1
|
Zhu Q, Xiong X, Zheng Q, Deng Q, Hao Y, Liu D, Zheng J, Zhang G, Li J, Yang L. High-intensity interval training versus moderate-intensity continuous training for localized prostate cancer under active surveillance: a systematic review and network meta-analysis. Prostate Cancer Prostatic Dis 2025; 28:11-22. [PMID: 38378977 DOI: 10.1038/s41391-024-00801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND High-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) have been increasingly adopted for localized prostate cancer (PCa) under active surveillance (AS). However, it is unclear which training modality is the most favorable in terms of cardiorespiratory fitness and biochemical progression. METHODS We searched PubMed, Cochrane and Embase for relevant RCTs. PRISMA guideline was adopted to ensure optimal conduct of this study. Serum prostate specific antigen (PSA) and peak VO2 were selected as primary outcomes and PSA doubling time (PSADT) and testosterone were selected as secondary outcomes. Only articles written in English were included. Cochrane risk-of-bias tool was used for risk of bias evaluation. RESULTS A total of 501 studies were selected. Six RCTs with 222 patients were included for data extraction and analysis. High-intensity interval training (HIIT) group demonstrated significantly lower PSA compared with usual care (UC) (MD = -1.4; 95%CI = -2.77 to -0.03) and moderate-intensity continuous training (MICT) group (MD = -1.67; 95%CI = -3.30 to -0.05). Both HIIT and MICT showed significantly improved peak VO2 compared with UC. No significant difference was observed in PSADT and testosterone among different training modalities and UC. Regarding peak VO2, MICT had the highest surface under cumulative ranking curve (SUCRA) scores (98.1%). For serum PSA, HIIT had the highest probability (97.8%) to be the training with the highest efficacy. The potential source of bias mainly came from poorly performed allocation concealment and blinding strategies. CONCLUSIONS The present study indicated that HIIT and MICT showed considerable cardiorespiratory benefits for localized PCa. HIIT was preferred over MICT in biochemical progression control in terms of decreasing serum PSA levels. However, MICT was favored over HIIT regarding cardiorespiratory benefits. The findings of this study may facilitate future lifestyle intervention, particularly in the form of physical training, for individuals diagnosed with localized PCa under AS.
Collapse
Affiliation(s)
- Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, PR China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, PR China
| | - Qian Zheng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Qi Deng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Yun Hao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Dingbang Liu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiaming Zheng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Guangyue Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, PR China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
Bettariga F, Taaffe DR, Galvão DA, Newton RU. Effects of short- and long-term exercise training on cancer cells in vitro: Insights into the mechanistic associations. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100994. [PMID: 39370102 PMCID: PMC11863286 DOI: 10.1016/j.jshs.2024.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
Exercise is a therapeutic approach in cancer treatment, providing several benefits. Moreover, exercise is associated with a reduced risk for developing a range of cancers and for their recurrence, as well as with improving survival, even though the underlying mechanisms remain unclear. Preclinical and clinical evidence shows that the acute effects of a single exercise session can suppress the growth of various cancer cell lines in vitro. This suppression is potentially due to altered concentrations of hormones (e.g., insulin) and cytokines (e.g., tumor necrosis factor alpha and interleukin 6) after exercise. These factors, known to be involved in tumorigenesis, may explain why exercise is associated with reduced cancer incidence, recurrence, and mortality. However, the effects of short- (<8 weeks) and long-term (≥8 weeks) exercise programs on cancer cells have been reported with mixed results. Although more research is needed, it appears that interventions incorporating both exercise and diet seem to have greater inhibitory effects on cancer cell growth in both apparently healthy subjects as well as in cancer patients. Although speculative, these suppressive effects on cancer cells may be driven by changes in body weight and composition as well as by a reduction in low-grade inflammation often associated with sedentary behavior, low muscle mass, and excess fat mass in cancer patients. Taken together, such interventions could alter the systemic levels of suppressive circulating factors, leading to a less favorable environment for tumorigenesis. While regular exercise and a healthy diet may establish a more cancer-suppressive environment, each acute bout of exercise provides a further "dose" of anticancer medicine. Therefore, integrating regular exercise could potentially play a significant role in cancer management, highlighting the need for future investigations in this promising area of research.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
3
|
Silvestri M, Grazioli E, Duranti G, Sgrò P, Dimauro I. Exploring the Impact of Exercise-Derived Extracellular Vesicles in Cancer Biology. BIOLOGY 2024; 13:701. [PMID: 39336127 PMCID: PMC11429480 DOI: 10.3390/biology13090701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Cancer remains a major challenge in medicine, prompting exploration of innovative therapies. Recent studies suggest that exercise-derived extracellular vesicles (EVs) may offer potential anti-cancer benefits. These small, membrane-bound particles, including exosomes, carry bioactive molecules such as proteins and RNA that mediate intercellular communication. Exercise has been shown to increase EV secretion, influencing physiological processes like tissue repair, inflammation, and metabolism. Notably, preclinical studies have demonstrated that exercise-derived EVs can inhibit tumor growth, reduce metastasis, and enhance treatment response. For instance, in a study using animal models, exercise-derived EVs were shown to suppress tumor proliferation in breast and colon cancers. Another study reported that these EVs reduced metastatic potential by decreasing the migration and invasion of cancer cells. Additionally, exercise-induced EVs have been found to enhance the effectiveness of chemotherapy by sensitizing tumor cells to treatment. This review highlights the emerging role of exercise-derived circulating biomolecules, particularly EVs, in cancer biology. It discusses the mechanisms through which EVs impact cancer progression, the challenges in translating preclinical findings to clinical practice, and future research directions. Although research in this area is still limited, current findings suggest that EVs could play a crucial role in spreading molecules that promote better health in cancer patients. Understanding these EV profiles could lead to future therapies, such as exercise mimetics or targeted drugs, to treat cancer.
