1
|
Marques MB, Luvizotto-Santos R, Hauser-Davis RA. Genetic damage in elasmobranchs: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 113:104607. [PMID: 39645100 DOI: 10.1016/j.etap.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
DNA integrity is crucial for organismal health, and assessing DNA damage in aquatic organisms is essential for identifying environmental threats and informing conservation efforts. Pollutants such as metals, hydrocarbons, agrochemicals, pharmaceuticals, and climate change are linked to genetic damage, oxidative stress, and mutagenesis in several species, such as elasmobranchs (sharks and rays). Most studies focus on bivalves, crustaceans, and bony fish, with fewer assessments being carried out in cartilaginous fish. Concerning elasmobranchs, studies employing the micronucleus test and nuclear anomaly assays have aided in understanding how this group responds to contamination by organic and inorganic pollutants. Notably, each species deals differently with these contaminants, presenting varied DNA damage levels, including low levels of response, probably associated to feeding habits, trophic position, maturation stage, sex and metabolism. Further investigations should be conducted in elasmobranchs to elucidate these variations and better understand DNA damage in this important ecological group.
Collapse
Affiliation(s)
- Mateus Brandão Marques
- Pós-Graduação em Ciência & Tecnologia Ambiental, PPGC & TAmb, São Luíz, Brazil; Grupo de Ecotoxicologia Aquática, Centro de Ciências Exatas e Tecnologia - CCET/UFMA, São Luís, MA, Brazil
| | - Ricardo Luvizotto-Santos
- Pós-Graduação em Ciência & Tecnologia Ambiental, PPGC & TAmb, São Luíz, Brazil; Grupo de Ecotoxicologia Aquática, Centro de Ciências Exatas e Tecnologia - CCET/UFMA, São Luís, MA, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Thangal SH, Muralisankar T, Mohan K, Santhanam P, Venmathi Maran BA. Biological and physiological responses of marine crabs to ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 248:118238. [PMID: 38262516 DOI: 10.1016/j.envres.2024.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Marine crabs play an integral role in the food chain and scavenge the debris in the ecosystem. Gradual increases in global atmospheric carbon dioxide cause ocean acidification (OA) and global warming that leads to severe consequences for marine organisms including crabs. Also, OA combined with other stressors like temperature, hypoxia, and heavy metals causes more severe adverse effects in marine crabs. The present review was made holistic discussion of information from 111 articles, of which 37 peer-reviewed original research papers reported on the effect of OA experiments and its combination with other stressors like heavy metals, temperature, and hypoxia on growth, survival, molting, chitin quality, food indices, tissue biochemical constituents, hemocytes population, and biomarker enzymes of marine crabs. Nevertheless, the available reports are still in the infancy of marine crabs, hence, this review depicts the possible gaps and future research needs on the impact of OA on marine crabs.
Collapse
Affiliation(s)
- Said Hamid Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore-641046, Tamil Nadu, India
| | | | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Perumal Santhanam
- Marine Planktonology& Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Balu Alagar Venmathi Maran
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, 852-8521, Japan
| |
Collapse
|
3
|
Alves LMF, Moutinho AB, Gómez LJ, Oropesa AL, Muñoz-Arnanz J, Jiménez B, Lemos MFL, Fonseca VF, Cabral H, Novais SC. Evidence of contamination-associated damage in blue sharks (Prionace glauca) from the Northeast Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162095. [PMID: 36791860 DOI: 10.1016/j.scitotenv.2023.162095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Top predators such as most shark species are extremely vulnerable to amassing high concentrations of contaminants, but not much is known about the effects that the contaminant body burden imparts on these animals. Species like the blue shark (Prionace glauca) are very relevant in this regard, as they have high ecological and socioeconomic value, and have the potential to act as bioindicators of pollution. This work aimed to assess if differences in contaminant body burden found in blue sharks from the Northeast Atlantic would translate into differences in stress responses. Biochemical responses related to detoxification and oxidative stress, and histological alterations were assessed in the liver and gills of 60 blue sharks previously found to have zone-related contamination differences. Similar zone-related differences were found in biomarker responses, with the sharks from the most contaminated zone exhibiting more pronounced responses. Additionally, strong positive correlations were found between contaminants (i.e., As, PCBs, and PBDEs) and relevant biomarkers (e.g., damaged DNA and protective histological alterations). The present results are indicative of the potential that this species and these tools have to be used to monitor pollution in different areas of the Atlantic.
