1
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
2
|
Hood G, Carroll M. Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses. Curr Opin Virol 2024; 68-69:101436. [PMID: 39537444 DOI: 10.1016/j.coviro.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
Collapse
Affiliation(s)
- Grace Hood
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Miles Carroll
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
3
|
Jagannathan NS, Koh JYP, Lee Y, Sobota RM, Irving AT, Wang LF, Itahana Y, Itahana K, Tucker-Kellogg L. Multi-omic analysis of bat versus human fibroblasts reveals altered central metabolism. eLife 2024; 13:e94007. [PMID: 39037770 PMCID: PMC11262796 DOI: 10.7554/elife.94007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024] Open
Abstract
Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.
Collapse
Affiliation(s)
- N Suhas Jagannathan
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
| | - Javier Yu Peng Koh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Younghwan Lee
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Radoslaw Mikolaj Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and ResearchSingaporeSingapore
| | - Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang UniversityHainingChina
| | - Lin-fa Wang
- SingHealth Duke-NUS Global Health InstituteSingaporeSingapore
| | - Yoko Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Koji Itahana
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
| | - Lisa Tucker-Kellogg
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical SchoolSingaporeSingapore
- Centre for Computational Biology, Duke-NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
4
|
Geng R, Wang Q, Yao YL, Shen XR, Jia JK, Wang X, Zhu Y, Li Q, Shi ZL, Zhou P. Unconventional IFNω-like Genes Dominate the Type I IFN Locus and the Constitutive Antiviral Responses in Bats. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:204-213. [PMID: 38856712 DOI: 10.4049/jimmunol.2300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Bats are the natural reservoir hosts of some viruses, some of which may spill over to humans and cause global-scale pandemics. Different from humans, bats may coexist with high pathogenic viruses without showing symptoms of diseases. As one of the most important first defenses, bat type I IFNs (IFN-Is) were thought to play a role during this virus coexistence and thus were studied in recent years. However, there are arguments about whether bats have a contracted genome locus or constitutively expressed IFNs, mainly due to species-specific findings. We hypothesized that because of the lack of pan-bat analysis, the common characteristics of bat IFN-Is have not been revealed yet. In this study, we characterized the IFN-I locus for nine Yangochiroptera bats and three Yinpterochiroptera bats on the basis of their high-quality bat genomes. We also compared the basal expression in six bats and compared the antiviral and antiproliferative activity and the thermostability of representative Rhinolophus bat IFNs. We found a dominance of unconventional IFNω-like responses in the IFN-I system, which is unique to bats. In contrast to IFNα-dominated IFN-I loci in the majority of other mammals, bats generally have shorter IFN-I loci with more unconventional IFNω-like genes (IFNω or related IFNαω), but with fewer or even no IFNα genes. In addition, bats generally have constitutively expressed IFNs, the highest expressed of which is more likely an IFNω-like gene. Likewise, the highly expressed IFNω-like protein also demonstrated the best antiviral activity, antiproliferative activity, or thermostability, as shown in a representative Rhinolophus bat species. Overall, we revealed pan-bat unique, to our knowledge, characteristics in the IFN-I system, which provide insights into our understanding of the innate immunity that contributes to a special coexistence between bats and viruses.
Collapse
Affiliation(s)
- Rong Geng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xu-Rui Shen
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Jing-Kun Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qian Li
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Zheng-Li Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Cortés-Gutiérrez EI, Ceyca-Contreras JP, Gómez-Ruiz EP, Rios E, García-Vielma C, García-Salas JA. DNA Damage in Bat Blood Leukocytes Using a Chromatin Dispersion Test (CDT): Biomarker of Environmental Genotoxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:59. [PMID: 38602569 DOI: 10.1007/s00128-024-03885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Environmental pollutants produce adverse effects on organisms and ecosystems. Biomonitoring and biomarkers offer a reasonable approach to make these assessments. Induced genetic changes can be using as a biomarker in organisms that react to a given compound in the ecosystem. Monitoring environmental genotoxicity necessitates the choice of model animals known as "sentinels or biological monitors" and the suitability of validated tests for DNA damage evaluation. We aimed to estimate the DNA damage produced by thermal stress in the leukocytes of the Mexican free-tailed bat (Tadarida brasiliensis). The DNA damage in bat leukocytes exposed to different temperatures (35 °C, 45 °C, and 55 °C) was evaluated by the adapted chromatin dispersion test (CDT) and the results were confirmed by the alkaline comet test. The CDT permitted a clear representation of leukocytes with fragmented DNA and of nonfragmented DNA. In addition, we detected nuclear anomalies in relation to cell death cellular swelling, nuclear fragmentation, and chromatin lysis. The alkaline comet assay revealed that the halos of diffuse chromatin include fragmented DNA. The assay of the method employing the CDT is well established, precise, and cost-effective for the routine quantitative analysis of DNA damage on the effect of the leukocytes of bats exposed to thermal stress. This could also apply as a sensitive screening tool for the evaluation of genotoxicity in environmental protection programs.
