1
|
Sun H, Liu Y, Wang X, Shu L. A network pharmacology-based method to explore the therapeutic effect of honokiol on diabetes with comorbid depression in mice. Eur J Pharmacol 2024; 975:176642. [PMID: 38754538 DOI: 10.1016/j.ejphar.2024.176642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The effective treatment of diabetes with comorbid depression is a big challenge so far. Honokiol, a bioactive compound from the dietary supplement Magnolia officinalis extract, possesses multiple health benefits. The present study aims to propose a network pharmacology-based method to elucidate potential targets of honokiol in treating diabetes with comorbid depression and related mechanisms. The antidepressant-like efficacy of honokiol was evaluated in high-fat diet (HFD) induced diabetic mice using animal behavior testing, immuno-staining and western blotting assay. Through network pharmacology analysis, retinoid X receptor alpha (RXRα) and vitamin D receptor (VDR) were identified as potential targets related to diabetes and depression. The stable binding conformation between honokiol and RXR/VDR was determined by molecular docking simulation. Moreover, hononkiol effectively alleviated depression-like behaviors in HFD diabetic mice, presented anti-diabetic and anti-neuroinflammatory functions, and protected the hippocampal neuroplasticity. Importantly, honokiol could activate RXR/VDR heterodimer in vivo. The beneficial effects of honokiol on HFD mice were significantly suppressed by UVI3003 (a RXR antagonist), while enhanced by calcitriol (a VDR agonist). Additionally, the disruption of autophagy in the hippocampus of HFD mice was ameliorated by honokiol, which was attenuated by UVI3003 but strengthened by calcitriol. Taken together, the data provide new evidence that honokiol exerts the antidepressant-like effect in HFD diabetic mice via activating RXR/VDR heterodimer to restore the balance of autophagy. Our findings indicate that the RXR/VDR-mediated signaling might be a potential target for treating diabetes with comorbid depression.
Collapse
Affiliation(s)
- Haonan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yumin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuedong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luan Shu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Oral Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Szałabska-Rąpała K, Zych M, Borymska W, Londzin P, Dudek S, Kaczmarczyk-Żebrowska I. Beneficial effect of honokiol and magnolol on polyol pathway and oxidative stress parameters in the testes of diabetic rats. Biomed Pharmacother 2024; 172:116265. [PMID: 38364735 DOI: 10.1016/j.biopha.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
In diabetes hyperglycemia, excessive production of free radicals and present oxidative stress lead to many complications in the body, including male reproductive system disorders. To prevent the development of diabetic complications in the testes resulting from them, it seems beneficial to include compounds considered as natural antioxidants. Honokiol and magnolol are neolignans obtained from magnolia bark, which possess proven antioxidant properties. The aim of this study was to evaluate the effect of honokiol and magnolol on the parameters of oxidative stress, polyol pathway and glycation products in the testes as well as on selected biochemical parameters in the blood serum of rats with type 2 diabetes. The study was conducted on mature male Wistar rats with high fat diet and streptozotocin-induced type 2 diabetes. Neolignans-treated rats received honokiol or magnolol orally at the doses of 5 or 25 mg/kg, respectively, for 4 weeks. Parameters related to glucose and lipid homeostasis, basic serological parameters and sex hormones level in the serum as well as polyol pathway parameters, antioxidant enzyme activity, endogenous antioxidants level, sumaric parameters for oxidative stress and oxidative damage in the testes were estimated. Oral administration of honokiol and magnolol turned out to be beneficial in combating the effects of oxidative stess in the testes, but showed no favorable effects on serum biochemical parameters. Additionally, magnolol compared to honokiol revealed more advantageous impact indicating the reversal of the effects of diabetic complications in the male reproductive system and counteracted oxidative stress damages and polyol pathway disorders in the testes.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| |
Collapse
|
3
|
