1
|
Chandy M, Obal D, Wu JC. Elucidating effects of environmental exposure using human-induced pluripotent stem cell disease modeling. EMBO Mol Med 2022; 14:e13260. [PMID: 36285490 PMCID: PMC9641419 DOI: 10.15252/emmm.202013260] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful modeling system for medical discovery and translational research. To date, most studies have focused on the potential for iPSCs for regenerative medicine, drug discovery, and disease modeling. However, iPSCs are also a powerful modeling system to investigate the effects of environmental exposure on the cardiovascular system. With the emergence of e-cigarettes, air pollution, marijuana use, opioids, and microplastics as novel cardiovascular risk factors, iPSCs have the potential for elucidating the effects of these toxins on the body using conventional two-dimensional (2D) arrays and more advanced tissue engineering approaches with organoid and other three-dimensional (3D) models. The effects of these environmental factors may be enhanced by genetic polymorphisms that make some individuals more susceptible to the effects of toxins. iPSC disease modeling may reveal important gene-environment interactions that exacerbate cardiovascular disease and predispose some individuals to adverse outcomes. Thus, iPSCs and gene-editing techniques could play a pivotal role in elucidating the mechanisms of gene-environment interactions and understanding individual variability in susceptibility to environmental effects.
Collapse
Affiliation(s)
- Mark Chandy
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCAUSA
- Department of MedicineWestern UniversityLondonONCanada
- Department of Physiology and PharmacologyWestern UniversityLondonONCanada
| | - Detlef Obal
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCAUSA
- Department of Anesthesiology, Perioperative, and Pain MedicineStanford UniversityStanfordCAUSA
| | - Joseph C Wu
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCAUSA
- Department of Medicine, Division of Cardiovascular MedicineStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
2
|
Hu WS, Liao WY, Chang CH, Chen TS. Paracrine IGF-1 Activates SOD2 Expression and Regulates ROS/p53 Axis in the Treatment of Cardiac Damage in D-Galactose-Induced Aging Rats after Receiving Mesenchymal Stem Cells. J Clin Med 2022; 11:4419. [PMID: 35956039 PMCID: PMC9369306 DOI: 10.3390/jcm11154419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022] Open
Abstract
Aging is one of the causative agents associated with heart failure. Cell-based therapies show potential in the treatment of cardiac aging due to the characteristics of stem cells, including differentiation and the paracrine effect. This study aimed to investigate in detail the mechanism related to biomolecules released from mesenchymal stem cells in the treatment of cardiac aging. In vitro and in vivo models were designed to explore the above hypothesis. Experimental results from the in vitro model indicated that the elevation of oxidative stress, the expression of aging marker p53, and the suppression of antioxidant marker SOD2 could be found in D-galactose-stressed H9c2 cardiomyoblasts. The co-culture of D-galactose-stressed H9c2 with mesenchymal stem cells significantly improved the above pathological signaling. An animal model revealed that the change in cardiac structure, the accumulation of fibrotic collagen, and the activation of the above pathological signaling could be observed in heart tissues of D-galactose-stressed rats. After the rats had received mesenchymal stem cells, all the pathological conditions were significantly improved in D-galactose-stressed hearts. Further evidence indicated that the release of the survival marker IGF-1 was detected in a stem-cell-conditioned medium. Significant increases in cell viability and the expression of SOD2, as well as a reduction in oxidative stress and the suppression of p53, were found in D-galactose-stressed H9c2 cells cultured with a stem-cell-conditioned medium, whereas the depletion of IGF-1 in stem-cell-conditioned medium diminished the antiaging effect on H9c2 cells. In conclusion, the paracrine release of IGF-1 from mesenchymal stem cells increases the expression of antioxidant marker SOD2, and the expression of SOD2 reduces oxidative stress as well as suppresses p53, leading to a reduction in cardiac senescence in D-galactose-stressed rats.
