resistant pathogens. Thus, an ongoing search for anti-MRSA compounds remains an urgent need to effectively treating MRSA infections. Phomopsidione, a novel antibiotic isolated from Diaporthe fraxini, has previously demonstrated potent anti-candidal activity. The present study aimed to investigate the effects of phomopsidione on the viability, virulence, and metabolites profile of MRSA. MRSA was sensitive to phomopsidione in a concentration-dependent manner. Phomopsidione exhibited minimum inhibitory concentration and minimum bactericidal concentration of 62.5 and 500.00 µg/mL against MRSA on broth microdilution assay. The compound showed significant reduction in virulence factors production including extracellular polymeric substances quantification, catalase, and lipase. An untargeted metabolomics analysis using liquid chromatography-high resolution mass spectrometry revealed a significant difference in the metabolites profile of MRSA with 13 putatively identified discriminant metabolites. The present study suggested the potential of phomopsidione as a promising anti-MRSA agent.
Collapse
Affiliation(s)
- Yee-Min Wei
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Woei-Yenn Tong
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000, Kajang, Selangor, Malaysia.
| | - Joo-Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Chean-Ring Leong
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 78000, Alor Gajah, Melaka, Malaysia
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
16
|
Rangel K, De-Simone SG. Treatment and Management of Acinetobacter Pneumonia: Lessons Learned from Recent World Event. Infect Drug Resist 2024; 17:507-529. [PMID: 38348231 PMCID: PMC10860873 DOI: 10.2147/idr.s431525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Acinetobacter pneumonia is a significant healthcare-associated infection that poses a considerable challenge to clinicians due to its multidrug-resistant nature. Recent world events, such as the COVID-19 pandemic, have highlighted the need for effective treatment and management strategies for Acinetobacter pneumonia. In this review, we discuss lessons learned from recent world events, particularly the COVID-19 pandemic, in the context of the treatment and management of Acinetobacter pneumonia. We performed an extensive literature review to uncover studies and information pertinent to the topic. The COVID-19 pandemic underscored the importance of infection control measures in healthcare settings, including proper hand hygiene, isolation protocols, and personal protective equipment use, to prevent the spread of multidrug-resistant pathogens like Acinetobacter. Additionally, the pandemic highlighted the crucial role of antimicrobial stewardship programs in optimizing antibiotic use and curbing the emergence of resistance. Advances in diagnostic techniques, such as rapid molecular testing, have also proven valuable in identifying Acinetobacter infections promptly. Furthermore, due to the limited availability of antibiotics for treating infections caused A. baumannii, alternative strategies are needed like the use of antimicrobial peptides, bacteriophages and their enzymes, nanoparticles, photodynamic and chelate therapy. Recent world events, particularly the COVID-19 pandemic, have provided valuable insights into the treatment and management of Acinetobacter pneumonia. These lessons emphasize the significance of infection control, antimicrobial stewardship, and early diagnostics in combating this challenging infection.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói, RJ, 22040-036, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
17
|
Castro-López C, Pascacio-Villafán C, Aluja M, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Safety Assessment of the Potential Probiotic Bacterium Limosilactobacillus fermentum J23 Using the Mexican Fruit Fly (Anastrepha ludens Loew, Diptera: Tephritidae) as a Novel In Vivo Model. Probiotics Antimicrob Proteins 2024; 16:233-248. [PMID: 36574190 DOI: 10.1007/s12602-022-10034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Safety assessment of probiotics is difficult but essential. In this work, the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), was used as in vivo model to assess the biosafety of Limosilactobacillus fermentum J23. In the first set of experiments, the strain was orally administered to adult flies through direct feeding, whereas in the second set of experiments, it was supplemented through the larval rearing medium. Data showed that L. fermentum J23 did not lead to increased mortality or treatment-related toxicity signs in adult female and male flies. Ingestion of L. fermentum J23 by adult female flies led to a statistically significant improvement in locomotor activity compared to the control groups (ca. 59% decrease in climbing time, p < 0.0001). A positive trend in lifespan extension under stress (maximum lifespan = 144 h) was also observed. When L. fermentum J23 was administered to the larvae, the adult emergence (p = 0.0099), sex ratio (p = 0.0043), and flight ability (p = 0.0009) increased significantly by 7%, 31%, and 8%, respectively, compared to the control diet. No statistical effect between the control diet and the L. fermentum J23-based diet for the number of pupae recovered, pupal weight, duration of the pupal stage, lifespan under stress, and morphological development was observed. We conclude that feeding L. fermentum J23 to the novel experimental model A. ludens had no toxic effects and could be safely considered a potential probiotic for food supplements; however, further studies are still needed to establish its biosafety in humans.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Carlos Pascacio-Villafán
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México
| | - Martin Aluja
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, 91897, Veracruz, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México.
| |
Collapse
|
18
|
Xi W, Zhang X, Zhu X, Wang J, Xue H, Pan H. Distribution patterns and influential factors of pathogenic bacteria in freshwater aquaculture sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16028-16047. [PMID: 38308166 DOI: 10.1007/s11356-024-31897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Pathogenic bacteria, the major causative agents of aquaculture diseases, are a serious impediment to the aquaculture industry. However, the bioinformatics of pathogenic bacteria and virulence factors (VFs) in sediments, an important component of freshwater aquaculture ecosystems, are not well characterized. In this study, 20 sediment samples were collected from fish pond sediments (FPS), shrimp field sediments (SFS), fish pond sediment control (FPSC), and shrimp field sediment control (SFSC). Molecular biological information was obtained on a total of 173 pathogenic bacteria, 1093 virulence factors (VFs), and 8475 mobile genetic elements (MGEs) from these samples. The results indicated that (1) aquaculture patterns and sediment characteristics can affect the distribution of pathogenic bacteria. According to the results of the Kruskal-Wallis H test, except for Mycobacterium gilvum, there were significant differences (P < 0.05) among the four sediment types in the average abundance of major pathogenic bacteria (top 30 in abundance), and the average abundance of major pathogenic bacteria in the four sediment types followed the following pattern: FPS > SFS > FPSC > SFSC. (2) Pathogenic bacteria are able to implement a variety of complex pathogenic mechanisms such as adhesion, invasion, immune evasion, and metabolic regulation in the host because they carry a variety of VFs such as type IV pili, HSI-I, Alginate, Colibactin, and Capsule. According to the primary classification of the Virulence Factor Database (VFDB), the abundance of VFs in all four types of sediments showed the following pattern: offensive VFs > non-specific VFs > defensive VFs > regulation of virulence-related genes. (3) Total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), nitrite, and nitrate were mostly only weakly positively correlated with the major pathogenic bacteria and could promote the growth of pathogenic bacteria to some extent, whereas ammonia was significantly positively correlated with most of the major pathogenic bacteria and could play an important role in promoting the growth and reproduction of pathogenic bacteria. (4) Meanwhile, there was also a significant positive correlation between CAZyme genes and major pathogenic bacteria (0.62 ≤ R ≤ 0.89, P < 0.05). This suggests that these pathogenic bacteria could be the main carriers of CAZyme genes and, to some extent, gained a higher level of metabolic activity by degrading organic matter in the sediments to maintain their competitive advantage. (5) Worryingly, the results of correlation analyses indicated that MGEs in aquaculture sediments could play an important role in the spread of VFs (R = 0.82, P < 0.01), and in particular, plasmids (R = 0.75, P < 0.01) and integrative and conjugative elements (ICEs, R = 0.65, P < 0.05) could be these major vectors of VFs. The results of this study contribute to a comprehensive understanding of the health of freshwater aquaculture sediments and provide a scientific basis for aquaculture management and conservation.
