1
|
Zhang H, Liu W, Wu Y, Chen C. USP3: Key deubiquitylation enzyme in human diseases. Cancer Sci 2024; 115:2094-2106. [PMID: 38651282 PMCID: PMC11247611 DOI: 10.1111/cas.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Ubiquitination and deubiquitylation are pivotal posttranslational modifications essential for regulating cellular protein homeostasis and are implicated in the development of human diseases. Ubiquitin-specific protease 3 (USP3), a member of the ubiquitin-specific protease family, serves as a key deubiquitylation enzyme, playing a critical role in diverse cellular processes including the DNA damage response, cell cycle regulation, carcinogenesis, tumor cell proliferation, migration, and invasion. Despite notable research efforts, our current understanding of the intricate and context-dependent regulatory networks governing USP3 remains incomplete. This review aims to comprehensively synthesize existing published works on USP3, elucidating its multifaceted roles, functions, and regulatory mechanisms, while offering insights for future investigations. By delving into the complexities of USP3, this review strives to provide a foundation for a more nuanced understanding of its specific roles in various cellular processes. Furthermore, the exploration of USP3's regulatory networks may uncover novel therapeutic strategies targeting this enzyme in diverse human diseases, thereby holding promising clinical implications. Overall, an in-depth comprehension of USP3's functions and regulatory pathways is crucial for advancing our knowledge and developing targeted therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Hongyan Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
- Medical SchoolKunming University of Science and TechnologyKunmingChina
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Ceshi Chen
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
- Academy of Biomedical EngineeringKunming Medical UniversityKunmingChina
| |
Collapse
|
2
|
Ressel S, Kumar S, Bermúdez-Barrientos JR, Gordon K, Lane J, Wu J, Abreu-Goodger C, Schwarze J, Buck A. RNA-RNA interactions between respiratory syncytial virus and miR-26 and miR-27 are associated with regulation of cell cycle and antiviral immunity. Nucleic Acids Res 2024; 52:4872-4888. [PMID: 38412296 PMCID: PMC11109944 DOI: 10.1093/nar/gkae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
microRNAs (miRNAs) regulate nearly all physiological processes but our understanding of exactly how they function remains incomplete, particularly in the context of viral infections. Here, we adapt a biochemical method (CLEAR-CLIP) and analysis pipeline to identify targets of miRNAs in lung cells infected with Respiratory syncytial virus (RSV). We show that RSV binds directly to miR-26 and miR-27 through seed pairing and demonstrate that these miRNAs target distinct gene networks associated with cell cycle and metabolism (miR-27) and antiviral immunity (miR-26). Many of the targets are de-repressed upon infection and we show that the miR-27 targets most sensitive to miRNA inhibition are those associated with cell cycle. Finally, we demonstrate that high confidence chimeras map to long noncoding RNAs (lncRNAs) and pseudogenes in transcriptional regulatory regions. We validate that a proportion of miR-27 and Argonaute 2 (AGO2) is nuclear and identify a long non-coding RNA (lncRNA) as a miR-27 target that is linked to transcriptional regulation of nearby genes. This work expands the target networks of miR-26 and miR-27 to include direct interactions with RSV and lncRNAs and implicate these miRNAs in regulation of key genes that impact the viral life cycle associated with cell cycle, metabolism, and antiviral immunity.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sujai Kumar
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Katrina Gordon
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Julia Lane
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jin Wu
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
3
|
Wang Y, Shi Y, Niu K, Yang R, Lv Q, Zhang W, Feng K, Zhang Y. Ubiquitin specific peptidase 3: an emerging deubiquitinase that regulates physiology and diseases. Cell Death Discov 2024; 10:243. [PMID: 38773075 PMCID: PMC11109179 DOI: 10.1038/s41420-024-02010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Proteins are the keystone for the execution of various life activities, and the maintenance of protein normalization is crucial for organisms. Ubiquitination, as a post-transcriptional modification, is widely present in organisms, and it relies on the sophisticated ubiquitin-proteasome (UPS) system that controls protein quality and modulates protein lifespan. Deubiquitinases (DUBs) counteract ubiquitination and are essential for the maintenance of homeostasis. Ubiquitin specific peptidase 3 (USP3) is a member of the DUBs that has received increasing attention in recent years. USP3 is a novel chromatin modifier that tightly regulates the DNA damage response (DDR) and maintains genome integrity. Meanwhile, USP3 acts as a key regulator of inflammatory vesicles and sustains the normal operation of the innate immune system. In addition, USP3 is aberrantly expressed in a wide range of cancers, such as gastric cancer, glioblastoma and neuroblastoma, implicating that USP3 could be an effective target for targeted therapies. In this review, we retrace all the current researches of USP3, describe the structure of USP3, elucidate its functions in DNA damage, immune and inflammatory responses and the cell cycle, and summarize the important role of USP3 in multiple cancers and diseases.
