1
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Nguyen Y, Rudd Zhong Manis J, Ronczkowski NM, Bui T, Oxenrider A, Jadeja RN, Thounaojam MC. Unveiling the gut-eye axis: how microbial metabolites influence ocular health and disease. Front Med (Lausanne) 2024; 11:1377186. [PMID: 38799150 PMCID: PMC11122920 DOI: 10.3389/fmed.2024.1377186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.
Collapse
Affiliation(s)
- Yvonne Nguyen
- Mercer University School of Medicine, Macon, GA, United States
| | | | | | - Tommy Bui
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Allston Oxenrider
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Ravirajsinh N. Jadeja
- Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Menaka C. Thounaojam
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Bighinati A, Adani E, Stanzani A, D’Alessandro S, Marigo V. Molecular mechanisms underlying inherited photoreceptor degeneration as targets for therapeutic intervention. Front Cell Neurosci 2024; 18:1343544. [PMID: 38370034 PMCID: PMC10869517 DOI: 10.3389/fncel.2024.1343544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a form of retinal degeneration characterized by primary degeneration of rod photoreceptors followed by a secondary cone loss that leads to vision impairment and finally blindness. This is a rare disease with mutations in several genes and high genetic heterogeneity. A challenging effort has been the characterization of the molecular mechanisms underlying photoreceptor cell death during the progression of the disease. Some of the cell death pathways have been identified and comprise stress events found in several neurodegenerative diseases such as oxidative stress, inflammation, calcium imbalance and endoplasmic reticulum stress. Other cell death mechanisms appear more relevant to photoreceptor cells, such as high levels of cGMP and metabolic changes. Here we review some of the cell death pathways characterized in the RP mutant retina and discuss preclinical studies of therapeutic approaches targeting the molecular outcomes that lead to photoreceptor cell demise.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Stanzani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| |
Collapse
|
4
|
Cifuentes-Silva E, Cabello-Verrugio C. Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease. Curr Protein Pept Sci 2024; 25:206-214. [PMID: 37594109 DOI: 10.2174/1389203724666230818092800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.
Collapse
Affiliation(s)
- Eduardo Cifuentes-Silva
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
5
|
Zhang JY, Greenwald MJ, Rodriguez SH. Gut Microbiome and Retinopathy of Prematurity. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1683-1690. [PMID: 36780985 DOI: 10.1016/j.ajpath.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/13/2023]
Abstract
Retinopathy of prematurity (ROP), a leading cause of childhood blindness worldwide, is strongly associated with gestational age and weight at birth. Yet, many extremely preterm infants never develop ROP or develop only mild ROP with spontaneous regression. In addition, a myriad of other factors play a role in the retinal pathology, one of which may include the early gut microbiome. The complications associated with early gestational age include dysbiosis of the dynamic neonatal gut microbiome, as evidenced by the development of often concomitant conditions, such as necrotizing enterocolitis. Given this, alongside growing evidence for a gut-retina axis, there is an increasing interest in how the early intestinal environment may play a role in the pathophysiology of ROP. Potential mechanisms include dysregulation of vascular endothelial growth factor and insulin-like growth factor 1. Furthermore, the gut microbiome may be impacted by other known risk factors for ROP, such as intermittent hypoxia and sepsis treated with antibiotics. This mini-review summarizes the literature supporting these proposed avenues, establishing a foundation to guide future studies.
Collapse
Affiliation(s)
- Jason Y Zhang
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois; Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois
| | - Mark J Greenwald
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois
| | - Sarah H Rodriguez
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Vienne-Jumeau A, Brémond-Gignac D, Robert MP. Optic disc drusen and scleral canal size - protocol for a systematic review and meta-analysis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1256397. [PMID: 38983020 PMCID: PMC11182308 DOI: 10.3389/fopht.2023.1256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 07/11/2024]
Abstract
Background Around one in forty patients are diagnosed with optic disc drusen (ODD) during their lifetime. Complications of these acellular deposits range from asymptomatic visual field deficits to artery occlusion and subsequent cecity. Still, the pathogenesis of their emergence remains controversial. In particular, it was suggested 50 years ago that a narrow disc and scleral canal is one factor leading to axoplasmic flow disturbance, which induces ODD formation. However, this hypothesis is still debated today. To evaluate the basis of this theory, we will conduct a systematic review and meta-analysis of studies evaluating the scleral canal size in patients with ODD and in healthy subjects. Methods We will search MEDLINE via PubMed, Cochrane, and EMBASE electronic databases to identify articles published before November 29, 2022 that measure the scleral canal size in patients with ODD and in healthy subjects. In addition, grey literature will be searched. The meta-analysis will include studies that include patients with a clinical or imaging diagnosis of ODD and healthy subjects. Additionally, we will perform a subgroup analysis to compare patients with buried ODD and patients with visible ODD. Extracted data from included studies will be presented descriptively, and effect sizes will be computed based on the recommendations from the Cochrane Collaboration handbook. Discussion The hypothesis that a narrow scleral canal is a risk factor of ODD has long been debated and this systematic review and meta-analysis should disentangle the different views. Understanding the underlying factors driving the development of ODD should help us focus on patients at risk and develop strategies to prevent advanced stages of the disease in these patients. Besides, focusing on patients with small scleral canals should help us derive associated factors and provide a better understanding of the pathology. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022375110.
Collapse
Affiliation(s)
- Aliénor Vienne-Jumeau
- Department of Ophthalmology, Necker-Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Dominique Brémond-Gignac
- Department of Ophthalmology, Necker-Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
- Institut national de la santé et de la recherche médicale (INSERM), UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Matthieu P. Robert
- Department of Ophthalmology, Necker-Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
7
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
8
|
Guindolet D, Woodward AM, Gabison EE, Argüeso P. Alleviation of Endoplasmic Reticulum Stress Enhances Human Corneal Epithelial Cell Viability under Hyperosmotic Conditions. Int J Mol Sci 2022; 23:ijms23094528. [PMID: 35562919 PMCID: PMC9104051 DOI: 10.3390/ijms23094528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Tear hyperosmolarity plays an essential role in the initiation and progression of dry-eye disease. Under a hyperosmotic environment, corneal epithelial cells experience perturbations in endoplasmic reticulum function that can lead to proinflammatory signaling and apoptosis. In this study, we investigated the effect of tauroursodeoxycholic acid (TUDCA), a chemical chaperone known to protect against endoplasmic reticulum stress, on corneal epithelial cells exposed to hyperosmotic conditions. We found that the expression of the genes involved in the activation of the unfolded protein response and the pro-apoptotic transcription factor DDIT3 were markedly upregulated in patients with Sjögren’s dry-eye disease and in a human model of corneal epithelial differentiation following treatment with hyperosmotic saline. Experiments in vitro demonstrated that TUDCA prevented hyperosmotically induced cell death by reducing nuclear DNA fragmentation and caspase-3 activation. TUDCA supplementation also led to the transcriptional repression of CXCL8 and IL5, two inflammatory mediators associated with dry-eye pathogenesis. These studies highlight the role of hyperosmotic conditions in promoting endoplasmic reticulum stress in the cornea and identify TUDCA as a potential therapeutic agent for the treatment of dry-eye disease.
Collapse
Affiliation(s)
- Damien Guindolet
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA; (D.G.); (A.M.W.)
- Hôpital Fondation A. de Rothschild, 25 rue Manin, 75019 Paris, France;
| | - Ashley M. Woodward
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA; (D.G.); (A.M.W.)
| | - Eric E. Gabison
- Hôpital Fondation A. de Rothschild, 25 rue Manin, 75019 Paris, France;
- UFR Médecine, Université Paris Cité, 75018 Paris, France
| | - Pablo Argüeso
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA; (D.G.); (A.M.W.)
- Correspondence:
| |
Collapse
|
9
|
Maneu V, Lax P, Cuenca N. Current and future therapeutic strategies for the treatment of retinal neurodegenerative diseases. Neural Regen Res 2022; 17:103-104. [PMID: 34100441 PMCID: PMC8451557 DOI: 10.4103/1673-5374.314305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
10
|
The Taurine-Conjugated Bile Acid (TUDCA) Normalizes Insulin Secretion in Pancreatic β-Cells Exposed to Fatty Acids: The Role of Mitochondrial Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:293-303. [DOI: 10.1007/978-3-030-93337-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Bilbao-Malavé V, González-Zamora J, de la Puente M, Recalde S, Fernandez-Robredo P, Hernandez M, Layana AG, Saenz de Viteri M. Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Age Related Macular Degeneration, Role in Pathophysiology, and Possible New Therapeutic Strategies. Antioxidants (Basel) 2021; 10:1170. [PMID: 34439418 PMCID: PMC8388889 DOI: 10.3390/antiox10081170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Age related macular degeneration (AMD) is the main cause of legal blindness in developed countries. It is a multifactorial disease in which a combination of genetic and environmental factors contributes to increased risk of developing this vision-incapacitating condition. Oxidative stress plays a central role in the pathophysiology of AMD and recent publications have highlighted the importance of mitochondrial dysfunction and endoplasmic reticulum stress in this disease. Although treatment with vascular endothelium growth factor inhibitors have decreased the risk of blindness in patients with the exudative form of AMD, the search for new therapeutic options continues to prevent the loss of photoreceptors and retinal pigment epithelium cells, characteristic of late stage AMD. In this review, we explain how mitochondrial dysfunction and endoplasmic reticulum stress participate in AMD pathogenesis. We also discuss a role of several antioxidants (bile acids, resveratrol, melatonin, humanin, and coenzyme Q10) in amelioration of AMD pathology.
