1
|
Ahmed M, Saini P, Iqbal U. Production, Optimization, and Characterization of Bio-cellulose Produced from Komagataeibacter (Acetobacter aceti MTCC 3347) Usage of Food Sources as Media. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:215-227. [PMID: 38305312 DOI: 10.2174/012772574x284979231231102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Bio-cellulose is a type of cellulose that is produced by some particular group of bacteria, for example, Komagataeibacter (previously known as Acetobacter), due to their natural ability to synthesize exopolysaccharide as a byproduct. Gluconacetobacter xylinus is mostly employed for the production of bio-cellulose throughout the world. Therefore, exploring other commonly available strains, such as Komagataeibacter aceti (Acetobacter aceti), is needed for cellulose production. METHODS Bio-cellulose is one of the most reliable biomaterials in the limelight because it is highly pure, crystalline, and biocompatible. Hence, it is necessary to enhance the industrial manufacturing of bio-cellulose with low costs. Different media such as fruit waste, milk whey, coconut water, sugarcane juice, mannitol broth, and H&S (Hestrin and Schramm's) broth were utilized as a medium for culture growth. Other factors like temperature, pH, and time were also optimized to achieve the highest yield of bio-cellulose. Moreover, after the synthesis of biocellulose, its physicochemical and structural properties were evaluated. RESULTS The results depicted that the highest yield of bio-cellulose (45.735 mg/mL) was found at 30 °C, pH 5, and on the 7th day of incubation. Though every culture media experimented with synthesized bio-cellulose, the maximum production (90.25 mg/mL) was reported in fruit waste media. The results also indicated that bio-cellulose has high water-holding capacity and moisture content. XRD results showed that bio-cellulose is highly crystalline in nature (54.825% crystallinity). SEM micrograph demonstrated that bio-cellulose exhibited rod-shaped, highly porous fibers. The FTIR results demonstrated characteristic and broad peaks for O-H at 3336.25 cm-1, which indicated strong O-H bonding. The thermal tests, such as DSC and TGA, indicated that bio-cellulose is a thermally stable material that can withstand temperatures even beyond 500 °C. CONCLUSION The findings demonstrated that the peel of fruits could be utilized as a substrate for synthesizing bio-cellulose by a rather cheap and easily available strain, Komagataeibacter (Acetobacter aceti MTCC 3347). This alternative culture media reduces environmental pollution, promotes economic advantages, and initiates research on sustainable science.
Collapse
Affiliation(s)
- Mazia Ahmed
- Centre of Food Technology, University of Allahabad, Prayagraj - 211002, India
| | - Pinki Saini
- Centre of Food Technology, University of Allahabad, Prayagraj - 211002, India
| | - Unaiza Iqbal
- Centre of Food Technology, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
2
|
Amason AC, Meduri A, Rao S, Leonick N, Subramaniam B, Samuel J, Gross RA. Bacterial Cellulose Cultivations Containing Gelatin Form Tunable, Highly Ordered, Laminae Structures with Fourfold Enhanced Productivity. ACS OMEGA 2022; 7:47709-47719. [PMID: 36591152 PMCID: PMC9798505 DOI: 10.1021/acsomega.2c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Manipulation of bacterial cellulose (BC) morphology is important to tune BC properties to meet specific application requirements. In this study, gelatin was added to cultivation media at 0.1-7.5 wt %. After cultivations, gelatin was removed from the BC matrix, and its effects on BC matrix characteristics and fermentation production efficiency were determined. Higher contents of gelatin in cultivation media (up to 5%) resulted in BC that, from scanning electron microscopy observations, had larger pore sizes and formation of a lamina morphology that was highly unidirectional. Crystallinity remained unchanged between 0.1 and 5 wt % gelatin concentrations (92-95%); however, it decreased to 86% at a gelatin concentration of 7.5 wt %. Mechanical properties showed a positive trend as both the specific modulus and specific strength values increased as the gelatin concentration increased to 5 wt %. A breakdown in the ordered structure of the BC matrix occurs at 7.5 wt % gelatin, with corresponding decreases in the specific modulus and specific strength of the BC. The productivity increased by almost 4-fold relative to the control, reaching 1.64 g·L-1h-1 at the 2.5 wt % gelatin content. Also, the water holding capacity increased by 3-fold relative to the control, reaching 306.6 g of water per g BC at the 5.0 wt % gelatin content. The changes observed in these BC metrics can be explained based on literature findings associated with the formation of gelatin aggregates in the cultivation media and an increase in gel stiffness seen at higher media gelatin concentrations. Overall, this work provides a roadmap for manipulating BC properties while creating highly organized lamina morphologies.