Collapse
Affiliation(s)
- Monica Silvestri
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
4
|
Darragh IAJ, Martinez‐Pacheco S, O'Driscoll L, Egan B. Functional assays reflective of cancer hallmarks in BT-549 cells are not impacted by media supplemented with exercise-trained plasma. Exp Physiol 2024; 109:1124-1133. [PMID: 37991325 PMCID: PMC11215463 DOI: 10.1113/ep091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Media supplemented with sera from acutely exercised men has been shown to have 'anti-cancer' effects on prostate and breast cancer cell lines. This study investigated whether media supplemented with plasma samples taken at rest (≥30 h since the most recent exercise session) from men who were endurance-trained (END), strength-trained (STR) or recreationally active controls (CON) impacted the results of four assays that mimic hallmarks of cancer (proliferation, migration, extracellular matrix invasion and anoikis resistance) in the BT-549 breast cancer cell line. Compared to control conditions of either serum-free media or fetal bovine serum as appropriate, BT-549 cells cultured with plasma-supplemented media regardless of group resulted in greater cell proliferation (∼20-50%) and cell migration (∼15-20%), and lower extracellular matrix invasion (∼10-20%) and anoikis resistance (∼15-20%). Supplementing media with plasma from END or STR did not impact any outcomes of these assays compared to plasma from CON. Media supplemented with human plasma can impact functional assays reflective of cancer hallmarks in BT-549 cells, but effects of exercise on proliferation, migration, extracellular matrix invasion and anoikis resistance were not evident in resting blood samples of individuals with a prior history of exercise training.
Collapse
Affiliation(s)
- Ian A. J. Darragh
- School of Health and Human PerformanceDublin City UniversityDublinIreland
| | - Sarai Martinez‐Pacheco
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Brendan Egan
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Florida Institute for Human and Machine CognitionPensacolaFloridaUSA
| |
Collapse
|
5
|
Bettariga F, Taaffe DR, Galvão DA, Bishop C, Kim JS, Newton RU. Suppressive effects of exercise-conditioned serum on cancer cells: A narrative review of the influence of exercise mode, volume, and intensity. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:484-498. [PMID: 38081360 PMCID: PMC11184317 DOI: 10.1016/j.jshs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
Cancer is a major cause of morbidity and mortality worldwide, and the incidence is increasing, highlighting the need for effective strategies to treat this disease. Exercise has emerged as fundamental therapeutic medicine in the management of cancer, associated with a lower risk of recurrence and increased survival. Several avenues of research demonstrate reduction in growth, proliferation, and increased apoptosis of cancer cells, including breast, prostate, colorectal, and lung cancer, when cultured by serum collected after exercise in vitro (i.e., the cultivation of cancer cell lines in an experimental setting, which simplifies the biological system and provides mechanistic insight into cell responses). The underlying mechanisms of exercise-induced cancer suppressive effects may be attributed to the alteration in circulating factors, such as skeletal muscle-induced cytokines (i.e., myokines) and hormones. However, exercise-induced tumor suppressive effects and detailed information about training interventions are not well investigated, constraining more precise application of exercise medicine within clinical oncology. To date, it remains unclear what role different training modes (i.e., resistance and aerobic training) as well as volume and intensity have on exercise-conditioned serum and its effects on cancer cells. Nevertheless, the available evidence is that a single bout of aerobic training at moderate to vigorous intensity has cancer suppressive effects, while for chronic training interventions, exercise volume appears to be an influential candidate driving cancer inhibitory effects regardless of training mode. Insights for future research investigating training modes, volume and intensity are provided to further our understanding of the effects of exercise-conditioned serum on cancer cells.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
6
|
Pinto AC, Tavares P, Neves B, Oliveira PF, Vitorino R, Moreira-Gonçalves D, Ferreira R. Exploiting the therapeutic potential of contracting skeletal muscle-released extracellular vesicles in cancer: Current insights and future directions. J Mol Med (Berl) 2024; 102:617-628. [PMID: 38451309 PMCID: PMC11055777 DOI: 10.1007/s00109-024-02427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
The health benefits of exercise training in a cancer setting are increasingly acknowledged; however, the underlying molecular mechanisms remain poorly understood. It has been suggested that extracellular vesicles (EVs) released from contracting skeletal muscles play a key role in mediating the systemic benefits of exercise by transporting bioactive molecules, including myokines. Nevertheless, skeletal muscle-derived vesicles account for only about 5% of plasma EVs, with the immune cells making the largest contribution. Moreover, it remains unclear whether the contribution of skeletal muscle-derived EVs increases after physical exercise or how muscle contraction modulates the secretory activity of other tissues and thus influences the content and profile of circulating EVs. Furthermore, the destination of EVs after exercise is unknown, and it depends on their molecular composition, particularly adhesion proteins. The cargo of EVs is influenced by the training program, with acute training sessions having a greater impact than chronic adaptations. Indeed, there are numerous questions regarding the role of EVs in mediating the effects of exercise, the clarification of which is critical for tailoring exercise training prescriptions and designing exercise mimetics for patients unable to engage in exercise programs. This review critically analyzes the current knowledge on the effects of exercise on the content and molecular composition of circulating EVs and their impact on cancer progression.