Jiao H, Fan Y, Gong A, Li T, Fu X, Yan Z. Xiaoyaosan ameliorates CUMS-induced depressive-like and anorexia behaviors in mice via necroptosis related cellular senescence in hypothalamus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116938. [PMID: 37495029 DOI: 10.1016/j.jep.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression and anorexia often co-occur and share symptoms such as low mood, lack of energy, and weight loss. Xiaoyaosan is a classic formula comprising of a combination of eight herbs, possessing definitive therapeutic effects, minimal side effects, and economical benefits. It has been extensively employed in clinical treatment of ailments and symptoms such as depression, anxiety, and appetite problems. Nonetheless, its exact pharmacological mechanism with necroptosis remains incompletely explicit. AIM OF THE STUDY The aim of this study is to explore the potential mechanisms of anti-depressive and appetite-regulating effects of the active ingredients in Xiaoyaosan, and to investigate whether there is a correlation with necroptosis. MATERIALS AND METHODS The network pharmacology method was conducted to identify active ingredients, which were used to predict the possible targets of Xiaoyaosan and explore the potential targets in treating depression and anorexia by overlapping with differentially expressed genes (DEGs) screened from GEO datasets (GSE125441, GSE198597, and GSE69151). Afterwards, the protein-protein interaction (PPI) network, enrichment analyses, hub gene identification, co-expression study and molecular docking were used to study the potential mechanism of Xiaoyaosan. Then, a mice model of depression was established by chronic unpredictable mild stress (CUMS) and the incidence of necroptosis in the hypothalamus of CUMS mice was investigated, while verifying the key therapeutic target of Xiaoyaosan. RESULTS Through network pharmacology research, it had been discovered that the 145 active ingredients of the 8 herbs in the Xiaoyaosan could regulate 198 disease targets. Through PPI network analysis and functional enrichment analysis, it had been found that the pharmacological mechanism of Xiaoyaosan mainly involved biological processes such as oxidative stress, kinase activity, and DNA metabolism. It is related to various pathways such as cellular senescence, immune inflammation, and the cell cycle, and 9 hub targets had been identified. Further analysis of the 9 hub targets and the key PPI network clusters clarified the key mechanisms by which Xiaoyaosan exerts anti-depressant and appetite regulating effects, possibly related to necroptosis-mediated cellular senescence. Molecular docking of the key indicators of cellular senescence screened by bioinformatics, SIRT1, ABL1, and MYC, revealed that the key component regulating SIRT1 is 2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-6-[3-methylbut-2-enyl]chromone in licorice root, Glabridin in licorice root regulates ABL1, and β-sitosterol found in Chinese angelica, debark peony root, and fresh ginger regulates MYC. Finally, through in vivo experiments, the expression of necroptosis in the hypothalamus of CUMS mice was verified. The regulatory effects of Xiaoyaosan on key substances RIPK1, RIPK3, MLKL, and p-MLKL were determined, while regulating effects on SIRT1, ABL1, and MYC were also observed. CONCLUSION The present study have revealed the common mechanism of Xiaoyaosan in treating depression and anorexia, indicating that the active ingredients of Xiaoyaosan may alleviate the symptoms of depression and anorexia by intervening in the pathways related to necroptosis and cellular senescence. The hub genes and common pathways identified by the study also provide new insights into the therapeutic targets of depression and anorexia, as well as the exploration of pharmacological mechanism of Xiaoyaosan.
Collapse
Affiliation(s)
- Haiyan Jiao
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yingli Fan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Tian Li
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Xing Fu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China; Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
4
|