Collapse
Affiliation(s)
- Wei-Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung City 40042, Taiwan;
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Wei-Yu Liao
- Traditional Chinese Medicine Department, En Chu Kong Hospital, New Taipei City 40237, Taiwan;
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Chin-Hsien Chang
- Traditional Chinese Medicine Department, En Chu Kong Hospital, New Taipei City 40237, Taiwan;
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- College of Chinese Medicine, China Medical University, Taichung City 40402, Taiwan
| | - Tung-Sheng Chen
- Graduate Program of Biotechnology and Pharmaceutical Industries, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
3
|
Berecz T, Husvéth-Tóth M, Mioulane M, Merkely B, Apáti Á, Földes G. Generation and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells for High Content Screening Purposes. Methods Mol Biol 2020; 2150:57-77. [PMID: 30941720 DOI: 10.1007/7651_2019_222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) and their differentiated derivatives became a new, promising source for in vitro screening techniques. Cell lines derived from healthy individuals can be applied for drug safety testing, while patient-derived cells provide a platform to model diseases in vitro and can be used as a tool for personalized medicine including specific drug efficacy testing and identification of new pharmacological targets as well as for tailoring pharmacological therapies. Efficient differentiation protocols yielding cardiomyocytes or endothelial cells derived from iPSCs have been developed recently. Phenotypic characterization and gene expression profiling of these derivatives can reveal clues for developmental and pathological questions. Moreover, functional analysis and cell-based assays using automated fluorescence imaging platform and high content analysis characterize cell type-specific profiles of hiPSC-derived cardiomyocytes (hiPSC-CM) and endothelial cells (hiPSC-EC) at the cellular and subcellular levels. This can be utilized in a platform which can provide multiple endpoint profiles of candidate compounds.
Collapse
Affiliation(s)
- Tünde Berecz
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Maxime Mioulane
- Biosciences, Life Science Solutions, Thermo Fisher Scientific, London, UK
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Földes
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, London, UK.
| |
Collapse
|
4
|
Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019; 20:E5760. [PMID: 31744081 PMCID: PMC6888119 DOI: 10.3390/ijms20225760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of the molecular basis and mechanisms underlying cardiac diseases is mandatory for the development of new and effective therapeutic strategies. The lack of appropriate in vitro cell models that faithfully mirror the human disease phenotypes has hampered the understanding of molecular insights responsible of heart injury and disease development. Over the past decade, important scientific advances have revolutionized the field of stem cell biology through the remarkable discovery of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). These advances allowed to achieve the long-standing ambition of modelling human disease in a dish and, more interestingly, paved the way for unprecedented opportunities to translate bench discoveries into new therapies and to come closer to a real and effective stem cell-based medicine. The possibility to generate patient-specific iPSCs, together with the new advances in stem cell differentiation procedures and the availability of novel gene editing approaches and tissue engineering, has proven to be a powerful combination for the generation of phenotypically complex, pluripotent stem cell-based cellular disease models with potential use for early diagnosis, drug screening, and personalized therapy. This review will focus on recent progress and future outcome of iPSCs technology toward a customized medicine and new therapeutic options.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Research Center for Advanced Biochemistry and Molecular Biology, University “Magna Graecia” of Catanzaro, 88100 Loc., Germaneto, Catanzaro, Italy; (S.S.); (L.S.); (G.C.)
| | | | | | | |
Collapse
|
5
|
Rodriguez ML, Beussman KM, Chun KS, Walzer MS, Yang X, Murry CE, Sniadecki NJ. Substrate Stiffness, Cell Anisotropy, and Cell-Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. ACS Biomater Sci Eng 2019; 5:3876-3888. [PMID: 33438427 DOI: 10.1021/acsbiomaterials.8b01256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can be utilized to understand the mechanisms underlying the development and progression of heart disease, as well as to develop better interventions and treatments for this disease. However, these cells are structurally and functionally immature, which undermines some of their adequacy in modeling adult heart tissue. Previous studies with immature cardiomyocytes have shown that altering substrate stiffness, cell anisotropy, and/or cell-cell contact can enhance the contractile and structural maturation of hPSC-CMs. In this study, the structural and calcium handling properties of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were enhanced by exposure to a downselected combination of these three maturation stimuli. First, hESC-CMs were seeded onto substrates composed of two commercial formulations of polydimethylsiloxane (PDMS), Sylgard 184 and Sylgard 527, whose stiffness ranged from 5 kPa to 101 kPa. Upon analyzing the morphological and calcium transient properties of these cells, it was concluded that a 21 kPa substrate yielded cells with the highest degree of maturation. Next, these PDMS substrates were microcontact-printed with laminin to force the cultured cells into rod-shaped geometries using line patterns that were 12, 18, or 24 μm in width. We found that cells on the 18 and 24 μm pattern widths had structural and functional properties that were superior to those on the 12 μm pattern. The hESC-CMs were then seeded onto these line-stamped surfaces at a density of 500 000 cells per 25-mm-diameter substrate, to enable the formation of cell-cell contacts at their distal ends. We discovered that this combination of culture conditions resulted in cells that were more structurally and functionally mature than those that were only exposed to one or two stimuli. Our results suggest that downselecting a combination of mechanobiological stimuli could prove to be an effective means of maturing hPSC-CMs in vitro.