Collapse
Affiliation(s)
- Wenxiang Xi
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Xun Zhang
- China Coal Mine Construction Group Co., LTD, Hefei, 230071, Anhui, China
| | - Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Jiaming Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Han Xue
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
| |
Collapse
|
19
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024:eesp00012023. [PMID: 38415623 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
20
|
Singh S, Le NQK, Wang C. VF-Pred: Predicting virulence factor using sequence alignment percentage and ensemble learning models. Comput Biol Med 2024; 168:107662. [PMID: 37979206 DOI: 10.1016/j.compbiomed.2023.107662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023]
Abstract
This study introduces VF-Pred, a novel framework developed for the purpose of detecting virulence factors (VFs) through the analysis of genomic data. VFs are crucial for pathogens to successfully infect host tissue and evade the immune system, leading to the onset of infectious diseases. Identifying VFs accurately is of utmost importance in the quest for developing potent drugs and vaccines to counter these diseases. To accomplish this, VF-Pred combines various feature engineering techniques to generate inputs for distinct machine learning classification models. The collective predictions of these models are then consolidated by a final downstream model using an innovative ensembling approach. One notable aspect of VF-Pred is the inclusion of a novel Seq-Alignment feature, which significantly enhances the accuracy of the employed machine learning algorithms. The framework was meticulously trained on 982 features obtained from extensive feature engineering, utilizing a comprehensive ensemble of 25 models. The new downstream ensembling technique adopted by VF-Pred surpasses existing stacking strategies and other ensembling methods, delivering superior performance in VF detection. There have been similar studies done earlier, VF-Pred stands out in comparison showing higher accuracy (83.5 %), higher sensitivity (87 %) towards identification of VFs. Accessible through a user-friendly web page, VF-Pred can be accessed by providing the identifier and protein sequence, enabling the prediction of high or low likelihoods of VFs. Overall, VF-Pred showcases a highly promising methodology for the identification of VFs, potentially paving the way for the development of more effective strategies in the battle against infectious diseases.
Collapse
Affiliation(s)
- Shreya Singh
- NUS-ISS, National University of Singapore, 119615, Singapore
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| | - Cheng Wang
- NUS-ISS, National University of Singapore, 119615, Singapore
| |
Collapse
|
21
|
Thurner F, Alatraktchi FA. Need for standardization in sub-lethal antibiotics research. Front Microbiol 2023; 14:1299321. [PMID: 38188578 PMCID: PMC10768063 DOI: 10.3389/fmicb.2023.1299321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
While monitoring and managing resistant and persistent microbes is of utmost importance and should not be glossed over, one must also focus on mitigating the microbe's ability to cause harm. Exploring the concept of lowering or even suppressing the microbe's virulence with sub-Minimum Inhibitory Concentration (MIC) antibiotics holds promise and warrants further investigation. At present, such antibiotic concentrations have mostly been studied to cover the side-effects of gradient exposure, overlooking the possibility of utilizing them to influence not only bacterial virulence, but also colonization, fitness and collateral sensitivities. This review focuses on conflicting findings of studies demonstrating both increased and decreased virulence in microbes under sub-MIC antibiotic exposure. It identifies lack of standardization in this field of research as one of the main culprits for discordant results across numerous studies on virulence. It critically discusses important terminology related to bacterial traits and existing methods to determine MIC and sub-MIC ranges. Lastly, possible directions toward standardized sub-MIC profiling and thereby tailored treatment options in the future are explored.
Collapse
|
22
|
Zhu L, Ji X, Wu Y, Xu W, Wang F, Huang X. Molecular characterization of Listeria monocytogenes strains isolated from imported food in China from 14 countries/regions, 2003-2018. Front Cell Infect Microbiol 2023; 13:1287564. [PMID: 38179422 PMCID: PMC10765603 DOI: 10.3389/fcimb.2023.1287564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes (Lm) is associated with severe foodborne infections and ubiquitous in the nature. Identification of characteristics of Lm transmission through trading of food products is essential for rapidly tracking Lm sources and controlling dissemination of listeriosis. In this study, a total of 44 Lm strains were isolated from food products originating from 14 countries/regions during 2003-2018 at the Shanghai port. The genomes of these Lm strains were sequenced by high-throughput sequencing. Multilocus sequence typing (MLST) analysis showed that 43 isolates were divided into 17 sequence types (STs). The distribution of STs was decentralized, with the dominant ST2 accounting for only 18.18% of the strains. The LM63 strain did not match with any of the existing STs. Core-genome MLST (cgMLST) analysis based on 1748 core genes categorized the 44 strains into 30 cgMLST types (CTs), with CT10153 and CT7892 as the most predominant CTs. Notably, LM63 and LM67 shared the same CT in the cgMLST analysis. The phylogenetic analysis based on single-copy homologous genes revealed that the 44 Lm strains were primarily classified into two lineages. The SNP analysis also indicated that these strains were roughly divided into two clades, with strains in the first clade mainly collected earlier than those in the second clade, which were predominantly collected from 2010 onwards. The analysis using the virulence factor database (VFDB) indicated that the virulence gene inlJ was the most prevalent among these 44 strains. Notably, ddrA, msbA, and sugC were enriched in this dataset, requiring further clarification of their roles in Listeria through future studies. These results might provide a clue for understanding of the global epidemiology and surveillance of Lm and present insights for implementing effective measures to reduce or prevent Listeria contamination outbreaks in imported food products.