Collapse
Affiliation(s)
- Ana Carolina Pinto
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Patrícia Tavares
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
- CIAFEL, Faculty of Sports, University of Porto and Laboratory for Integrative and ITR, Translational Research in Population Health, 4200-450, Porto, Portugal
| | - Bruno Neves
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sports, University of Porto and Laboratory for Integrative and ITR, Translational Research in Population Health, 4200-450, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Tai YK, Iversen JN, Chan KKW, Fong CHH, Abdul Razar RB, Ramanan S, Yap LYJ, Yin JN, Toh SJ, Wong CJK, Koh PFA, Huang RYJ, Franco-Obregón A. Secretome from Magnetically Stimulated Muscle Exhibits Anticancer Potency: Novel Preconditioning Methodology Highlighting HTRA1 Action. Cells 2024; 13:460. [PMID: 38474424 PMCID: PMC10930715 DOI: 10.3390/cells13050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity. Blood serum collected from PEMF-exposed or exercised mice allayed breast cancer cell growth, migration, and invasiveness. A secretome preconditioning methodology is presented that accentuates the graded anticancer potencies of both the cCM and pCM harvested from myotubes, demonstrating an adaptive response to pCM administered during early myogenesis that emulated secretome-based exercise adaptations observed in vivo. HTRA1 was shown to be upregulated in pCM and was demonstrated to be necessary and sufficient for the anticancer potency of the pCM; recombinant HTRA1 added to basal media recapitulated the anticancer effects of pCM and antibody-based absorption of HTRA1 from pCM precluded its anticancer effects. Brief and non-invasive PEMF stimulation may represent a method to commandeer the secretome response of muscle, both in vitro and in vivo, for clinical exploitation in breast and other cancers.
Collapse
Affiliation(s)
- Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Jan Nikolas Iversen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Karen Ka Wing Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Charlene Hui Hua Fong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Rafhanah Banu Abdul Razar
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Sharanya Ramanan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Lye Yee Jasmine Yap
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Shi Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
| | - Pei Fern Angele Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (R.Y.J.H.)
| | - Ruby Yun Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (R.Y.J.H.)
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore 119228, Singapore
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (J.N.I.); (C.J.K.W.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
8
|
Baldelli G, Natalucci V, Ferri Marini C, Sisti D, Annibalini G, Saltarelli R, Bocconcelli M, Gentilini V, Emili R, Rocchi MBL, Lucertini F, Barbieri E, Brandi G, De Santi M. A home-based lifestyle intervention program reduces the tumorigenic potential of triple-negative breast cancer cells. Sci Rep 2024; 14:2409. [PMID: 38287041 PMCID: PMC10824728 DOI: 10.1038/s41598-024-52065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Translational research for the evaluation of physical activity habits and lifestyle modifications based on nutrition and exercise has recently gained attention. In this study, we evaluated the effects of serum samples obtained before and after a 12-week home-based lifestyle intervention based on nutrition and exercise in breast cancer survivors in terms of modulation of the tumorigenic potential of breast cancer cells. The home-based lifestyle intervention proposed in this work consisted of educational counselling on exercise and nutritional behaviors and in 12 weeks of structured home-based exercise. Triple-negative breast cancer cell line MDA-MB-231 was cultured in semi-solid medium (3D culture) with sera collected before (PRE) and after (POST) the lifestyle intervention program. Spheroid formation was evaluated by counting cell colonies after 3 weeks of incubation. Results show a slight but significant reduction of spheroid formation induced by serum collected POST in comparison to those obtained PRE. Moreover, statistical analyses aimed to find physiologic and metabolic parameters associated with 3D cell proliferation revealed the proliferative inducer IGF-1 as the only predictor of cell tumorigenic potential. These results highlight the importance of lifestyle changes for cancer progression control in a tertiary prevention context. Translational research could offer a useful tool to identify metabolic and physiological changes induced by exercise and nutritional behaviors associated with cancer progression and recurrence risk.