Collapse
Affiliation(s)
- Valentina Bilbao-Malavé
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Jorge González-Zamora
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Miriam de la Puente
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alfredo Garcia Layana
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Saenz de Viteri
- Department of Opthalmology, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (V.B.-M.); (J.G.-Z.); (M.d.l.P.); (A.G.L.)
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.); (M.H.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa en Salud: ‘Prevention, Early Detection, and Treatment of the Prevalent Degenerative and Chronic Ocular Pathology’ from (RD16/0008/0011), Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Win A, Delgado A, Jadeja RN, Martin PM, Bartoli M, Thounaojam MC. Pharmacological and Metabolic Significance of Bile Acids in Retinal Diseases. Biomolecules 2021; 11:biom11020292. [PMID: 33669313 PMCID: PMC7920062 DOI: 10.3390/biom11020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bile acids (BAs) are amphipathic sterols primarily synthesized from cholesterol in the liver and released in the intestinal lumen upon food intake. BAs play important roles in micellination of dietary lipids, stimulating bile flow, promoting biliary phospholipid secretion, and regulating cholesterol synthesis and elimination. Emerging evidence, however, suggests that, aside from their conventional biological function, BAs are also important signaling molecules and therapeutic tools. In the last decade, the therapeutic applications of BAs in the treatment of ocular diseases have gained great interest. Despite the identification of BA synthesis, metabolism, and recycling in ocular tissues, much remains unknown with regards to their biological significance in the eye. Additionally, as gut microbiota directly affects the quality of circulating BAs, their analysis could derive important information on changes occurring in this microenvironment. This review aims at providing an overview of BA metabolism and biological function with a focus on their potential therapeutic and diagnostic use for retinal diseases.
Collapse
Affiliation(s)
- Alice Win
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Amanda Delgado
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pamela M. Martin
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Menaka C. Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +706-721-9163 or +706-721-7910; Fax: +706-721-9799
| |
Collapse
|
13
|
Kunitomi C, Harada M, Takahashi N, Azhary JMK, Kusamoto A, Nose E, Oi N, Takeuchi A, Wada-Hiraike O, Hirata T, Hirota Y, Koga K, Fujii T, Osuga Y. Activation of endoplasmic reticulum stress mediates oxidative stress-induced apoptosis of granulosa cells in ovaries affected by endometrioma. Mol Hum Reprod 2021; 26:40-52. [PMID: 31869409 DOI: 10.1093/molehr/gaz066] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Endometriosis exerts detrimental effects on ovarian physiology and compromises follicular health. Granulosa cells from patients with endometriosis are characterized by increased apoptosis, as well as high oxidative stress. Endoplasmic reticulum (ER) stress, a local factor closely associated with oxidative stress, has emerged as a critical regulator of ovarian function. We hypothesized that ER stress is activated by high oxidative stress in granulosa cells in ovaries with endometrioma and that this mediates oxidative stress-induced apoptosis. Human granulosa-lutein cells (GLCs) from patients with endometrioma expressed high levels of mRNAs associated with the unfolded protein response (UPR). In addition, the levels of phosphorylated ER stress sensor proteins, inositol-requiring enzyme 1 (IRE1) and double-stranded RNA-activated protein kinase-like ER kinase (PERK), were elevated in granulosa cells from patients with endometrioma. Given that ER stress results in phosphorylation of ER stress sensor proteins and induces UPR factors, these findings indicate that these cells were under ER stress. H2O2, an inducer of oxidative stress, increased expression of UPR-associated mRNAs in cultured human GLCs, and this effect was abrogated by pretreatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor in clinical use. Treatment with H2O2 increased apoptosis and the activity of the pro-apoptotic factors caspase-8 and caspase-3, both of which were attenuated by TUDCA. Our findings suggest that activated ER stress induced by high oxidative stress in granulosa cells in ovaries with endometrioma mediates apoptosis of these cells, leading to ovarian dysfunction in patients with endometriosis.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Jerilee M K Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Emi Nose
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Nagisa Oi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Arisa Takeuchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| |
Collapse
|
14
|
Wu L, Chen C, Li Y, Guo C, Fan Y, Yu D, Zhang T, Wen B, Yan Z, Liu A. UPLC-Q-TOF/MS-Based Serum Metabolomics Reveals the Anti-Ischemic Stroke Mechanism of Nuciferine in MCAO Rats. ACS OMEGA 2020; 5:33433-33444. [PMID: 33403305 PMCID: PMC7774285 DOI: 10.1021/acsomega.0c05388] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 05/17/2023]
Abstract
Nuciferine is an aporphine alkaloid monomer that is extracted from the leaves of the lotus species Nymphaea caerulea and Nelumbo nucifera Gaertn. Nuciferine was reported to treat cerebrovascular diseases. However, the potential mechanism of the neuroprotective effects of nuciferine at the metabolomics level is still not unclear. The present research used neurological score, infarct volume, cerebral water content, and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based serum metabolomics to elucidate the anti-ischemic stroke effect and mechanisms of nuciferine. The results showed that nuciferine significantly improved neurological deficit scores and ameliorated cerebral edema and infarction. Multivariate data analysis methods were used to examine the differences in serum endogenous metabolism between groups, and the biomarkers of nuciferine on ischemic stroke were identified. Approximately 19 metabolites and 7 metabolic pathways associated with nuciferine on treatment of stroke were found, which indicated that nuciferine exerted a positive therapeutic action on cerebral ischemic by regulating metabolism. These results provided some data support for the study of anti-stroke effect of nuciferine from the perspective of metabolomics.
Collapse
Affiliation(s)
- Lanlan Wu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Chang Chen
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yongbiao Li
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Cong Guo
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yuqing Fan
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Dingrong Yu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Tinglan Zhang
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Binyu Wen
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6, District
1, Fangxingyuan, Fangzhuang, Fengtai, Beijing 100078, P. R. China
- . Tel/Fax: +010-67689634
| | - Zhiyong Yan
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
- . Tel: +86-28-87601838. Fax: +86-28-87603202
| | - An Liu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- . Tel: +86-10-64093381. Fax: +86-10-64013996
| |
Collapse
|
15
|
Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11101120. [PMID: 32987769 PMCID: PMC7598671 DOI: 10.3390/genes11101120] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness and is characterised by the progressive loss of retinal photoreceptors. However, RP is a highly heterogeneous disease and, while much progress has been made in developing gene replacement and gene editing treatments for RP, it is also necessary to develop treatments that are applicable to all causative mutations. Further understanding of the mechanisms leading to photoreceptor death is essential for the development of these treatments. Recent work has therefore focused on the role of apoptotic and non-apoptotic cell death pathways in RP and the various mechanisms that trigger these pathways in degenerating photoreceptors. In particular, several recent studies have begun to elucidate the role of microglia and innate immune response in the progression of RP. Here, we discuss some of the recent progress in understanding mechanisms of rod and cone photoreceptor death in RP and summarise recent clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Correspondence:
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|
16
|
Ferraro E, Pozhidaeva L, Pitcher DS, Mansfield C, Koh JHB, Williamson C, Aslanidi O, Gorelik J, Ng FS. Prolonged ursodeoxycholic acid administration reduces acute ischaemia-induced arrhythmias in adult rat hearts. Sci Rep 2020; 10:15284. [PMID: 32943714 PMCID: PMC7499428 DOI: 10.1038/s41598-020-72016-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial ischaemia and reperfusion (I-R) are major causes of ventricular arrhythmias in patients with a history of coronary artery disease. Ursodeoxycholic acid (UDCA) has previously been shown to be antiarrhythmic in fetal hearts. This study was performed to investigate if UDCA protects against ischaemia-induced and reperfusion-induced arrhythmias in the adult myocardium, and compares the effect of acute (perfusion only) versus prolonged (2 weeks pre-treatment plus perfusion) UDCA administration. Langendorff-perfused adult Sprague-Dawley rat hearts were subjected to acute regional ischaemia by ligation of the left anterior descending artery (10 min), followed by reperfusion (2 min), and arrhythmia incidence quantified. Prolonged UDCA administration reduced the incidence of acute ischaemia-induced arrhythmias (p = 0.028), with a reduction in number of ventricular ectopic beats during the ischaemic phase compared with acute treatment (10 ± 3 vs 58 ± 15, p = 0.036). No antiarrhythmic effect was observed in the acute UDCA administration group. Neither acute nor prolonged UDCA treatment altered the incidence of reperfusion arrhythmias. The antiarrhythmic effect of UDCA may be partially mediated by an increase in cardiac wavelength, due to the attenuation of conduction velocity slowing (p = 0.03), and the preservation of Connexin43 phosphorylation during acute ischaemia (p = 0.0027). The potential antiarrhythmic effects of prolonged UDCA administration merit further investigation.