Collapse
Affiliation(s)
- Liying Zhu
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuejiao Ji
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| |
Collapse
|
23
|
Ghosh C, Das MC, Acharjee S, Bhattacharjee S, Sandhu P, Kumari M, Bhowmik J, Ghosh R, Banerjee B, De UC, Akhter Y, Bhattacharjee S. Combating Staphylococcus aureus biofilm formation: the inhibitory potential of tormentic acid and 23-hydroxycorosolic acid. Arch Microbiol 2023; 206:25. [PMID: 38108905 DOI: 10.1007/s00203-023-03762-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 12/19/2023]
Abstract
Plant extracts have been used to treat microbiological diseases for centuries. This study examined plant triterpenoids tormentic acid (TA) and 23-hydroxycorosolic acid (HCA) for their antibiofilm effects on Staphylococcus aureus strains (MTCC-96 and MTCC-7405). Biofilms are bacterial colonies bound by a matrix of polysaccharides, proteins, and DNA, primarily impacting healthcare. As a result, ongoing research is being conducted worldwide to control and prevent biofilm formation. Our research showed that TA and HCA inhibit S. aureus planktonic growth by depolarizing the bacterial membrane. In addition, zone of inhibition studies confirmed their effectiveness, and crystal violet staining and biofilm protein quantification confirmed their ability to prevent biofilm formation. TA and HCA exhibited substantial reductions in biofilm formation for S. aureus (MTCC-96) by 54.85% and 48.6% and for S. aureus (MTCC-7405) by 47.07% and 56.01%, respectively. Exopolysaccharide levels in S. aureus biofilm reduced significantly by TA (25 μg/mL) and HCA (20 μg/mL). Microscopy, bacterial motility, and protease quantification studies revealed their ability to reduce motility and pathogenicity. Furthermore, TA and HCA treatment reduced the mRNA expression of S. aureus virulence genes. In silico analysis depicted a high binding affinity of triterpenoids for biofilm and quorum-sensing associated proteins in S. aureus, with TA having the strongest affinity for TarO (- 7.8 kcal/mol) and HCA for AgrA (- 7.6 kcal/mol). TA and HCA treatment reduced bacterial load in S. aureus-infected peritoneal macrophages and RAW264.7 cells. Our research indicates that TA and HCA can effectively combat S. aureus by inhibiting its growth and suppressing biofilm formation.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Manash C Das
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Shukdeb Acharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Samadrita Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Padmani Sandhu
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Monika Kumari
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Joyanta Bhowmik
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Ranjit Ghosh
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | | | - Utpal Chandra De
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
24
|
Zhu X, Qin L, Zhu Y, Qian Q, Gao X, Jiang Q, Wang J, Liu G, Zhang X. Characteristics and Complete Genome Analysis of a Pathogenic Aeromonas Veronii SJ4 from Diseased Siniperca Chuatsi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:966-982. [PMID: 37947961 DOI: 10.1007/s10126-023-10253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
As an opportunistic pathogen, Aeromonas veronii can cause hemorrhagic septicemia of various aquatic animals. In our present study, a dominant strain SJ4, isolated from naturally infected mandarin fish (Siniperca chuatsi), was identified as A. veronii according to the morphological, physiological, and biochemical features, as well as molecular identification. Intraperitoneal injection of A. veronii SJ4 into S. chuatsi revealed clinical signs similar to the natural infection, and the median lethal dosage (LD50) of the SJ4 to S. chuatsi in a week was 3.8 × 105 CFU/mL. Histopathological analysis revealed that the isolate SJ4 could cause cell enlargement, obvious hemorrhage, and inflammatory responses in S. chuatsi. Detection of virulence genes showed the isolate SJ4 carried act, fim, flgM, ompA, lip, hly, aer, and eprCAL, and the isolate SJ4 also produce caseinase, dnase, gelatinase, and hemolysin. In addition, the complete genome of A. veronii SJ4 was sequenced, and the size of the genome of A. veronii SJ4 was 4,562,694 bp, within a G + C content of 58.95%, containing 4079 coding genes. Nine hundred ten genes encoding for several virulence factors, such as type III and VI secretion systems, flagella, motility, etc., were determined based on the VFDB database. Besides, 148 antibiotic resistance-related genes in 27 categories related to tetracyclines, fluoroquinolones, aminoglycosides, macrolides, chloramphenicol, and cephalosporins were also annotated. The present results suggested that A. veronii was etiological agent causing the bacterial septicemia of S. chuatsi in this time, as well as provided a valuable base for revealing pathogenesis and resistance mechanism of A. veronii.
Collapse
Affiliation(s)
- Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Lijie Qin
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yujie Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Qieqi Qian
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Jun Wang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Guoxing Liu
- Research Center of Characteristic Fish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
25
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
26
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
27
|
Ghatak S, Hemann C, Boslett J, Singh K, Sharma A, El Masry MS, Abouhashem AS, Ghosh N, Mathew-Steiner SS, Roy S, Zweier JL, Sen CK. Bacterial Pyocyanin Inducible Keratin 6A Accelerates Closure of Epithelial Defect under Conditions of Mitochondrial Dysfunction. J Invest Dermatol 2023; 143:2052-2064.e5. [PMID: 37044260 PMCID: PMC10529774 DOI: 10.1016/j.jid.2023.03.1671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023]
Abstract
Repair of epithelial defect is complicated by infection and related metabolites. Pyocyanin (PYO) is one such metabolite that is secreted during Pseudomonas aeruginosa infection. Keratinocyte (KC) migration is required for the closure of skin epithelial defects. This work sought to understand PYO-KC interaction and its significance in tissue repair. Stable Isotope Labeling by Amino acids in Cell culture proteomics identified mitochondrial dysfunction as the top pathway responsive to PYO exposure in human KCs. Consistently, functional studies showed mitochondrial stress, depletion of reducing equivalents, and adenosine triphosphate. Strikingly, despite all stated earlier, PYO markedly accelerated KC migration. Investigation of underlying mechanisms revealed, to our knowledge, a previously unreported function of keratin 6A in KCs. Keratin 6A was PYO inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing, including compromised expression of apical junction proteins. This work recognizes keratin 6A for its role in enhancing KC migration under conditions of threat posed by PYO. Qualitatively deficient junctional proteins under conditions of defensive acceleration of KC migration explain why an infected wound close with deficient skin barrier function as previously reported.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Craig Hemann
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - James Boslett
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Anu Sharma
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Ahmed Safwat Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Shomita S Mathew-Steiner
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
28
|
Alves F, Pratavieira S, Inada NM, Barrera Patiño CP, Kurachi C. Effects on Colonization Factors and Mechanisms Involved in Antimicrobial Sonophotodynamic Inactivation Mediated by Curcumin. Pharmaceutics 2023; 15:2407. [PMID: 37896167 PMCID: PMC10610509 DOI: 10.3390/pharmaceutics15102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic (PDI) and sonodynamic (SDI) inactivation have been successfully employed as antimicrobial treatments. Moreover, sonophotodynamic inactivation (SPDI), which is the simultaneous application of PDI and SDI, has demonstrated greater effects. This study assessed the effects of PDI (PDI group), SDI (SDI group) and SPDI (SPDI group) using curcumin as a sensitizer on the metabolism, adhesion capability, biofilm formation ability and structural effects in a Staphylococcus aureus biofilm. Moreover, the production of reactive oxygen species (ROS) and the degradation spectrum of curcumin under the irradiation sources were measured. SPDI was more effective in inactivating the biofilm than PDI and SDI. All treatments reduced the adhesion ability of the bacteria: 58 ± 2%, 58 ± 1% and 71 ± 1% of the bacterial cells adhered to the polystyrene plate after the SPDI, SDI and PDI, respectively, when compared to 79 ± 1% of the untreated cells (control group). This result is probably related to the metabolism cell reduction after treatments. The metabolism of cells from the PDI group was 89 ± 1% lower than the untreated cells, while the metabolic activity of SDI and SPDI groups were 82 ± 2% and 90 ± 1% lower, respectively. Regarding the biofilm formation ability, all treatments (SPDI, SDI and PDI) reduced the total biomass. The total biomass of the PDI, SDI and SPDI groups were 26 ± 2%, 31 ± 5% and 35 ± 6% lower than the untreated biofilm (control group), respectively. Additionally, all treatments produced ROS and caused significant structural changes, reducing cells and the extracellular matrix. The light caused a greater absorbance decay of the curcumin; however, the US did not expressively alter its spectrum. Finally, SPDI had improved antimicrobial effects, and all treatments exhibited similar effects in the colonization factors evaluated.