Collapse
Affiliation(s)
- Anna-Christina Amason
- Center
for Biotechnology and Interdisciplinary Studies, Department of Biological
Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
- New
York State Center for Polymer Synthesis, Department of Chemistry and
Chemical Biology, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - Aditya Meduri
- Center
for Biotechnology and Interdisciplinary Studies, Department of Biological
Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
- Jonsson
Engineering Center, Department of Mechanical Aerospace and Nuclear
Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Shivani Rao
- Center
for Biotechnology and Interdisciplinary Studies, Department of Biological
Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
- New
York State Center for Polymer Synthesis, Department of Chemistry and
Chemical Biology, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - Nicole Leonick
- Center
for Biotechnology and Interdisciplinary Studies, Department of Biological
Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
- New
York State Center for Polymer Synthesis, Department of Chemistry and
Chemical Biology, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - Bhagyashree Subramaniam
- Center
for Biotechnology and Interdisciplinary Studies, Department of Biological
Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
- New
York State Center for Polymer Synthesis, Department of Chemistry and
Chemical Biology, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - Johnson Samuel
- Center
for Biotechnology and Interdisciplinary Studies, Department of Biological
Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
- Jonsson
Engineering Center, Department of Mechanical Aerospace and Nuclear
Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Richard A. Gross
- Center
for Biotechnology and Interdisciplinary Studies, Department of Biological
Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
- New
York State Center for Polymer Synthesis, Department of Chemistry and
Chemical Biology, Rensselaer Polytechnic
Institute, 110 8th Street, Troy, New
York 12180, United
States
| |
Collapse
|
3
|
Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. NANO SELECT 2021. [DOI: 10.1002/nano.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maneesh Kumar Poddar
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal Karnataka India
| | - Pritam Kumar Dikshit
- Department of Life Sciences School of Basic Sciences and Research Sharda University Greater Noida Uttar Pradesh India
| |
Collapse
|
4
|
Ciecholewska-Juśko D, Żywicka A, Junka A, Drozd R, Sobolewski P, Migdał P, Kowalska U, Toporkiewicz M, Fijałkowski K. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydr Polym 2020; 253:117247. [PMID: 33279002 DOI: 10.1016/j.carbpol.2020.117247] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
In this work, we present a novel ex situ modification of bacterial cellulose (BC) polymer, that significantly improves its ability to absorb water after drying. The method involves a single inexpensive and easy-to-perform process of BC crosslinking, using citric acid along with catalysts, such as disodium phosphate, sodium bicarbonate, ammonium bicarbonate or their mixtures. In particular, the mixture of disodium phosphate and sodium bicarbonate was the most promising, yielding significantly greater water capacity (over 5 times higher as compared to the unmodified BC) and slower water release (over 6 times as compared to the unmodified BC). Further, our optimized crosslinked BC had over 1.5x higher water capacity than modern commercial dressings dedicated to highly exuding wounds, while exhibiting no cytotoxic effects against fibroblast cell line L929 in vitro. Therefore, our novel BC biomaterial may find application in super-absorbent dressings, designed for chronic wounds with imbalanced moisture level.
Collapse
Affiliation(s)
- Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland.
| | - Urszula Kowalska
- Centre of Bioimmobilization and Innovative Packaging Materials, West Pomeranian University of Technology, Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Monika Toporkiewicz
- Laboratory of Confocal Microscopy, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| |
Collapse
|
5
|
Sajjad W, He F, Ullah MW, Ikram M, Shah SM, Khan R, Khan T, Khalid A, Yang G, Wahid F. Fabrication of Bacterial Cellulose-Curcumin Nanocomposite as a Novel Dressing for Partial Thickness Skin Burn. Front Bioeng Biotechnol 2020; 8:553037. [PMID: 33072719 PMCID: PMC7531241 DOI: 10.3389/fbioe.2020.553037] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
The current study aimed to fabricate curcumin-loaded bacterial cellulose (BC-Cur) nanocomposite as a potential wound dressing for partial thickness burns by utilizing the therapeutic features of curcumin and unique structural, physico-chemical, and biological features of bacterial cellulose (BC). Characterization analyses confirmed the successful impregnation of curcumin into the BC matrix. Biocompatibility studies showed the better attachment and proliferation of fibroblast cells on the BC-Cur nanocomposite. The antibacterial potential of curcumin was tested against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium (S. typhimurium), and Staphylococcus aureus (S. aureus). Wound healing analysis of partial-thickness burns in Balbc mice showed an accelerated wound closure up to 64.25% after 15 days in the BC-Cur nanocomposite treated group. Histological studies showed healthy granulation tissues, fine re-epithelialization, vascularization, and resurfacing of wound bed in the BC-Cur nanocomposite group. These results indicate that combining BC with curcumin significantly improved the healing pattern. Thus, it can be concluded that the fabricated biomaterial could provide a base for the development of promising alternatives for the conventional dressing system in treating burns.