Collapse
Affiliation(s)
- Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
4
|
Zhang J, Li C, Hou Y, Liu D, Li Q, Wang Z, Tang R, Zheng K, Guo H, Wang W. miR-26a exerts broad-spectrum antiviral effects via the enhancement of RIG-I-mediated type I interferon response by targeting USP15. Microbiol Spectr 2024; 12:e0312423. [PMID: 38019020 PMCID: PMC10783007 DOI: 10.1128/spectrum.03124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE miR-26a serves as a potent positive regulator of type I interferon (IFN) responses. By inhibiting USP15 expression, miR-26a promotes RIG-I K63-ubiquitination to enhance type I IFN responses, resulting in an active antiviral state against viruses. Being an intricate regulatory network, the activation of type I IFN responses could in turn suppress miR-26a expression to avoid the disordered activation that might result in the so-called "type I interferonopathy." The knowledge gained would be essential for the development of novel antiviral strategies against viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Chunyang Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yao Hou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Zijie Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Zabrodskaya Y, Plotnikova M, Gavrilova N, Lozhkov A, Klotchenko S, Kiselev A, Burdakov V, Ramsay E, Purvinsh L, Egorova M, Vysochinskaya V, Baranovskaya I, Brodskaya A, Povalikhin R, Vasin A. Exosomes Released by Influenza-Virus-Infected Cells Carry Factors Capable of Suppressing Immune Defense Genes in Naïve Cells. Viruses 2022; 14:2690. [PMID: 36560694 PMCID: PMC9781497 DOI: 10.3390/v14122690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Exosomes are involved in intercellular communication and can transfer regulatory molecules between cells. Consequently, they can participate in host immune response regulation. For the influenza A virus (IAV), there is very limited information on changes in exosome composition during cell infection shedding light on the potential role of these extracellular membrane vesicles. Thus, the aim of our work was to study changes in exosomal composition following IAV infection of cells, as well as to evaluate their effect on uninfected cells. Methods: To characterize changes in the composition of cellular miRNAs and mRNAs of exosomes during IAV infection of A549 cells, NGS was used, as well as PCR to identify viral genes. Naïve A549 cells were stimulated with infected-cell-secreted exosomes for studying their activity. Changes in the expression of genes associated with the cell's immune response were shown using PCR. The effect of exosomes on IAV replication was shown in MDCK cells using In-Cell ELISA and PCR of the supernatants. Results: A change in the miRNA composition (miR-21-3p, miR-26a-5p, miR-23a-5p, miR-548c-5p) and mRNA composition (RPL13A, MKNK2, TRIB3) of exosomes under the influence of the IAV was shown. Many RNAs were involved in the regulation of the immune response of the cell, mainly by suppressing it. After exosome stimulation of naïve cells, a significant decrease in the expression of genes involved in the immune response was shown (RIG1, IFIT1, MDA5, COX2, NFκB, AnxA1, PKR, IL6, IL18). When infecting MDCK cells, a significant decrease in nucleoprotein levels was observed in the presence of exosomes secreted by mock-infected cells. Viral levels in supernatants also decreased. Conclusions: Exosomes secreted by IAV-infected cells could reduce the immune response of neighboring intact cells, leading to more effective IAV replication. This may be associated both with regulatory functions of cellular miRNAs and mRNAs carried by exosomes, or with the presence of viral mRNAs encoding proteins with an immunosuppressive function.
Collapse
Affiliation(s)
- Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Marina Plotnikova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Nina Gavrilova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Alexey Lozhkov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Sergey Klotchenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova roshcha, 188300 Gatchina, Russia
| | - Edward Ramsay
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 St. Petersburg, Russia
| | - Lada Purvinsh
- Biology Science Department, The University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA
| | - Marja Egorova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Vera Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Irina Baranovskaya
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
- Department of Physiology, Augusta University, 1462 Laney Walker Blvd, CA-3149, Augusta, GA 30912, USA
| | - Alexandra Brodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Roman Povalikhin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| |
Collapse
|
7
|
Zhao S, Zheng B, Wang L, Cui W, Jiang C, Li Z, Gao W, Zhang W. Deubiquitinase ubiquitin-specific protease 3 (USP3) inhibits HIV-1 replication via promoting APOBEC3G (A3G) expression in both enzyme activity-dependent and -independent manners. Chin Med J (Engl) 2022; 135:2706-2717. [PMID: 36574218 PMCID: PMC9945250 DOI: 10.1097/cm9.0000000000002478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or enhance viral infection by various mechanisms, there is lack of information on the role of DUBs in virus regulation, which needs to be further investigated. METHODS Immunoblotting, real-time polymerase chain reaction, in vivo / in vitro deubiquitination, protein immunoprecipitation, immunofluorescence, and co-localization biological techniques were employed to examine the effect of ubiquitin-specific protease 3 (USP3) on APOBEC3G (A3G) stability and human immunodeficiency virus (HIV) replication. To analyse the relationship between USP3 and HIV disease progression, we recruited 20 HIV-infected patients to detect the levels of USP3 and A3G in peripheral blood and analysed their correlation with CD4 + T-cell counts. Correlation was estimated by Pearson correlation coefficients (for parametric data). RESULTS The results demonstrated that USP3 specifically inhibits HIV-1 replication in an A3G-dependent manner. Further investigation found that USP3 stabilized 90% to 95% of A3G expression by deubiquitinating Vif-mediated polyubiquitination and blocking its degradation in an enzyme-dependent manner. It also enhances the A3G messenger RNA (mRNA) level by binding to A3G mRNA and stabilizing it in an enzyme-independent manner. Moreover, USP3 expression was positively correlated with A3G expression ( r = 0.5110) and CD4 + T-cell counts ( r = 0.5083) in HIV-1-infected patients. CONCLUSIONS USP3 restricts HIV-1 viral infections by increasing the expression of the antiviral factor A3G. Therefore, USP3 may be an important target for drug development and serve as a novel therapeutic strategy against viral infections.