Collapse
Affiliation(s)
- Fernanda Alves
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil; (S.P.); (N.M.I.); (C.P.B.P.); (C.K.)
| | | | | | | | | |
Collapse
|
29
|
Mavhungu M, Digban TO, Nwodo UU. Incidence and Virulence Factor Profiling of Vibrio Species: A Study on Hospital and Community Wastewater Effluents. Microorganisms 2023; 11:2449. [PMID: 37894107 PMCID: PMC10609040 DOI: 10.3390/microorganisms11102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to determine the incidence and virulence factor profiling of Vibrio species from hospital wastewater (HWW) and community wastewater effluents. Wastewater samples from selected sites were collected, processed, and analysed presumptively by the culture dependent methods and molecular techniques. A total of 270 isolates were confirmed as Vibrio genus delineating into V. cholerae (27%), V. parahaemolyticus (9.1%), V. vulnificus (4.1%), and V. fluvialis (3%). The remainder (>50%) may account for other Vibrio species not identified in the study. The four Vibrio species were isolated from secondary hospital wastewater effluent (SHWE), while V. cholerae was the sole specie isolated from Limbede community wastewater effluent (LCWE) and none of the four Vibrio species was recovered from tertiary hospital wastewater effluent (THWE). However, several virulence genes were identified among V. cholerae isolates from SHWE: ToxR (88%), hylA (81%), tcpA (64%), VPI (58%), ctx (44%), and ompU (34%). Virulence genes factors among V. cholerae isolates from LCWE were: ToxR (78%), ctx (67%), tcpA (44%), and hylA (44%). Two different genes (vfh and hupO) were identified in all confirmed V. fluvialis isolates. Among V. vulnificus, vcgA (50%) and vcgB (67%) were detected. In V. parahaemolyticus, tdh (56%) and tlh (100%) were also identified. This finding reveals that the studied aquatic niches pose serious potential health risk with Vibrio species harbouring virulence signatures. The distribution of virulence genes is valuable for ecological site quality, as well as epidemiological marker in the control and management of diseases caused by Vibrio species. Regular monitoring of HWW and communal wastewater effluent would allow relevant establishments to forecast, detect, and mitigate any public health threats in advance.
Collapse
Affiliation(s)
- Mashudu Mavhungu
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Tennison O. Digban
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Uchechukwu U. Nwodo
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
30
|
Rinaldi E, Drenkhahn C, Gebel B, Saleh K, Tönnies H, von Loewenich FD, Thoma N, Baier C, Boeker M, Hinske LC, Diaz LAP, Behnke M, Ingenerf J, Thun S. Towards interoperability in infection control: a standard data model for microbiology. Sci Data 2023; 10:654. [PMID: 37741862 PMCID: PMC10517923 DOI: 10.1038/s41597-023-02560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The COVID-19 pandemic has made it clear: sharing and exchanging data among research institutions is crucial in order to efficiently respond to global health threats. This can be facilitated by defining health data models based on interoperability standards. In Germany, a national effort is in progress to create common data models using international healthcare IT standards. In this context, collaborative work on a data set module for microbiology is of particular importance as the WHO has declared antimicrobial resistance one of the top global public health threats that humanity is facing. In this article, we describe how we developed a common model for microbiology data in an interdisciplinary collaborative effort and how we make use of the standard HL7 FHIR and terminologies such as SNOMED CT or LOINC to ensure syntactic and semantic interoperability. The use of international healthcare standards qualifies our data model to be adopted beyond the environment where it was first developed and used at an international level.
Collapse
Affiliation(s)
- Eugenia Rinaldi
- Berlin Institute of Health, Charité Universitätsmedizin, Berlin, Germany.
| | - Cora Drenkhahn
- Institute of Medical Informatics (IMI), University of Lübeck, Lübeck, Germany
| | - Benjamin Gebel
- Klinik für Infektiologie und Mikrobiologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kutaiba Saleh
- Data Integration Center, Jena University Hospital, Jena, Germany
| | | | | | - Norbert Thoma
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Claas Baier
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | | | | | - Luis Alberto Peña Diaz
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Michael Behnke
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin, Berlin, Germany
| | - Josef Ingenerf
- Institute of Medical Informatics (IMI), University of Lübeck, Lübeck, Germany
| | - Sylvia Thun
- Berlin Institute of Health, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
31
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
32
|
Zhang H, Zhang Z, Li J, Qin G. New Strategies for Biocontrol of Bacterial Toxins and Virulence: Focusing on Quorum-Sensing Interference and Biofilm Inhibition. Toxins (Basel) 2023; 15:570. [PMID: 37755996 PMCID: PMC10536320 DOI: 10.3390/toxins15090570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
The overuse of antibiotics and the emergence of multiple-antibiotic-resistant pathogens are becoming a serious threat to health security and the economy. Reducing antimicrobial resistance requires replacing antibiotic consumption with more biocontrol strategies to improve the immunity of animals and humans. Probiotics and medicinal plants have been used as alternative treatments or preventative therapies for a variety of diseases caused by bacterial infections. Therefore, we reviewed some of the anti-virulence and bacterial toxin-inhibiting strategies that are currently being developed; this review covers strategies focused on quenching pathogen quorum sensing (QS) systems, the disruption of biofilm formation and bacterial toxin neutralization. It highlights the probable mechanism of action for probiotics and medicinal plants. Although further research is needed before a definitive statement can be made on the efficacy of any of these interventions, the current literature offers new hope and a new tool in the arsenal in the fight against bacterial virulence factors and bacterial toxins.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China;
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Zhen Zhang
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Jing Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China;
| |
Collapse
|
33
|