Collapse
Affiliation(s)
- Wasim Sajjad
- Department of Biomedical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Shahid Masood Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ayesha Khalid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| |
Collapse
|
6
|
Shah N, Zaman T, Rehan T, Khan S, Khan W, Khan A, Ul-Islam M. Preparation and Characterization of Agar Based Magnetic Nanocomposite for Potential Biomedical Applications. Curr Pharm Des 2019; 25:3672-3680. [PMID: 31604415 DOI: 10.2174/1381612825666191011113109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of the present study was to make a biocompatible agar based composite material via incorporation of appropriate additives within the agar matrix for potential applications in drug delivery and biomedical fields. METHODOLOGY Agar based composites were prepared by the incorporation of magnetic iron oxide nano particles, graphite and sodium aluminum as additives in different proportions within the agar matrix by a simple thermophysico- mechanical method. The as prepared agar based composites were then characterized by different techniques i.e. FTIR, SEM, TGA, XRD and EDX analyses. The FTIR peaks confirmed the presence of each component in the agar composite. SEM images showed the uniform distribution of each component in the agar composite. TGA study showed the thermal stability range of different composite sheets. XRD pattern revealed the crystallinity and EDX analysis confirmed the elemental composition of the prepared composites. The prepared agar based composites were evaluated for antimicrobial activities against three pathogenic bacterial strains Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia and the result indicated efficient antimicrobial activities for all composites. CONCLUSION From the overall study, it was concluded that due to the non-toxic nature, thermal stability and excellent antibacterial properties, the prepared agar based composites can receive potential biomedical applications.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Tahir Zaman
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah, Oman
| |
Collapse
|
7
|
Kumar R, Kumari P, Priyaragini S, Dinesh Kumar K. Fabrication of poly lactic acid incorporated bacterial cellulose adhered flax fabric biocomposites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Use of Anionic Polysaccharides in the Development of 3D Bioprinting Technology. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) bioprinting technology is now one of the best ways to generate new biomaterial for potential biomedical applications. Significant progress in this field since two decades ago has pointed the way toward use of natural biopolymers such as polysaccharides. Generally, these biopolymers such as alginate possess specific reactive groups such as carboxylate able to be chemically or enzymatically functionalized to generate very interesting hydrogel structures with biomedical applications in cell generation. This present review gives an overview of the main natural anionic polysaccharides and focuses on the description of the 3D bioprinting concept with the recent development of bioprinting processes using alginate as polysaccharide.
Collapse
|
9
|
Sajjad W, Khan T, Ul-Islam M, Khan R, Hussain Z, Khalid A, Wahid F. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym 2018; 206:548-556. [PMID: 30553356 DOI: 10.1016/j.carbpol.2018.11.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/14/2018] [Accepted: 11/08/2018] [Indexed: 11/26/2022]
Abstract
Bacterial cellulose (BC) is a promising biopolymer with wound healing and tissue regenerative properties but lack of antimicrobial property limits its biomedical applications. Therefore, current study was proposed to combine wound healing property of BC with antimicrobial activity of montmorillonite (MMT) and modified montmorillonites (Cu-MMT, Na-MMT and Ca-MMT) to design novel artificial substitute for burns. Designed nanocomposites were characterized through Fe-SEM, FTIR and XRD. The antimicrobial activities of composites were tested against Escherichia coli, Salmonella typhimurium, Citrobacter fruendii, Pseudomonas aeruginosa, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Tissue regeneration and wound healing activities of the composites were assessed in burn mice model. Physico-chemical characterization confirmed the loading of MMT onto surface and BC matrix. Modified MMTs-BC nanocomposites showed clear inhibitory zone against the tested pathogens. Animals treated with modified MMTs-BC nanocomposites exhibited enhanced wound healing activity with tissue regeneration, reepithelialization, healthy granulation and vascularization. These findings demonstrated that modified MMTs-BC nanocomposites could be used as a novel artificial skin substitute for burn patients and scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Wasim Sajjad
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Zohaib Hussain
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Ayesha Khalid
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Fazli Wahid
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
| |
Collapse
|
10
|
Jasim A, Ullah MW, Shi Z, Lin X, Yang G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym 2017; 163:62-69. [DOI: 10.1016/j.carbpol.2017.01.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/25/2016] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
|
11
|
Fijałkowski K, Żywicka A, Drozd R, Kordas M, Rakoczy R. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2016. [DOI: 10.1515/pjct-2016-0080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of the study was to analyze the changes in the parameters of bacterial cultures and bacterial cellulose (BC) synthesized by four reference strains of Gluconacetobacter xylinus during 31-day cultivation in stationary conditions. The study showed that the most visible changes in the analyzed parameters of BC, regardless of the bacterial strain used for their synthesis, were observed in the first 10–14 days of the experiment. It was also revealed, that among parameters showing dependence associated with the particular bacterial strain were the rate and period of BC synthesis, the growth rate of bacteria anchored to the cellulose fibrils, the capacity to absorb water and the water release rate. The results presented in this work may be useful in the selection of optimum culturing conditions and period from the point of view of good efficiency of the cellulose synthesis process.