Faysal M, Khan J, Zehravi M, Nath N, Singh LP, Kakkar S, Perusomula R, Khan PA, Nainu F, Asiri M, Khan SL, Das R, Emran TB, Wilairatana P. Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint. Chin Med 2023; 18:154. [PMID: 38001538 PMCID: PMC10668527 DOI: 10.1186/s13020-023-00846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Honokiol is a neolignan biphenol found in aerial parts of the Magnolia plant species. The Magnolia plant species traditionally belong to China and have been used for centuries to treat many pathological conditions. Honokiol mitigates the severity of several pathological conditions and has the potential to work as an anti-inflammatory, anti-angiogenic, anticancer, antioxidant, and neurotherapeutic agent. It has a long history of being employed in the healthcare practices of Southeast Asia, but in recent years, a greater scope of research has been conducted on it. Plenty of experimental evidence suggests it could be beneficial as a neuroprotective bioactive molecule. Honokiol has several pharmacological effects, leading to its exploration as a potential therapy for neurological diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, spinal cord injury, and so on. So, based on the previous experimentation reports, our goal is to discuss the neuroprotective properties of honokiol. Besides, honokiol derivatives have been highlighted recently as possible therapeutic options for NDs. So, this review focuses on honokiol's neurotherapeutic actions and toxicological profile to determine their safety and potential use in neurotherapeutics.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram, (Rohtas), Bihar, 821305, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajashekar Perusomula
- Cognitive Science Research Initiative Lab, Vishnu Institute of Pharmaceutical Education & Research, Narsapur, India
| | - Pathan Amanulla Khan
- Department of Pharmacy Practice, Anwar Ul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, 413520, India
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Dai X, Xie L, Liu K, Liang Y, Cao Y, Lu J, Wang X, Zhang X, Li X. The Neuropharmacological Effects of Magnolol and Honokiol: A Review of Signal Pathways and Molecular Mechanisms. Curr Mol Pharmacol 2023; 16:161-177. [PMID: 35196977 DOI: 10.2174/1874467215666220223141101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Magnolol and honokiol are natural lignans with good physiological effects. As the main active substances derived from Magnolia officinalis, their pharmacological activities have attracted extensive attention. It is reported that both of them can cross the blood-brain barrier (BBB) and exert neuroprotective effects through a variety of mechanisms. This suggests that these two ingredients can be used as effective therapeutic compounds to treat a wide range of neurological diseases. This article provides a review of the mechanisms involved in the therapeutic effects of magnolol and honokiol in combating diseases, such as cerebral ischemia, neuroinflammation, Alzheimer's disease, and brain tumors, as well as psychiatric disorders, such as anxiety and depression. Although magnolol and honokiol have the pharmacological effects described above, their clinical potential remains untapped. More research is needed to improve the bioavailability of magnolol and honokiol and perform experiments to examine the therapeutic potential of magnolol and honokiol.
Collapse
Affiliation(s)
- Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| |
Collapse
|
6
|
SIRT3 activation promotes enteric neurons survival and differentiation. Sci Rep 2022; 12:22076. [PMID: 36543902 PMCID: PMC9772335 DOI: 10.1038/s41598-022-26634-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Enteric neuron degeneration has been observed during aging, and in individuals with metabolic dysfunction including obesity and diabetes. Honokiol, a naturally occurring compound, is an activator of Sirtuin-3 (SIRT3) that has antioxidant activity. Its role in modulating enteric neuron-specific neurodegeneration is unknown. We studied the effects of honokiol and its fluorinated analog, hexafluoro-honokiol, on enteric neuronal differentiation and survival. We used a previously established model of mouse primary enteric neuronal cells and an enteric neuronal cell line treated with palmitate (PA) and lipopolysaccharide (LPS) to induce mitochondrial dysfunction and enteric neuronal cell death. The effect of honokiol and hexafluoro-honokiol was assessed on neuronal phenotype, fiber density, differentiation, and pyroptosis. Honokiol and hexafluoro-honokiol significantly increased neuronal networks and fiber density in enteric neurons and increased levels of neuronal nitric oxide synthase and Choline acetyltransferase mRNA. Hexafluoro-honokiol and honokiol also significantly increased SIRT3 mRNA levels and suppressed palmitate and LPS-induced neuronal pyroptosis. SIRT3 knock-down prevented the hexafluoro-honokiol mediated suppression of mitochondrial superoxide release. Our data supports a neuroprotective effect of honokiol and its derivative and these could be used as prophylactic or therapeutic agents for treating enteric neurodegeneration and associated motility disorders.