Collapse
Affiliation(s)
- Elisa Ferraro
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lidia Pozhidaeva
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - David S Pitcher
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Jia Han Benjamin Koh
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | | | - Oleg Aslanidi
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
17
|
Injectable Hydrogel Containing Tauroursodeoxycholic Acid for Anti-neuroinflammatory Therapy After Spinal Cord Injury in Rats. Mol Neurobiol 2020; 57:4007-4017. [PMID: 32647974 DOI: 10.1007/s12035-020-02010-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
We investigate the anti-inflammatory effects of injectable hydrogel containing tauroursodeoxycholic acid (TUDCA) in a spinal cord injury (SCI) model. To this end, TUDCA-hydrogel (TC gel) is created by immersing the synthesized hydrogel in a TUDCA solution for 1 h. A mechanical SCI was imposed on rats, after which we injected the TC gel. After the SCI and injections, motor functions and lesions were significantly improved in the TC gel group compared with those in the saline group. The TC gel significantly decreased pro-inflammatory cytokine levels compared with the saline; TUDCA and glycol chitosan-oxidized hyaluronate were mixed at a ratio of 9:1 (CHA) gel independently. In addition, the TC gel significantly suppressed the phosphorylation of extracellular signal-regulated kinase (p-ERK) and c-Jun N-terminal kinase (p-JNK) in the mitogen-activated protein kinase (MAPK) pathway compared with the saline, TUDCA, and CHA gel independently. It also decreased tumor necrosis factor-α (TNF-α) and glial fibrillary acidic protein (GFAP), inflammatory marker, at the injured sites more than those in the saline, TUDCA, and CHA gel groups. In conclusion, the results of this study demonstrate the neuroinflammatory inhibition effects of TC gel in SCI and suggest that TC gel can be an alternative drug system for SCI cases.
Collapse
|
18
|
Thounaojam MC, Jadeja RN, Rajpurohit S, Gutsaeva DR, Stansfield BK, Martin PM, Bartoli M. Ursodeoxycholic Acid Halts Pathological Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. J Clin Med 2020; 9:E1921. [PMID: 32575487 PMCID: PMC7356323 DOI: 10.3390/jcm9061921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Retinopathy of prematurity (ROP) is the leading cause of blindness in infants. We have investigated the efficacy of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine and glycine conjugated derivatives tauroursodeoxycholic acid (TUDCA) and glycoursodeoxycholic acid (GUDCA) in preventing retinal neovascularization (RNV) in an experimental model of ROP. Seven-day-old mice pups (P7) were subjected to oxygen-induced retinopathy (OIR) and were treated with bile acids for various durations. Analysis of retinal vascular growth and distribution revealed that UDCA treatment (50 mg/kg, P7-P17) of OIR mice decreased the extension of neovascular and avascular areas, whereas treatments with TUDCA and GUDCA showed no changes. UDCA also prevented reactive gliosis, preserved ganglion cell survival, and ameliorated OIR-induced blood retinal barrier dysfunction. These effects were associated with decreased levels of oxidative stress markers, inflammatory cytokines, and normalization of the VEGF-STAT3 signaling axis. Furthermore, in vitro tube formation and permeability assays confirmed UDCA inhibitory activity toward VEGF-induced pro-angiogenic and pro-permeability effects on human retinal microvascular endothelial cells. Collectively, our results suggest that UDCA could represent a new effective therapy for ROP.
Collapse
Affiliation(s)
- Menaka C. Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.R.); (D.R.G.); (M.B.)
| | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (R.N.J.); (P.M.M.)
| | - Shubhra Rajpurohit
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.R.); (D.R.G.); (M.B.)
| | - Diana R. Gutsaeva
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.R.); (D.R.G.); (M.B.)
| | - Brian K. Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Pamela M. Martin
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (R.N.J.); (P.M.M.)
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.R.); (D.R.G.); (M.B.)
| |
Collapse
|
19
|
Olsen TW, Dyer RB, Mano F, Boatright JH, Chrenek MA, Paley D, Wabner K, Schmit J, Chae JB, Sellers JT, Singh RJ, Wiedmann TS. Drug Tissue Distribution of TUDCA From a Biodegradable Suprachoroidal Implant versus Intravitreal or Systemic Delivery in the Pig Model. Transl Vis Sci Technol 2020; 9:11. [PMID: 32821508 PMCID: PMC7408862 DOI: 10.1167/tvst.9.6.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To determine local ocular tissue levels of the bile acid, tauroursodeoxycholic acid (TUDCA), in the pig model using oral, intravenous (IV), intravitreal injection (IVitI) and low- and high-dose suprachoroidal, sustained-release implants (SCI-L or SCI-H). Methods Forty-six pigs (92 globes) were included in the study. TUDCA was delivered orally in 5 pigs, IV in 4, IVitI in 6, SCI-L in 17, and SCI-H in 14. Testing timeframes varied from the same day (within minutes) for IV; 1 to 6 days, oral; and 1 to 4 weeks, IVitI and SCI. Enucleated globes were dissected, specimens from specific tissues were separated, and TUDCA was extracted and quantified using mass spectrometry. Results The highest TUDCA tissue levels occurred after IV delivery in the macula (252 ± 238 nM) and peripheral retina (196 ± 171 nM). Macular choroid and peripheral choroid levels were also high (1032 ± 1269 and 1219 ± 1486 nM, respectively). For IVitI delivery, macular levels at day 6 were low (0.5 ± 0.5 nM), whereas peripheral choroid was higher (15.3 ± 16.7 nM). Neither the SCI-L nor SCI-H implants delivered meaningful macular doses (≤1 nM); however, peripheral retina and choroid levels were significantly higher. Bile acid isoforms were found in the serum specimens. Conclusions The highest TUDCA tissue levels in the pig model were obtained using IV delivery. Oral delivery was associated with reasonable tissue levels. Local delivery (IVitI and SCI) was able to achieve measurable local ocular tissue levels. Translational Relevance Diffusional kinetics from the suprachoroidal space follow the choroidal blood flow, away from the macula and toward the periphery.
Collapse
Affiliation(s)
- Timothy W Olsen
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Roy B Dyer
- Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Fukutaro Mano
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Micah A Chrenek
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Paley
- Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Kathy Wabner
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jenn Schmit
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju Byung Chae
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Ophthalmology, Chungbuk National University, Chungbuk, South Korea
| | - Jana T Sellers
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ravinder J Singh
- Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Timothy S Wiedmann
- Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Taurocholic acid inhibits features of age-related macular degeneration in vitro. Exp Eye Res 2020; 193:107974. [PMID: 32067977 DOI: 10.1016/j.exer.2020.107974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
Previous metabolomics studies from our lab found altered plasma levels of bile acids in patients with age-related macular degeneration (AMD) compared to controls. In this study, we investigated the ability of the bile acid taurocholic acid (TCA) to inhibit features of AMD modeled in vitro. Paraquat was used to induce oxidative stress in HRPEpiC primary retinal pigment epithelial (RPE) cells. Cells were treated with 300 μM paraquat alone or with TCA (10, 50, 100, 200, or 500 μM). RPE tight junction integrity was assessed via ZO-1 immunofluorescence and transepithelial electrical resistance (TEER) measurements. RF/6A macaque choroidal endothelial cells were treated with 100 ng/mL vascular endothelial growth factor (VEGF) to induce angiogenesis. The effect of TCA on VEGF-induced angiogenesis was evaluated with cell proliferation, cell migration, and tube formation assays. Addition of TCA at 100 (P = 8.6 × 10-4), 200 (P = 0.0035), and 500 (P = 2.1 × 10-4) μM resulted in significant preservation of TEER in paraquat treated cells. In RF/6A cells, TCA did not significantly affect VEGF-induced cell proliferation. VEGF-induced migration of RF/6A cells was significantly inhibited at TCA concentrations of 100 (P = 0.010), 200 (P = 0.023) and 500 (P = 0.0049) μM. VEGF-induced tube formation was significantly inhibited when treated with 200 (P = 0.014) and 500 (P = 7.1 × 10-4) μM TCA. In vitro, TCA promoted RPE cell integrity and diminished VEGF-induced choroidal endothelial cell migration and tube formation. This suggests that TCA may have protective effects against both degenerative and neovascular AMD.