García-Bengoa M, Meurer M, Goethe R, Singh M, Reljic R, von Köckritz-Blickwede M. Role of phagocyte extracellular traps during Mycobacterium tuberculosis infections and tuberculosis disease processes. Front Microbiol 2023; 14:983299. [PMID: 37492257 PMCID: PMC10365110 DOI: 10.3389/fmicb.2023.983299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infections remain one of the most significant causes of mortality worldwide. The current situation shows an emergence of new antibiotic-resistant strains making it difficult to control the tuberculosis (TB) disease. A large part of its success as a pathogen is due to its ability to persist for years or even decades without causing evident clinical manifestations. M.tb is highly successful in evading the host-defense by manipulating host-signalling pathways. Although macrophages are generally viewed as the key cell type involved in harboring M.tb, growing evidence shows that neutrophils also play a fundamental role. Both cells are known to act in multiple ways when encountering an invading pathogen, including phagocytosis, release of cytokines and chemokines, and oxidative burst. In addition, the formation of neutrophil extracellular traps (NETs) and macrophage extracellular traps (METs) has been described to contribute to M.tb infections. NETs/METs are extracellular DNA fibers with associated granule components, which are released upon activation of the cells by the pathogen or by pro-inflammatory mediators. On one hand, they can lead to a protective immune response by entrapment and killing of pathogens. However, on the other hand, they can also play a severe pathological role by inducing tissue damage. Extracellular traps (ETs) produced in the pulmonary alveoli can expand easily and expose tissue-damaging factors with detrimental effects. Since host-directed therapies offer a complementary strategy in TB, the knowledge of NET/MET formation is important for understanding potential protective versus detrimental pathways during innate immune signaling. In this review, we summarize the progress made in understanding the role of NETs/METs in the pathogenesis of TB.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
34
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
35
|
Kitpipit W, Scholfield CN, Sangkanu S, Nissapatorn V, Pereira MDL, Paul AK, Mitsuwan W. Virulence factors and quorum sensing as targets of new therapeutic options by plant-derived compounds against bacterial infections caused by human and animal pathogens. Vet World 2023; 16:1346-1355. [PMID: 37577190 PMCID: PMC10421536 DOI: 10.14202/vetworld.2023.1346-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria and hospital-acquired bacterial infection has become rampant due to antibiotic overuse. Virulence factors are secondary to bacterial growth and are important in their pathogenesis, and therefore, new antimicrobial therapies to inhibit bacterial virulence factors are becoming important strategies against antibiotic resistance. Here, we focus on anti-virulence factors that act through anti-quorum sensing and the subsequent clearance of bacteria by antimicrobial compounds, especially active herbal extracts. These quorum sensing systems are based on toxins, biofilms, and efflux pumps, and bioactive compounds isolated from medicinal plants can treat bacterial virulence pathologies. Ideally, bacterial virulence factors are secondary growth factors of bacteria. Hence, inhibition of bacterial virulence factors could reduce bacterial pathogenesis. Furthermore, anti-virulence factors from herbal compounds can be developed as novel treatments for bacterial infection. Therefore, this narrative review aims to discuss bacterial virulence factors acting through quorum sensing systems that are preserved as targets for treating bacterial infection by plant-derived compounds.
Collapse
Affiliation(s)
- Warangkana Kitpipit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology and Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - C. Norman Scholfield
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
36
|
Wang YD, Gong JS, Guan YC, Zhao ZL, Cai YN, Shan XF. OmpR (TCS response regulator) of Aeromonas veronii plays a major role in drug resistance, stress resistance and virulence by regulating biofilm formation. Microb Pathog 2023; 181:106176. [PMID: 37244492 DOI: 10.1016/j.micpath.2023.106176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Aeromonas veronii (A. veronii), a highly pathogenic bacteria with a wide range of hosts, widely exists in the environment of humans, animals and aquatic animals, and can cause a variety of diseases. In this study, the receptor regulator ompR in the envZ/ompR of two-component system was selected to construct a mutant strain (Δ ompR) and a complement strain (C-ompR) to explore the regulatory effect of ompR on the biological characteristics and virulence of TH0426. The results showed that the ability of biofilm formation and osmotic stress of TH0426 were significantly reduced (P < 0.001), the resistance to ceftriaxone and neomycin were slightly down-regulate when the ompR gene was deleted. At the same time, animal pathogenicity experiments showed that the virulence of TH0426 was significantly down-regulated (P < 0.001). These results indicated that ompR gene regulates the biofilm formation of TH0426, and regulates some biological characteristics of TH0426, including drug sensitivity, resistance to osmotic stress, and also affects its virulence.
Collapse
Affiliation(s)
- Ying-da Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Jin-Shuo Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Yong-Chao Guan
- Institute of Comparative Medicine College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ze-Lin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Ya-Nan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| |
Collapse
|
37
|
Pannu TS, Villa JM, Jimenez D, Riesgo AM, Higuera CA. Does Performance of D-Dimer for Diagnosis of Periprosthetic Joint Infection Change with the Virulence of Infecting Organism? J Arthroplasty 2023:S0883-5403(23)00546-6. [PMID: 37209907 DOI: 10.1016/j.arth.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
INTRODUCTION The impact of the organism virulence on diagnostic accuracy of D-Dimer for periprosthetic joint infection (PJI) is unknown. Our objective was to assess if the performance of D-Dimer in PJI diagnosis changes with the virulence of the organism(s). METHODS Retrospective review of 143 consecutive revision total hip/knee arthroplasties (THA/TKAs) with D-Dimer ordered preoperatively. Operations were performed by 3 surgeons at a single institution (November 2017 through September 2020). There were 141 revisions with complete 2013-International Consensus Meeting (ICM)-criteria initially included. This criteria was used to classify revisions as aseptic vs. septic. Culture-negative septic revisions (n=8) were excluded, and 133 revisions (47-hips/86-knees; 67-septic/66-aseptic) were analyzed. Based on culture results, septic-revisions were categorized into 'low-virulence (LV/n=40)' or 'high-virulence (HV/n=27)'. The D-Dimer threshold (850-ng/mL) was tested against 2013-ICM-criteria ("standard") in identifying septic-revisions (LV/HV) from aseptic-revisions. Sensitivity, specificity, and positive/negative-predictive-values (PPV/NPV) were determined. Receiver-operating-characteristic-curve-analyses were performed. RESULTS Plasma D-Dimer showed high sensitivity (97.5%) and NPV (95.4%) in LV septic cases, which appeared to reduce by about 5% in HV septic cases (sensitivity=92.5% and NPV=91.3%). However, this marker had poor overall accuracy (LV=57%; HV=49.4%), low specificity (LV and HV=31.8%), and PPV (LV=46.4%; HV=35.7%) to diagnose PJI. The area under the curve (AUC) was 0.647 and 0.622 in LV and HV vs. aseptic revisions, respectively. CONCLUSION D-Dimer performs poorly to identify septic from aseptic revisions in the setting of LV/HV infecting organisms alike. However, it shows high sensitivity for PJI diagnosis in cases of low virulence organisms which might be missed by most diagnostic tests.