Collapse
Affiliation(s)
- Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Katherine S Chun
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Melissa S Walzer
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.,Department of Medicine/Cardiology, University of Washington, Seattle, Washington 98195, United States
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Rikhtegar R, Pezeshkian M, Dolati S, Safaie N, Afrasiabi Rad A, Mahdipour M, Nouri M, Jodati AR, Yousefi M. Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother 2018; 109:304-313. [PMID: 30396088 DOI: 10.1016/j.biopha.2018.10.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 01/14/2023] Open
Abstract
Heart Diseases are serious and global public health concern. In spite of remarkable therapeutic developments, the prediction of patients with Heart Failure (HF) is weak, and present therapeutic attitudes do not report the fundamental problem of the cardiac tissue loss. Innovative therapies are required to reduce mortality and limit or abolish the necessity for cardiac transplantation. Stem cell-based therapies applied to the treatment of heart disease is according to the understanding that natural self-renewing procedures are inherent to the myocardium, nonetheless may not be adequate to recover the infarcted heart muscle. Following the first account of cell therapy in heart diseases, examination has kept up to rapidity; besides, several animals and human clinical trials have been conducted to preserve the capacity of numerous stem cell population in advance cardiac function and decrease infarct size. The purpose of this study was to censoriously evaluate the works performed regarding the usage of four major subgroups of stem cells, including induced Pluripotent Stem Cells (iPSC), Embryonic Stem Cells (ESCs), Cardiac Stem Cells (CDC), and Skeletal Myoblasts, in heart diseases, at the preclinical and clinical studies. Moreover, it is aimed to argue the existing disagreements, unsolved problems, and prospect directions.
Collapse
Affiliation(s)
- Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Afrasiabi Rad
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Department of Cardiac Surgery, Tabriz University of Medical, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Li J, Minami I, Shiozaki M, Yu L, Yajima S, Miyagawa S, Shiba Y, Morone N, Fukushima S, Yoshioka M, Li S, Qiao J, Li X, Wang L, Kotera H, Nakatsuji N, Sawa Y, Chen Y, Liu L. Human Pluripotent Stem Cell-Derived Cardiac Tissue-like Constructs for Repairing the Infarcted Myocardium. Stem Cell Reports 2017; 9:1546-1559. [PMID: 29107590 PMCID: PMC5829319 DOI: 10.1016/j.stemcr.2017.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
High-purity cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) are promising for drug development and myocardial regeneration. However, most hiPSC-derived CMs morphologically and functionally resemble immature rather than adult CMs, which could hamper their application. Here, we obtained high-quality cardiac tissue-like constructs (CTLCs) by cultivating hiPSC-CMs on low-thickness aligned nanofibers made of biodegradable poly(D,L-lactic-co-glycolic acid) polymer. We show that multilayered and elongated CMs could be organized at high density along aligned nanofibers in a simple one-step seeding process, resulting in upregulated cardiac biomarkers and enhanced cardiac functions. When used for drug assessment, CTLCs were much more robust than the 2D conventional control. We also demonstrated the potential of CTLCs for modeling engraftments in vitro and treating myocardial infarction in vivo. Thus, we established a handy framework for cardiac tissue engineering, which holds high potential for pharmaceutical and clinical applications. hiPSC-CMs are seeded on aligned nanofibers to obtain 3D cardiac tissue-like constructs Drug assessment using CTLCs can be more robust than conventional cultures CTLCs can be used to model in vitro cardiac tissue engraftment CTLCs improve the function of rat hearts with myocardial infarction
Collapse
Affiliation(s)
- Junjun Li
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Nanometorics Laboratory, Department of Micro Engineering, Kyoto University, Katsura, Nishi-ku, Kyoto 615-8540, Japan
| | - Itsunari Minami
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Motoko Shiozaki
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Leqian Yu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Nanometorics Laboratory, Department of Micro Engineering, Kyoto University, Katsura, Nishi-ku, Kyoto 615-8540, Japan
| | - Shin Yajima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Shiba
- Institute for Biomedical Sciences, Department of Cardiovascular Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Nobuhiro Morone
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sisi Li
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; PASTEUR, Département de chimie, école normale supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS, 75005 Paris, France
| | - Jing Qiao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Nanometorics Laboratory, Department of Micro Engineering, Kyoto University, Katsura, Nishi-ku, Kyoto 615-8540, Japan
| | - Xin Li
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lin Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidetoshi Kotera
- Nanometorics Laboratory, Department of Micro Engineering, Kyoto University, Katsura, Nishi-ku, Kyoto 615-8540, Japan
| | - Norio Nakatsuji
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; PASTEUR, Département de chimie, école normale supérieure, PSL Research University, Sorbonne Universités, UPMC Université Paris 06, CNRS, 75005 Paris, France.