Collapse
|
21
|
Azhary JMK, Harada M, Kunitomi C, Kusamoto A, Takahashi N, Nose E, Oi N, Wada-Hiraike O, Urata Y, Hirata T, Hirota Y, Koga K, Fujii T, Osuga Y. Androgens Increase Accumulation of Advanced Glycation End Products in Granulosa Cells by Activating ER Stress in PCOS. Endocrinology 2020; 161:5724441. [PMID: 32020188 DOI: 10.1210/endocr/bqaa015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism, and we previously found that androgens activate endoplasmic reticulum (ER) stress in granulosa cells from patients with PCOS. In addition, recent studies demonstrated the accumulation of advanced glycation end products (AGEs) in granulosa cells from PCOS patients, which contribute to the pathology. Therefore, we hypothesized that androgens upregulate the receptor for AGEs (RAGE) expression in granulosa cells by activating ER stress, thereby increasing the accumulation of AGEs in these cells and contributing to the pathology. In the present study, we show that testosterone increases RAGE expression and AGE accumulation in cultured human granulosa-lutein cells (GLCs), and this is reduced by pretreatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor in clinical use. Knockdown of the transcription factor C/EBP homologous protein (CHOP), an unfolded protein response factor activated by ER stress, inhibits testosterone-induced RAGE expression and AGE accumulation. The expression of RAGE and the accumulation of AGEs are upregulated in granulosa cells from PCOS patients and dehydroepiandrosterone-induced PCOS mice. Administration of the RAGE inhibitor FPS-ZM1 or TUDCA to PCOS mice reduces RAGE expression and AGE accumulation in granulosa cells, improves their estrous cycle, and reduces the number of atretic antral follicles. In summary, our findings indicate that hyperandrogenism in PCOS increases the expression of RAGE and accumulation of AGEs in the ovary by activating ER stress, and that targeting the AGE-RAGE system, either by using a RAGE inhibitor or a clinically available ER stress inhibitor, may represent a novel approach to PCOS therapy.
Collapse
Affiliation(s)
- Jerilee M K Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Emi Nose
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Nagisa Oi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
22
|
Rodríguez Villanueva J, Martín Esteban J, Rodríguez Villanueva LJ. Retinal Cell Protection in Ocular Excitotoxicity Diseases. Possible Alternatives Offered by Microparticulate Drug Delivery Systems and Future Prospects. Pharmaceutics 2020; 12:pharmaceutics12020094. [PMID: 31991667 PMCID: PMC7076407 DOI: 10.3390/pharmaceutics12020094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Excitotoxicity seems to play a critical role in ocular neurodegeneration. Excess-glutamate-mediated retinal ganglion cells death is the principal cause of cell loss. Uncontrolled glutamate in the synapsis has significant implications in the pathogenesis of neurodegenerative disorders. The exploitation of various approaches of controlled release systems enhances the pharmacokinetic and pharmacodynamic activity of drugs. In particular, microparticles are secure, can maintain therapeutic drug concentrations in the eye for prolonged periods, and make intimate contact by improving drug bioavailability. According to the promising results reported, possible new investigations will focus intense attention on microparticulate formulations and can be expected to open the field to new alternatives for doctors, as currently required by patients.
Collapse
Affiliation(s)
- Javier Rodríguez Villanueva
- Human resources for I+D+i Department, National Institute for Agricultural and Food Research and Technology, Ctra. de la Coruña (Autovía A6) Km. 7.5, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-347-4158
| | - Jorge Martín Esteban
- University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain; (J.M.E.); (L.J.R.V.)
| | - Laura J. Rodríguez Villanueva
- University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain; (J.M.E.); (L.J.R.V.)
| |
Collapse
|
23
|
Kusaczuk M. Tauroursodeoxycholate-Bile Acid with Chaperoning Activity: Molecular and Cellular Effects and Therapeutic Perspectives. Cells 2019; 8:E1471. [PMID: 31757001 PMCID: PMC6952947 DOI: 10.3390/cells8121471] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid that has been used for centuries in Chinese medicine. Chemically, TUDCA is a taurine conjugate of ursodeoxycholic acid (UDCA), which in contemporary pharmacology is approved by Food and Drug Administration (FDA) for treatment of primary biliary cholangitis. Interestingly, numerous recent studies demonstrate that mechanisms of TUDCA functioning extend beyond hepatobiliary disorders. Thus, TUDCA has been demonstrated to display potential therapeutic benefits in various models of many diseases such as diabetes, obesity, and neurodegenerative diseases, mostly due to its cytoprotective effect. The mechanisms underlying this cytoprotective activity have been mainly attributed to alleviation of endoplasmic reticulum (ER) stress and stabilization of the unfolded protein response (UPR), which contributed to naming TUDCA as a chemical chaperone. Apart from that, TUDCA has also been found to reduce oxidative stress, suppress apoptosis, and decrease inflammation in many in-vitro and in-vivo models of various diseases. The latest research suggests that TUDCA can also play a role as an epigenetic modulator and act as therapeutic agent in certain types of cancer. Nevertheless, despite the massive amount of evidence demonstrating positive effects of TUDCA in pre-clinical studies, there are certain limitations restraining its wide use in patients. Here, molecular and cellular modes of action of TUDCA are described and therapeutic opportunities and limitations of this bile acid are discussed.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222 Białystok, Poland
| |
Collapse
|
24
|
Preclinical Evaluation of UDCA-Containing Oral Formulation in Mice for the Treatment of Wet Age-Related Macular Degeneration. Pharmaceutics 2019; 11:pharmaceutics11110561. [PMID: 31671869 PMCID: PMC6920808 DOI: 10.3390/pharmaceutics11110561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022] Open
Abstract
As a posterior ocular disease, wet age-related macular degeneration (WAMD) has been known to be related to vision loss, accompanying ocular complications. The intravitreous injection of VEGF antibodies has been reported to be an effective treatment to relieve symptoms of WAMD. However, the limitations of this treatment are high costs and invasiveness. For this reason, oral delivery route can be considered as a cost-effective way and the safest method to deliver drug molecules to the eyes. Accordingly, ursodeoxycholic acid (UDCA) was included in the oral formulation as the potential substance for the cure of WAMD in the animal model. Various pharmacological activities, such as antioxidant or anti-inflammatory effects, have been reported for UDCA and recent reports support the effects of UDCA in ocular treatment. However, due to poor water solubility and low pKa (around 5.0), it has been challenging to formulate aqueous solution of UDCA in the neutral pH range. In the present study, we confirmed the aqueous solubility of the oral UDCA formulation and performed a preclinical study, including pharmacokinetic profiling and WAMD model efficacy study in mice after oral administration of the drug solution. The results demonstrated that the formulation improved bioavailability of UDCA and efficiently delivered UDCA to the eye tissues after oral absorption. UDCA formulation was found to have inhibitory effects of choroidal neovascularization with a functional recovery in mice retinas. Taken together, our results suggest that the oral UDCA formulation could be used as a potent supplement for the cure of WAMD and related retinal diseases.
Collapse
|
25
|
Daruich A, Picard E, Boatright JH, Behar-Cohen F. Review: The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol Vis 2019; 25:610-624. [PMID: 31700226 PMCID: PMC6817734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/12/2019] [Indexed: 10/28/2022] Open
Abstract
Bile acids are produced in the liver and excreted into the intestine, where their main function is to participate in lipid digestion. Ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) have shown antiapoptotic, anti-inflammatory, and antioxidant effects in various models of neurodegenerative diseases. However, little is known about signaling pathways and molecular mechanisms through which these bile acids act as neuroprotectors, delaying translation to the clinical setting. We review evidence supporting a potentially therapeutic role for bile acids in retinal disorders, and the mechanisms and pathways involved in the cytoprotective effects of bile acids from the liver and the enterohepatic circulation to the central nervous system and the retina. As secondary bile acids are generated by the microbiota metabolism, bile acids might be a link between neurodegenerative retinal diseases and microbiota.