Collapse
Affiliation(s)
- Elva I Cortés-Gutiérrez
- Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, NL, 66450, México.
| | - Juan P Ceyca-Contreras
- Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, NL, 66450, México.
| | - Emma P Gómez-Ruiz
- Parque Ecológico Chipinque, A.B.P., San Pedro Garza García, NL, México
| | - Evelyn Rios
- Laboratorio de Mastozoología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Catalina García-Vielma
- Department of Genetics, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Juan A García-Salas
- Laboratorio de Ornitología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, NL, 66450, México
| |
Collapse
|
6
|
Baid K, Irving AT, Jouvenet N, Banerjee A. The translational potential of studying bat immunity. Trends Immunol 2024; 45:188-197. [PMID: 38453577 DOI: 10.1016/j.it.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans. We posit that research in bat immunology will lead to discoveries that can potentially be translated to improve health outcomes in humans.
Collapse
Affiliation(s)
- Kaushal Baid
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aaron T Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province; College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus Sensing and Signaling Unit, Paris, France
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
7
|
Torres JM, de Oliveira CE, Santos FM, Sano NY, Martinez ÉV, Alves FM, Tavares LER, Roque ALR, Jansen AM, Herrera HM. Trypanosomatid diversity in a bat community of an urban area in Campo Grande, Mato Grosso do Sul, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105563. [PMID: 38301855 DOI: 10.1016/j.meegid.2024.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Bats have a long evolutionary history with trypanosomatids, but the role of these flying mammals on parasite transmission cycles in urban areas, especially for Trypanosoma and Leishmania species, remains poorly known. The objective of this study was to evaluate the species richness of trypanosomatids parasitizing a bat community in Campo Grande (CG), a state capital within the Cerrado of the Brazilian Midwest. We evaluated 237 bats of 13 species by means of hemoculture and molecular detection in spleen samples. The bat community of CG appears to participate in the transmission cycles of various species of trypanosomatids. We report an overall trypanosomatid detection rate of 34.2% (n = 81), involving 11 out of 13 sampled bat species. We identified six species of trypanosomatids from 61 bats by analyzing SSU rRNA and/or kDNA: Trypanosoma cruzi DTU TcI, T. c. marinkellei, T. dionisii, Leishmania infantum, L. amazonensis, and T. janseni, with this latter being detected by hemoculture for the first time in a bat species. We also detected a Molecular Operational Taxonomic Unit, Trypanosoma sp. DID, in the phyllostomids Glossophaga soricina and Platyrrhinus lineatus. The highest trypanosomatid richness was observed for Sturnira lilium, which hosted three species: L. infantum, T. dionisii and T. janseni. Given that visceral leishmaniasis is endemic in CG, special focus should be placed on L. infantum. Moreover, L. amazonensis and T. cruzi warrant attention, since these are zoonotic parasites responsible for human cases of tegumentary leishmaniasis and Chagas disease, respectively. In this respect, we discuss how bat communities may influence the Leishmania spp. transmission in endemic areas.
Collapse
Affiliation(s)
- Jaire Marinho Torres
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | | | - Filipe Martins Santos
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | - Nayara Yoshie Sano
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| | - Érica Verneque Martinez
- Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva s/n - Pioneiros, Campo Grande, MS, Brazil
| | - Fernanda Moreira Alves
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Luiz Eduardo Roland Tavares
- Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva s/n - Pioneiros, Campo Grande, MS, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Ana Maria Jansen
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil; Laboratório de Biologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Manguinhos Rio de Janeiro 4365, RJ, Brazil
| | - Heitor Miraglia Herrera
- Universidade Católica Dom Bosco, Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, Brazil
| |
Collapse
|
8
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
9
|
Temmam S, Tu TC, Regnault B, Bonomi M, Chrétien D, Vendramini L, Duong TN, Phong TV, Yen NT, Anh HN, Son TH, Anh PT, Amara F, Bigot T, Munier S, Thong VD, van der Werf S, Nam VS, Eloit M. Genotype and Phenotype Characterization of Rhinolophus sp. Sarbecoviruses from Vietnam: Implications for Coronavirus Emergence. Viruses 2023; 15:1897. [PMID: 37766303 PMCID: PMC10536463 DOI: 10.3390/v15091897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Bats are a major reservoir of zoonotic viruses, including coronaviruses. Since the emergence of SARS-CoV in 2002/2003 in Asia, important efforts have been made to describe the diversity of Coronaviridae circulating in bats worldwide, leading to the discovery of the precursors of epidemic and pandemic sarbecoviruses in horseshoe bats. We investigated the viral communities infecting horseshoe bats living in Northern Vietnam, and report here the first identification of sarbecoviruses in Rhinolophus thomasi and Rhinolophus siamensis bats. Phylogenetic characterization of seven strains of Vietnamese sarbecoviruses identified at least three clusters of viruses. Recombination and cross-species transmission between bats seemed to constitute major drivers of virus evolution. Vietnamese sarbecoviruses were mainly enteric, therefore constituting a risk of spillover for guano collectors or people visiting caves. To evaluate the zoonotic potential of these viruses, we analyzed in silico and in vitro the ability of their RBDs to bind to mammalian ACE2s and concluded that these viruses are likely restricted to their bat hosts. The workflow applied here to characterize the spillover potential of novel sarbecoviruses is of major interest for each time a new virus is discovered, in order to concentrate surveillance efforts on high-risk interfaces.