Collapse
|
7
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
8
|
Bai Y, Dai G, Song L, Gu X, Ba N, Ju W, Zhang W. Potential Anti-Depressive Effects and Mechanisms of Zhi-Zi Hou-Po Decoction Using Behavioral Despair Tests Combined With in Vitro Approaches. Front Pharmacol 2022; 13:918776. [PMID: 35873590 PMCID: PMC9298739 DOI: 10.3389/fphar.2022.918776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Zhi-Zi Hou-Po Decoction (ZHD) has been widely used in the treatment of depression for centuries. This study aimed to investigate the antidepressant effects of the water extract of ZHD (ZHD-WE) and ethanol extract of ZHD (ZHD-EE) using behavioral despair tests in mice, and to further explore the neuroprotective effects in a PC12 cell injury model induced by corticosterone (CORT). Mice were divided into a control group (normal saline), ZHD-WE groups (4, 8, and 16 g kg-1), ZHD-EE groups (4, 8, and 16 g kg-1) and the fluoxetine group (20 mg kg-1). The forced swimming test (FST) and tail suspension test (TST) were used to screen the antidepressant effects of ZHD-WE and ZHD-EE after oral administration for seven consecutive days. The level of brain-derived neurotrophic factor (BDNF) in the hippocampus was determined by ELISA. The MTT, lactate dehydrogenase (LDH) and flow cytometry analysis were performed to elucidate the neuroprotective effect of ZHD-EE on a PC12 cell injury model. Additionally, the mRNA and proteins expression of apoptotic molecules Bax, Bcl-2 and BDNF were detected by RT-PCR and western blot assay. It showed that ZHD-EE at concentrations of 8 and 16 g kg-1 significantly decreased the immobility time in the TST and FST, and increased the BDNF levels in the hippocampus. While ZHD-WE at concentrations of 4, 8, and 16 g kg-1 had no significant effect on the immobility time in the TST, and only the 16 g kg-1 of extract group significantly decreased the immobility time in the FST. In vitro, the obtained results showed that PC12 cells pre-incubated with ZHD-EE at concentrations of 100 and 400 μg ml-1 improved cell viability, decreased LDH release, and reduced apoptosis rate of PC12 cells. Moreover, ZHD-EE significantly increased the mRNA and proteins expression of Bcl-2 and BDNF, while decreased the mRNA and protein expression of Bax. ZHD-EE significantly improved despair-like behavior in mice, and its mechanism may be related to BDNF upregulation in the hippocampus. This study also showed that ZHD-EE had a protective effect on CORT-induced injury in PC12 cells by upregulating the expression of BDNF and restoring Bcl-2/Bax balance.
Collapse
Affiliation(s)
- Yongtao Bai
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lihua Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaolei Gu
- Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ning Ba
- Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Tan Y, Yu H, Sun S, Gan S, Gong R, Mou KJ, Xue J, Xu S, Wu J, Ma L. Honokiol exerts protective effects on neural myelin sheaths after compressed spinal cord injury by inhibiting oligodendrocyte apoptosis through regulation of ER-mitochondrial interactions. J Spinal Cord Med 2022; 45:595-604. [PMID: 33830903 PMCID: PMC9246194 DOI: 10.1080/10790268.2021.1890878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To investigate the effect of honokiol on demyelination after compressed spinal cord injury (CSCI) and it's possible mechanism. DESIGN Animal experiment study. SETTING Institute of Neuroscience of Chongqing Medical University. INTERVENTIONS Total of 69 Sprague-Dawley (SD) rats were randomly divided into 3 groups: sham group (n=15), honokiol group (n=27) and vehicle group (n=27). After established CSCI model by a custom-made compressor successfully, the rats of sham group were subjected to the limited laminectomy without compression; the rats of honokiol group were subjected to CSCI surgery and intraperitoneal injection of 20 mg/kg honokiol; the rats of vehicle group were subjected to CSCI surgery and intraperitoneal injection of an equivalent volume of saline.Outcome measures: The locomotor function of each group was assessed using the Basso, Beattie and Bresnahan (BBB) rating scale. The pathological changes of myelinated nerve fibers of spinal cord in 3 groups were detected by osmic acid staining and transmission electron microcopy (TME). Immunofluorescence and Western blot were used to research the experessions of active caspase-3, caspase-12, cytochrome C and myelin basic protein (MBP) respectively. RESULTS In the vehicle group, the rats became paralyzed and spastic after injury, and the myelin sheath became swollen and broken down along with decreased number of myelinated nerve fibers. Western blot analysis manifested that active caspase-3, caspase-12 and cytochrome C began to increase 1 d after injury while the expression of MBP decreased gradually. After intervened with honokiol for 6 days, compared with the vehicle group, the locomotor function and the pathomorphological changes of myelin sheath of the CSCD rats were improved with obviously decreased expression of active caspase-3, caspase-12 and cytochrome C. CONCLUSIONS Honokiol may improve locomotor function and protect neural myelin sheat from demyelination via prevention oligodendrocytes (OLs) apoptosis through mediate endoplasmic reticulum (ER)-mitochondria pathway after CSCI.