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Nanometorics Laboratory, Department of Micro Engineering, Kyoto University, Katsura, Nishi-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
8
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
9
|
|
10
|
Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci 2015; 145:98-113. [PMID: 26682938 DOI: 10.1016/j.lfs.2015.12.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/08/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
The human heart is considered a non-regenerative organ. Worldwide, cardiovascular diseases continue to be the leading cause of death. Despite advances in cardiac treatment, myocardial repair remains severely limited by the lack of an appropriate source of viable cardiomyocytes (CMs) to replace damaged tissue. Human pluripotent stem cells (hPSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can efficiently be differentiated into functional CMs necessary for cell replacement therapy and other potential applications. The number of protocols that derive CMs from hPSCs has increased exponentially over the past decade following observation of the first human beating CMs. A number of highly efficient, chemical based protocols have been developed to generate human CMs (hCMs) in small-scale and large-scale suspension systems. To reduce the heterogeneity of hPSC-derived CMs, the differentiation protocols were modulated to exclusively generate atrial-, ventricular-, and nodal-like CM subtypes. Recently, remarkable advances have been achieved in hCM generation including chemical-based cardiac differentiation, cardiac subtype specification, large-scale suspension culture differentiation, and development of chemically defined culture conditions. These hCMs could be useful particularly in the context of in vitro disease modeling, pharmaceutical screening and in cellular replacement therapies once the safety issues are overcome. Herein we review recent progress in the in vitro generation of CMs and cardiac subtypes from hPSCs and discuss their potential applications and current limitations.
Collapse
|
11
|
Matsa E, Burridge PW, Wu JC. Human stem cells for modeling heart disease and for drug discovery. Sci Transl Med 2015; 6:239ps6. [PMID: 24898747 DOI: 10.1126/scitranslmed.3008921] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A major research focus in the field of cardiovascular medicine is the prospect of using stem cells and progenitor cells for cardiac regeneration. With the advent of induced pluripotent stem cell (iPSC) technology, major efforts are also underway to use iPSCs to model heart disease, to screen for new drugs, and to test candidate drugs for cardiotoxicity. Here, we discuss recent advances in the exciting fields of stem cells and cardiovascular disease.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul W Burridge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Guidelines for translational research in heart failure. J Cardiovasc Transl Res 2015; 8:3-22. [PMID: 25604959 DOI: 10.1007/s12265-015-9606-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) remains a major cause of death and hospitalization worldwide. Despite medical advances, the prognosis of HF remains poor and new therapeutic approaches are urgently needed. The development of new therapies for HF is hindered by inappropriate or incomplete preclinical studies. In these guidelines, we present a number of recommendations to enhance similarity between HF animal models and the human condition in order to reduce the chances of failure in subsequent clinical trials. We propose different approaches to address safety as well as efficacy of new therapeutic products. We also propose that good practice rules are followed from the outset so that the chances of eventual approval by regulatory agencies increase. We hope that these guidelines will help improve the translation of results from animal models to humans and thereby contribute to more successful clinical trials and development of new therapies for HF.
Collapse
|
13
|
Abstract
Cardiac regeneration strategies and de novo generation of cardiomyocytes have long been significant areas of research interest in cardiovascular medicine. In this review, we outline a variety of common cell sources and methods used to regenerate cardiomyocytes and highlight the important role that key Circulation Research articles have played in this flourishing field.