Collapse
Affiliation(s)
- Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Tran Cong Tu
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Béatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Massimiliano Bonomi
- Structural Bioinformatics Unit, Institut Pasteur, CNRS UMR3528, Université Paris Cité, 75015 Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Léa Vendramini
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Tran Vu Phong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Nguyen Thi Yen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hoang Ngoc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Tran Hai Son
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Pham Tuan Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Faustine Amara
- Institut Pasteur, G5 Evolutionary Genomics of RNA Viruses, Université Paris Cité, 75015 Paris, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, 75015 Paris, France
| | - Sandie Munier
- Institut Pasteur, G5 Evolutionary Genomics of RNA Viruses, Université Paris Cité, 75015 Paris, France
| | - Vu Dinh Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Hanoi 70072, Vietnam
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Université Paris Cité, 75015 Paris, France
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d’Alfort, University of Paris-Est, 77420 Maisons-Alfort, France
| |
Collapse
|
10
|
Brook CE, Rozins C, Guth S, Boots M. Reservoir host immunology and life history shape virulence evolution in zoonotic viruses. PLoS Biol 2023; 21:e3002268. [PMID: 37676899 PMCID: PMC10484437 DOI: 10.1371/journal.pbio.3002268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
The management of future pandemic risk requires a better understanding of the mechanisms that determine the virulence of emerging zoonotic viruses. Meta-analyses suggest that the virulence of emerging zoonoses is correlated with but not completely predictable from reservoir host phylogeny, indicating that specific characteristics of reservoir host immunology and life history may drive the evolution of viral traits responsible for cross-species virulence. In particular, bats host viruses that cause higher case fatality rates upon spillover to humans than those derived from any other mammal, a phenomenon that cannot be explained by phylogenetic distance alone. In order to disentangle the fundamental drivers of these patterns, we develop a nested modeling framework that highlights mechanisms that underpin the evolution of viral traits in reservoir hosts that cause virulence following cross-species emergence. We apply this framework to generate virulence predictions for viral zoonoses derived from diverse mammalian reservoirs, recapturing trends in virus-induced human mortality rates reported in the literature. Notably, our work offers a mechanistic hypothesis to explain the extreme virulence of bat-borne zoonoses and, more generally, demonstrates how key differences in reservoir host longevity, viral tolerance, and constitutive immunity impact the evolution of viral traits that cause virulence following spillover to humans. Our theoretical framework offers a series of testable questions and predictions designed to stimulate future work comparing cross-species virulence evolution in zoonotic viruses derived from diverse mammalian hosts.
Collapse
Affiliation(s)
- Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Carly Rozins
- Department of Science, Technology, and Society, York University, Toronto, Canada
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Biosciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
11
|
Sampath V, Shalakhti O, Veidis E, Efobi JAI, Shamji MH, Agache I, Skevaki C, Renz H, Nadeau KC. Acute and chronic impacts of heat stress on planetary health. Allergy 2023; 78:2109-2120. [PMID: 36883412 DOI: 10.1111/all.15702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Heat waves are increasing in intensity, frequency, and duration causing significant heat stress in all living organisms. Heat stress has multiple negative effects on plants affecting photosynthesis, respiration, growth, development, and reproduction. It also impacts animals leading to physiological and behavioral alterations, such as reduced caloric intake, increased water intake, and decreased reproduction and growth. In humans, epidemiological studies have shown that heat waves are associated with increased morbidity and mortality. There are many biological effects of heat stress (structural changes, enzyme function disruption, damage through reactive oxygen or nitrogen species). While plants and animals can mitigate some of these effects through adaptive mechanisms such as the generation of heat shock proteins, antioxidants, stress granules, and others, these mechanisms may likely be inadequate with further global warming. This review summarizes the effects of heat stress on plants and animals and the adaptative mechanisms that have evolved to counteract this stress.