Collapse
Affiliation(s)
- Karol Fijałkowski
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
| | - Anna Żywicka
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
| | - Radosław Drozd
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
| | - Marian Kordas
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastów 42, 70-311 Szczecin, Poland
| | - Rafał Rakoczy
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastów 42, 70-311 Szczecin, Poland
| |
Collapse
|
12
|
Fijałkowski K, Żywicka A, Drozd R, Junka AF, Peitler D, Kordas M, Konopacki M, Szymczyk P, Rakoczy R. Increased water content in bacterial cellulose synthesized under rotating magnetic fields. Electromagn Biol Med 2016; 36:192-201. [DOI: 10.1080/15368378.2016.1243554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym 2016; 153:406-420. [PMID: 27561512 DOI: 10.1016/j.carbpol.2016.07.059] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/23/2016] [Accepted: 07/16/2016] [Indexed: 02/07/2023]
Abstract
Bacterial cellulose (BC) produced by some bacteria, among them Gluconacetobacter xylinum, which secrets an abundant 3D networks fibrils, represents an interesting emerging biocompatible nanomaterial. Since its discovery BC has shown tremendous potential in a wide range of biomedical applications, such as artificial skin, artificial blood vessels and microvessels, wound dressing, among others. BC can be easily manipulated to improve its properties and/or functionalities resulting in several BC based nanocomposites. As example BC/collagen, BC/gelatin, BC/Fibroin, BC/Chitosan, etc. Thus, the aim of this review is to discuss about the applicability in biomedicine by demonstrating a variety of forms of this biopolymer highlighting in detail some qualities of bacterial cellulose. Therefore, various biomedical applications ranging from implants and scaffolds, carriers for drug delivery, wound-dressing materials, etc. that were reported until date will be presented.
Collapse
|
14
|
Ullah MW, Ul-Islam M, Khan S, Kim Y, Jang JH, Park JK. In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Adv 2016. [DOI: 10.1039/c5ra26704h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ synthesis of bio-cellulose/TiO2 nanocomposite possessing high thermo-mechanical and antibacterial properties and showing uniform distribution and slow release of nanoparticles.
Collapse
Affiliation(s)
- Muhammad Wajid Ullah
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Mazhar Ul-Islam
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
- Department of Chemical Engineering
| | - Shaukat Khan
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Yeji Kim
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Jae Hyun Jang
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| | - Joong Kon Park
- Department of Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Korea
| |
Collapse
|
15
|
Abstract
The aim of the study was to assess the influence of rotating magnetic field (RMF) on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC) synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest water retention capacity as compared to the samples exposed for 5 and 7 days. The observation was confirmed for both the control and RMF exposed BC. It was proved that the BC exposed samples showed up to 26% higher water retention capacity as compared to the control samples. These samples also required the highest temperature to release the water molecules. Such findings agreed with the observation via SEM examination which revealed that the structure of BC synthesized for 7 days was more compacted than the sample exposed to RMF for 3 days. Furthermore, the analysis of 2D correlation of Fourier transform infrared spectra demonstrated the impact of RMF exposure on the dynamics of BC microfibers crystallinity formation.
Collapse
|
16
|
Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr Polym 2015; 136:908-16. [PMID: 26572428 DOI: 10.1016/j.carbpol.2015.10.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/25/2015] [Accepted: 10/04/2015] [Indexed: 11/20/2022]
Abstract
This study was aimed to characterize the structural and physico-mechanical properties of bio-cellulose produced through cell-free system. Fourier transform-infrared spectrum illustrated exact matching of structural peaks with microbial cellulose, used as reference. Field-emission scanning electron microscopy revealed that fibrils of bio-cellulose were thicker and more compact than microbial cellulose. The specific positions of peaks in the X-ray diffraction and nuclear magnetic resonance spectra indicated that bio-cellulose possessed cellulose II polymorphic structure. Bio-cellulose presented superior physico-mechanical properties than microbial cellulose. The water holding capacity of bio-cellulose and microbial cellulose were found to be 188.6 ± 5.41 and 167.4 ± 4.32 times their dry-weights, respectively. Tensile strengths and degradation temperature of bio-cellulose were 17.63 MPa and 352 °C, respectively compared to 14.71 MPa and 327 °C of microbial cellulose. Overall, the results indicated successful synthesis and superior properties of bio-cellulose that advocate its effectiveness for various applications.