Collapse
Affiliation(s)
- Simin Zhao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- College of Life Science of Jilin University, Changchun, Jilin 130012, China
| | - Baisong Zheng
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Liuli Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Wenzhe Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Chunlai Jiang
- College of Life Science of Jilin University, Changchun, Jilin 130012, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenying Gao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenyan Zhang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
8
|
Ge Y, Liu K, Chi Y, Zhu X, Wu T, Zhao K, Qiao Q, Wu B, Zhu F, Cui L. Exosomal microRNA expression profiles derived from A549 human lung cells in response to influenza A/H1N1pdm09 infection. Virology 2022; 574:9-17. [PMID: 35868217 DOI: 10.1016/j.virol.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Exosomes participate in intercellular communication by shuttling various small molecules from donor to recipient cells. We aimed to examine the role of exosomes and exosomal miRNAs in influenza virus infection. The results showed that influenza A/H1N1pdm09 infection could promote A549 cells to secrete exosomes, while blocking the generation of exosomes reduced viral RNA production. A total of 97 exosomal miRNAs with significantly altered expression were identified during influenza infection. Of 12 candidate miRNAs chosen for further validation, ten were confirmed by qRT-PCR. Among 5978 predicted target genes,we found 37 interferon pathway-related genes to be the potential targets of 29 differentially expressed miRNAs. Many target genes were annotated to various KEGG signaling pathways, some of which played important roles in influenza infection. These data will help to further understand the mechanism of influenza virus-host interactions, which is important for the development of preventative and therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Yiyue Ge
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Kang Liu
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Ying Chi
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xiaojuan Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Tao Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Kangchen Zhao
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qiao Qiao
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Bin Wu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Fengcai Zhu
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Lunbiao Cui
- Institute of Pathogenic Microbiology, NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| |
Collapse
|
9
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
10
|
Bamunuarachchi G, Pushparaj S, Liu L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol 2021; 18:767-784. [PMID: 33404285 PMCID: PMC8078518 DOI: 10.1080/15476286.2021.1872170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/20/2023] Open
Abstract
Influenza virus infection through seasonal epidemics and occasional pandemics has been a major public health concern for decades. Incomplete protection from vaccination and increased antiviral resistance due to frequent mutations of influenza viruses have led to a continuous need for new therapeutic options. The functional significance of host protein and influenza virus interactions has been established, but relatively less is known about the interaction of host noncoding RNAs, including microRNAs and long noncoding RNAs, with influenza viruses. In this review, we summarize host noncoding RNA profiles during influenza virus infection and the regulation of influenza virus infection by host noncoding RNAs. Influenza viral non-coding RNAs are briefly discussed. Increased understanding of the molecular regulation of influenza viral replication will be beneficial in identifying potential therapeutic targets against the influenza virus.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| |
Collapse
|
11
|
Hepatitis A virus-induced hsa-miR-146a-5p attenuates IFN-β signaling by targeting adaptor protein TRAF6. Arch Virol 2021; 166:789-799. [PMID: 33459883 DOI: 10.1007/s00705-021-04952-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Hepatitis A virus (HAV), a unique hepatotropic human picornavirus, is the causative agent of acute hepatitis A in humans. Some studies have shown that HAV antagonizes the innate immune response by disrupting interferon-beta (IFN-β) signaling by viral proteins. However, whether microRNAs (miRNAs), a class of non-coding RNAs, are involved in the antagonism of IFN-β induction upon HAV infection is still unclear. In this study, we investigated the effects and mechanisms by which HAV-induced miRNAs antagonize IFN-β signaling. A variety of analytical methods, including miRNA microarray, RT-qPCR, dual-luciferase reporter assay, and Western blotting, were performed using HAV-infected cells. The results indicated that HAV infection upregulates the expression of hsa-miR-146a-5p, which in turn partially suppresses the induction of IFN-β synthesis, thereby promoting viral replication. Mechanistically, TRAF6 (TNF receptor-associated factor 6), a key adaptor protein in the RIG-I/MDA5-mediated IFN-I signaling pathway, is targeted and degraded by hsa-miR-146a-5p. As TRAF6 is necessary for IFN-β induction, inhibition of this protein attenuates IFN-β signaling. Taken together, the results from this study indicated that HAV disrupts RIG-I/MDA5-mediated IFN-I signaling partially through the cleavage of the essential adaptor molecule TRAF6 via hsa-miR-146a-5p.
Collapse
|
12
|
Paniri A, Hosseini MM, Moballegh-Eslam M, Akhavan-Niaki H. Comprehensive in silico identification of impacts of ACE2 SNPs on COVID-19 susceptibility in different populations. GENE REPORTS 2020; 22:100979. [PMID: 33294728 PMCID: PMC7716747 DOI: 10.1016/j.genrep.2020.100979] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
The COVID-19 pandemic emerges a reminder that wide spectrum discrepancy in response to SARS-CoV-2 infection and antiviral drugs among different populations might be due to their different ACE2 SNPs and/or miRNAs profile. ACE2 is the major component for SARS-CoV-2s' cell entry, and disruption of its 3D structure could influence virus-ACE2 interaction. In this study we aimed to investigate the consequence of 16,860 SNPs within ACE2 on its expression as well as protein folding, function, and stability by using several beneficial bioinformatics tools. Only 64 SNPs including 60 intronic, and 4 missense showed different frequencies among different populations. Two missense SNPs including rs149039346 and rs147311723 have been predicted to strongly influence the function and stability of ACE2. rs1514283 creates new acceptor splice site. Also, rs4646175 creates new donor and acceptor splice site. PolymiRTS, and miRSNPs have predicted that rs3746444, rs113808830, and rs3751304 showed a MAF > 0.001, and disrupted mRNA target sites or mRNA function. Finally, rs3746444 hsa-miR-499a-3p, rs113808830 hsa-miR-4532, rs3751304 hsa-miR-6763-3p and hsa-miR-26b-5p were strongly hybridized with ACE2 and might influence its function. Collectively, this study shed some light on fundamental roles of ACE2 SNPs for its interaction with COVID-19, and consequently susceptibility to virus. Therefore, different responses of patients with COVID-19 to ACE2 blocker drugs might be due to their unique ACE2 SNPs. We further discussed the impact of SNPs on miRNAs profile as a factor that may modulate drug response or susceptibility to COVID-19.