Collapse
Affiliation(s)
- Luís M F Alves
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal.
| | - Ariana B Moutinho
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Luis J Gómez
- Anatomy and Pathological Anatomy Area, School of Veterinary Medicine, University of Extremadura, Cáceres 10003, Spain; BRILiC - Biotechnology Research Institute in Livestock & Cynegetic, University of Extremadura, Cáceres 10003, Spain
| | - Ana L Oropesa
- BRILiC - Biotechnology Research Institute in Livestock & Cynegetic, University of Extremadura, Cáceres 10003, Spain; Toxicology Area, School of Veterinary Medicine, University of Extremadura, Cáceres 10003, Spain
| | - Juan Muñoz-Arnanz
- Dept. of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain
| | - Begoña Jiménez
- Dept. of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Madrid, Spain
| | - Marco F L Lemos
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | | | - Sara C Novais
- MARE- Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, Peniche, Portugal
| |
Collapse
|
4
|
Varela J, Martins S, Court M, Santos CP, Paula JR, Ferreira IJ, Diniz M, Repolho T, Rosa R. Impacts of Deoxygenation and Hypoxia on Shark Embryos Anti-Predator Behavior and Oxidative Stress. BIOLOGY 2023; 12:biology12040577. [PMID: 37106777 PMCID: PMC10136306 DOI: 10.3390/biology12040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Climate change is leading to the loss of oxygen content in the oceans and endangering the survival of many marine species. Due to sea surface temperature warming and changing circulation, the ocean has become more stratified and is consequently losing its oxygen content. Oviparous elasmobranchs are particularly vulnerable as they lay their eggs in coastal and shallow areas, where they experience significant oscillations in oxygen levels. Here, we investigated the effects of deoxygenation (93% air saturation) and hypoxia (26% air saturation) during a short-term period (six days) on the anti-predator avoidance behavior and physiology (oxidative stress) of small-spotted catshark (Scyliorhinus canicula) embryos. Their survival rate decreased to 88% and 56% under deoxygenation and hypoxia, respectively. The tail beat rates were significantly enhanced in the embryos under hypoxia compared to those exposed to deoxygenation and control conditions, and the freeze response duration showed a significant opposite trend. Yet, at the physiological level, through the analyses of key biomarkers (SOD, CAT, GPx, and GST activities as well as HSP70, Ubiquitin, and MDA levels), we found no evidence of increased oxidative stress and cell damage under hypoxia. Thus, the present findings show that the projected end-of-the-century deoxygenation levels elicit neglectable biological effects on shark embryos. On the other hand, hypoxia causes a high embryo mortality rate. Additionally, hypoxia makes embryos more vulnerable to predators, because the increased tail beat frequency will enhance the release of chemical and physical cues that can be detected by predators. The shortening of the shark freeze response under hypoxia also makes the embryos more prone to predation.