Collapse
Affiliation(s)
- Alejandra Daruich
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France,Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Emilie Picard
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA,Center of Excellence, Atlanta Veterans Administration Medical Center, Decatur, GA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France,Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
26
|
Tao Y, Dong X, Lu X, Qu Y, Wang C, Peng G, Zhang J. Subcutaneous delivery of tauroursodeoxycholic acid rescues the cone photoreceptors in degenerative retina: A promising therapeutic molecule for retinopathy. Biomed Pharmacother 2019; 117:109021. [PMID: 31387173 DOI: 10.1016/j.biopha.2019.109021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Inherited retinal degeneration (RD) comprises a heterogeneous group of retinopathies that rank among the main causes of blindness. Tauroursodeoxycholic acid (TUDCA) is taurine conjugate hydrophilic bile acid that demonstrates profound protective effects against a series of neurodegenerative diseases related to oxidative stress. This study sought to evaluate the TUDCA induced effects of on a pharmacologically induced RD animal model by electroretinogram (ERG) examination, behavior tests, morphological analysis and immunochemistry assay. Massive photoreceptor degeneration in mice retina was induced by an intraperitoneal administration of N-methyl-N-nitrosourea(MNU). Subcutaneous delivery of TUDCA inhibits effectively the photoreceptor loss and visual impairments in the MNU administered mice. In the retinal flat-mounts of TUDCA treated mice, the cone photoreceptors were efficiently preserved. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. TUDCA therapy could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of ON-OFF signal pathway in degenerative retinas. Our MEA assay provided an example to evaluate the potency of pharmacological compounds on retinal plasticity. TUDCA affords these protective effects by modulating apoptosis and alleviating oxidative stress in the degenerative retina. In conclusion, TUDCA therapy can ameliorate the photoreceptor degeneration and rectify the abnormities in visual signal transmission. These findings suggest that TUDCA might act as a potential medication for these retinopathies with progressive photoreceptor degeneration.
Collapse
Affiliation(s)
- Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Dong
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xin Lu
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingxin Qu
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunhui Wang
- Department of Pediatric, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Guanghua Peng
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianbin Zhang
- Department of Occupational & Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
27
|
Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral infection by disrupting viral proton channel M2. Sci Bull (Beijing) 2019; 64:180-188. [PMID: 32288967 PMCID: PMC7104969 DOI: 10.1016/j.scib.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 01/20/2023]
Abstract
Influenza is a persistent threat to human health and there is a continuing requirement for updating anti-influenza strategies. Initiated by observations of different endoplasmic reticulum (ER) responses of host to seasonal H1N1 and highly pathogenic avian influenza (HPAI) A H5N1 infections, we identified an alternative antiviral role of tauroursodeoxycholic acid (TUDCA), a clinically available ER stress inhibitor, both in vitro and in vivo. Rather than modulating ER stress in host cells, TUDCA abolished the proton conductivity of viral M2 by disrupting its oligomeric states, which induces inefficient viral infection. We also showed that M2 penetrated cells, whose intracellular uptake depended on its proton channel activity, an effect observed in both TUDCA and M2 inhibitor amantadine. The identification and application of TUDCA as an inhibitor of M2 proton channel will expand our understanding of IAV biology and complement current anti-IAV arsenals.
Collapse
|
28
|
Azhary JMK, Harada M, Takahashi N, Nose E, Kunitomi C, Koike H, Hirata T, Hirota Y, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. Endoplasmic Reticulum Stress Activated by Androgen Enhances Apoptosis of Granulosa Cells via Induction of Death Receptor 5 in PCOS. Endocrinology 2019; 160:119-132. [PMID: 30423122 DOI: 10.1210/en.2018-00675] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism and growth arrest of antral follicles. Previously, we found that endoplasmic reticulum (ER) stress is activated in granulosa cells of antral follicles in PCOS, evidenced by activation of unfolded protein response (UPR) genes. Based on this observation, we hypothesized that ER stress is activated by androgens in granulosa cells of antral follicles, and that activated ER stress promotes apoptosis via induction of the UPR transcription factor C/EBP homologous protein (CHOP) and subsequent activation of death receptor (DR) 5. In this study, we found that testosterone induced expression of various UPR genes, including CHOP, as well as DR5, in cultured human granulosa-lutein cells (GLCs). Pretreatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) inhibited testosterone-induced apoptosis and expression of DR5 and CHOP. Knockdown of CHOP inhibited testosterone-induced DR5 expression and apoptosis, and knockdown of DR5 inhibited testosterone-induced apoptosis. Pretreatment with flutamide, as well as knockdown of androgen receptor, decreased testosterone-induced DR5 and CHOP expression, as well as apoptosis. Expression of DR5 and CHOP was upregulated in GLCs obtained from patients with PCOS, as well as in granulosa cells of antral follicles in ovarian sections obtained from patients with PCOS and dehydroepiandrosterone-induced PCOS mice. Treatment of PCOS mice with TUDCA decreased apoptosis and DR5 expression in granulosa cells of antral follicles, with a concomitant reduction in CHOP expression. Taken together, our findings indicate that ER stress activated by hyperandrogenism in PCOS promotes apoptosis of granulosa cells of antral follicles via induction of DR5.
Collapse
Affiliation(s)
- Jerilee M K Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Emi Nose
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules 2018; 8:E159. [PMID: 30486474 PMCID: PMC6316857 DOI: 10.3390/biom8040159] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) are classically known as an important agent in lipid absorption and cholesterol metabolism. Nowadays, their role in glucose regulation and energy homeostasis are widely reported. BAs are involved in various cellular signaling pathways, such as protein kinase cascades, cyclic AMP (cAMP) synthesis, and calcium mobilization. They are ligands for several nuclear hormone receptors, including farnesoid X-receptor (FXR). Recently, BAs have been shown to bind to muscarinic receptor and Takeda G-protein-coupled receptor 5 (TGR5), both G-protein-coupled receptor (GPCR), independent of the nuclear hormone receptors. Moreover, BA signals have also been elucidated in other nonclassical BA pathways, such as sphingosine-1-posphate and BK (large conductance calcium- and voltage activated potassium) channels. Hydrophobic BAs have been proven to affect heart rate and its contraction. Elevated BAs are associated with arrhythmias in adults and fetal heart, and altered ratios of primary and secondary bile acid are reported in chronic heart failure patients. Meanwhile, in patients with liver cirrhosis, cardiac dysfunction has been strongly linked to the increase in serum bile acid concentrations. In contrast, the most hydrophilic BA, known as ursodeoxycholic acid (UDCA), has been found to be beneficial in improving peripheral blood flow in chronic heart failure patients and in protecting the heart against reperfusion injury. This review provides an overview of BA signaling, with the main emphasis on past and present perspectives on UDCA signals in the heart.
Collapse
Affiliation(s)
- Noorul Izzati Hanafi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Anis Syamimi Mohamed
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia.
| |
Collapse
|
30
|
Lu X, Yang RR, Zhang JL, Wang P, Gong Y, Hu WF, Wu Y, Gao MH, Huang C. Tauroursodeoxycholic acid produces antidepressant-like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido-nitrosative stress, and endoplasmic reticulum stress. Fundam Clin Pharmacol 2018; 32:363-377. [PMID: 29578616 DOI: 10.1111/fcp.12367] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 02/09/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
Depression is a common psychiatric disorder with heavy economic and social burdens. Searching new agents with better antidepressant-like activities is of great significance for depression therapy. Tauroursodeoxycholic acid (TUDCA), a clinical drug for gallstone treatment, possesses neuroprotective effects in different brain disorders. However, whether it affects depression remains unclear. We addressed this issue by evaluating the effect of TUDCA on depression induced by chronic unpredictable stress (CUS). Results showed that TUDCA treatment at 200 but not 100 mg/kg prevented the 5 weeks of CUS-induced increases in the immobile time of C57BL6/J mice in the experiments of forced swimming test and tail suspension test as well as the CUS-induced decrease in sucrose intake and crossing numbers in the open-field test, and did not enhance the antidepressant-like effect of fluoxetine. Attenuation of neuroinflammation may be involved in the antidepressant-like effect of TUDCA, as TUDCA treatment (200 mg/kg) normalized the levels of tumor necrosis factor-α and interleukin-6 in both hippocampus and prefrontal cortex. The increases in inflammasome and microglial activation markers, including interleukin-β, nod-like receptor protein 3, and Iba-1, in CUS-treated mice were reduced by TUDCA treatment (200 mg/kg). TUDCA treatment (200 mg/kg) also normalized the changes in markers reflecting the oxidative-nitrosative and endoplasmic reticulum (ER) stress induced by CUS, such as nitric oxide, reduced glutathione, malondialdehyde, glucose-regulated protein 78, and C/EBP homologous protein. These results revealed that TUDCA improved the CUS-induced depression-like behaviors likely through attenuation of neuroinflammation, oxido-nitrosative, and ER stress.
Collapse
Affiliation(s)
- Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Rong-Rong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Jin-Lin Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, #30 Tongyang North Road, Nantong, 226001, Jiangsu, China
| | - Peng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yu Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Wen-Feng Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Min-Hui Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| |
Collapse
|
31
|
Feng R, Li J, Chen J, Duan L, Liu X, Di D, Deng Y, Song Y. Preparation and toxicity evaluation of a novel nattokinase-tauroursodeoxycholate complex. Asian J Pharm Sci 2018; 13:173-182. [PMID: 32104390 PMCID: PMC7032186 DOI: 10.1016/j.ajps.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/28/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Nattokinase (NK), which has been identified as a potent fibrinolytic protease, has remarkable potential in treatment of thrombolysis, and even has the ability to ameliorate chronic vein thrombosis. To reduce the hemorrhagic risk from an intravenous injection of NK, nattokinase-tauroursodeoxycholate (NK-TUDCA) complex was prepared at different pH values and with different ratios of NK and TUDCA. When assessing survival time, survival state, tail injury, and the body weight of mice, it was found that the NK-TUDCA complex (NK: 10 kIU/ml; TUDCA: 10 mg/ml; pH 5.0) had a lower toxicity when administered at an NK dosage of 130 kIU/kg in the acute toxicity test and 13 kIU/kg in the repeated low-dose challenge. From the results of the in vitro thrombolytic test and characterization of NK-TUDCA, we speculated that the delayed release of NK-TUDCA might be the main cause of toxicity reduction by the complex. This study described the preparation of an NK complex with low toxicity following intravenous administration, which could be utilized for further clinical study of NK.