Collapse
Affiliation(s)
- Alireza Paniri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| |
Collapse
|
13
|
Mansouri K, Rastegari-Pouyani M, Ghanbri-Movahed M, Safarzadeh M, Kiani S, Ghanbari-Movahed Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV-2? A scientific rational. Biomed Pharmacother 2020; 131:110694. [PMID: 32920511 PMCID: PMC7451059 DOI: 10.1016/j.biopha.2020.110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
As a process entailing a high turnover of the host cell molecules, viral replication is required for a successful viral infection and requests virus capacity to acquire the macromolecules required for its propagation. To this end, viruses have adopted several strategies to harness cellular metabolism in accordance with their specific demands. Most viruses upregulate specific cellular anabolic pathways and are largely dependent on such alterations. RNA viruses, for example, upregulate both glycolysisand glycogenolysis providing TCA cycle intermediates essential for anabolic lipogenesis. Also, these infections usually induce the PPP, leading to increased nucleotide levels supporting viral replication. SARS-CoV-2 (the cause of COVID-19)that has so far spread from China throughout the world is also an RNA virus. Owing to the more metabolic plasticity of uninfected cells, a promising approach for specific antiviral therapy, which has drawn a lot of attention in the recent years, would be the targeting of metabolic changes induced by viruses. In the current review, we first summarize some of virus-induced metabolic adaptations and then based on these information as well as SARS-CoV-2 pathogenesis, propose a potential therapeutic modality for this calamitous world-spreading virus with the hope of employing this strategy for near-future clinical application.
Collapse
Affiliation(s)
- Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghanbri-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Zhang J, Yuan J, Wang L, Zheng Z, Ran H, Liu F, Li F, Tang X, Zhang J, Ni Q, Zou L, Huang Y, Feng S, Xia X, Wan Y. MiR-26a targets EphA2 to resist intracellular Listeria monocytogenes in macrophages. Mol Immunol 2020; 128:69-78. [PMID: 33096414 DOI: 10.1016/j.molimm.2020.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
At infection sites, macrophages are sentinels that resist and destroy various pathogens, through direct phagocytosis. In macrophages, microRNAs play a variety of crucial roles, the most striking of which is the regulation of the ability of the host cell to resist infection. However, the underlying mechanisms associated with the anti-infection effects mediated by microRNAs remain largely unknown. Here, we demonstrated that miR-26a is downregulated during infection by Listeria monocytogenes (Lm). In miR-26a overexpressing mice, the Lm bacterial burden of liver and spleen decreased significantly within 72 h of infection, compared with that in control mice. Subsequently, RNA sequencing (RNA-seq) data suggested that miR-26a may attenuate the survival of Lm by targeting the Ephrin receptor tyrosine kinase A2 (EphA2). The knockdown of EphA2 in RAW264.7 macrophage cells resulted in decreased intracellular Lm burden. Taken together, these findings validate EphA2 as a target of miR-26a and provide a mechanism through which Lm may survive within macrophages by altering host miRNA expression.
Collapse
Affiliation(s)
- Jiale Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province 518036, China.
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Zihan Zheng
- The University of North Carolina at Chapel Hill, USA
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Xiangyu Tang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liyun Zou
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China; Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| |
Collapse
|
15
|
MicroRNA-132-3p suppresses type I IFN response through targeting IRF1 to facilitate H1N1 influenza A virus infection. Biosci Rep 2020; 39:221188. [PMID: 31746331 PMCID: PMC6904772 DOI: 10.1042/bsr20192769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence has indicated that microRNAs (miRNAs) have essential roles in innate immune responses to various viral infections; however, the role of miRNAs in H1N1 influenza A virus (IAV) infection is still unclear. The present study aimed to elucidate the role and mechanism of miRNAs in IAV replication in vitro. Using a microarray assay, we analyzed the expression profiles of miRNAs in peripheral blood from IAV patients. It was found that miR-132-3p was significantly up-regulated in peripheral blood samples from IAV patients. It was also observed that IAV infection up-regulated the expression of miR-132-3p in a dose- and time-dependent manner. Subsequently, we investigated miR-132-3p function and found that up-regulation of miR-132-3p promoted IAV replication, whereas knockdown of miR-132-3p repressed replication. Meanwhile, overexpression of miR-132-3p could inhibit IAV triggered INF-α and INF-β production and IFN-stimulated gene (ISG) expression, including myxovirus protein A (MxA), 2′,5′-oligoadenylate synthetases (OAS), and double-stranded RNA-dependent protein kinase (PKR), while inhibition of miR-132-3p enhanced IAV triggered these effects. Of note, interferon regulatory factor 1 (IRF1), a well-known regulator of the type I IFN response, was identified as a direct target of miR-132-3p during HIN1 IAV infection. Furthermore, knockdown of IRF1 by si-IRF1 reversed the promoting effects of miR-132-3p inhibition on type I IFN response. Taken together, up-regulation of miR-132-3p promotes IAV replication by suppressing type I IFN response through its target gene IRF1, suggesting that miR-132-3p could represent a novel potential therapeutic target of IAV treatment.