Collapse
Affiliation(s)
- Jaquelino Varela
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
| | - Sandra Martins
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Melanie Court
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Catarina Pereira Santos
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
- Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, 2775-405 Carcavelos, Portugal
| | - José Ricardo Paula
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Inês João Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- LAQV-Associated Laboratory for Green Chemistry-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Tiago Repolho
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Rui Rosa
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| |
Collapse
|
5
|
Porter ME, Hernandez AV, Gervais CR, Rummer JL. Aquatic Walking and Swimming Kinematics of Neonate and Juvenile Epaulette Sharks. Integr Comp Biol 2022; 62:1710-1724. [PMID: 35896482 DOI: 10.1093/icb/icac127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/05/2023] Open
Abstract
The epaulette shark, Hemiscyllium ocellatum, is a small, reef-dwelling, benthic shark that-using its paired fins-can walk, both in and out of water. Within the reef flats, this species experiences short periods of elevated CO2 and hypoxia as well as fluctuating temperatures as reef flats become isolated with the outgoing tide. Past studies have shown that this species is robust (i.e., respiratory and metabolic performance, behavior) to climate change-relevant elevated CO2 levels as well as hypoxia and anoxia tolerant. However, epaulette shark embryos reared under ocean warming conditions hatch earlier and smaller, with altered patterns and coloration, and with higher metabolic costs than their current-day counterparts. Findings to date suggest that this species has adaptations to tolerate some, but perhaps not all, of the challenging conditions predicted for the 21st century. As such, the epaulette shark is emerging as a model system to understand vertebrate physiology in changing oceans. Yet, few studies have investigated the kinematics of walking and swimming, which may be vital to their biological fitness, considering their habitat and propensity for challenging environmental conditions. Given that neonates retain embryonic nutrition via an internalized yolk sac, resulting in a bulbous abdomen, while juveniles actively forage for worms, crustaceans, and small fishes, we hypothesized that difference in body shape over early ontogeny would affect locomotor performance. To test this, we examined neonate and juvenile locomotor kinematics during the three aquatic gaits they utilize-slow-to-medium walking, fast walking, and swimming-using 13 anatomical landmarks along the fins, girdles, and body midline. We found that differences in body shape did not alter kinematics between neonates and juveniles. Overall velocity, fin rotation, axial bending, and tail beat frequency and amplitude were consistent between early life stages. Data suggest that the locomotor kinematics are maintained between neonate and juvenile epaulette sharks, even as their feeding strategy changes. Studying epaulette shark locomotion allows us to understand this-and perhaps related-species' ability to move within and away from challenging conditions in their habitats. Such locomotor traits may not only be key to survival, in general, as a small, benthic mesopredator (i.e., movements required to maneuver into small reef crevices to avoid aerial and aquatic predators), but also be related to their sustained physiological performance under challenging environmental conditions, including those associated with climate change-a topic worthy of future investigation.
Collapse
Affiliation(s)
- Marianne E Porter
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Andrea V Hernandez
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Connor R Gervais
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
6
|
Alves LMF, Lemos MFL, Cabral H, Novais SC. Elasmobranchs as bioindicators of pollution in the marine environment. MARINE POLLUTION BULLETIN 2022; 176:113418. [PMID: 35150988 DOI: 10.1016/j.marpolbul.2022.113418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Bioindicator species are increasingly valuable in environmental pollution monitoring, and elasmobranch species include many suitable candidates for that role. By measuring contaminants and employing biomarkers of effect in relevant elasmobranch species, scientists may gain important insights about the impacts of pollution in marine ecosystems. This review compiles biomarkers applied in elasmobranchs to assess the effect of pollutants (e.g., metals, persistent organic pollutants, and plastics), and the environmental changes induced by anthropogenic activities (e.g., shifts in marine temperature, pH, and oxygenation). Over 30 biomarkers measured in more than 12 species were examined, including biotransformation biomarkers (e.g., cytochrome P450 1A), oxidative stress-related biomarkers (e.g., superoxide anion, lipid peroxidation, catalase, and vitamins), stress proteins (e.g., heat shock protein 70), reproductive and endocrine biomarkers (e.g., vitellogenin), osmoregulation biomarkers (e.g., trimethylamine N-oxide, Na+/K+-ATPase, and plasma ions), energetic and neurotoxic biomarkers (e.g., lactate dehydrogenase, lactate, and cholinesterases), and histopathological and morphologic biomarkers (e.g., tissue lesions and gross indices).