Collapse
Affiliation(s)
- Rui Feng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Lili Duan
- Sungen Biotech Co., Ltd., Shantou 515000, China
| | - XinRong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Donghua Di
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
32
|
Kim SJ, Ko WK, Jo MJ, Arai Y, Choi H, Kumar H, Han IB, Sohn S. Anti-inflammatory effect of Tauroursodeoxycholic acid in RAW 264.7 macrophages, Bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury. Sci Rep 2018; 8:3176. [PMID: 29453346 PMCID: PMC5816629 DOI: 10.1038/s41598-018-21621-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the anti-inflammatory effects of tauroursodeoxycholic acid (TUDCA) after spinal cord injury (SCI) in rats. We induced an inflammatory process in RAW 264.7 macrophages, BV2 microglial cells, and bone marrow-derived macrophages (BMM) using lipopolysaccharide (LPS). The anti-inflammatory effects of TUDCA on LPS-stimulated RAW 264.7 macrophages, BV2 microglial cells, and BMMs were analyzed using nitric oxide (NO) assays, quantitative real-time polymerase chain reactions (qRT-PCR), and enzyme-linked immunosorbent assays (ELISA). The pathological changes in lesions of the spinal cord tissue were evaluated by hematoxylin & eosin (H&E) staining, luxol fast blue/cresyl violet-staining and immunofluorescent staining. TUDCA decreased the LPS-stimulated inflammatory mediator, NO. It also suppressed pro-inflammatory cytokines of tumor necrosis factor-α (TNF-α), interleukin 1-β (IL-1β), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in both mRNA and protein levels. In addition, TUDCA decreased prostaglandin E2 (PGE2). After SCI, TUDCA supported the recovery of the injury site and suppressed the expression of inflammatory cytokines such as iNOS, CD68 and CD86. In addition, TUDCA induced the expression of anti-inflammatory cytokine, Arg-1. In conclusion, TUDCA inhibits inflammatory responses in RAW 264.7 macrophages, BV2 microglial cells, and BMMs. TUDCA can be a potential alternative drug for SCI.
Collapse
Affiliation(s)
- Seong Jun Kim
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Wan-Kyu Ko
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Min-Jae Jo
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoshie Arai
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Seil Sohn
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
33
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
34
|
Activation of Endoplasmic Reticulum Stress in Granulosa Cells from Patients with Polycystic Ovary Syndrome Contributes to Ovarian Fibrosis. Sci Rep 2017; 7:10824. [PMID: 28883502 PMCID: PMC5589802 DOI: 10.1038/s41598-017-11252-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies report the involvement of intra-ovarian factors, such as inflammation and oxidative stress, in the pathophysiology of polycystic ovary syndrome (PCOS), the most common endocrine disorder of reproductive age women. Endoplasmic reticulum (ER) stress is a local factor that affects various cellular events during a broad spectrum of physiological and pathological conditions. It may also be an important determinant of pro-fibrotic remodeling during tissue fibrosis. In the present study, we showed that ER stress was activated in granulosa cells of PCOS patients as well as in a well-established PCOS mouse model. Pharmacological inducers of ER stress, tunicamycin and thapsigargin, were found to increase the expression of pro-fibrotic growth factors, including transforming growth factor (TGF)-β1, in human granulosa cells, and their expression also increased in granulosa cells of PCOS patients. By contrast, treatment of PCOS mice with an ER stress inhibitor, tauroursodeoxycholic acid or BGP-15, decreased interstitial fibrosis and collagen deposition in ovaries, accompanied by a reduction in TGF-β1 expression in granulosa cells. These findings suggest that ER stress in granulosa cells of women with PCOS contributes to the induction of pro-fibrotic growth factors during ovarian fibrosis, and that ER stress may serve as a therapeutic target in PCOS.
Collapse
|
35
|
Fernández-Sánchez L, Bravo-Osuna I, Lax P, Arranz-Romera A, Maneu V, Esteban-Pérez S, Pinilla I, Puebla-González MDM, Herrero-Vanrell R, Cuenca N. Controlled delivery of tauroursodeoxycholic acid from biodegradable microspheres slows retinal degeneration and vision loss in P23H rats. PLoS One 2017; 12:e0177998. [PMID: 28542454 PMCID: PMC5444790 DOI: 10.1371/journal.pone.0177998] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022] Open
Abstract
Successful drug therapies for treating ocular diseases require effective concentrations of neuroprotective compounds maintained over time at the site of action. The purpose of this work was to assess the efficacy of intravitreal controlled delivery of tauroursodeoxycholic acid (TUDCA) encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres for the treatment of the retina in a rat model of retinitis pigmentosa. PLGA microspheres (MSs) containing TUDCA were produced by the O/W emulsion-solvent evaporation technique. Particle size and morphology were assessed by light scattering and scanning electronic microscopy, respectively. Homozygous P23H line 3 rats received a treatment of intravitreal injections of TUDCA-PLGA MSs. Retinal function was assessed by electroretinography at P30, P60, P90 and P120. The density, structure and synaptic contacts of retinal neurons were analyzed using immunofluorescence and confocal microscopy at P90 and P120. TUDCA-loaded PLGA MSs were spherical, with a smooth surface. The production yield was 78%, the MSs mean particle size was 23 μm and the drug loading resulted 12.5 ± 0.8 μg TUDCA/mg MSs. MSs were able to deliver the loaded active compound in a gradual and progressive manner over the 28-day in vitro release study. Scotopic electroretinografic responses showed increased ERG a- and b-wave amplitudes in TUDCA-PLGA-MSs-treated eyes as compared to those injected with unloaded PLGA particles. TUDCA-PLGA-MSs-treated eyes showed more photoreceptor rows than controls. The synaptic contacts of photoreceptors with bipolar and horizontal cells were also preserved in P23H rats treated with TUDCA-PLGA MSs. This work indicates that the slow and continuous delivery of TUDCA from PLGA-MSs has potential neuroprotective effects that could constitute a suitable therapy to prevent neurodegeneration and visual loss in retinitis pigmentosa.
Collapse
Affiliation(s)
- Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Irene Bravo-Osuna
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Alicia Arranz-Romera
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Sergio Esteban-Pérez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - María del Mar Puebla-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Industrial Pharmacy Institute, Complutense University of Madrid, Madrid, Spain
- * E-mail: (NS); (RHV)
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- * E-mail: (NS); (RHV)
| |
Collapse
|
36
|
Appiah S, Revitt M, Jones H, Vu M, Simmonds M, Bell C. Antiinflammatory and Hepatoprotective Medicinal Herbs as Potential Substitutes for Bear Bile. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:149-180. [PMID: 28807157 DOI: 10.1016/bs.irn.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Practitioners of traditional Chinese medicine (TCM) commonly prescribe medicinal formulations relying on the purported synergism of a combination of plant species, sometimes incorporating animal parts and minerals. Bear bile, obtained from either wild or farmed bears, is a commonly used constituent of traditional medicine formulations. With several bear species now listed under Convention on International Trade in Endangered Species of Wild Fauna and Flora as threatened with extinction and with bear farming being actively campaigned against on ethical grounds, it is important to seek and promote alternatives to the use of bear bile as medicine. This chapter describes and evaluates the scientific data relating to the efficacy of bear bile and potential alternatives to its use, including the use of bile from other animal species, the use of synthetic chemical alternatives, and the use of herbal substitutes. Scientific studies have confirmed the efficacy of bear bile as an antiinflammatory and a hepatoprotective agent. Ursodeoxycholic acid (UDCA), the active component of bear bile is used in a synthetic form in Western medicine and can serve as an alternative to bear bile in the treatment and management of certain cholestatic liver conditions. In TCM practice, bile from domesticated animal species (such as cattle, chicken, and pig) has been used as a substitute for bear bile. Following evaluation of TCM literature and pharmacological/clinical data, the authors propose six plant species, either as single herbs or in combination, Gardenia jasminoides (zhī zi; ), Scutellaria baicalensis (huáng qín; ), Coptis chinensis (huáng lián, ), Phellodendron amurense (huáng băi; ), Andrographis paniculata (chuan xin lian; ), and Rheum palmatum (dà huang; ), two medicinal Kampo formulations, Orengedokuto, Dia-Orengedokuto (which originated from traditional Chinese herbal formula Huanglian Jiedu Tang, ), and two individual phytochemicals (berberine and andrographolide) as alternatives to bear bile. The proposed herbal alternatives are frequently found listed in traditional formulations also containing bear bile, usually with different therapeutic roles ascribed to them. The existing evidence base for the effectiveness of herbal alternatives is sufficiently strong for TCM practitioners and consumers to consider using these without the addition of bear bile. This consideration is driven by the imperative to protect populations of bears from overexploitation in the wild and when farmed. However, for the identified alternatives to be accepted by users, it is essential that researchers and TCM practitioners collaborate effectively to initiate consumer behavior change.