Collapse
Affiliation(s)
- Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Omar Shalakhti
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, California, Stanford, USA
| | - Jo Ann Ifeoma Efobi
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Tarnovsky YC, Taiber S, Nissan Y, Boonman A, Assaf Y, Wilkinson GS, Avraham KB, Yovel Y. Bats experience age-related hearing loss (presbycusis). Life Sci Alliance 2023; 6:e202201847. [PMID: 36997281 PMCID: PMC10067528 DOI: 10.26508/lsa.202201847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Hearing loss is a hallmark of aging, typically initially affecting the higher frequencies. In echolocating bats, the ability to discern high frequencies is essential. However, nothing is known about age-related hearing loss in bats, and they are often assumed to be immune to it. We tested the hearing of 47 wild Egyptian fruit bats by recording their auditory brainstem response and cochlear microphonics, and we also assessed the cochlear histology in four of these bats. We used the bats' DNA methylation profile to evaluate their age and found that bats exhibit age-related hearing loss, with more prominent deterioration at the higher frequencies. The rate of the deterioration was ∼1 dB per year, comparable to the hearing loss observed in humans. Assessing the noise in the fruit bat roost revealed that these bats are exposed to continuous immense noise-mostly of social vocalizations-supporting the assumption that bats might be partially resistant to loud noise. Thus, in contrast to previous assumptions, our results suggest that bats constitute a model animal for the study of age-related hearing loss.
Collapse
Affiliation(s)
- Yifat Chaya Tarnovsky
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yomiran Nissan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Karen B Avraham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Ahn M, Chen VCW, Rozario P, Ng WL, Kong PS, Sia WR, Kang AEZ, Su Q, Nguyen LH, Zhu F, Chan WOY, Tan CW, Cheong WS, Hey YY, Foo R, Guo F, Lim YT, Li X, Chia WN, Sobota RM, Fu NY, Irving AT, Wang LF. Bat ASC2 suppresses inflammasomes and ameliorates inflammatory diseases. Cell 2023; 186:2144-2159.e22. [PMID: 37172565 DOI: 10.1016/j.cell.2023.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Medicine Academic Clinical Program, Singapore 168753, Singapore; SingHealth PGY1 Residency Program, Singapore 169608, Singapore; Department of Internal Medicine, Singapore General Hospital, Singapore 169608, Singapore.
| | - Vivian Chih-Wei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pritisha Rozario
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pui San Kong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Adrian Eng Zheng Kang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Qi Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Lan Huong Nguyen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wharton O Y Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Shoo Cheong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ying Ying Hey
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fusheng Guo
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Xin Li
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore.
| |
Collapse
|
14
|
Harazim M, Perrot J, Varet H, Bourhy H, Lannoy J, Pikula J, Seidlová V, Dacheux L, Martínková N. Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation. BMC Immunol 2023; 24:7. [PMID: 37085747 PMCID: PMC10120247 DOI: 10.1186/s12865-023-00542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Collapse
Affiliation(s)
- Markéta Harazim
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | - Juliette Perrot
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité Bioinformatics and Biostatistics Hub, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Veronika Seidlová
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia
- RECETOX, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| |
Collapse
|
15
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
16
|
Siddiqui SH, Khan M, Choe H, Kang D, Shim K. HSP expression depends on its molecular construction and different organs of the chicken: a meta-analysis. Sci Rep 2022; 12:14901. [PMID: 36050408 PMCID: PMC9437049 DOI: 10.1038/s41598-022-18985-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Heat shock proteins (HSPs) expression protect the cell from stress, this expression varies on tissue and stress level. Here, we investigated the structure and functional expression of HSPs in different chicken organs using meta-analysis. A total of 1253 studies were collected from three different electronic databases from January 1, 2015 to February 1, 2022. Of these studies, 28 were selected based on the specific criteria for this meta-analysis. The results for the expression of HSPs and the comparative expression of HSPs (HSP90, HSP70, and HSP60) in different chicken organs (brain, heart, liver, muscle, and intestine) were analyzed using the odds ratio or the random-effects model (REM) at a confidence interval (CI) of 95%. Compared to the thermoneutral groups, heat stress groups exhibited a significant (P < 0.01) change in their HSP70 expression in the chicken liver (8 trials: REM = 1.41, 95% CI: 0.41, 4.82). The expression of different HSPs in various chicken organs varied and the different organs were categorized according to their expression levels. HSP expression differed among the heart, liver, and muscle of chickens. HSPs expression level depends on the structure and molecular weight of the HSPs, as well as the type of tissue.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mousumee Khan
- Department of Biomedical Science and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Hosung Choe
- Department of Animal Biotechnology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
17
|