Collapse
|
16
|
Ma W, Wang H, He H. Bta-miR-2890 up-regulates JAK-STAT pathway to inhibit BoHV-1 replication by targeting viral gene UL41. Vet Microbiol 2020; 245:108709. [DOI: 10.1016/j.vetmic.2020.108709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 11/16/2022]
|
17
|
Connolly E, Hussell T. The Impact of Type 1 Interferons on Alveolar Macrophage Tolerance and Implications for Host Susceptibility to Secondary Bacterial Pneumonia. Front Immunol 2020; 11:495. [PMID: 32265937 PMCID: PMC7098967 DOI: 10.3389/fimmu.2020.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
That macrophages adapt to environmental cues is well-established. This adaptation has had several reiterations, first with innate imprinting and then with various combinations of trained, tolerant, paralyzed, or primed. Whatever the nomenclature, it represents a macrophage that is required to perform very different functions. First, alveolar macrophages are one of the sentinel cells that flag up damage and release mediators that attract other immune cells. Next, they mature to support T cell priming and survival. Finally they are critical in clearing inflammatory immune cells by phagocytosis and extracellular matrix turnover components by efferocytosis. At each functional stage they alter intrinsic components to guide their activity. Training therefore is akin to changing function. In this mini-review we focus on the lung and the specific role of type I interferons in altering macrophage activity. The proposed mechanisms of type I IFNs on lung-resident alveolar macrophages and their effect on host susceptibility to bacterial infection following influenza virus infection.
Collapse
Affiliation(s)
- Emma Connolly
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Zheng B, Zhou J, Wang H. Host microRNAs and exosomes that modulate influenza virus infection. Virus Res 2020; 279:197885. [PMID: 31981772 DOI: 10.1016/j.virusres.2020.197885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate over half of human protein-coding genes and play a vital role in cellular development, proliferation, metabolism, and homeostasis. Exosomes are rounded or cup-like extracellular vesicles that carry proteins, mRNAs, miRNAs, and lipids for release and exchange messages between cells involved in various cellular processes. Influenza virus is a substantial public health challenge. The expression of host miRNAs is altered in response to stimulation by influenza virus. These dysregulated miRNAs directly or indirectly target viral genes to regulate viral replication and stimulate or suppress innate immune responses and cell apoptosis during viral infection. Exosomes released by infected cells are associated with the transfer of antigens and key molecules that activate and modulate immune function. Dysregulation of miRNAs and secretion of exosomes are associated with pathogenicity and immune regulation during influenza infection. This review provides a comprehensive summary of the information available regarding host miRNAs and exosomes that are involved in the modulation of influenza virus infection and will facilitate the development of preventative or therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Baojia Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China
| | - Junmei Zhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education, and Deparment of Medical Microbiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Hui Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in Asthma and Respiratory Infections: Identifying Common Pathways. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:4-23. [PMID: 31743961 PMCID: PMC6875476 DOI: 10.4168/aair.2020.12.1.4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRs) are single-stranded RNAs of 18-25 nucleotides. These molecules regulate gene expression at the post-transcriptional level; several of these are differentially expressed in asthma as well as in viral acute respiratory infections (ARIs), the main triggers of acute asthma exacerbations. In recent years, miRs have been studied in order to discover drug targets as well as biomarkers for diagnosis, disease severity and prognosis. We describe recent findings on miR expression and function in asthma and their role in the regulation of viral ARIs, according to cell tissue specificity and asthma severity. By combining the above information, we identify miRs that may be important in virus-induced asthma exacerbations. This is the first attempt to link miR profiles of asthmatic patients and ARI-induced miRs, addressing the question of whether there might be a specific miR deficit in asthmatic subjects that make them more susceptible and/or reactive to infection.
Collapse
Affiliation(s)
- Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Hannah Wanstall
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
20
|
Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral Res 2019; 171:104593. [PMID: 31470040 DOI: 10.1016/j.antiviral.2019.104593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
The influenza A virus (IAV) NS1 protein is one of the major regulators of pathogenicity, being able to suppress innate immune response and host protein synthesis. In this study we identified the human micro RNA hsa-miR-1307-3p as a novel potent suppressor of NS1 expression and influenza virus replication. Transcriptomic analysis indicates that hsa-miR-1307-3p also negatively regulates apoptosis and promotes cell proliferation. In addition, we identified a novel mutation in the NS1 gene of A(H1N1)pdm09 strains circulating in Italy in the 2010-11 season, which enabled the virus to escape the hsa-miR-1307-3p inhibition, conferring replicative advantage to the virus in human cells. To the best of our knowledge, this is the first validation of suppression of IAV H1N1 NS1 by a human micro RNA and the first example of an escape mutation from micro RNA-mediated antiviral response for the A(H1N1)pdm09 virus.