Collapse
Affiliation(s)
- Giulia Baldelli
- Unit of Pharmacology and Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Valentina Natalucci
- Division of Exercise and Health Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Carlo Ferri Marini
- Division of Exercise and Health Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Davide Sisti
- Unit of Pharmacology and Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Giosuè Annibalini
- Division of Exercise and Health Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Roberta Saltarelli
- Division of Exercise and Health Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Matteo Bocconcelli
- Division of Exercise and Health Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Veronica Gentilini
- Unit of Pharmacology and Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Rita Emili
- Medical Oncology, Hospital Santa Maria della Misericordia di Urbino, 61029, Urbino, Italy
| | - Marco Bruno Luigi Rocchi
- Unit of Pharmacology and Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Francesco Lucertini
- Division of Exercise and Health Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Elena Barbieri
- Division of Exercise and Health Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giorgio Brandi
- Unit of Pharmacology and Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Mauro De Santi
- Unit of Pharmacology and Hygiene, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
9
|
Brown MJ, Nickels M, Akam EC, Morris MA. The protective effect of endurance running against the pro-invasive effects of ageing in breast cancer cells and mesenchymal stem cells in vitro. IN VITRO MODELS 2023; 2:263-280. [PMID: 39872498 PMCID: PMC11756502 DOI: 10.1007/s44164-023-00055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 01/30/2025]
Abstract
Purpose Regular exercise is known to reduce cancer risk and may prevent metastases, however, modelling this in vitro is challenging due the heterogeneity of the tumour microenvironment. Exercised serum can be used to capture changes in cellular signalling components in response to different types and durations of exercise. In this study, exercised serum from long-term endurance runners and sprinters of different ages was used to evaluate the impact of exercise on the invasiveness of breast cancer cells and mesenchymal stem cells in vitro. Methods Exercised serum from long-term trained younger and older endurance runners and sprinters was used to supplement cell culture media in the 3D culture of spheroids containing breast cancer cells or mesenchymal stem cells. Spheroids were generated in a 3D semi-solid matrix and cell invasion was measured using ImageJ software. Statistical analyses of invasion were conducted using one-way ANOVAs. Results Invasion was significantly greater in cells cultured with serum from older, inactive participants compared to young, inactive participants (YC vs OC; F (1,3) = 37.135, P = 0.009). No significant difference was found in the invasion of MDA-MB-231 breast cancer cells cultured in serum from older, long-term endurance runners and younger, long-term endurance runners (YE vs OE; F (1,3) = 5.178, P = 0.107), suggesting a protective effect of endurance running against the pro-invasive effects of ageing. Conclusion This is the first study of its kind to demonstrate the protective effects of long-term exercise training type in two populations of different ages against the invasiveness of breast cancer cells in vitro.
Collapse
Affiliation(s)
- Marie-Juliet Brown
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| | - Matt Nickels
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| | - Mhairi A. Morris
- School of Sport, Exercise and Health Sciences, Loughborough University, Towers Way, Loughborough, LE11 3TU UK
| |
Collapse
|
10
|
Leimbacher AC, Villiger P, Desboeufs N, Aboouf MA, Nanni M, Armbruster J, Ademi H, Flüchter P, Ruetten M, Gantenbein F, Haider TJ, Gassmann M, Thiersch M. Voluntary exercise does not always suppress lung cancer progression. iScience 2023; 26:107298. [PMID: 37520731 PMCID: PMC10374464 DOI: 10.1016/j.isci.2023.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Physical exercise can lower lung cancer incidence. However, its effect on lung cancer progression is less understood. Studies on exercising mice have shown decreased ectopic lung cancer growth through the secretion of interleukin-6 from muscles and the recruitment of natural killer (NK) cells to tumors. We asked if exercise suppresses lung cancer in an orthotopic model also. Single-housed C57Bl/6 male mice in cages with running wheels were tail vein-injected with LLC1.1 lung cancer cells, and lung tumor nodules were analyzed. Exercise did not affect lung cancer. Therefore, we also tested the effect of exercise on a subcutaneous LLC1 tumor and a tail vein-injected B16F10 melanoma model. Except for one case of excessive exercise, tumor progression was not influenced. Moderately exercising mice did not increase IL-6 or recruit NK cells to the tumor. Our data suggest that the exercise dose may dictate how efficiently the immune system is stimulated and controls tumor progression.