Rissmann M, Friedrichs V, Kley N, Straube M, Sadeghi B, Balkema-Buschmann A. Baseline of Physiological Body Temperature and Hematological Parameters in Captive Rousettus aegyptiacus and Eidolon helvum Fruit Bats. Front Physiol 2022; 13:910157. [PMID: 36105294 PMCID: PMC9465388 DOI: 10.3389/fphys.2022.910157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The discovery of bats as reservoir hosts for a number of highly pathogenic zoonotic agents has led to an increasing interest of infectious disease research in experimental studies with bats. Therefore, we established breeding colonies of Rousettus aegyptiacus and Eidolon helvum fruit bats, which both have been identified as reservoir hosts for relevant zoonotic disease agents, such as Marburg virus and Lagos bat virus. Since 2013, individuals of both species have been recruited to the Friedrich-Loeffler-Institut (FLI) from zoological gardens in Europe, to where these species had been introduced from the wild several decades ago. The aviaries have been designed according to national recommendations published by the Federal Ministry of Agriculture. Under these conditions, both species have been reproducing for years. To better understand the physiology of these animals, and to generate baseline knowledge for infection experiments, we monitored the body core temperatures of R. aegyptiacus bats in the aviaries, and found a circadian variation between 34°C and 41.5°C. We also determined the hematological parameters of both species, and detected specific differences between both bat species. For values of clinical chemistry, no correlation to age or sex was observed. However, species-specific differences were detected since ALT, BUN and CREA were found to be significantly higher in R. aegyptiacus and GLU and TP were significantly higher in E. helvum bats. A higher hematocrit, hemoglobin and red blood cell level was observed in subadult R. aegyptiacus, with hemoglobin and red blood cells also being significantly increased compared to E. helvum. Lymphocytes were found to be the dominant white blood cells in both species and are higher in female E. helvum. Neutrophil granulocytes were significantly higher in E. helvum bats. This underlines the necessity to define baseline profiles for each bat species prior to their use in experimental challenge.
Collapse
Affiliation(s)
- Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Nils Kley
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Martin Straube
- Landratsamt Ortenaukreis, Amt für Veterinärwesen und Lebensmittelüberwachung, Offenburg, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
- *Correspondence: Anne Balkema-Buschmann,
| |
Collapse
|
18
|
Mougari S, Gonzalez C, Reynard O, Horvat B. Fruit bats as natural reservoir of highly pathogenic henipaviruses: balance between antiviral defense and viral toleranceInteractions between Henipaviruses and their natural host, fruit bats. Curr Opin Virol 2022; 54:101228. [DOI: 10.1016/j.coviro.2022.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
|
19
|
Zhang Y, Guo ZB, Nie YM, Feng GP, Deng MJ, Hu YM, Zhang HJ, Zhao YY, Feng YW, Yu TT, Hu K. Self-Organization Formation of Multicellular Spheroids Mediated by Mechanically Tunable Hydrogel Platform: Toward Revealing the Synergy of Chemo- and Noninvasive Photothermal Therapy against Colon Microtumor. Macromol Biosci 2022; 22:e2100498. [PMID: 35014172 DOI: 10.1002/mabi.202100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/06/2022]
Abstract
Three-dimensional (3D) tumor cell culture offers a more tissue-recapitulating model in cancer treatment evaluation. However, conventional models based on cell-substrate adhesion deprivation are still of insufficient real tumor mimic. In this work, a novel method is proposed for inducing multicellular spheroids (MCSs) formation based on hydrogel with tunable microenvironmental properties. Colon tumor cells DLD1 cultured on hydrogel substrate with proper physical stimulation form MCSs via self-organization. Chemotherapy based on clinical drug and far-infrared photothermal therapy is evaluated with DLD1 MCSs obtained by this method. The synergism of chemotherapy and noninvasive photothermal therapy based on graphene device is further verified in MCSs model and it is believed this method holds potential in in vitro anti-tumor strategies evaluation for precision medicine.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhao-Bin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Yu-Min Nie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Guan-Ping Feng
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.,Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Man-Jiao Deng
- Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Yi-Min Hu
- Shenzhen Grahope Graphene Research Institute, Shenzhen, 518063, China
| | - Hui-Jie Zhang
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin-Yi Zhao
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Wei Feng
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting-Ting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
21
|
Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. mBio 2021; 12:e0209421. [PMID: 34399606 PMCID: PMC8406260 DOI: 10.1128/mbio.02094-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), encodes two proteases required for replication. The main protease (Mpro), encoded as part of two polyproteins, pp1a and pp1ab, is responsible for 11 different cleavages of these viral polyproteins to produce mature proteins required for viral replication. Mpro is therefore an attractive target for therapeutic interventions. Certain proteins in cells under oxidative stress undergo modification of reactive cysteines. We show Mpro is susceptible to glutathionylation, leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that modification of a single cysteine with glutathione is sufficient to block dimerization and inhibit its activity. Gel filtration studies as well as analytical ultracentrifugation confirmed that glutathionylated Mpro exists as a monomer. Tryptic and chymotryptic digestions of Mpro as well as experiments using a C300S Mpro mutant revealed that Cys300, which is located at the dimer interface, is a primary target of glutathionylation. Moreover, Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of a non-active site cysteine, Cys300, which itself is not required for Mpro activity, and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to the pathophysiology of SARS-CoV-2 and related bat coronaviruses.