Collapse
Affiliation(s)
- Yong Tan
- Medical College, China Three Gorges University, Yichang, Hubei, People's Republic of China
| | - Haijun Yu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shengwei Gan
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui Gong
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ke-Jie Mou
- Bishan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Xue
- Bishan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiye Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiangfeng Wu
- Medical College, China Three Gorges University, Yichang, Hubei, People's Republic of China
| | - Lan Ma
- Medical College, China Three Gorges University, Yichang, Hubei, People's Republic of China
| |
Collapse
|
10
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
11
|
Rauf A, Olatunde A, Imran M, Alhumaydhi FA, Aljohani ASM, Khan SA, Uddin MS, Mitra S, Emran TB, Khayrullin M, Rebezov M, Kamal MA, Shariati MA. Honokiol: A review of its pharmacological potential and therapeutic insights. PHYTOMEDICINE 2021; 90:153647. [PMID: 34362632 DOI: 10.1016/j.phymed.2021.153647] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Honokiol is a pleiotropic compound which been isolated from Magnolia species such as Magnolia grandiflora and Magnolia dealbata. Magnolia species Magnolia grandiflora is used in traditional medicine for the treatment of various diseases. PURPOSE The objective of this review is to summarize the pharmacological potential and therapeutic insights of honokiol. STUDY DESIGN Honokiol has been specified as a novel alternative to treat various disorders such as liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties and others. Therefore, this study designed to represent the in-depth therapeutic potential of honokiol. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using the keywords 'Honokiol', 'Health Benefits' and 'Therapeutic Insights' as the keywords for primary searches and secondary search terms were used as follows: 'Anticancer', 'Oxidative Stress', 'Neuroprotective', 'Antimicrobial', 'Cardioprotection', 'Hepatoprotective', 'Anti-inflammatory', 'Arthritis', 'Reproductive Disorders'. RESULTS This promising bioactive compound presented an wide range of therapeutic and biological activities which include liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties, and others. Its pharmacokinetics has been established in experimental animals, while in humans, this is still speculative. Some of its mechanism for exhibiting its pharmacological effects includes apoptosis of diseased cells, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6), amelioration of impaired hepatic enzymes and reversal of morphological alterations, among others. CONCLUSION All these actions displayed by this novel compound could make it serve as a lead in the formulation of drugs with higher efficacy and negligible side effects utilized in the treatment of several human diseases.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, University of Lahore, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4381, Bangladesh
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation
| | - Maksim Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation; V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109029, Moscow, Russian Federation.; Ural State Agrarian University, 620075 Yekaterinburg, Russian Federation
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation
| |
Collapse
|
12
|
Claisened Hexafluoro Inhibits Metastatic Spreading of Amoeboid Melanoma Cells. Cancers (Basel) 2021; 13:cancers13143551. [PMID: 34298765 PMCID: PMC8305480 DOI: 10.3390/cancers13143551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Metastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application. Here, we tested Claisened Hexafluoro as a novel inhibitor of the amoeboid motility. Reported data demonstrate that Claisened Hexafluoro specifically inhibits melanoma cells moving through amoeboid motility by deregulating mitochondrial activity and activating the AMPK signaling. Moreover, Claisened Hexafluoro is able to interfere with the adhesion abilities and the stemness features of melanoma cells, thus decreasing the in vivo metastatic process. This evidence may contribute to pave the way for future possible therapeutic applications of Claisened Hexafluoro to counteract metastatic melanoma dissemination.