Collapse
|
21
|
Zhao Y, Ran Z, Jiang Q, Hu N, Yu B, Zhu L, Shen L, Zhang S, Chen L, Chen H, Jiang J, Chen D. Vitamin D Alleviates Rotavirus Infection through a Microrna-155-5p Mediated Regulation of the TBK1/IRF3 Signaling Pathway In Vivo and In Vitro. Int J Mol Sci 2019; 20:ijms20143562. [PMID: 31330869 PMCID: PMC6678911 DOI: 10.3390/ijms20143562] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Vitamin D (VD) plays a vital role in anti-viral innate immunity. However, the role of VD in anti-rotavirus and its mechanism is still unclear. The present study was performed to investigate whether VD alleviates rotavirus (RV) infection through a microRNA-155-5p (miR-155-5p)-mediated regulation of TANK-binding kinase 1 (TBK1)/interferon regulatory factors 3 (IRF3) signaling pathway in vivo and in vitro. (2) Methods: The efficacy of VD treatment was evaluated in DLY pig and IPEC-J2. Dual-luciferase reporter activity assay was performed to verify the role of miR-155-5p in 1α,25-dihydroxy-VD3 (1,25D3) mediating the regulation of the TBK1/IRF3 signaling pathway. (3) Results: A 5000 IU·kg–1 dietary VD3 supplementation attenuated RV-induced the decrease of the villus height and crypt depth (p < 0.05), and up-regulated TBK1, IRF3, and IFN-β mRNA expressions in the jejunum (p < 0.05). Incubation with 1,25D3 significantly decreased the RV mRNA expression and the RV antigen concentration, and increased the TBK1 mRNA and protein levels, and the phosphoprotein IRF3 (p-IRF3) level (p < 0.05). The expression of miR-155-5p was up-regulated in response to an RV infection in vivo and in vitro (p < 0.05). 1,25D3 significantly repressed the up-regulation of miR-155-5p in vivo and in vitro (p < 0.05). Overexpression of miR-155-5p remarkably suppressed the mRNA and protein levels of TBK1 and p-IRF3 (p < 0.01), while the inhibition of miR-155-5p had an opposite effect. Luciferase activity assays confirmed that miR-155-5p regulated RV replication by directly targeting TBK1, and miR-155-5p suppressed the TBK1 protein level (p < 0.01). (4) Conclusions: These results indicate that miR-155-5p is involved in 1,25D3 mediating the regulation of the TBK1/IRF3 signaling pathway by directly targeting TBK1.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhiming Ran
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ningming Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
22
|
Slonchak A, Clarke B, Mackenzie J, Amarilla AA, Setoh YX, Khromykh AA. West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles. BMC Genomics 2019; 20:474. [PMID: 31182021 PMCID: PMC6558756 DOI: 10.1186/s12864-019-5835-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are small membrane vesicles secreted by the cells that mediate intercellular transfer of molecules and contribute to transduction of various signals. Viral infection and action of pro-inflammatory cytokines has been shown to alter molecular composition of EV content. Transfer of antiviral proteins by EVs is thought to contribute to the development of inflammation and antiviral state. Altered incorporation of selected host RNAs into EVs in response to infection has also been demonstrated for several viruses, but not for WNV. Considering the medical significance of flaviviruses and the importance of deeper knowledge about the mechanisms of flavivirus-host interactions we assessed the ability of West Nile virus (WNV) and type I interferon (IFN), the main cytokine regulating antiviral response to WNV, to alter the composition of EV RNA cargo. RESULTS We employed next generation sequencing to perform transcriptome-wide profiling of RNA cargo in EVs produced by cells infected with WNV or exposed to IFN-alpha. RNA profile of EVs secreted by uninfected cells was also determined and used as a reference. We found that WNV infection significantly changed the levels of certain host microRNAs (miRNAs), small noncoding RNAs (sncRNAs) and mRNAs incorporated into EVs. Treatment with IFN-alpha also altered miRNA and mRNA profiles in EV but had less profound effect on sncRNAs. Functional classification of RNAs differentially incorporated into EVs upon infection and in response to IFN-alpha treatment demonstrated association of enriched in EVs mRNAs and miRNAs with viral processes and pro-inflammatory pathways. Further analysis revealed that WNV infection and IFN-alpha treatment changed the levels of common and unique mRNAs and miRNAs in EVs and that IFN-dependent and IFN-independent processes are involved in regulation of RNA sorting into EVs during infection. CONCLUSIONS WNV infection and IFN-alpha treatment alter the spectrum and the levels of mRNAs, miRNAs and sncRNAs in EVs. Differentially incorporated mRNAs and miRNAs in EVs produced in response to WNV infection and to IFN-alpha treatment are associated with viral processes and host response to infection. WNV infection affects composition of RNA cargo in EVs via IFN-dependent and IFN-independent mechanisms.
Collapse
Affiliation(s)
- Andrii Slonchak
- The Australian Infectious Diseases Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, MBS building 76, Cooper Rd, St Lucia, QLD, 4072, Australia
| | - Brian Clarke
- The Australian Infectious Diseases Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, MBS building 76, Cooper Rd, St Lucia, QLD, 4072, Australia
- The Pirbright Institute, Ash Rd, Pirbright, Surrey, GU24 GNF, UK
| | - Jason Mackenzie
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Alberto Anastacio Amarilla
- The Australian Infectious Diseases Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, MBS building 76, Cooper Rd, St Lucia, QLD, 4072, Australia
| | - Yin Xiang Setoh
- The Australian Infectious Diseases Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, MBS building 76, Cooper Rd, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- The Australian Infectious Diseases Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, MBS building 76, Cooper Rd, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
23
|
Limthongkul J, Mapratiep N, Apichirapokey S, Suksatu A, Midoeng P, Ubol S. Insect anionic septapeptides suppress DENV replication by activating antiviral cytokines and miRNAs in primary human monocytes. Antiviral Res 2019; 168:1-8. [PMID: 31075349 DOI: 10.1016/j.antiviral.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Dengue viruses (DENVs) have threatened 2/3 of the world population for decades. Thus, combating DENV infection with either antiviral therapy or protective vaccination is an urgent goal. In the present study, we investigated the anti-DENV activity of insect cell-derived anionic septapeptides from C6/36 mosquito cell cultures persistently infected with DENV. These molecules were previously shown to protect C6/36 and Vero cells against DENV infection. We found that treatment with these septapeptides strongly and rapidly downregulated the multiplication of DENV-1 16007, DENV-3 16562, and DENV-4 1036 but not that of DENV-2 16681 in primary human monocytes. This inhibitory effect was likely mediated through various routes including the increased production of antiviral cytokines (IFN-I), activation of mononuclear cell migration, and upregulation of the expression of antiviral miRNAs (has-miR-30e*, has-miR-133a, and has-miR-223) and inflammation-related miRNAs (has-miR-146a and has-miR-147). In conclusion, anionic septapeptides exerted anti-DENV activity in human monocytes through the upregulation of innate immune responses and the activation of several previously reported antiviral and inflammation-related miRNAs.
Collapse
Affiliation(s)
- Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Nithipong Mapratiep
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Suttikarn Apichirapokey
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| | - Panuwat Midoeng
- Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand.