Collapse
Affiliation(s)
- Tejbir S Pannu
- Levitetz Department of Orthopaedic Surgery, Cleveland Clinic Florida, Weston, Florida, 33331
| | - Jesus M Villa
- Levitetz Department of Orthopaedic Surgery, Cleveland Clinic Florida, Weston, Florida, 33331
| | - Denise Jimenez
- Levitetz Department of Orthopaedic Surgery, Cleveland Clinic Florida, Weston, Florida, 33331
| | - Aldo M Riesgo
- Levitetz Department of Orthopaedic Surgery, Cleveland Clinic Florida, Weston, Florida, 33331
| | - Carlos A Higuera
- Levitetz Department of Orthopaedic Surgery, Cleveland Clinic Florida, Weston, Florida, 33331.
| |
Collapse
|
38
|
Sharma AK, Ismail N. Role of Autophagy in Ehrlichia-Induced Liver Injury. Cells 2023; 12:cells12091334. [PMID: 37174734 PMCID: PMC10177069 DOI: 10.3390/cells12091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Autophagy is a cellular process that involves the cell breakdown and recycling of cellular components, such as old, damaged, or abnormal proteins, for important cellular functions including development, immune function, stress, and starvation [...].
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Saranya GR, Viswanathan P. Gut microbiota dysbiosis in AKI to CKD transition. Biomed Pharmacother 2023; 161:114447. [PMID: 37002571 DOI: 10.1016/j.biopha.2023.114447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND AND AIM The symptoms of acute kidney injury (AKI) include a sudden drop-in glomerular filtration rate (GFR), a rise in serum creatinine (sCr), blood urea nitrogen (BUN), and electrolytes, which leads to a rapid loss of kidney function. Chronic kidney disease progresses when AKI symptoms persist for over three months or 90 days. Numerous prevalent secondary risk factors, including diabetes, hypertension, obesity, and heart illness, are directly or indirectly linked to the development of AKI and the switch from AKI to CKD. Recently, the change of intestinal bacteria known as "gut dysbiosis" has been linked to distant organ dysfunction, including the heart, lungs, kidneys, and brain. Indirectly or directly, gut dysbiosis contributes to the progression of CKD and AKI. However, the effects of gut dysbiosis and the mechanism of action in the progression from AKI to CKD are unknown or need further investigation. The mechanism by which gut dysbiosis initiates AKI's progression to CKD should be explicitly concerned. The review primarily focuses on the action of gut dysbiosis in kidney disease, the effects of dysbiosis, the characterisation of dysbiosis and its pathogenic products, the various pathogenic routes and mechanism involved in expediting the transition from AKI to CKD. CONCLUSION We identified and briefly reviewed the impacts of dysbiosis in various situations such as hypoxia, mitochondrial induced reactive oxygen species (mtROS), aryl hydrocarbon receptor (AhR) activation and microbiota derived uremic toxemic substances profoundly to push AKI to CKD conditions.
Collapse
Affiliation(s)
- G R Saranya
- Renal Research Lab, School of Bio Sciences and Technology, Pearl Research Park, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Pragasam Viswanathan
- Renal Research Lab, School of Bio Sciences and Technology, Pearl Research Park, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
40
|
Codelia-Anjum A, Lerner LB, Elterman D, Zorn KC, Bhojani N, Chughtai B. Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment. Antibiotics (Basel) 2023; 12:antibiotics12040778. [PMID: 37107140 PMCID: PMC10135011 DOI: 10.3390/antibiotics12040778] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common causes of infections worldwide and can be caused by numerous uropathogens. Enterococci are Gram-positive, facultative anaerobic commensal organisms of the gastrointestinal tract that are known uropathogens. Enterococcus spp. has become a leading cause of healthcare associated infections, ranging from endocarditis to UTIs. In recent years, there has been an increase in multidrug resistance due to antibiotic misuse, especially in enterococci. Additionally, infections due to enterococci pose a unique challenge due to their ability to survive in extreme environments, intrinsic antimicrobial resistance, and genomic malleability. Overall, this review aims to highlight the pathogenicity, epidemiology, and treatment recommendations (according to the most recent guidelines) of enterococci.
Collapse
Affiliation(s)
- Alia Codelia-Anjum
- Department of Urology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Lori B Lerner
- Department of Urology, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Dean Elterman
- Division of Urology, Department of Surgery, University Health Network, University of Toronto, Toronto, ON M5T 2SB, Canada
| | - Kevin C Zorn
- Division of Urology, Centre Hospitalier de l'Université de Monstréal, Montreal, QC H2X 0A9, Canada
| | - Naeem Bhojani
- Division of Urology, Centre Hospitalier de l'Université de Monstréal, Montreal, QC H2X 0A9, Canada
| | - Bilal Chughtai
- Department of Urology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| |
Collapse
|
41
|
Huang XW, Pan W, Zhong MZ, Chhonker YS, Steele AD, Keohane CE, Mishra B, Felix Raj Lucas LO, Murry DJ, Ausubel FM, Wuest WM, Li CX, Mylonakis E. Biological Evaluation of the Antibacterial Retinoid CD437 in Cutibacterium acnes Infection. Antimicrob Agents Chemother 2023; 67:e0167922. [PMID: 36943064 PMCID: PMC10112217 DOI: 10.1128/aac.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Acne vulgaris is a complex skin disease involving infection by Cutibacterium acnes, inflammation, and hyperkeratinization. We evaluated the activity of the retinoid 6-[3-(adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and 16 other retinoid analogs as potential anti-C. acnes compounds and found that CD437 displayed the highest antimicrobial activity with an MIC against C. acnes (ATCC 6919 and HM-513) of 1 μg/mL. CD437 demonstrated an MBC of 2 μg/mL compared to up to 64 μg/mL for the retinoid adapalene and up to 16 μg/mL for tetracycline, which are commonly used clinically to treat acne. Membrane permeability assays demonstrated that exposure of C. acnes ATCC 6919 to CD437 damaged the integrity of C. acnes ATCC 6919 bacterial membranes, and this finding was confirmed with scanning electron microscopy. Additionally, CD437 downregulated the expression of C. acnes ATCC 6919 virulence factors, including the genes encoding Christie-Atkins-Munch-Petersen factor 1 (CAMP1), CAMP2, glycerol-ester hydrolase B (GehB), sialidase B, and neuraminidase. In a mouse skin infection model of C. acnes ATCC 6919, topical treatment with CD437 ameliorated skin lesions and reduced the bacterial burden in situ (P < 0.001). In human NHEK primary cells, CD437 reduced the transcriptional levels of the coding genes for inflammatory cytokines (interleukin-1α, ~10-fold; interleukin-6, ~20-fold; interleukin-8, ~30-fold; and tumor necrosis factor-alpha, ~6-fold) and downregulated the transcriptional levels of KRT10 (~10-fold), FLG (~4-fold), and TGM1 (~2-fold), indicating that CD437 can diminish inflammation and hyperkeratinization. In summary, CD437 deserves further attention for its dual function as a potential acne therapeutic that potentially acts on both the pathogen and the host.