Collapse
Affiliation(s)
- Aurelia C. Leimbacher
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Philipp Villiger
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Nina Desboeufs
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Mostafa A. Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Monica Nanni
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Hyrije Ademi
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Pascal Flüchter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Maja Ruetten
- PathoVet AG, Pathology Diagnostic Laboratory, 8317 Tagelswangen ZH, Switzerland
| | - Felix Gantenbein
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, 8057 Zurich, Switzerland
| | - Thomas J. Haider
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Natalucci V, Ferri Marini C, De Santi M, Annibalini G, Lucertini F, Vallorani L, Panico AR, Sisti D, Saltarelli R, Donati Zeppa S, Agostini D, Gervasi M, Baldelli G, Grassi E, Nart A, Rossato M, Biancalana V, Piccoli G, Benelli P, Villarini A, Somaini M, Catalano V, Guarino S, Pietrelli A, Monaldi S, Sarti D, Barocci S, Flori M, Rocchi MBL, Brandi G, Stocchi V, Emili R, Barbieri E. Movement and health beyond care, MoviS: study protocol for a randomized clinical trial on nutrition and exercise educational programs for breast cancer survivors. Trials 2023; 24:134. [PMID: 36814313 PMCID: PMC9946288 DOI: 10.1186/s13063-023-07153-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common invasive cancer in women, and exercise can significantly improve the outcomes of BC survivors. MoviS (Movement and Health Beyond Care) is a randomized controlled trial aimed to evaluate the potential health benefits of exercise and proper nutritional habits. This study aims to assess the efficacy of aerobic exercise training in improving quality of life (QoL) and health-related factors in high-risk BC. METHODS One hundred seventy-two BC survivor women, aged 30-70 years, non-metastatic, stage 0-III, non-physically active, 6-12 months post-surgery, and post chemo- or radiotherapy, will be recruited in this study. Women will be randomly allocated to the intervention arm (lifestyle recommendations and MoviS Training) or control arm (lifestyle recommendations). The MoviS training consists of 12 weeks of aerobic exercise training (2 days/week of supervised and 1 day/week of unsupervised exercise) with a progressive increase in exercise intensity (40-70% of heart rate reserve) and duration (20-60 min). Both arms will receive counseling on healthy lifestyle habits (nutrition and exercise) based on the World Cancer Research Fund International (WCRF) 2018 guidelines. The primary outcome is the improvement of the QoL. The secondary outcomes are improvement of health-related parameters such as Mediterranean diet adherence, physical activity level, flexibility, muscular fitness, fatigue, cardiorespiratory fitness (estimated maximal oxygen uptake), echocardiographic parameters, heart rate variability (average of the standard deviations of all 5 min normal to normal intervals (ASDNN/5 min) and 24 h very low and low frequency), and metabolic, endocrine, and inflammatory serum biomarkers (glycemia, insulin resistance, progesterone, testosterone, and high-sensitivity C-reactive protein). DISCUSSION This trial aims to evaluate if supervised exercise may improve QoL and health-related factors of BC survivors with a high risk of recurrence. Findings from this project could provide knowledge improvement in the field of exercise oncology through the participation of a multidisciplinary team that will provide a coordinated program of cancer care to improve healthcare quality, improve prognosis, increase survival times and QoL, and reduce the risk of BC recurrence. TRIAL REGISTRATION ClinicalTrials.gov NCT04818359 . Retrospectively registered on March 26, 2021.
Collapse
Affiliation(s)
- Valentina Natalucci
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Carlo Ferri Marini
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Francesco Lucertini
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Luciana Vallorani
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Andrea Rocco Panico
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Davide Sisti
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta Saltarelli
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Donati Zeppa
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giulia Baldelli
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Eugenio Grassi
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandra Nart
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Massimo Rossato
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vincenzo Biancalana
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Benelli
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Anna Villarini
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Matteo Somaini
- grid.4708.b0000 0004 1757 2822School of Specialization in Nutrition Science, University of Milano, Milan, Italy
| | - Vincenzo Catalano
- Medical Oncology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Stefania Guarino
- Medical Oncology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Alice Pietrelli
- Medical Oncology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Silvia Monaldi
- Medical Oncology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Donatella Sarti
- Medical Oncology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Simone Barocci
- Clinical Pathology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Marco Flori
- Cardiology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Marco Bruno Luigi Rocchi
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giorgio Brandi
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, 20132 Rome, Italy
| | - Rita Emili
- Medical Oncology, Hospital Santa Maria della Misericordia di Urbino, 61029 Urbino, Italy
| | - Elena Barbieri
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
12
|
Zheng A, Zhang L, Yang J, Yin X, Zhang T, Wu X, Ma X. Physical activity prevents tumor metastasis through modulation of immune function. Front Pharmacol 2022; 13:1034129. [PMID: 36313283 PMCID: PMC9596782 DOI: 10.3389/fphar.2022.1034129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 01/10/2023] Open
Abstract
Metastasis is responsible for 90% of deaths in cancer patients. Most patients diagnosed with metastatic cancer will die within 5 years. PA is good for health and has become an emerging adjuvant therapy for cancer survivors. Regular moderate exercise substantially lowers the incidence and recurrence of several cancers, alleviates cancer-related adverse events, enhances the efficacy of anti-cancer treatments, and improves the quality of life of cancer patients. Revealing the mechanisms of PA inhibiting tumor metastasis could upgrade our understanding of cancer biology and help researchers explore new therapeutic strategies to improve survival in cancer patients. However, it remains poorly understood how physical activity prevents metastasis by modulating tumor behavior. The immune system is involved in each step of tumor metastasis. From invasion to colonization, immune cells interact with tumor cells to secret cytokines and proteases to remodel the tumor microenvironment. Substantial studies demonstrated the ability of physical activity to induce antitumor effects of immune cells. This provides the possibility that physical activity can modulate immune cells behavior to attenuate tumor metastasis. The purpose of this review is to discuss and summarize the critical link between immune function and exercise in metastasis prevention.