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
24
|
Marques M, Ramos B, Soares AR, Ribeiro D. Cellular Proteostasis During Influenza A Virus Infection-Friend or Foe? Cells 2019; 8:cells8030228. [PMID: 30857287 PMCID: PMC6468813 DOI: 10.3390/cells8030228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
In order to efficiently replicate, viruses require precise interactions with host components and often hijack the host cellular machinery for their own benefit. Several mechanisms involved in protein synthesis and processing are strongly affected and manipulated by viral infections. A better understanding of the interplay between viruses and their host-cell machinery will likely contribute to the development of novel antiviral strategies. Here, we discuss the current knowledge on the interactions between influenza A virus (IAV), the causative agent for most of the annual respiratory epidemics in humans, and the host cellular proteostasis machinery during infection. We focus on the manipulative capacity of this virus to usurp the cellular protein processing mechanisms and further review the protein quality control mechanisms in the cytosol and in the endoplasmic reticulum that are affected by this virus.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bruno Ramos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Raquel Soares
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Dos Santos RS, Marroqui L, Velayos T, Olazagoitia-Garmendia A, Jauregi-Miguel A, Castellanos-Rubio A, Eizirik DL, Castaño L, Santin I. DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway. Diabetologia 2019; 62:459-472. [PMID: 30478640 DOI: 10.1007/s00125-018-4782-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS The initial stages of type 1 diabetes are characterised by an aberrant islet inflammation that is in part regulated by the interaction between type 1 diabetes susceptibility genes and environmental factors. Chromosome 16p13 is associated with type 1 diabetes and CLEC16A is thought to be the aetiological gene in the region. Recent gene expression analysis has, however, indicated that SNPs in CLEC16A modulate the expression of a neighbouring gene with unknown function named DEXI, encoding dexamethasone-induced protein (DEXI). We therefore evaluated the role of DEXI in beta cell responses to 'danger signals' and determined the mechanisms involved. METHODS Functional studies based on silencing or overexpression of DEXI were performed in rat and human pancreatic beta cells. Beta cell inflammation and apoptosis, driven by a synthetic viral double-stranded RNA, were evaluated by real-time PCR, western blotting and luciferase assays. RESULTS DEXI-silenced beta cells exposed to a synthetic double-stranded RNA (polyinosinic:polycytidylic acid [PIC], a by-product of viral replication) showed reduced activation of signal transducer and activator of transcription (STAT) 1 and lower production of proinflammatory chemokines that was preceded by a reduction in IFNβ levels. Exposure to PIC increased chromatin-bound DEXI and IFNβ promoter activity. This effect on IFNβ promoter was inhibited in DEXI-silenced beta cells, suggesting that DEXI is implicated in the regulation of IFNβ transcription. In a mirror image of knockdown experiments, DEXI overexpression led to increased levels of STAT1 and proinflammatory chemokines. CONCLUSIONS/INTERPRETATION These observations support DEXI as the aetiological gene in the type 1 diabetes-associated 16p13 genomic region, and provide the first indication of a link between this candidate gene and the regulation of local antiviral immune responses in beta cells. Moreover, our results provide initial information on the function of DEXI.
Collapse
Affiliation(s)
- Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Instituto de Biología Molecular y Celular (IBMC), and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Instituto de Biología Molecular y Celular (IBMC), and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Velayos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country, Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Fisiology, University of the Basque Country, Leioa, Spain
| | - Amaia Jauregi-Miguel
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Fisiology, University of the Basque Country, Leioa, Spain
| | - Ainara Castellanos-Rubio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Fisiology, University of the Basque Country, Leioa, Spain
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Luis Castaño
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country, Leioa, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Izortze Santin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Barrio Sarriena, S/N, 48940, Leioa, Bizkaia, Spain.
| |
Collapse
|
26
|
Zhang F, Sun X, Zhu Y, Qin W. Downregulation of miR-146a inhibits influenza A virus replication by enhancing the type I interferon response in vitro and in vivo. Biomed Pharmacother 2019; 111:740-750. [PMID: 30611999 DOI: 10.1016/j.biopha.2018.12.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Albeit microRNAs (miRNAs) have become increasingly appreciated for their essential roles in innate immune responses to viral infections; however, it is unknown how host miRNAs regulate influenza A virus (IAV)-induced inflammation. The aim of our study was to investigate the role of miR-146a in IAV replication in vitro and in vivo. In vitro, we found miR-146a was significantly upregulated in A549 cells with IAV infection. Overexpression of miR-146a promoted IAV replication, while downregulation of miR-146a repressed replication. We found that miR-146a diminished type I interferon (IFN) responses by decreasing IFN-β production and IFN-stimulated gene (ISG) expression. Furthermore, we found the IFNs level and IAV replication regulated by miR-146a inhibitor was partially reversed by depletion of interferon receptor (IFNAR) 1 or 2. In addition, we found that miR-146a directly targets tumor necrosis factor receptor association factor 6 (TRAF6), which is involved in the production of type I IFN, and TRAF6 overexpression reversed the replication-promoting effect of miR-146a on IAV. In vivo, inhibition of miR-146a alleviated IAV-induced mice lung injury and promoted survival rates by promoting type I antiviral activities. It is, therefore, concluded that downregulation of miR-146a inhibits IAV replication by enhancing type I IFN response through its target gene TRAF6 in vitro and in vivo, suggesting miR-146a antagomir might be a potential therapeutic target during IAV infection.
