1
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
2
|
Jankovic-Rankovic J, Panter-Brick C. Physiological and genomic signatures of war and displacement: A comprehensive literature review and future directions. Psychoneuroendocrinology 2024; 166:107084. [PMID: 38788460 DOI: 10.1016/j.psyneuen.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
There are now 108.4 million forcibly displaced people worldwide, many of whom endure adversities that result in trauma, toxic stress, and potentially, altered epigenetic development. This paper provides a comprehensive review of current literature on the biological signatures of war and forced migration among refugee populations. To consolidate evidence and identify key concerns and avenues for future research, we reviewed 36 publications and one article under review, published since 2000, most of which focused on refugees relocated in Europe and the Middle East. This body of work - including cross-sectional, observational, and experimental studies - reveals heterogenous findings regarding human biological responses to war-related adversities and their associations with health outcomes. We conclude with four main observations, regarding why genomic and physiological biomarkers are valuable, what study designs advance understanding of causality and health-promoting interventions, how to prepare for ethical challenges, and why theoretical frameworks and research procedures need more detailed consideration in scientific publications.
Collapse
Affiliation(s)
| | - Catherine Panter-Brick
- Department of Anthropology, Yale University, New Haven, CT 06520, USA; Jackson School of Global Affairs, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
4
|
Park YY, Park B. Aesthetic Mandibular Angloplasty to Improve Patient Quality of Life in Chronic Recurrent Multifocal Osteomyelitis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5718. [PMID: 38596579 PMCID: PMC11000766 DOI: 10.1097/gox.0000000000005718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2024]
Abstract
Chronic recurrent multifocal osteomyelitis (CRMO) is a rare autoimmune disease that typically develops during adolescence and primarily affects women. CRMO primarily targets the bone in arms and legs, with sporadic occurrences in the mandible. CRMO is typically managed with medical treatment, and the efficacy of surgery remains controversial. Complications of surgery include massive bleeding and potential flare-up of CRMO symptoms. Herein, we report a patient with CRMO who had lesions in the bilateral rami of the mandible treated with aesthetic mandibular angloplasty. This is the first case of aesthetic mandibular angloplasty in a patient with CRMO who had bilateral rami involvement of the mandible. The patient began experiencing jaw pain accompanied by swelling and throbbing discomfort beneath the jawline at the age of 10. A pediatrician diagnosed CRMO, and the symptoms were controlled with nonsteroidal antiinflammatory drugs and immunosuppressants (infliximab, adalimumab). Aesthetic mandibular angloplasty was performed at our center because of mandibular hypertrophy. This procedure necessitated considerable removal of the spongy bone, raising concerns about potential massive intraoperative bleeding. Approximately 1.5 cm of the mandibular body was excised to reveal the cortical bone. Bleeding during surgery was not severe, rendering blood transfusions unnecessary. The patient was satisfied with the surgical results. This case indicates the feasibility of angloplasty for such cases.
Collapse
Affiliation(s)
- Yun Yong Park
- From the Departments of Plastic and Reconstructive Surgery, iWELL Plastic Surgery Clinic, Seoul, Republic of Korea
| | - Bumjin Park
- From the Departments of Plastic and Reconstructive Surgery, iWELL Plastic Surgery Clinic, Seoul, Republic of Korea
| |
Collapse
|
5
|
Gein SV, Bragina NA, Sharav'eva IL. Effect of Stress on the Production of Antibodies and IL-2, IL-4, and IFNγ Depending on the Time of Antigen Administration and Evaluation of the Role of Opioid Receptors. Bull Exp Biol Med 2023; 175:321-326. [PMID: 37563536 DOI: 10.1007/s10517-023-05860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 08/12/2023]
Abstract
The time of stress exposure relative to the moment of immunization affects the direction of the immunoregulatory effect of stress. In case of stress exposure preceding immunization, rotation stress stimulated the production of antibodies, while immobilization depressed it. After antigen injection, these types of stress had no significant effect on the formation of antibody-producing cells. Acute cold stress did not affect the number of antibody-forming cells before immunization, but stimulated the humoral response after it. At the same time, the effect of stress on the production of antibodies was leveled by blockade of opioid receptors with naloxone for rotation and immobilization, but was not canceled for acute cold stress. A similar pattern was revealed when analyzing the effect of stress exposure on cytokine production. Cold stress before antigen administration to mice had almost no effect on the production of IL-2, IL-4, IFNγ, while rotational and immobilization stress naloxone-dependently modulated the synthesis of IL-2 and IL-4. On the contrary, in animals subjected to stress after antigen administration, only cold stress significantly modulated the production of IL-2 and IL-4.
Collapse
Affiliation(s)
- S V Gein
- Institute of Ecology and Genetics of Microorganisms - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia.