Collapse
Affiliation(s)
- Sandra Appiah
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom.
| | - Mike Revitt
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Huw Jones
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Milan Vu
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | | | - Celia Bell
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| |
Collapse
|
37
|
Restaino RM, Deo SH, Parrish AR, Fadel PJ, Padilla J. Increased monocyte-derived reactive oxygen species in type 2 diabetes: role of endoplasmic reticulum stress. Exp Physiol 2017; 102:139-153. [PMID: 27859785 DOI: 10.1113/ep085794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Patients with type 2 diabetes exhibit increased oxidative stress in peripheral blood mononuclear cells, including monocytes; however, the mechanisms remain unknown. What is the main finding and its importance? The main finding of this study is that factors contained within the plasma of patients with type 2 diabetes can contribute to increased oxidative stress in monocytes, making them more adherent to endothelial cells. We show that these effects are largely mediated by the interaction between endoplasmic reticulum stress and NADPH oxidase activity. Recent evidence suggests that exposure of human monocytes to glucolipotoxic media to mimic the composition of plasma of patients with type 2 diabetes (T2D) results in the induction of endoplasmic reticulum (ER) stress markers and formation of reactive oxygen species (ROS). The extent to which these findings translate to patients with T2D remains unclear. Thus, we first measured ROS (dihydroethidium fluorescence) in peripheral blood mononuclear cells (PBMCs) from whole blood of T2D patients (n = 8) and compared the values with age-matched healthy control subjects (n = 8). The T2D patients exhibited greater basal intracellular ROS (mean ± SD, +3.4 ± 1.4-fold; P < 0.05) compared with control subjects. Next, the increase in ROS in PBMCs isolated from T2D patients was partly recapitulated in cultured human monocytes (THP-1 cells) exposed to plasma from T2D patients for 36 h (+1.3 ± 0.08-fold versus plasma from control subjects; P < 0.05). In addition, we found that increased ROS formation in THP-1 cells treated with T2D plasma was NADPH oxidase derived and led to increased endothelial cell adhesion (+1.8 ± 0.5-fold; P < 0.05) and lipid uptake (+1.3 ± 0.3-fold; P < 0.05). Notably, we found that T2D plasma-induced monocyte ROS and downstream functional effects were abolished by treating cells with tauroursodeoxycholic acid, a chemical chaperone known to inhibit ER stress. Collectively, these data indicate that monocyte ROS production with T2D can be attributed, in part, to signals from the circulating environment. Furthermore, an interplay between ER stress and NADPH oxidase activity contributes to ROS production and may be a mechanism mediating endothelial cell adhesion and foam cell formation in T2D.
Collapse
Affiliation(s)
- Robert M Restaino
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Shekhar H Deo
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas-Arlington, Arlington, TX, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
38
|
Ackerman HD, Gerhard GS. Bile Acids in Neurodegenerative Disorders. Front Aging Neurosci 2016; 8:263. [PMID: 27920719 PMCID: PMC5118426 DOI: 10.3389/fnagi.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
Bile acids, a structurally related group of molecules derived from cholesterol, have a long history as therapeutic agents in medicine, from treatment for primarily ocular diseases in ancient Chinese medicine to modern day use as approved drugs for certain liver diseases. Despite evidence supporting a neuroprotective role in a diverse spectrum of age-related neurodegenerative disorders, including several small pilot clinical trials, little is known about their molecular mechanisms or their physiological roles in the nervous system. We review the data reported for their use as treatments for neurodegenerative diseases and their underlying molecular basis. While data from cellular and animal models and clinical trials support potential efficacy to treat a variety of neurodegenerative disorders, the relevant bile acids, their origin, and the precise molecular mechanism(s) by which they confer neuroprotection are not known delaying translation to the clinical setting.
Collapse
Affiliation(s)
- Hayley D Ackerman
- Department of Medical Genetics and Molecular Biochemistry, The Lewis Katz School of Medicine at Temple University Philadelphia, PA, USA
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, The Lewis Katz School of Medicine at Temple University Philadelphia, PA, USA
| |
Collapse
|
39
|
Doerflinger M, Glab J, Nedeva C, Jose I, Lin A, O'Reilly L, Allison C, Pellegrini M, Hotchkiss RS, Puthalakath H. Chemical chaperone TUDCA prevents apoptosis and improves survival during polymicrobial sepsis in mice. Sci Rep 2016; 6:34702. [PMID: 27694827 PMCID: PMC5046154 DOI: 10.1038/srep34702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Sepsis-induced lymphopenia is a major cause of morbidities in intensive care units and in populations with chronic conditions such as renal failure, diabetes, HIV and alcohol abuse. Currently, other than supportive care and antibiotics, there are no treatments for this condition. We developed an in vitro assay to understand the role of the ER-stress-mediated apoptosis process in lymphocyte death during polymicrobial sepsis, which was reproducible in in vivo mouse models. Modulating ER stress using chemical chaperones significantly reduced the induction of the pro-apoptotic protein Bim both in vitro and in mice. Furthermore, in a ‘two-hit’ pneumonia model in mice, we have been able to demonstrate that administration of the chemical chaperone TUDCA helped to maintain lymphocyte homeostasis by significantly reducing lymphocyte apoptosis and this correlated with four-fold improvement in survival. Our results demonstrate a novel therapeutic opportunity for treating sepsis-induced lymphopenia in humans.
Collapse
Affiliation(s)
- Marcel Doerflinger
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Dr. Victoria 3086, Australia
| | - Jason Glab
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Dr. Victoria 3086, Australia
| | - Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Dr. Victoria 3086, Australia
| | - Irvin Jose
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Dr. Victoria 3086, Australia
| | - Ann Lin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Lorraine O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Cody Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Richard S Hotchkiss
- School of Medicine, Department of Anesthesiology, Washington University, 660 South Euclid, St. Louis, MO 63110, USA
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Dr. Victoria 3086, Australia
| |
Collapse
|
40
|
Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load. Clin Sci (Lond) 2016; 130:1881-8. [PMID: 27503949 DOI: 10.1042/cs20160501] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Postprandial hyperglycaemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. In the present study, we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500 mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycaemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, and at 60 and 120 min after an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized cross-over design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycaemia under the placebo condition (-32% at 60 min and -28% at 120 min post oral glucose load; P<0.05 from baseline) but not under the TUDCA condition (-4% at 60 min and +0.3% at 120 min post oral glucose load; P>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and thiobarbituric acid reactive substance (TBARS) remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycaemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycaemia.
Collapse
|
41
|
Takahashi N, Harada M, Hirota Y, Zhao L, Yoshino O, Urata Y, Izumi G, Takamura M, Hirata T, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. A potential role of endoplasmic reticulum stress in development of ovarian hyperstimulation syndrome. Mol Cell Endocrinol 2016; 428:161-9. [PMID: 27032713 DOI: 10.1016/j.mce.2016.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/12/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) is crucial for ovarian angiogenesis, but its excess production induces ovarian hyperstimulation syndrome (OHSS). The aim of this study was to determine whether endoplasmic reticulum (ER) stress regulates VEGFA expression in granulosa cells, and whether its activation is involved in OHSS development. The expression of the spliced form of X-box-binding protein 1 [XBP1(S)], induced by ER stress, in cumulus cells from OHSS patients was higher than that in cumulus cells from non-OHSS patients. The ER stress inducer tunicamycin increased human chorionic gonadotropin-induced VEGFA production in human granulosa cells through the induction of XBP1(S), and pretreatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) abrogated the effect of tunicamycin. In OHSS model rats, TUDCA administration prevented the OHSS development, reducing ovarian VEGFA production. Our findings suggest ER stress upregulates hCG-induced VEGFA production in granulosa cells, indicating that ER stress might be involved in OHSS development.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan.