Collapse
Affiliation(s)
- Aiping Zheng
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- Head and Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Lei Zhang
- Department of Obstetrics & Gynecology, Chengdu First People’s Hospital & Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Jiaqing Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomeng Yin
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Tao Zhang
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Xin Wu
- Head and Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- Head and Neck Oncology Ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Chengdu, China
- *Correspondence: Xin Wu, ; Xuelei Ma,
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- *Correspondence: Xin Wu, ; Xuelei Ma,
| |
Collapse
|
13
|
Papadopetraki A, Maridaki M, Zagouri F, Dimopoulos MA, Koutsilieris M, Philippou A. Physical Exercise Restrains Cancer Progression through Muscle-Derived Factors. Cancers (Basel) 2022; 14:cancers14081892. [PMID: 35454797 PMCID: PMC9024747 DOI: 10.3390/cancers14081892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The benefits of physical exercise against cancer onset and progression, as well as the adverse effects of physical inactivity have changed the way that we utilize exercise for cancer patients. Nevertheless, although guidelines of various scientific societies and organizations propose exercise as a complementary intervention during cancer therapies, the exact cellular and molecular mechanisms by which exercise acts against cancer have not yet been elucidated. In the present review, we analyze the factors which either are secreted from skeletal muscle or are regulated by exercise and can restrain cancer evolution. We also describe the exercise-induced factors that counteract severe side effects of cancer treatment, as well as the ways that muscle-derived factors are delivered to the target cells. Abstract A growing body of in vitro and in vivo studies suggests that physical activity offers important benefits against cancer, in terms of both prevention and treatment. However, the exact mechanisms implicated in the anticancer effects of exercise remain to be further elucidated. Muscle-secreted factors in response to contraction have been proposed to mediate the physical exercise-induced beneficial effects and be responsible for the inter-tissue communications. Specifically, myokines and microRNAs (miRNAs) constitute the most studied components of the skeletal muscle secretome that appear to affect the malignancy, either directly by possessing antioncogenic properties, or indirectly by mobilizing the antitumor immune responses. Moreover, some of these factors are capable of mitigating serious, disease-associated adverse effects that deteriorate patients’ quality of life and prognosis. The present review summarizes the myokines and miRNAs that may have potent anticancer properties and the expression of which is induced by physical exercise, while the mechanisms of secretion and intercellular transportation of these factors are also discussed.
Collapse
Affiliation(s)
- Argyro Papadopetraki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Dafne, Greece;
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (F.Z.); (M.-A.D.)
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (M.K.)
- Correspondence: ; Tel./Fax: +30-210-7462690
| |
Collapse
|
14
|
Kesting S, Weeber P, Schönfelder M, Pfluger A, Wackerhage H, von Luettichau I. A Bout of High-Intensity Interval Training (HIIT) in Children and Adolescents during Acute Cancer Treatment-A Pilot Feasibility Study. Cancers (Basel) 2022; 14:1468. [PMID: 35326619 PMCID: PMC8945900 DOI: 10.3390/cancers14061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Low- and moderate-intensity exercise is safe and feasible during childhood cancer treatment. The feasibility of a bout of high-intensity interval training (HIIT) in this population has not been analyzed to date. Pediatric cancer patients aged between 6 and 18 years were selected based on clinical conditions to perform ten sets of 15 s HIIT (>90% of estimated maximal heart rate (HRmax)) and 1 min active recovery on a bicycle ergometer within the first three chemotherapy courses. We assessed safety and feasibility criteria and the following parameters: perceived exertion rate, heart rate, and lactate and adrenaline concentrations. Out of 212 eligible patients, 11 patients aged 13.9 ± 3.6 years (n = 7 ♂) with lymphoma, leukemia, rhabdomyosarcoma, nephroblastoma, and synovial sarcoma completed the bout of HIIT without serious adverse events. During exercise, patients reached a BORG value maxima of 16 ± 1.2, and their heart rates rose from 78 ± 17 beats per minute (bpm) at rest to 178 ± 12 bpm after exercise (90 ± 6% estimated HRmax). The power-to-weight ratio was 2 ± 0.5 W/kg (watt per kilogram). Blood lactate concentrations increased from 1.09 ± 0.50 mmol/L (millimole per liter) at rest to 5.05 ± 1.88 mmol/L post-exercise. Our preliminary data suggest that HIIT is applicable only in a small number of childhood cancer patients. Individually adapted exercise protocols for patients with multiple impairments are needed.