- Perm State National Research University, Perm, Russia.
| | - N A Bragina
- Institute of Ecology and Genetics of Microorganisms - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
- Perm State National Research University, Perm, Russia
| | - I L Sharav'eva
- Institute of Ecology and Genetics of Microorganisms - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
6
|
Ye W, Li M, Luo K. Therapies Targeting Immune Cells in Tumor Microenvironment for Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:1788. [PMID: 37513975 PMCID: PMC10384189 DOI: 10.3390/pharmaceutics15071788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The tumor microenvironment (TME) plays critical roles in immune modulation and tumor malignancies in the process of cancer development. Immune cells constitute a significant component of the TME and influence the migration and metastasis of tumor cells. Recently, a number of therapeutic approaches targeting immune cells have proven promising and have already been used to treat different types of cancer. In particular, PD-1 and PD-L1 inhibitors have been used in the first-line setting in non-small cell lung cancer (NSCLC) with PD-L1 expression ≥1%, as approved by the FDA. In this review, we provide an introduction to the immune cells in the TME and their efficacies, and then we discuss current immunotherapies in NSCLC and scientific research progress in this field.
Collapse
Affiliation(s)
- Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Meiye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
| | - Kewang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510091, China
- People's Hospital of Longhua, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
7
|
Zhang Y, Jiang W, Luo X. Remifentanil combined with dexmedetomidine on the analgesic effect of breast cancer patients undergoing modified radical mastectomy and the influence of perioperative T lymphocyte subsets. Front Surg 2022; 9:1016690. [PMID: 36425893 PMCID: PMC9680973 DOI: 10.3389/fsurg.2022.1016690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/13/2022] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE To study the analgesic effect of breast cancer patients undergoing modified radical mastectomy (MRM) and the influence of perioperative T lymphocyte subsets by remifentanil combined with dexmedetomidine. METHODS 80 breast patients were divided into control group and research group based on the anesthesia protocol. Patients in control group was given remifentanil for anesthesia induction and maintenance, and patients in research group was given remifentanil and dexmedetomidine for anesthesia induction and maintenance. We compared the anesthesia time, operation time, surgical blood loss, postoperative wake-up time, extubation time, incidence of adverse reactions, VAS score and T lymphocyte subsets in peripheral blood in the two groups of patients. RESULTS The baseline data including age, height, weight and BMI, ASA classification, stage of breast cancer, frequency of neoadjuvant therapy, and surgical characteristics including anesthesia time, operation time and bleeding volume all have no significant difference between two groups (P > 0.05). Compared to control group, the time of wake up and extubation in patients of research group were all significantly decreased (P < 0.05), and significantly decreased MBP and HR after loading dose of dexmedetomidine in research group (P < 0.05). The VAS scores of patients at 4, 8, 12, 16, 20 and 24 h after surgery in the research group are all significantly lower than those in the control group (P < 0.05). Before induction of anesthesia, there was no significant difference in the ratio of CD4+, CD8+ and CD4+/CD8+ T lymphocytes in peripheral blood between the two groups (P > 0.05). At 1 h during operation and 24 h after operation, the ratio of CD4+ and CD4+/CD8+ cells in the research group was significantly higher than these of the control group (P < 0.05), while the ratio of CD8+ cells was lower than that of the control group (P < 0.05). CONCLUSION For breast cancer patients undergoing MRM, the use of remifentanil combined with dexmedetomidine can enhance postoperative analgesia and reduce postoperative immunosuppression.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Breast Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Department of Anesthesiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Luo
- Department of Anesthesiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Gein SV, Karnaukhova AV. The Role of β-Adrenergic Receptors in the Regulation of the Functions of Innate Immune Cells during Cold Stress In Vivo. Bull Exp Biol Med 2022; 173:72-76. [PMID: 35616789 DOI: 10.1007/s10517-022-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/27/2022]
Abstract
It was found that 10-min cold stress enhanced stimulated production of ROS, while 60-min cold stress increased both spontaneous and stimulated ROS production by peritoneal macrophages. β-Adrenergic receptor blockade leveled the effect of 10-min stress in stimulated cultures and the effect of 60-min stress in spontaneous cultures. None variants of cold stress affected spontaneous and stimulated production of IL-1β. We observed an increase in the production of IL-1β in stimulated cultures from animals subjected to 10- and 60-min stress against the background of propranolol. At the same time, both variants of cold exposure, irrespective of β-adrenergic receptor blockade, stimulated IL-10 synthesis in spontaneous and activated samples. None of the used models of cold exposure affected the phagocytic activity of peritoneal macrophages. Thus, β-adrenergic receptors are directly involved in the regulation of cytokine production and microbicidal potential of macrophages in acute cold stress.
Collapse
Affiliation(s)
- S V Gein
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia. .,Perm State National Research University, Perm, Russia.
| | - A V Karnaukhova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
9
|
A community perspective of COVID-19 and obesity in children: Causes and consequences. OBESITY MEDICINE 2021; 22:100327. [PMID: 36567746 PMCID: PMC9764599 DOI: 10.1016/j.obmed.2021.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
The pandemic of childhood obesity that has been increasing over the last decade has collided with the current pandemic of COVID-19. Enforced behavioural changes have resulted in a myriad of problems for children particularly in weight management. Restricted activity is the most obvious but many other aspects of life have exacerbated biological, psychosocial, and behavioral factors identified as risks for childhood obesity. Significant effort is required to turn around the prevailing tide of weight gain necessitating changes in personal and family behavior and diet, as well as high-level governmental and educational policy. Evidence-based, focused, long-term interventions which are adequately funded are required. Enthusiasm and optimism for change coupled with public engagement by utilization of new technology as well as traditional methods offers hope for change. Public health interventions in isolation are inadequate and bolder changes to central policies and social structure are needed for sustained change. This will allow some mitigation of the affects of COVID-19 but also reduce negative outcomes in future comparable situations.