Collapse
Affiliation(s)
- Luís M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | | | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| |
Collapse
|
7
|
A Systematic Review of the Behavioural Changes and Physiological Adjustments of Elasmobranchs and Teleost’s to Ocean Acidification with a Focus on Sharks. FISHES 2022. [DOI: 10.3390/fishes7020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, much attention has been focused on the impact of climate change, particularly via ocean acidification (OA), on marine organisms. Studying the impact of OA on long-living organisms, such as sharks, is especially challenging. When the ocean waters absorb anthropogenic carbon dioxide (CO2), slow-growing shark species with long generation times may be subjected to stress, leading to a decrease in functionality. Our goal was to examine the behavioral and physiological responses of sharks to OA and the possible impacts on their fitness and resilience. We conducted a systematic review in line with PRISMA-Analyses, of previously reported scientific experiments. We found that most studies used CO2 partial pressures (pCO2) that reflect representative concentration pathways for the year 2100 (e.g., pH ~7.8, pCO2 ~1000 μatm). Since there is a considerable knowledge gap on the effect of OA on sharks, we utilized existing data on bony fish to synthesize the available knowledge. Given the similarities between the behaviors and physiology of these two superclasses’ to changes in CO2 and pH levels, there is merit in including the available information on bony fish as well. Several studies indicated a decrease in shark fitness in relation to increased OA and CO2 levels. However, the decrease was species-specific and influenced by the intensity of the change in atmospheric CO2 concentration and other anthropogenic and environmental factors (e.g., fishing, temperature). Most studies involved only limited exposure to future environmental conditions and were conducted on benthic shark species studied in the laboratory rather than on apex predator species. While knowledge gaps exist, and more research is required, we conclude that anthropogenic factors are likely contributing to shark species’ vulnerability worldwide. However, the impact of OA on the long-term stability of shark populations is not unequivocal.
Collapse
|
8
|
Lopes AR, Figueiredo C, Sampaio E, Diniz M, Rosa R, Grilo TF. Impaired antioxidant defenses and DNA damage in the European glass eel (Anguilla anguilla) exposed to ocean warming and acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145499. [PMID: 33610990 DOI: 10.1016/j.scitotenv.2021.145499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The European eel (Anguilla anguilla) has attracted scientific inquiry for centuries due to its singular biological traits. Within the European Union, glass eel fisheries have declined sharply since 1980, from up to 2000 t (t) to 62.2 t in 2018, placing wild populations under higher risk of extinction. Among the major causes of glass eels collapse, climate change has become a growing worldwide issue, specifically ocean warming and acidification, but, to our knowledge, data on physiological and biochemical responses of glass eels to these stressors is limited. Within this context, we selected some representative biomarkers [e.g. glutathione peroxidase (GPx), catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), ubiquitin (Ub) and DNA damage] to study physiological responses of the European glass eel under distinct laboratory-climate change scenarios, such as increased water temperature (+ 4 °C) and pH reduction (- 0.4 units), for 12 weeks. Overall, the antioxidant enzymatic machinery was impaired, both in the muscle and viscera, manifested by significant changes in CAT, GPx and TAC. Heat shock response varied differently between tissues, increasing with temperature in the muscle, but not in the viscera, and decreasing in both tissues under acidification. The inability of HSP to maintain functional protein conformation was responsible for boosting the production of Ub, particularly under warming and acidification, as sole stressors. The overproduction of reactive oxygen species (ROS), either elicited by warming - due to increased metabolic demand - or acidification - through H+ interaction with O2-, generating H2O2 - overwhelmed defense mechanisms, causing oxidative stress and consequently leading to protein and DNA damage. Our results emphasize the vulnerability of eels' early life stages to climate change, with potential cascading consequences to adult stocks.