Collapse
|
13
|
Chen C, Zhang QW, Ye Y, Lin LG. Honokiol: A naturally occurring lignan with pleiotropic bioactivities. Chin J Nat Med 2021; 19:481-490. [PMID: 34247771 DOI: 10.1016/s1875-5364(21)60047-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Honokiol is the dominant biphenolic compound isolated from the Magnolia tree, and has long been considered as the active constituent of the traditional Chinese herb, 'Houpo', which is widely used to treat symptoms due to 'stagnation of qi'. Pharmacological studies have shown that honokiol possesses a wide range of bioactivities without obvious toxicity. Honokiol protects the liver, kidneys, nervous system, and cardiovascular system through reducing oxidative stress and relieving inflammation. Moreover, honokiol shows anti-diabetic property through enhancing insulin sensitivity, and anti-obese property through promoting browning of adipocytes. In vivo and in vitro studies indicated that honokiol functions as an anti-cancer agent through multiple mechanisms: inhibiting angiogenesis, promoting cell apoptosis, and regulating cell cycle. A variety of therapeutic effects of honokiol may be associated with its physiochemical properties, which make honokiol readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier, with high bioavailability. In the future, more clinical researches on honokiol are needed to fully authenticate its therapeutic values.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
14
|
CYP3A Excipient-Based Microemulsion Prolongs the Effect of Magnolol on Ischemia Stroke Rats. Pharmaceutics 2020; 12:pharmaceutics12080737. [PMID: 32764430 PMCID: PMC7464078 DOI: 10.3390/pharmaceutics12080737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Magnolol, which is a CYP3A substrate, is a well-known agent that can facilitate neuroprotection and reduce ischemic brain damage. However, a well-controlled release formulation is needed for the effective delivery of magnolol due to its poor water solubility. In this study, we have developed a formulation for a CYP3A-excipient microemulsion, which can be administrated intraperitoneally to increase the solubility and bioavailability of magnolol and increase its neuroprotective effect against ischemic brain injury. The results showed a significant improvement in the area under the plotted curve of drug concentration versus time curve (AUC0–t) and mean residence time (MRT) of magnolol in microemulsion compared to when it was dissolved in dimethyl sulfoxide (DMSO). Both magnolol in DMSO and microemulsion, administrated after the onset of ischemia, showed a reduced visual brain infarct size. As such, this demonstrates a therapeutic effect on ischemic brain injury caused by occlusion, however it is important to note that a pharmacological effect cannot be concluded by this study. Ultimately, our study suggests that the excipient inhibitor-based microemulsion formulation could be a promising concept for the substrate drugs of CYP3A.
Collapse
|
15
|
Li J, Li MR, Sun B, Liu CM, Ren J, Zhi WQ, Zhang PY, Qiao HL, Gao N. Inhibition of Rat CYP1A2 and CYP2C11 by Honokiol, a Component of Traditional Chinese Medicine. Eur J Drug Metab Pharmacokinet 2019; 44:787-796. [DOI: 10.1007/s13318-019-00565-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
17
|
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99:101-116. [DOI: 10.1016/j.neubiorev.2018.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
|
18
|
Wang C, Gan D, Wu J, Liao M, Liao X, Ai W. Honokiol Exerts Antidepressant Effects in Rats Exposed to Chronic Unpredictable Mild Stress by Regulating Brain Derived Neurotrophic Factor Level and Hypothalamus-Pituitary-Adrenal Axis Activity. Neurochem Res 2018; 43:1519-1528. [PMID: 29855846 DOI: 10.1007/s11064-018-2566-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Honokiol (HNK), the main active component of Magnolia officinalis, has shown a variety of pharmacological activities. In the present study, we measured the antidepressant-like effects of HNK in a rat model of chronic unpredictable mild stress (CUMS) and explored its possible mechanisms. The antidepressant-like effects of HNK were assessed in rats by an open field test (OFT), sucrose preference test (SPT) and forced swimming test (FST). Then, serum levels of corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) and hippocampal brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor α (GRα) levels were assessed to explore the possible mechanisms. We identified that HNK treatment (2, 4, and 8 mg/kg) alleviated the CUMS-induced behavioural deficits. Treatment with HNK also normalized the CUMS-induced hyperactivity of the limbic hypothalamic-pituitary-adrenal (HPA) axis, as indicated by reduced CRH, ACTH and CORT serum levels. In addition, HNK increased the expression of GRα (mRNA and protein) and BDNF (mRNA and protein) in the hippocampus. These data confirmed the antidepressant-like effects of HNK, which may be related to its normalizing the function of the HPA axis and increasing the BDNF level in the hippocampus.