Collapse
Affiliation(s)
- Fuming Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaofang Sun
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ya Zhu
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Wangsen Qin
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
27
|
Good RJ, Hernandez-Lagunas L, Allawzi A, Maltzahn JK, Vohwinkel CU, Upadhyay AK, Kompella UB, Birukov KG, Carpenter TC, Sucharov CC, Nozik-Grayck E. MicroRNA dysregulation in lung injury: the role of the miR-26a/EphA2 axis in regulation of endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2018; 315:L584-L594. [PMID: 30024304 PMCID: PMC6230876 DOI: 10.1152/ajplung.00073.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression in many diseases, although the contribution of miRNAs to the pathophysiology of lung injury remains obscure. We hypothesized that dysregulation of miRNA expression drives the changes in key genes implicated in the development of lung injury. To test our hypothesis, we utilized a model of lung injury induced early after administration of intratracheal bleomycin (0.1 U). Wild-type mice were treated with bleomycin or PBS, and lungs were collected at 4 or 7 days. A profile of lung miRNA was determined by miRNA array and confirmed by quantitative PCR and flow cytometry. Lung miR-26a was significantly decreased 7 days after bleomycin injury, and, on the basis of enrichment of predicted gene targets, it was identified as a putative regulator of cell adhesion, including the gene targets EphA2, KDR, and ROCK1, important in altered barrier function. Lung EphA2 mRNA, and protein increased in the bleomycin-injured lung. We further explored the miR-26a/EphA2 axis in vitro using human lung microvascular endothelial cells (HMVEC-L). Cells were transfected with miR-26a mimic and inhibitor, and expression of gene targets and permeability was measured. miR-26a regulated expression of EphA2 but not KDR or ROCK1. Additionally, miR-26a inhibition increased HMVEC-L permeability, and the disrupted barrier integrity due to miR-26a was blocked by EphA2 knockdown, shown by VE-cadherin staining. Our data suggest that miR-26a is an important epigenetic regulator of EphA2 expression in the pulmonary endothelium. As such, miR-26a may represent a novel therapeutic target in lung injury by mitigating EphA2-mediated changes in permeability.
Collapse
Affiliation(s)
- Ryan J. Good
- 1Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado,2Pediatric Critical Care Medicine, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Laura Hernandez-Lagunas
- 1Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado,2Pediatric Critical Care Medicine, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Ayed Allawzi
- 1Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado,2Pediatric Critical Care Medicine, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Joanne K. Maltzahn
- 1Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado,2Pediatric Critical Care Medicine, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Christine U. Vohwinkel
- 1Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado,2Pediatric Critical Care Medicine, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Arun K. Upadhyay
- 4Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Uday B. Kompella
- 4Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Konstantin G. Birukov
- 5Department of Anesthesiology and Medicine, University of Maryland, Baltimore, Maryland
| | - Todd C. Carpenter
- 1Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Carmen C. Sucharov
- 3Cardiology, Department of Pediatrics and Medicine, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| | - Eva Nozik-Grayck
- 1Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado,2Pediatric Critical Care Medicine, University of Colorado Denver Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
28
|
Nguyen TH, Liu X, Su ZZ, Hsu ACY, Foster PS, Yang M. Potential Role of MicroRNAs in the Regulation of Antiviral Responses to Influenza Infection. Front Immunol 2018; 9:1541. [PMID: 30022983 PMCID: PMC6039551 DOI: 10.3389/fimmu.2018.01541] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza is a major health burden worldwide and is caused by influenza viruses that are enveloped and negative stranded RNA viruses. Little progress has been achieved in targeted intervention, either at a population level or at an individual level (to treat the cause), due to the toxicity of drugs and ineffective vaccines against influenza viruses. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in gene expression, cell differentiation, and tissue development and have been shown to silence viral replication in a sequence-specific manner. Investigation of these small endogenous nucleotides may lead to new therapeutics against influenza virus infection. Here, we describe our current understanding of the role of miRNAs in host defense response against influenza virus, as well as their potential and limitation as new therapeutic approaches.
Collapse
Affiliation(s)
- Thi Hiep Nguyen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiaoming Liu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Zhen Zhong Su
- Department of Respiratory Medicine, The Second Hospital, Jilin University, ChangChun, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, NSW, Australia.,Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
29
|
Keshavarz M, Dianat-Moghadam H, Sofiani VH, Karimzadeh M, Zargar M, Moghoofei M, Biglari H, Ghorbani S, Nahand JS, Mirzaei H. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10:829-844. [DOI: 10.2217/epi-2017-0170] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Influenza A virus is known worldwide as a threat associated with human and livestock diseases. Hence, identification of physiological and molecular aspects of influenza A could contribute to better design of therapeutic approaches for reducing adverse effects associated with disease caused by this virus. miRNAs are epigenetic regulators playing important roles in many pathological processes that help in progression of influenza A. Besides miRNAs, exosomes have ememrged as other effective players in influenza A pathogenesis. Exosomes exert their effects via targeting their cargos (e.g., DNAs, mRNA, miRNAs and proteins) to recipient cells. Here, we summarized various roles of miRNAs and exosomes in influenza A pathogenesis. Moreover, we highlighted therapeutic applications of miRNAs and exosomes in influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medicine Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Biglari
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering & Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Nan Y, Wu C, Zhang YJ. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front Immunol 2017; 8:1758. [PMID: 29312301 PMCID: PMC5732261 DOI: 10.3389/fimmu.2017.01758] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs), which were discovered a half century ago, are a group of secreted proteins that play key roles in innate immunity against viral infection. The major signaling pathway activated by IFNs is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies with which to antagonize the JAK/STAT pathway to influence viral virulence and pathogenesis. In recent years, notable progress has been made to better understand the JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT antagonist from viral genome for attenuation, and the potential pathogenesis roles of tyrosine phosphorylation-independent non-canonical STATs activation during virus infection are discussed in detail. We expect that this review will provide new insight into the understanding the complexity of the interplay between JAK/STAT signaling and viral antagonism.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|