Collapse
Affiliation(s)
- Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim Do Tabaco 34, 1149-041 Lisboa, Portugal
| | - Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Division of Environmental Oceanography and Bioprospection, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Brasília, 1449-006 Lisboa, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Eduardo Sampaio
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
9
|
Muralisankar T, Kalaivani P, Thangal SH, Santhanam P. Growth, biochemical, antioxidants, metabolic enzymes and hemocytes population of the shrimp Litopenaeus vannamei exposed to acidified seawater. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108843. [PMID: 32781296 DOI: 10.1016/j.cbpc.2020.108843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Acidification in the marine environment has become a global issue that creates serious threats to marine organisms. In the present study, we evaluated the effect of CO2 driven acidification on the shrimp Litopenaeus vannamei post-larvae (PL). L. vannamei PL were exposed to six different CO2 driven acidified seawater, such as 8.2 (control), pH 7.8 (IPCC-predicted ocean pH by 2100), 7.6, 7.4, 7.2 and 7.0 with corresponding pCO2 level of 380.66, 557.53, 878.55, 1355.48, 2129.46, and 3312.12 μatm for seven weeks. At the end of the acidification experiment, results revealed that the survival, growth, feed index, biochemical constituents, chitin, minerals (Na, K, and Ca), and hemocyte populations of shrimps were found to be significantly decreased in CO2 driven acidified seawater which indicates the negative impacts of acidified seawater on these parameters in L. vannamei. Further, the level of antioxidants, lipid peroxidation, and metabolic enzymes were significantly higher in the muscle of shrimps exposed to acidified seawater suggests that the L. vannamei under oxidative stress and metabolic stress. Among the various acidified seawater tested, pH 7.6 to 7.0 produced a significantly adverse effect on shrimps. Hence, the present study concluded that the elevated level of seawater acidification can produce harmful effects on the biology and physiology of the commercially important shrimp L. vannamei PL.
Collapse
Affiliation(s)
- T Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - P Kalaivani
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - S H Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - P Santhanam
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
10
|
Figueiredo C, Raimundo J, Lopes AR, Lopes C, Rosa N, Brito P, Diniz M, Caetano M, Grilo TF. Warming enhances lanthanum accumulation and toxicity promoting cellular damage in glass eels (Anguilla anguilla). ENVIRONMENTAL RESEARCH 2020; 191:110051. [PMID: 32818498 DOI: 10.1016/j.envres.2020.110051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Cumulative and continuing human emissions of greenhouse gases to the atmosphere are causing ocean warming. Rising temperature is a major threat to aquatic organisms and may affect physiological responses, such as acid-base balance, often compromising species fitness and survival. It is also expected that warming may influence the availability and toxicological effects of pollutants, including Rare Earth Elements. These are contaminants of environmental emerging concern with great economic interest. This group comprises yttrium, scandium and lanthanides, being Lanthanum (La) one of the most common. The European eel (Anguilla anguilla) is critically endangered and constitutes a delicacy in South East Asia and Europe, being subject to an increasing demand on a global scale. Considering the vulnerability of early life stages to contaminants, we exposed glass eels to 1.5 μg L-1 of La for five days, plus five days of depuration, under a present-day temperature and warming scenarios (△T = +4 °C). The aim of this study was to assess the bioaccumulation, elimination and specific biochemical enzymatic endpoints in glass eels (Anguilla anguilla) tissues, under warming and La. Overall, our results showed that the accumulation and toxicity of La were enhanced with increasing temperature. The accumulation was higher in the viscera, followed by the head, and ultimately the body. Elimination was less effective under warming. Exposure to La did not impact acetylcholinesterase activity. Moreover, lipid peroxidation peaked after five days under the combined exposure of La and warming. The expression of heat shock proteins was majorly suppressed in glass eels exposed to La, at both tested temperatures. This result suggests that, when exposed to La, glass eels were unable to efficiently prevent cellular damage, with a particularly dramatic setup in a near-future scenario. Further studies are needed towards a better understanding of the effects of lanthanum in a changing world.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Joana Raimundo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Science Centre, ISPA - Instituto Universitário, R. Jardim Do Tabaco 34, 1100-304, Lisboa, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Nuno Rosa
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
11
|