Collapse
Affiliation(s)
- Sabine Kesting
- Kinderklinik München Schwabing, Department of Pediatrics and Children’s Cancer Research Center, TUM School of Medicine, Technical University of Munich, 80804 Munich, Germany; (P.W.); (I.v.L.)
- Chair of Preventive Pediatrics, Department of Sport and Health Sciences, Technical University of Munich, 80992 Munich, Germany
- Pediatric Oncology Network Bavaria, KIONET Bavaria, 91054 Erlangen, Germany;
| | - Peter Weeber
- Kinderklinik München Schwabing, Department of Pediatrics and Children’s Cancer Research Center, TUM School of Medicine, Technical University of Munich, 80804 Munich, Germany; (P.W.); (I.v.L.)
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany; (M.S.); (A.P.)
| | - Martin Schönfelder
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany; (M.S.); (A.P.)
| | - Anja Pfluger
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany; (M.S.); (A.P.)
| | - Henning Wackerhage
- Pediatric Oncology Network Bavaria, KIONET Bavaria, 91054 Erlangen, Germany;
| | - Irene von Luettichau
- Kinderklinik München Schwabing, Department of Pediatrics and Children’s Cancer Research Center, TUM School of Medicine, Technical University of Munich, 80804 Munich, Germany; (P.W.); (I.v.L.)
- Pediatric Oncology Network Bavaria, KIONET Bavaria, 91054 Erlangen, Germany;
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW In this review, we provide an overview of what is currently known about the impacts of mechanical stimuli on metastatic tumor-induced bone disease (TIBD). Further, we focus on the role of the osteocyte, the skeleton's primary mechanosensory cell, which is central to the skeleton's mechanoresponse, sensing and integrating local mechanical stimuli, and then controlling the downstream remodeling balance as appropriate. RECENT FINDINGS Exercise and controlled mechanical loading have anabolic effects on bone tissue in models of bone metastasis. They also have anti-tumorigenic properties, in part due to offsetting the vicious cycle of osteolytic bone loss as well as regulating inflammatory signals. The impacts of metastatic cancer on the mechanosensory function of osteocytes remains unclear. Increased mechanical stimuli are a potential method for mitigating TIBD.
Collapse
Affiliation(s)
- Blayne A Sarazin
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA
| | - Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, 80045, USA
| | - Maureen E Lynch
- Department of Mechanical Engineering, University of Colorado, 427 UCB, Boulder, CO, 80309, USA.
- Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
16
|
Metcalfe RS, Kemp R, Heffernan SM, Churm R, Chen YC, Ruffino JS, Conway GE, Tornillo G, Orange ST. Anti-carcinogenic effects of exercise-conditioned human serum: evidence, relevance and opportunities. Eur J Appl Physiol 2021; 121:2107-2124. [PMID: 33864493 PMCID: PMC8260517 DOI: 10.1007/s00421-021-04680-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Regular physical activity reduces the risk of several site-specific cancers in humans and suppresses tumour growth in animal models. The mechanisms through which exercise reduces tumour growth remain incompletely understood, but an intriguing and accumulating body of evidence suggests that the incubation of cancer cells with post-exercise serum can have powerful effects on key hallmarks of cancer cell behaviour in vitro. This suggests that exercise can impact tumour biology through direct changes in circulating proteins, RNA molecules and metabolites. Here, we provide a comprehensive narrative overview of what is known about the effects of exercise-conditioned sera on in vitro cancer cell behaviour. In doing so, we consider the key limitations of the current body of literature, both from the perspective of exercise physiology and cancer biology, and we discuss the potential in vivo physiological relevance of these findings. We propose key opportunities for future research in an area that has the potential to identify key anti-oncogenic protein targets and optimise physical activity recommendations for cancer prevention, treatment and survivorship.