Collapse
|
10
|
COVID‐19 and obesity in childhood and adolescence: a clinical review. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2020. [PMCID: PMC7413153 DOI: 10.1016/j.jpedp.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objetivo Identificar fatores que contribuem para o aumento da suscetibilidade e gravidade da COVID‐19 em crianças e adolescentes obesos e suas consequências para a saúde. Fontes de dados Estudos publicados entre 2000 e 2020 nas bases de dados PubMed, Medline, Scopus, SciELO e Cochrane. Síntese dos dados A obesidade é uma comorbidade altamente prevalente em casos graves de COVID‐19 em crianças e adolescentes e o isolamento social pode levar ao aumento do acúmulo de gordura. Tecido adiposo excessivo, déficit de massa magra, resistência à insulina, dislipidemia, hipertensão, altos níveis de citocinas pró‐inflamatórias e baixa ingestão de nutrientes essenciais são fatores que comprometem o funcionamento dos órgãos e sistemas no indivíduo obeso. Esses fatores estão associados a danos nos sistemas imunológico, cardiovascular, respiratório e urinário, juntamente com a modificação da microbiota intestinal (disbiose). Na infecção por SARS‐CoV‐2, essas alterações orgânicas causadas pela obesidade podem aumentar a necessidade de assistência ventilatória, risco de tromboembolismo, taxa de filtração glomerular reduzida, alterações na resposta imune inata e adaptativa e perpetuação da resposta inflamatória crônica. Conclusões A necessidade de isolamento social pode ter o efeito de causar ou agravar a obesidade e suas comorbidades e pediatras precisam estar cientes desse problema. Diante de crianças com suspeita ou confirmação de COVID‐19, os profissionais de saúde devem 1) diagnosticar o excesso de peso; 2) aconselhar sobre cuidados de saúde em tempos de isolamento; 3) fazer a triagem de comorbidades, garantindo que o tratamento não seja interrompido; 4) medir os níveis de imunonutrientes; 5) orientar a família respeitando as especificidades da situação; e 6) encaminhamento a unidades qualificadas para cuidar de crianças e adolescentes obesos, quando necessário.
Collapse
|
11
|
Nogueira-de-Almeida CA, Del Ciampo LA, Ferraz IS, Del Ciampo IRL, Contini AA, Ued FDV. COVID-19 and obesity in childhood and adolescence: a clinical review. J Pediatr (Rio J) 2020; 96:546-558. [PMID: 32768388 PMCID: PMC7402231 DOI: 10.1016/j.jped.2020.07.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To identify factors that contribute to the increased susceptibility and severity of COVID-19 in obese children and adolescents, and its health consequences. SOURCES Studies published between 2000 and 2020 in the PubMed, MEDLINE, Scopus, SciELO, and Cochrane databases. SUMMARY OF FINDINGS Obesity is a highly prevalent comorbidity in severe cases of COVID-19 in children and adolescents; social isolation may lead to increase fat accumulation. Excessive adipose tissue, deficit in lean mass, insulin resistance, dyslipidemia, hypertension, high levels of proinflammatory cytokines, and low intake of essential nutrients are factors that compromise the functioning of organs and systems in obese individuals. These factors are associated with damage to immune, cardiovascular, respiratory, and urinary systems, along with modification of the intestinal microbiota (dysbiosis). In severe acute respiratory syndrome coronavirus 2 infection, these organic changes from obesity may increase the need for ventilatory assistance, risk of thromboembolism, reduced glomerular filtration rate, changes in the innate and adaptive immune response, and perpetuation of the chronic inflammatory response. CONCLUSIONS The need for social isolation can have the effect of causing or worsening obesity and its comorbidities, and pediatricians need to be aware of this issue. Facing children with suspected or confirmed COVID-19, health professionals should 1) diagnose excess weight; 2) advise on health care in times of isolation; 3) screen for comorbidities, ensuring that treatment is not interrupted; 4) measure levels of immunonutrients; 5) guide the family in understanding the specifics of the situation; and 6) refer to units qualified to care for obese children and adolescents when necessary.
Collapse
Affiliation(s)
| | - Luiz A Del Ciampo
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Puericultura e Pediatria, Ribeirão Preto, SP, Brazil
| | - Ivan S Ferraz
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Puericultura e Pediatria, Ribeirão Preto, SP, Brazil
| | - Ieda R L Del Ciampo
- Universidade Federal de São Carlos, Departamento de Medicina, São Carlos, SP, Brazil
| | - Andrea A Contini
- Universidade Federal de São Carlos, Departamento de Medicina, São Carlos, SP, Brazil
| | - Fábio da V Ued
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Ciências da Saúde, Ribeirão Preto, SP, Brazil
| |
Collapse
|