Collapse
Affiliation(s)
- Xiao-wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Pan
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Mei-zhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrew D. Steele
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | | | - Biswajit Mishra
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Lewis Oscar Felix Raj Lucas
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| | - Chang-xing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Medicine, Houston Methodist Hospital and Academic Institute, Houston, Texas, USA
| |
Collapse
|
42
|
Hénaff E, Najjar D, Perez M, Flores R, Woebken C, Mason CE, Slavin K. Holobiont Urbanism: sampling urban beehives reveals cities' metagenomes. ENVIRONMENTAL MICROBIOME 2023; 18:23. [PMID: 36991491 PMCID: PMC10060141 DOI: 10.1186/s40793-023-00467-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/23/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Over half of the world's population lives in urban areas with, according to the United Nations, nearly 70% expected to live in cities by 2050. Our cities are built by and for humans, but are also complex, adaptive biological systems involving a diversity of other living species. The majority of these species are invisible and constitute the city's microbiome. Our design decisions for the built environment shape these invisible populations, and as inhabitants we interact with them on a constant basis. A growing body of evidence shows us that human health and well-being are dependent on these interactions. Indeed, multicellular organisms owe meaningful aspects of their development and phenotype to interactions with the microorganisms-bacteria or fungi-with which they live in continual exchange and symbiosis. Therefore, it is meaningful to establish microbial maps of the cities we inhabit. While the processing and sequencing of environmental microbiome samples can be high-throughput, gathering samples is still labor and time intensive, and can require mobilizing large numbers of volunteers to get a snapshot of the microbial landscape of a city. RESULTS Here we postulate that honeybees may be effective collaborators in gathering samples of urban microbiota, as they forage daily within a 2-mile radius of their hive. We describe the results of a pilot study conducted with three rooftop beehives in Brooklyn, NY, where we evaluated the potential of various hive materials (honey, debris, hive swabs, bee bodies) to reveal information as to the surrounding metagenomic landscape, and where we conclude that the bee debris are the richest substrate. Based on these results, we profiled 4 additional cities through collected hive debris: Sydney, Melbourne, Venice and Tokyo. We show that each city displays a unique metagenomic profile as seen by honeybees. These profiles yield information relevant to hive health such as known bee symbionts and pathogens. Additionally, we show that this method can be used for human pathogen surveillance, with a proof-of-concept example in which we recover the majority of virulence factor genes for Rickettsia felis, a pathogen known to be responsible for "cat scratch fever". CONCLUSIONS We show that this method yields information relevant to hive health and human health, providing a strategy to monitor environmental microbiomes on a city scale. Here we present the results of this study, and discuss them in terms of architectural implications, as well as the potential of this method for epidemic surveillance.
Collapse
Affiliation(s)
- Elizabeth Hénaff
- NYU Tandon School of Engineering, Brooklyn, NY USA
- Center for Urban Science and Progress, NYU, Brooklyn, NY USA
| | | | | | | | | | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY USA
- Weill Cornell Medicine, The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY USA
| | | |
Collapse
|
43
|
Kędzierska-Mieszkowska S, Arent Z. Immunoreactivity of a Putative ECF σ Factor, LIC_10559, from Leptospira interrogans with Sera from Leptospira-Infected Animals. Pathogens 2023; 12:pathogens12040512. [PMID: 37111398 PMCID: PMC10144590 DOI: 10.3390/pathogens12040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
L. interrogans belongs to highly invasive spirochaetes causing leptospirosis in mammals, including humans. During infection, this pathogen is exposed to various stressors, and therefore, it must reprogram its gene expression to survive in the host and establish infection in a short duration of time. Host adaptation is possible thanks to molecular responses where appropriate regulators and signal transduction systems participate. Among the bacterial regulators, there are σ factors, including ECF (extracytoplasmic function) σ factors. The L. interrogans genome encodes 11 putative ECF σE-type factors. Currently, none of them has been characterized biochemically, and their functions are still unknown. One of them, LIC_10559, is the most likely to be active during infection because it is only found in the highly pathogenic Leptospira. The aim of this study was to achieve LIC_10559 overexpression to answer the question whether it may be a target of the humoral immune response during leptospiral infections. The immunoreactivity of the recombinant LIC_10559 was evaluated by SDS-PAGE, ECL Western blotting and ELISA assay using sera collected from Leptospira-infected animals and uninfected healthy controls. We found that LIC_10559 was recognized by IgG antibodies from the sera of infected animals and is, therefore, able to induce the host’s immune response to pathogenic Leptospira. This result suggests the involvement of LIC_10559 in the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Sabina Kędzierska-Mieszkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-523-6064
| | - Zbigniew Arent
- University Centre of Veterinary Medicine UAK, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| |
Collapse
|
44
|
Al-Trad EI, Che Hamzah AM, Puah SM, Chua KH, Hanifah MZ, Ayub Q, Palittapongarnpim P, Kwong SM, Chew CH, Yeo CC. Complete Genome Sequence and Analysis of a ST573 Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus SauR3 Clinical Isolate from Terengganu, Malaysia. Pathogens 2023; 12:pathogens12030502. [PMID: 36986424 PMCID: PMC10053073 DOI: 10.3390/pathogens12030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization-listed priority pathogen. Scarce genomic data are available for MRSA isolates from Malaysia. Here, we present the complete genome sequence of a multidrug-resistant MRSA strain SauR3, isolated from the blood of a 6-year-old patient hospitalized in Terengganu, Malaysia, in 2016. S. aureus SauR3 was resistant to five antimicrobial classes comprising nine antibiotics. The genome was sequenced on the Illumina and Oxford Nanopore platforms and hybrid assembly was performed to obtain its complete genome sequence. The SauR3 genome consists of a circular chromosome of 2,800,017 bp and three plasmids designated pSauR3-1 (42,928 bp), pSauR3-2 (3011 bp), and pSauR3-3 (2473 bp). SauR3 belongs to sequence type 573 (ST573), a rarely reported sequence type of the staphylococcal clonal complex 1 (CC1) lineage, and harbors a variant of the staphylococcal cassette chromosome mec (SCCmec) type V (5C2&5) element which also contains the aac(6')-aph(2″) aminoglycoside-resistance genes. pSauR3-1 harbors several antibiotic resistance genes in a 14,095 bp genomic island (GI), previously reported in the chromosome of other staphylococci. pSauR3-2 is cryptic, whereas pSauR3-3 encodes the ermC gene that mediates inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB). The SauR3 genome can potentially be used as a reference genome for other ST573 isolates.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | | | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhamad Zarul Hanifah
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Qasim Ayub
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Mahidol University, Bangkok 10400, Thailand
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
45
|
Kotimoole C, Antil N, Kasaragod S, Behera S, Arvind A, Reiling N, Flo T, Prasad T. Development of a spectral library for the discovery of altered genomic events in Mycobacterium avium associated with virulence using mass spectrometry-based proteogenomic analysis. Mol Cell Proteomics 2023; 22:100533. [PMID: 36948415 PMCID: PMC10149365 DOI: 10.1016/j.mcpro.2023.100533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Mycobacterium avium is one of the prominent disease-causing bacteria in humans. It causes lymphadenitis, chronic and extrapulmonary, and disseminated infections in adults, children, and immunocompromised patients. M. avium has ∼4,500 predicted protein-coding regions on average, which can help discover several variants at the proteome level. Many of them are potentially associated with virulence; thus, identifying such proteins can be a helpful feature in developing panel-based theranostics. In line with such a long-term goal, we carried out an in-depth proteomic analysis of M. avium with both data-dependent and data-independent acquisition methods. Further, a set of proteogenomic investigations were carried out using i) a protein database for Mycobacterium tuberculosis, ii) a M. avium genome six-frame translated database, and iii) a variant protein database of M. avium. A search of mass spectrometry data against M. avium protein database resulted in identifying 2,954 proteins. Further, proteogenomic analyses aided in identifying 1,301 novel peptide sequences and correcting translation start sites for 15 proteins. Ultimately, we created a spectral library of M. avium proteins, including novel genome search-specific peptides and variant peptides detected in this study. We validated the spectral library by a data-independent acquisition of the M. avium proteome. Thus, we present an M. avium spectral library of 29,033 peptide precursors supported by 0.4 million fragment ions for further use by the biomedical community.