Collapse
|
22
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
23
|
Davis DA, Bulut H, Shrestha P, Yaparla A, Jaeger HK, Hattori SI, Wingfield PT, Mitsuya H, Yarchoan R. Regulation of the Dimerization and Activity of SARS-CoV-2 Main Protease through Reversible Glutathionylation of Cysteine 300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33851157 PMCID: PMC8043447 DOI: 10.1101/2021.04.09.439169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Haydar Bulut
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Amulya Yaparla
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hannah K Jaeger
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hiroaki Mitsuya
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892.,Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
24
|
Gorji S, Gorji A. COVID-19 pandemic: the possible influence of the long-term ignorance about climate change. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15575-15579. [PMID: 33403640 PMCID: PMC7785327 DOI: 10.1007/s11356-020-12167-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 04/12/2023]
Abstract
In addressing the current COVID-19 pandemic and evaluating the measures taken by global leaders so far, it is crucial to trace back the circumstances influencing the emergence of the crisis that the world is presently facing. Could it be that the failure to act in a timely manner dates way back to when first concerns about climate change and its inevitable threat to human health came up? Multiple lines of evidence suggest that the large-scale and rapid environmental changes in the last few decades may be implicated in the emergence of COVID-19 pandemic by increasing the potential risk of the occurrence and the spread of zoonotic diseases, worsening food security, and weakening the human immune system. As we are facing progressive climatic change, a failure to act accordingly could inevitably lead to further, more frequent confrontations with newly emerging diseases.
Collapse
Affiliation(s)
- Shaghayegh Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
25
|
Pras A, Nollen EAA. Regulation of Age-Related Protein Toxicity. Front Cell Dev Biol 2021; 9:637084. [PMID: 33748125 PMCID: PMC7973223 DOI: 10.3389/fcell.2021.637084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
Collapse
Affiliation(s)
| | - Ellen A. A. Nollen
- Laboratory of Molecular Neurobiology of Ageing, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Sinha P, Verma B, Ganesh S. Dexamethasone-induced activation of heat shock response ameliorates seizure susceptibility and neuroinflammation in mouse models of Lafora disease. Exp Neurol 2021; 340:113656. [PMID: 33639210 DOI: 10.1016/j.expneurol.2021.113656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/26/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022]
Abstract
Heat shock response (HSR) is a conserved cytoprotective pathway controlled by the master transcriptional regulator, the heat shock factor 1 (HSF1), that activates the expression of heat shock proteins (HSPs). HSPs, as chaperones, play essential roles in minimizing stress-induced damages and restoring proteostasis. Therefore, compromised HSR is thought to contribute to neurodegenerative disorders. Lafora disease (LD) is a fatal form of neurodegenerative disorder characterized by the accumulation of abnormal glycogen as Lafora bodies in neurons and other tissues. The symptoms of LD include progressive myoclonus epilepsy, dementia, and cognitive deficits. LD is caused by the defects in the gene coding laforin phosphatase or the malin ubiquitin ligase. Laforin and malin are known to work upstream of HSF1 and are essential for the activation of HSR. Herein, we show that mice deficient for laforin or malin show reduced levels of HSF1 and their targets in their brain tissues, suggesting compromised HSR; this could contribute to the neuropathology in LD. Intriguingly, treatment of LD animals with dexamethasone, a synthetic glucocorticoid analogue, partially restored the levels of HSF1 and its targets. Dexamethasone treatment was also able to ameliorate the neuroinflammation and susceptibility to induced seizures in the LD animals. However, dexamethasone treatment did not show a significant effect on Lafora bodies or autophagy defects. Taken together, the present study establishes a role for HSR in seizure susceptibility and neuroinflammation and dexamethasone as a potential antiepileptic agent, suitable for further studies in LD.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Bhupender Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
27
|
Khomari F, Nabi-Afjadi M, Yarahmadi S, Eskandari H, Bahreini E. Effects of Cell Proteostasis Network on the Survival of SARS-CoV-2. Biol Proced Online 2021; 23:8. [PMID: 33618659 PMCID: PMC7899210 DOI: 10.1186/s12575-021-00145-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023] Open
Abstract