Collapse
Affiliation(s)
- Richard S Metcalfe
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK.
| | - Rachael Kemp
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Shane M Heffernan
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Rachel Churm
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, Wales, UK
| | - Yung-Chih Chen
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | | | - Gillian E Conway
- In Vitro Toxicology Group, Institute of Life Sciences, College of Medicine, Swansea University, Swansea, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Samuel T Orange
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Cancer Related Anemia: An Integrated Multitarget Approach and Lifestyle Interventions. Nutrients 2021; 13:nu13020482. [PMID: 33535496 PMCID: PMC7912724 DOI: 10.3390/nu13020482] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is often accompanied by worsening of the patient's iron profile, and the resulting anemia could be a factor that negatively impacts antineoplastic treatment efficacy and patient survival. The first line of therapy is usually based on oral or intravenous iron supplementation; however, many patients remain anemic and do not respond. The key might lie in the pathogenesis of the anemia itself. Cancer-related anemia (CRA) is characterized by a decreased circulating serum iron concentration and transferrin saturation despite ample iron stores, pointing to a more complex problem related to iron homeostatic regulation and additional factors such as chronic inflammatory status. This review explores our current understanding of iron homeostasis in cancer, shedding light on the modulatory role of hepcidin in intestinal iron absorption, iron recycling, mobilization from liver deposits, and inducible regulators by infections and inflammation. The underlying relationship between CRA and systemic low-grade inflammation will be discussed, and an integrated multitarget approach based on nutrition and exercise to improve iron utilization by reducing low-grade inflammation, modulating the immune response, and supporting antioxidant mechanisms will also be proposed. Indeed, a Mediterranean-based diet, nutritional supplements and exercise are suggested as potential individualized strategies and as a complementary approach to conventional CRA therapy.
Collapse
|
18
|
Brown MJ, Morris MA, Akam EC. An exploration of the role of exercise in modulating breast cancer progression in vitro: a systematic review and meta-analysis. Am J Physiol Cell Physiol 2020; 320:C253-C263. [PMID: 33356943 DOI: 10.1152/ajpcell.00461.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer is the most prevalent cancer in women worldwide. In the United Kingdom, approximately 5% of all breast cancers are already metastatic at the time of diagnosis. An abundance of literature shows that exercise can have beneficial effects on the outcome and prognosis of breast cancer patients, yet the molecular mechanisms remain poorly understood. There are several in vitro models that aim to recapitulate the response of breast cancer to exercise in vivo; this systematic review and meta-analysis summarizes the existing literature. The following search terms were used to conduct a systematic literature search using a collection of databases (last search performed May 2020): "in vitro," "exercise," and "breast cancer." Only studies that investigated the effects of exercise on breast cancer in vitro were included. Standardized mean differences (SMD) were calculated to determine pooled effect sizes. This meta-analysis has successfully demonstrated that various identified exercise interventions on breast cancer cells in vitro significantly reduced breast cancer cell viability, proliferation, and tumorigenic potential (SMD = -1.76, P = 0.004, SMD = -2.85, P = 0.003, and SMD = -3.15, P = 0.0008, respectively). A clear direction of effect was found with exercise on breast cancer cell migration in vitro, however this effect was not significant (SMD = -0.62, P = 0.317). To our knowledge, this is the first meta-analysis and systematic review investigating and summarizing literature on exercise and breast cancer in vitro, highlighting models used and priority areas for future research focus.
Collapse
Affiliation(s)
- Marie-Juliet Brown
- School of Sports, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Mhairi A Morris
- School of Sports, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Elizabeth C Akam
- School of Sports, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| |
Collapse
|
19
|
Orange ST, Jordan AR, Saxton JM. The serological responses to acute exercise in humans reduce cancer cell growth in vitro: A systematic review and meta-analysis. Physiol Rep 2020; 8:e14635. [PMID: 33207085 PMCID: PMC7673630 DOI: 10.14814/phy2.14635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
We systematically reviewed and meta-analyzed the effects of acute exercise-conditioned serum on cancer cell growth in vitro. Five literature databases were systematically searched for studies that measured cancer cell growth after exposure to human sera obtained before and immediately after an acute bout of exercise. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were pooled using a three-level random-effects model. Meta-regressions were also performed with participant age and disease status, exercise type, cell line TP53 status, and serum incubation time entered as covariates. Seven studies met the inclusion criteria encompassing a total of 21 effect estimates and 98 participants. Exercise-conditioned serum significantly reduced cancer cell growth compared with preexercise serum (SMD = -1.23, 95% CI: -1.96 to -0.50; p = .002; I2 = 75.1%). The weighted mean reduction as a percentage of preexercise values was 8.6%. The overall treatment effect and magnitude of heterogeneity were not statistically influenced by any covariate. There were concerns regarding the risk of bias within individual studies and Egger's test of the intercept showed evidence of small study effects (β = -3.6, p = .004). These findings provide in vitro evidence that the transient serological responses to acute exercises reduce cancer cell growth, although many questions remain regarding the underlying mechanistic pathways and potential effect modifiers. To strengthen this evidence-base, future studies should seek to reduce the risk of bias by using more rigorous experimental designs, and consider using 3D cell culture models to better replicate in vivo tumor conditions. PROSPERO registration: CRD42020161333.
Collapse
Affiliation(s)
- Samuel T. Orange
- School of Biomedical, Nutritional, and Sport SciencesFaculty of Medical SciencesThe Medical SchoolNewcastle UniversityNewcastle upon TyneUK
| | | | - John M. Saxton
- Department of Sport, Exercise and RehabilitationFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| |
Collapse
|