Collapse
Affiliation(s)
- ChinmayaNarayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Neelam Antil
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sandeep Kasaragod
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - SantoshKumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Anjana Arvind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, D-23845 Borstel, Germany; German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - TrudeHelen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Kunnskapssenteret, 424.04.035, Øya, Norway
| | | |
Collapse
|
46
|
Pecoraro C, Carbone D, Parrino B, Cascioferro S, Diana P. Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy. Int J Mol Sci 2023; 24:ijms24054872. [PMID: 36902301 PMCID: PMC10002502 DOI: 10.3390/ijms24054872] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Infectious diseases caused by antimicrobial-resistant strains have become a serious threat to global health, with a high social and economic impact. Multi-resistant bacteria exhibit various mechanisms at both the cellular and microbial community levels. Among the different strategies proposed to fight antibiotic resistance, we reckon that the inhibition of bacterial adhesion to host surfaces represents one of the most valid approaches, since it hampers bacterial virulence without affecting cell viability. Many different structures and biomolecules involved in the adhesion of Gram-positive and Gram-negative pathogens can be considered valuable targets for the development of promising tools to enrich our arsenal against pathogens.
Collapse
|
47
|
Ji B, Pi W, Liu W, Liu Y, Cui Y, Zhang X, Peng S. HyperVR: a hybrid deep ensemble learning approach for simultaneously predicting virulence factors and antibiotic resistance genes. NAR Genom Bioinform 2023; 5:lqad012. [PMID: 36789031 PMCID: PMC9918863 DOI: 10.1093/nargab/lqad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Infectious diseases emerge unprecedentedly, posing serious challenges to public health and the global economy. Virulence factors (VFs) enable pathogens to adhere, reproduce and cause damage to host cells, and antibiotic resistance genes (ARGs) allow pathogens to evade otherwise curable treatments. Simultaneous identification of VFs and ARGs can save pathogen surveillance time, especially in situ epidemic pathogen detection. However, most tools can only predict either VFs or ARGs. Few tools that predict VFs and ARGs simultaneously usually have high false-negative rates, are sensitive to the cutoff thresholds and can only identify conserved genes. For better simultaneous prediction of VFs and ARGs, we propose a hybrid deep ensemble learning approach called HyperVR. By considering both best hit scores and statistical gene sequence patterns, HyperVR combines classical machine learning and deep learning to simultaneously and accurately predict VFs, ARGs and negative genes (neither VFs nor ARGs). For the prediction of individual VFs and ARGs, in silico spike-in experiment (the VFs and ARGs in real metagenomic data), and pseudo-VFs and -ARGs (gene fragments), HyperVR outperforms the current state-of-the-art prediction tools. HyperVR uses only gene sequence information without strict cutoff thresholds, hence making prediction straightforward and reliable.
Collapse
Affiliation(s)
- Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410006, People’s Republic of China
| | - Wending Pi
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410006, People’s Republic of China
| | - Wenjuan Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410006, People’s Republic of China
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People’s Republic of China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People’s Republic of China
| | | | | |
Collapse
|
48
|
Pang Q, Jiang Z, Wu K, Hou R, Zhu Y. Nanomaterials-Based Wound Dressing for Advanced Management of Infected Wound. Antibiotics (Basel) 2023; 12:antibiotics12020351. [PMID: 36830262 PMCID: PMC9952012 DOI: 10.3390/antibiotics12020351] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
The effective prevention and treatment of bacterial infections is imperative to wound repair and the improvement of patient outcomes. In recent years, nanomaterials have been extensively applied in infection control and wound healing due to their special physiochemical and biological properties. Incorporating antibacterial nanomaterials into wound dressing has been associated with improved biosafety and enhanced treatment outcomes compared to naked nanomaterials. In this review, we discuss progress in the application of nanomaterial-based wound dressings for advanced management of infected wounds. Focus is given to antibacterial therapy as well as the all-in-one detection and treatment of bacterial infections. Notably, we highlight progress in the use of nanoparticles with intrinsic antibacterial performances, such as metals and metal oxide nanoparticles that are capable of killing bacteria and reducing the drug-resistance of bacteria through multiple antimicrobial mechanisms. In addition, we discuss nanomaterials that have been proven to be ideal drug carriers for the delivery and release of antimicrobials either in passive or in stimuli-responsive manners. Focus is given to nanomaterials with the ability to kill bacteria based on the photo-triggered heat (photothermal therapy) or ROS (photodynamic therapy), due to their unparalleled advantages in infection control. Moreover, we highlight examples of intelligent nanomaterial-based wound dressings that can detect bacterial infections in-situ while providing timely antibacterial therapy for enhanced management of infected wounds. Finally, we highlight challenges associated with the current nanomaterial-based wound dressings and provide further perspectives for future improvement of wound healing.
Collapse
|
49
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
50
|
Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Erin Lim SH. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics (Basel) 2023; 12:190. [PMID: 36830101 PMCID: PMC9951906 DOI: 10.3390/antibiotics12020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multidrug resistance (MDR) has become an increasing threat to global health because bacteria can develop resistance to antibiotics over time. Scientists worldwide are searching for new approaches that go beyond traditional antibiotic discovery and development pipelines. Advances in genomics, however, opened up an unexplored therapeutic opportunity for the discovery of new antibacterial agents. Genomic approaches have been used to discover several novel antibiotics that target critical processes for bacterial growth and survival, including histidine kinases (HKs), LpxC, FabI, peptide deformylase (PDF), and aminoacyl-tRNA synthetases (AaRS). In this review, we will discuss the use of microbial genomics in the search for innovative and promising drug targets as well as the mechanisms of action for novel antimicrobial agents. We will also discuss future directions on how the utilization of the microbial genomics approach could improve the odds of antibiotic development having a more successful outcome.
Collapse
Affiliation(s)
- Asma Hussain Alkatheri
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Aisha Abushelaibi
- Office of Campus Director, Abu Dhabi Colleges, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|