The proteostasis network includes all the factors that control the function of proteins in their native state and minimize their non-functional or harmful reactions. The molecular chaperones, the important mediator in the proteostasis network can be considered as any protein that contributes to proper folding and assembly of other macromolecules, through maturating of unfolded or partially folded macromolecules, refolding of stress-denatured proteins, and modifying oligomeric assembly, otherwise it leads to their proteolytic degradation. Viruses that use the hosts' gene expression tools and protein synthesis apparatus to survive and replicate, are obviously protected by such a host chaperone system. This means that many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread. During viral infection, increase in endoplasmic reticulum (ER) stress due to high expression of viral proteins enhances the level of heat shock proteins (HSPs) and induces cell apoptosis or necrosis. Indeed, evidence suggests that ER stress and the induction of unfolded protein response (UPR) may be a major aspect of the corona-host virus interaction. In addition, several clinical reports have confirmed the autoimmune phenomena in COVID-19-patients, and a strong association between this autoimmunity and severe SARS-CoV-2 infection. Part of such autoimmunity is due to shared epitopes among the virus and host. This article reviews the proteostasis network and its relationship to the immune system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fateme Khomari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Hanie Eskandari
- Department of Biology, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| |
Collapse
|
28
|
Associating physiological functions with genomic variability in hibernating bats. Evol Ecol 2021. [DOI: 10.1007/s10682-020-10096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Heck T, Ludwig M, Frizzo M, Rasia-Filho A, Homem de Bittencourt PI. Suppressed anti-inflammatory heat shock response in high-risk COVID-19 patients: lessons from basic research (inclusive bats), light on conceivable therapies. Clin Sci (Lond) 2020; 134:1991-2017. [PMID: 32749472 PMCID: PMC7403894 DOI: 10.1042/cs20200596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The major risk factors to fatal outcome in COVID-19 patients, i.e., elderliness and pre-existing metabolic and cardiovascular diseases (CVD), share in common the characteristic of being chronic degenerative diseases of inflammatory nature associated with defective heat shock response (HSR). The molecular components of the HSR, the principal metabolic pathway leading to the physiological resolution of inflammation, is an anti-inflammatory biochemical pathway that involves molecular chaperones of the heat shock protein (HSP) family during homeostasis-threatening stressful situations (e.g., thermal, oxidative and metabolic stresses). The entry of SARS coronaviruses in target cells, on the other hand, aggravates the already-jeopardized HSR of this specific group of patients. In addition, cellular counterattack against virus involves interferon (IFN)-mediated inflammatory responses. Therefore, individuals with impaired HSR cannot resolve virus-induced inflammatory burst physiologically, being susceptible to exacerbated forms of inflammation, which leads to a fatal "cytokine storm". Interestingly, some species of bats that are natural reservoirs of zoonotic viruses, including SARS-CoV-2, possess an IFN-based antiviral inflammatory response perpetually activated but do not show any sign of disease or cytokine storm. This is possible because bats present a constitutive HSR that is by far (hundreds of times) more intense and rapid than that of human, being associated with a high core temperature. Similarly in humans, fever is a physiological inducer of HSR while antipyretics, which block the initial phase of inflammation, impair the resolution phase of inflammation through the HSR. These findings offer a rationale for the reevaluation of patient care and fever reduction in SARS, including COVID-19.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS), Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, 98700-000 Brazil
| | - Alberto Antonio Rasia-Filho
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Graduate Program in Biosciences, Porto Alegre, RS, 90050-170 Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170 Brazil
| |
Collapse
|
30
|
Panchin AY, Panchin YV. Excessive G-U transversions in novel allele variants in SARS-CoV-2 genomes. PeerJ 2020; 8:e9648. [PMID: 33194341 PMCID: PMC7394058 DOI: 10.7717/peerj.9648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022] Open
Abstract