Collapse
Affiliation(s)
- Elena Matsa
- From the Stanford Cardiovascular Institute, Departments of Medicine and Radiology, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | | |
Collapse
|
14
|
Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 2013; 31:829-37. [PMID: 23355363 PMCID: PMC3749929 DOI: 10.1002/stem.1331] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPS-CM) may offer a number of advantages over previous cardiac models, however, questions of their immaturity complicate their adoption as a new in vitro model. hPS-CM differ from adult cardiomyocytes with respect to structure, proliferation, metabolism and electrophysiology, better approximating fetal cardiomyocytes. Time in culture appears to significantly impact phenotype, leading to what can be referred to as early and late hPS-CM. This work surveys the phenotype of hPS-CM, including structure, bioenergetics, sensitivity to damage, gene expression, and electrophysiology, including action potential, ion channels, and intracellular calcium stores, while contrasting fetal and adult CM with hPS-CM at early and late time points after onset of differentiation.
Collapse
Affiliation(s)
- Claire Robertson
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - David D. Tran
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
| | - Steven C. George
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
- Department of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
15
|
Matsa E, Dixon JE, Medway C, Georgiou O, Patel MJ, Morgan K, Kemp PJ, Staniforth A, Mellor I, Denning C. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur Heart J 2013; 35:1078-87. [PMID: 23470493 PMCID: PMC3992427 DOI: 10.1093/eurheartj/eht067] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart.
Collapse
Affiliation(s)
- Elena Matsa
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Földes G, Mioulane M. High-content imaging and analysis of pluripotent stem cell-derived cardiomyocytes. Methods Mol Biol 2013; 1052:29-39. [PMID: 23640255 DOI: 10.1007/7651_2013_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human pluripotent stem cells (hPSC) are investigated as a source of authentic human cardiac cells for drug discovery and toxicological tests. Cell-based assays using automated fluorescence imaging platform and high-content analysis characterize hypertrophic and toxicity profiles of compounds in hPSC-derived cardiomyocytes (hPSC-CM) at the cellular and subcellular levels. In purified population of hPSC-CM loaded with cell tracer probe and cell death markers, both hypertrophic and toxicity profiles can be assessed in live cardiomyocyte cultures. Alternatively, in non-purified cultures of hPSC-CM, hypertrophy, proliferation, and cell death assays can be performed specifically in the cardiomyocyte subpopulation using antibodies directed against cardiac proteins and a combination of cell death- and proliferation-specific fluorescent probes.
Collapse
Affiliation(s)
- Gábor Földes
- Imperial Centre for Experimental and Translational Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
17
|
Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 2012; 6:37-45. [PMID: 23054660 DOI: 10.1007/s12265-012-9412-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/20/2012] [Indexed: 12/13/2022]
Abstract
The potency of specific transcription factors as cell fate determinants was first demonstrated by the discovery of MyoD, a master gene for skeletal muscle transdifferentiation. More recently, the induction of pluripotency in somatic cells using a combination of stem cell-specific transcription factors has been reported. That elegant study altered the approach to regenerative medicine and inspired new strategies for generating specific cell types by introducing combinations of lineage-specific transcription factors. A diverse range of cell types, such as pancreatic β-cells, neurons, chondrocytes, and hepatocytes, can be induced from heterologous cells using lineage-specific reprogramming factors. Furthermore, functional cardiomyocytes can be generated directly from differentiated somatic cells using several combinations of cardiac-enriched defined factors in the mouse. The present article reviews the pioneering and recent studies in cellular reprogramming and discusses the perspectives and challenges of direct cardiac reprogramming in regenerative therapy.
Collapse
|
18
|
Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012; 5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantation is still the only effective therapy to address this cardiomyocyte loss. However, drawbacks, such as immune rejection and insufficient donor availability, are limiting this last-resort solution. Recent developments in the stem cell biology field have improved the potential of cardiac regeneration. Improvements in reprogramming strategies of differentiated adult cells into induced pluripotent stem cells, together with increased efficiency of directed differentiation of pluripotent stem cells toward cardiac myocytes, have brought cell-based heart muscle regeneration a few steps closer to the clinic. In this review, we outline the status of research on cardiac regeneration with a focus on directed differentiation of pluripotent stem cells toward the cardiac lineage.
Collapse
Affiliation(s)
- Pieterjan Dierickx
- Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|