Collapse
|
17
|
Velmurugan P, Myung H, Govarthanan M, Yi YJ, Seo SK, Cho KM, Lovanh N, Oh BT. Production and characterization of bacterial cellulose by Leifsonia sp. CBNU-EW3 isolated from the earthworm, Eisenia fetida. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0793-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 2013; 98:1585-98. [PMID: 24053844 DOI: 10.1016/j.carbpol.2013.08.018] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
Abstract
Bacterial cellulose (BC) has received substantial interest owing to its unique structural features and impressive physico-mechanical properties. BC has a variety of applications in biomedical fields, including use as biomaterial for artificial skin, artificial blood vessels, vascular grafts, scaffolds for tissue engineering, and wound dressing. However, pristine BC lacks certain properties, which limits its applications in various fields; therefore, synthesis of BC composites has been conducted to address these limitations. A variety of BC composite synthetic strategies have been developed based on the nature and relevant applications of the combined materials. BC composites are primarily synthesized through in situ addition of reinforcement materials to BC synthetic media or the ex situ penetration of such materials into BC microfibrils. Polymer blending and solution mixing are less frequently used synthetic approaches. BC composites have been synthesized using numerous materials ranging from organic polymers to inorganic nanoparticles. In medical fields, these composites are used for tissue regeneration, healing of deep wounds, enzyme immobilization, and synthesis of medical devices that could replace cardiovascular and other connective tissues. Various electrical products, including biosensors, biocatalysts, E-papers, display devices, electrical instruments, and optoelectronic devices, are prepared from BC composites with conductive materials. In this review, we compiled various synthetic approaches for BC composite synthesis, classes of BC composites, and applications of BC composites. This study will increase interest in BC composites and the development of new ideas in this field.
Collapse
|
19
|
Jung DY, Son CW, Kim SK, Gao W, Lee JW. Enhanced production of heteropolysaccharide-7 by Beijerinckia indica HS-2001 in pilot-scaled bioreactor under optimized conditions involved in dissolved oxygen using sucrose-based medium. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Yang Y, Jia J, Xing J, Chen J, Lu S. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 2013; 92:2012-7. [DOI: 10.1016/j.carbpol.2012.11.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 11/25/2022]
|
21
|
Ul-Islam M, Ha JH, Khan T, Park JK. Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 2013; 92:360-6. [DOI: 10.1016/j.carbpol.2012.09.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
22
|
Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 2012; 92:1432-42. [PMID: 23399174 DOI: 10.1016/j.carbpol.2012.10.071] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/28/2012] [Accepted: 10/27/2012] [Indexed: 11/23/2022]
Abstract
Bacterial cellulose (BC, also known as microbial cellulose, MC) is a promising natural polymer which is biosynthesized by certain bacteria. This review focused on BC-based materials which can be utilized for skin tissue repair. Firstly, it is illustrated that BC has unique structural and mechanical properties as compared with higher plant cellulose, and is thus expected to become a commodity material. Secondly, we summarized the basic properties and different types of BC, including self-assembled, oriented BC, and multiform BC. Thirdly, composites prepared by using BC in conjunction with other polymers are explored, and the research on BC for application in skin tissue engineering is addressed. Finally, experimental results and clinical treatments assessing the performance of wound healing materials based on BC were examined. With its superior mechanical properties, as well as its excellent biocompatibility, BC was shown to have great potential for biomedical application and very high clinical value for skin tissue repair.
Collapse
|
23
|
Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 2012; 89:1189-97. [DOI: 10.1016/j.carbpol.2012.03.093] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/24/2012] [Accepted: 03/29/2012] [Indexed: 11/22/2022]
|
24
|
Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ha JH, Park JK. Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. KOREAN J CHEM ENG 2012. [DOI: 10.1007/s11814-011-0224-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Ha JH, Shah N, Ul-Islam M, Khan T, Park JK. Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.05.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-011-0042-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Elboutachfaiti R, Delattre C, Petit E, Michaud P. Polyglucuronic acids: Structures, functions and degrading enzymes. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.10.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Shezad O, Khan S, Khan T, Park JK. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.04.052] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|