Background SARS-CoV-2 is a novel coronavirus that causes COVID-19 infection, with a closest known relative found in bats. For this virus, hundreds of genomes have been sequenced. This data provides insights into SARS-CoV-2 adaptations, determinants of pathogenicity and mutation patterns. A comparison between patterns of mutations that occurred before and after SARS-CoV-2 jumped to human hosts may reveal important evolutionary consequences of zoonotic transmission. Methods We used publically available complete genomes of SARS-CoV-2 to calculate relative frequencies of single nucleotide variations. These frequencies were compared with relative substitutions frequencies between SARS-CoV-2 and related animal coronaviruses. A similar analysis was performed for human coronaviruses SARS-CoV and HKU1. Results We found a 9-fold excess of G–U transversions among SARS-CoV-2 mutations over relative substitution frequencies between SARS-CoV-2 and a close relative coronavirus from bats (RaTG13). This suggests that mutation patterns of SARS-CoV-2 have changed after transmission to humans. The excess of G–U transversions was much smaller in a similar analysis for SARS-CoV and non-existent for HKU1. Remarkably, we did not find a similar excess of complementary C–A mutations in SARS-CoV-2. We discuss possible explanations for these observations.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Yuri V Panchin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Abstract
For centuries, people believed that bats possessed sinister powers. Bats are thought to be ancestral hosts to many deadly viruses affecting humans including Ebola, rabies, and most recently SARS-CoV-2 coronavirus. However, bats themselves tolerate these viruses without ill effects. The second power that bats have is their longevity. Bats live much longer than similar-sized land mammals. Here we review how bats' ability to control inflammation may be contributing to their longevity. The underlying mechanisms may hold clues to developing new treatments for age-related diseases. Now may be the time to use science to exploit the secret powers of bats for human benefit.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA.
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Centre for Healthy Longevity, National University Health System, Singapore 117609, Singapore; Singapore Institute of Clinical Sciences, A(∗)STAR, Singapore 117609, Singapore.
| |
Collapse
|
32
|
Paskey AC, Ng JHJ, Rice GK, Chia WN, Philipson CW, Foo RJH, Cer RZ, Long KA, Lueder MR, Frey KG, Hamilton T, Mendenhall IH, Smith GJ, Wang LF, Bishop-Lilly KA. The temporal RNA virome patterns of a lesser dawn bat ( Eonycteris spelaea) colony revealed by deep sequencing. Virus Evol 2020; 6:veaa017. [PMID: 33747541 PMCID: PMC7079719 DOI: 10.1093/ve/veaa017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The virosphere is largely unexplored and the majority of viruses are yet to be represented in public sequence databases. Bats are rich reservoirs of viruses, including several zoonoses. In this study, high throughput sequencing (HTS) of viral RNA extracted from swabs of four body sites per bat per timepoint is used to characterize the virome through a longitudinal study of a captive colony of fruit nectar bats, species Eonycteris spelaea in Singapore. Through unbiased shotgun and target enrichment sequencing, we identify both known and previously unknown viruses of zoonotic relevance and define the population persistence and temporal patterns of viruses from families that have the capacity to jump the species barrier. To our knowledge, this is the first study that combines probe-based viral enrichment with HTS to create a viral profile from multiple swab sites on individual bats and their cohort. This work demonstrates temporal patterns of the lesser dawn bat virome, including several novel viruses. Given the known risk for bat-human zoonoses, a more complete understanding of the viral dynamics in South-eastern Asian bats has significant implications for disease prevention and control. The findings of this study will be of interest to U.S. Department of Defense personnel stationed in the Asia-Pacific region and regional public health laboratories engaged in emerging infectious disease surveillance efforts.
Collapse
Affiliation(s)
- Adrian C Paskey
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
- Leidos, 11951 Freedom Dr., Reston, VA 20190, USA
| | - Justin H J Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Gregory K Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
- Leidos, 11951 Freedom Dr., Reston, VA 20190, USA
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Casandra W Philipson
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
- Defense Threat Reduction Agency, 8725 John J. Kingman Rd., Fort Belvoir, VA 22060, USA
| | - Randy J H Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Regina Z Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
- Leidos, 11951 Freedom Dr., Reston, VA 20190, USA
| | - Kyle A Long
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
- Leidos, 11951 Freedom Dr., Reston, VA 20190, USA
| | - Matthew R Lueder
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
- Leidos, 11951 Freedom Dr., Reston, VA 20190, USA
| | - Kenneth G Frey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
| | - Theron Hamilton
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Gavin J Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Kimberly A Bishop-Lilly
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, 8400 Research Plaza, Fort Detrick, MD 21702, USA
| |
Collapse
|