Pegado MR, Santos CP, Pimentel M, Cyrne R, Paulo M, Maulvaut AL, Raffoul D, Diniz M, Bispo R, Rosa R. Effects of elevated carbon dioxide on the hematological parameters of a temperate catshark. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:126-132. [PMID: 31793756 DOI: 10.1002/jez.2333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Atmospheric CO2 levels have been rising due to an increase in anthropic activities and its implications over marine ecosystems are unprecedented. The present study focused on the effects of ocean acidification (OA) on key hematological parameters of the juvenile small-spotted catsharks (Scyliorhinus canicula). Eggs were reared throughout the entire embryogenesis (~4 months) plus 5 additional months, in two experimental treatments (control: pCO2 ~ 400 μatm; and high CO2 : pCO2 ~ 900 μatm, Δ -0.3 pH units). After blood collection, the following hematological parameters were evaluated: (a) normal blood cells count (erythrocytes, leukocytes, and thrombocytes), (b) presence of erythrocytes with nuclear abnormalities, and (c) erythrocyte nucleus to cytoplasmic ratio. Concomitantly, to determine the cardiac and hematopoietic conditions, the spleen and heart to body ratios were also assessed. The present findings indicate that the measured variables may not be affected by elevated pCO2 in this temperate species, as no significant differences were observed between treatments across all the endpoints tested. Nonetheless, it is worth mentioning a decreasing trend observed in a number of thrombocytes associated with OA, which should foster further investigation, regarding other aspects of their coagulation response. Along with OA, other stressors are expected to impact marine life, such as warming and hypoxia. Thus, future research should aim to investigate the cumulative effect of these stressors on hematological parameters in sharks.
Collapse
Affiliation(s)
- Maria Rita Pegado
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal
| | - Catarina P Santos
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal
| | - Marta Pimentel
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal
| | - Ricardo Cyrne
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal
| | - Maria Paulo
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal
| | - Ana Luísa Maulvaut
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal.,UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal
| | - Dayanne Raffoul
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal.,Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal
| | - Regina Bispo
- Centro de Matemática e Aplicações & Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo, Cascais, Portugal
| |
Collapse
|
12
|
Lopes AR, Borges FO, Figueiredo C, Sampaio E, Diniz M, Rosa R, Grilo TF. Transgenerational exposure to ocean acidification induces biochemical distress in a keystone amphipod species (Gammarus locusta). ENVIRONMENTAL RESEARCH 2019; 170:168-177. [PMID: 30583126 DOI: 10.1016/j.envres.2018.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Atmospheric carbon dioxide (CO2) levels are increasing at the fastest rate ever recorded, causing higher CO2 dissolution in the ocean, leading to a process known as ocean acidification (OA). Unless anthropogenic CO2 emissions are reduced, they are expected to reach ~900 ppm by the century's end, resulting in a 0.13-0.42 drop in the seawater pH levels. Since the transgenerational effects of high CO2 in marine organisms are still poorly understood at lower levels of biological organization (namely at the biochemical level), here we reared a key ecological relevant marine amphipod, Gammarus locusta, under control and high CO2 conditions for two generations. We measured several stress-related biochemical endpoints: i) oxidative damage [lipid peroxidation (LPO) and DNA damage]; ii) protein repair and removal mechanisms [heat shock proteins (HSPs) and ubiquitin (Ub)]; as well as iii) antioxidant responses [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione s-transferase (GST)] and total antioxidant capacity (TAC). The present results support the premise that exposure to high CO2 is expected to decrease survival rates in this species and cause within- and transgenerational oxidative damage. More specifically, the predicted upsurge of reactive oxygen and nitrogen species seemed to overwhelm the stimulated amphipod antioxidant machinery, which proved insufficient in circumventing protein damage within the parents. Additionally, negative effects of OA are potentially being inherited by the offspring, since the oxidative stress imposed in the parent's proteome appears to be restricting DNA repair mechanisms efficiency within the offspring's. Thus, we argue that a transgenerational exposure of G. locusta could further increase vulnerability to OA and may endanger the fitness and sustainability of natural populations.
Collapse
Affiliation(s)
- Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal.
| | - Francisco Oliveira Borges
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Eduardo Sampaio
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Tiago Fernandes Grilo
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| |
Collapse
|