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Gentaro Izumi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Masashi Takamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8655, Japan
| |
Collapse
|
42
|
Substitutes for Bear Bile for the Treatment of Liver Diseases: Research Progress and Future Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4305074. [PMID: 27087822 PMCID: PMC4819118 DOI: 10.1155/2016/4305074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Abstract
Bear bile has been a well-known Chinese medicine for thousands of years. Because of the endangered species protection, the concept on substitutes for bear bile was proposed decades ago. Based on their chemical composition and pharmacologic actions, artificial bear bile, bile from other animals, synthetic compounds, and medicinal plants may be the promising candidates to replace bear bile for the similar therapeutic purpose. Accumulating research evidence has indicated that these potential substitutes for bear bile have displayed the same therapeutic effects as bear bile. However, stopping the use of bear bile is a challenging task. In this review, we extensively searched PubMed and CNKI for literatures, focusing on comparative studies between bear bile and its substitutes for the treatment of liver diseases. Recent research progress in potential substitutes for bear bile in the last decade is summarized, and a strategy for the use of substitutes for bear bile is discussed carefully.
Collapse
|
43
|
Dziedzic K, Górecka D, Szwengiel A, Smoczyńska P, Czaczyk K, Komolka P. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion. Food Funct 2016; 6:1011-20. [PMID: 25677572 DOI: 10.1039/c4fo00946k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.
Collapse
Affiliation(s)
- Krzysztof Dziedzic
- Department of Food Service and Catering, Food Sciences and Nutrition, Poznań University of Life Sciences, Poland.
| | | | | | | | | | | |
Collapse
|
44
|
Gronbeck KR, Rodrigues CMP, Mahmoudi J, Bershad EM, Ling G, Bachour SP, Divani AA. Application of Tauroursodeoxycholic Acid for Treatment of Neurological and Non-neurological Diseases: Is There a Potential for Treating Traumatic Brain Injury? Neurocrit Care 2016; 25:153-66. [DOI: 10.1007/s12028-015-0225-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Fernández-Sánchez L, Lax P, Noailles A, Angulo A, Maneu V, Cuenca N. Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration. Molecules 2015; 20:13875-93. [PMID: 26263962 PMCID: PMC6332441 DOI: 10.3390/molecules200813875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
All retinal disorders, regardless of their aetiology, involve the activation of oxidative stress and apoptosis pathways. The administration of neuroprotective factors is crucial in all phases of the pathology, even when vision has been completely lost. The retina is one of the most susceptible tissues to reactive oxygen species damage. On the other hand, proper development and functioning of the retina requires a precise balance between the processes of proliferation, differentiation and programmed cell death. The life-or-death decision seems to be the result of a complex balance between pro- and anti-apoptotic signals. It has been recently shown the efficacy of natural products to slow retinal degenerative process through different pathways. In this review, we assess the neuroprotective effect of two compounds used in the ancient pharmacopoeia. On one hand, it has been demonstrated that administration of the saffron constituent safranal to P23H rats, an animal model of retinitis pigmentosa, preserves photoreceptor morphology and number, the capillary network and the visual response. On the other hand, it has been shown that systemic administration of tauroursodeoxycholic acid (TUDCA), the major component of bear bile, to P23H rats preserves cone and rod structure and function, together with their contact with postsynaptic neurons. The neuroprotective effects of safranal and TUDCA make these compounds potentially useful for therapeutic applications in retinal degenerative diseases.
Collapse
Affiliation(s)
- Laura Fernández-Sánchez
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| | - Pedro Lax
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| | - Agustina Noailles
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| | - Antonia Angulo
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain.
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain.
| | - Nicolás Cuenca
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
46
|
Jolliffe HG, Gerogiorgis DI. Process modelling and simulation for continuous pharmaceutical manufacturing of ibuprofen. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2014.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Vang S, Longley K, Steer CJ, Low WC. The Unexpected Uses of Urso- and Tauroursodeoxycholic Acid in the Treatment of Non-liver Diseases. Glob Adv Health Med 2014; 3:58-69. [PMID: 24891994 PMCID: PMC4030606 DOI: 10.7453/gahmj.2014.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) is the taurine conjugate of ursodeoxycholic acid (UDCA), a US Food and Drug Administration–approved hydrophilic bile acid for the treatment of certain cholestatic liver diseases. There is a growing body of research on the mechanism(s) of TUDCA and its potential therapeutic effect on a wide variety of non-liver diseases. Both UDCA and TUDCA are potent inhibitors of apoptosis, in part by interfering with the upstream mitochondrial pathway of cell death, inhibiting oxygen-radical production, reducing endoplasmic reticulum (ER) stress, and stabilizing the unfolded protein response (UPR). Several studies have demonstrated that TUDCA serves as an anti-apoptotic agent for a number of neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and Huntington's disease. In addition, TUDCA plays an important role in protecting against cell death in certain retinal disorders, such as retinitis pigmentosa. It has been shown to reduce ER stress associated with elevated glucose levels in diabetes by inhibiting caspase activation, up-regulating the UPR, and inhibiting reactive oxygen species. Obesity, stroke, acute myocardial infarction, spinal cord injury, and a long list of acute and chronic non-liver diseases associated with apoptosis are all potential therapeutic targets for T/UDCA. A growing number of pre-clinical and clinical studies underscore the potential benefit of this simple, naturally occurring bile acid, which has been used in Chinese medicine for more than 3000 years.
Collapse
Affiliation(s)
- Sheila Vang
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (Ms Vang), United States
| | - Katie Longley
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (Ms Longley), United States
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, and Department of Genetics, Cell Biology and Development, University of Minnesota (Dr Steer), United States
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota Medical School and Department of Integrative Biology and Physiology, University of Minnesota (Dr Low), United States
| |
Collapse
|
48
|
Ruan WH, Huang ML, He XL, Zhang F, Tao HB. Effects of huangqi and bear bile on recurrent parotitis in children: a new clinical approach. J Zhejiang Univ Sci B 2013; 14:253-8. [PMID: 23463769 DOI: 10.1631/jzus.b1200072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate the pharmacological effects of traditional Chinese medicine, bear bile capsule and Huangqi granule, on recurrent parotitis in children. METHODS In this prospective, controlled, and randomized study, a total of 151 young children were divided into three groups: Group A included massaging the children's parotid region and melting vitamin C in their mouth daily; Group B included swallowing bear bile capsule and Huangqi granule daily; and Group C included massages and vitamin C as prescribed in Group A, and traditional Chinese medicine as prescribed in Group B. Children were treated individually for one month and then a follow-up study was conducted for 1 to 3.5 years. Analysis of variance (ANOVA) and Ridit analysis were employed for statistical analysis. RESULTS The recurrence rate decreased in every group, but was significantly more in Groups B and C when compared to Group A. The recurrences significantly decreased (P<0.01) in Group B and their recovery rate was as high as 63%, significantly better than those of the other groups (P<0.01). CONCLUSIONS Huangqi and bear bile could be a novel clinical approach for treating recurrent parotitis in children.
Collapse
Affiliation(s)
- Wen-hua Ruan
- Department of Stomatology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | | | | | | | | |
Collapse
|
49
|
Athanasiou D, Aguilà M, Bevilacqua D, Novoselov SS, Parfitt DA, Cheetham ME. The cell stress machinery and retinal degeneration. FEBS Lett 2013; 587:2008-17. [PMID: 23684651 PMCID: PMC4471140 DOI: 10.1016/j.febslet.2013.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness.
Collapse
Affiliation(s)
| | - Monica Aguilà
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Dalila Bevilacqua
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | - David A. Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | |
Collapse
|
50
|
Efficacy and safety of tauroursodeoxycholic acid in the treatment of liver cirrhosis: a double-blind randomized controlled trial. ACTA ACUST UNITED AC 2013; 33:189-194. [PMID: 23592128 DOI: 10.1007/s11596-013-1095-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Indexed: 12/11/2022]
Abstract
No direct comparison of tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) has yet been carried out in the treatment of liver cirrhosis in China. We designed a double-blind randomized trial to evaluate the potential therapeutic efficacy of TUDCA in liver cirrhosis, using UDCA as parallel control. The enrolled 23 patients with liver cirrhosis were randomly divided into TUDCA group (n=12) and UDCA group (n=11), and given TUDCA and UDCA respectively at the daily dose of 750 mg, in a randomly assigned sequence for a 6-month period. Clinical, biochemical and histological features, and liver ultrasonographic findings were evaluated before and after the study. According to the inclusion criteria, 18 patients were included in the final analysis, including 9 cases in both two groups. Serum ALT, AST and ALP levels in TUDCA group and AST levels in UDCA group were significantly reduced as compared with baseline (P<0.05). Serum albumin levels were significantly increased in both TUDCA and UDCA groups (P<0.05). Serum markers for liver fibrosis were slightly decreased with the difference being not significant in either group. Only one patient in TUDCA group had significantly histological relief. Both treatments were well tolerated and no patient complained of side effects. It is suggested that TUDCA therapy is safe and appears to be more effective than UDCA in the treatment of liver cirrhosis, particularly in the improvement of the biochemical expression. However, both drugs exert no effect on the serum markers for liver fibrosis during 6-month treatment.
Collapse
|