Collapse
Affiliation(s)
- Canmao Wang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, Guangdong, 518000, China
| | - Danna Gan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Jingang Wu
- The Second People's Hospital of China Three Gorges University, Yichang, Hubei, 443000, China
| | - Minhui Liao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Xinghuan Liao
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, Guangdong, 518000, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
19
|
Deng Y, Han X, Tang S, Li C, Xiao W, Tan Z. Magnolol and Honokiol Attenuate Apoptosis of Enterotoxigenic Escherichia Coli-Induced Intestinal Epithelium by Maintaining Secretion and Absorption Homeostasis and Protecting Mucosal Integrity. Med Sci Monit 2018; 24:3348-3356. [PMID: 29782483 PMCID: PMC5990993 DOI: 10.12659/msm.910350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/07/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The cortex of Magnolia officinalis has long been used as an element of traditional Chinese medicine for the treatment of anxiety, chronic bronchitis, and gastrointestinal dysfunction. This study aimed to elucidate the underlying mechanism of its functional ingredients (magnolol and honokiol) in modifying the secretion and absorption homeostasis and protecting mucosal integrity in an Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mouse model. MATERIAL AND METHODS This study established a diarrhea mouse model infected by ETEC at a dosage of 0.02 ml/g live body weight (BW) in vivo. Magnolol or honokiol was followed by an intraperitoneal administration at dosages of 100, 300, and 500 mg/kg BW according to a 3×3 factorial arrangement. The useful biomarkers for evaluating the integrity of intestinal tract and histologic injury were analyzed and morphological development (including villus height, crypt depth, and ratio of villus height to crypt depth) and the expressions of inflammatory cytokines were determined by real-time PCR. RESULTS The results showed that magnolol and honokiol (500 mg/kg BW) reduced the concentrations of NO, DAO, and DLA, and iNOS activity, and the mRNA expressions of the interferon gamma (IFN-γ) and interleukin 10 (IL-10), and inhibited intestinal epithelial cell apoptosis. Magnolol and honokiol (300 mg/kg BW) elongated the villus height and crypt depth and decreased the number of goblet cells and the ratio of villus height to crypt depth. CONCLUSIONS The current results indicate that magnolol and honokiol enhance the intestinal anti-inflammatory capacities, elongate the villus height and crypt depth, and reduce goblet cell numbers to inhibit the intestinal epithelium apoptosis and effectively protect the intestinal mucosa. These results show that magnolol and honokiol protect the intestinal mucosal integrity and regulate gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Yanli Deng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P.R. China
- Tea College of Guizhou University, Guiyang, Guizhou, P.R. China
| | - Xuefeng Han
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| | - Shaoxun Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| | - Chengjian Li
- Department of Pharmacy, Yongzhou Vocational Technical College, Yongzhou, Hunan, P. R. China
| | - Wenjun Xiao
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P.R. China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| |
Collapse
|
20
|
Li Z, Wang Y, Gao M, Cui W, Zeng M, Cheng Y, Li J. Nine New Gingerols from the Rhizoma of Zingiber officinale and Their Cytotoxic Activities. Molecules 2018; 23:E315. [PMID: 29393873 PMCID: PMC6017651 DOI: 10.3390/molecules23020315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/17/2022] Open
Abstract
Nine new gingerols, including three 6-oxo-shogaol derivatives [(Z)-6-oxo-[6]-shogaol (1), (Z)-6-oxo-[8]-shogaol (2), (Z)-6-oxo-[10]-shogaol (3)], one 6-oxoparadol derivative [6-oxo-[6]-paradol (4)], one isoshogaol derivative [(E)-[4]-isoshogaol (5)], and four paradoldiene derivatives [(4E,6Z)-[4]-paradoldiene (8), (4E,6E)-[6]-paradoldiene (9), (4E,6E)-[8]-paradoldiene (10), (4E,6Z)-[8]-paradoldiene (11)], together with eight known analogues, were isolated from the rhizoma of Zingiber officinale. Their structures were elucidated on the basis of spectroscopic data. It was noted that the isolation of 6-oxo-shogaol derivatives represents the first report of gingerols containing one 1,4-enedione motif. Their structures were elucidated on the basis of spectroscopic and HRESIMS data. All the new compounds were evaluated for their cytotoxic activities against human cancer cells (MCF-7, HepG-2, KYSE-150).
Collapse
Affiliation(s)
- Zezhi Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yanzhi Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment and New Drug Research and Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - MeiLing Gao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Wanhua Cui
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yongxian Cheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, School of Medicine, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Juan Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
21
|
Talarek S, Listos J, Barreca D, Tellone E, Sureda A, Nabavi SF, Braidy N, Nabavi SM. Neuroprotective effects of honokiol: from chemistry to medicine. Biofactors 2017; 43:760-769. [PMID: 28817221 DOI: 10.1002/biof.1385] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/15/2023]
Abstract
The incidence of neurological disorders is growing in developed countries together with increased lifespan. Nowadays, there are still no effective treatments for neurodegenerative pathologies, which make necessary to search for new therapeutic agents. Natural products, most of them used in traditional medicine, are considered promising alternatives for the treatment of neurodegenerative diseases. Honokiol is a natural bioactive phenylpropanoid compound, belonging to the class of neolignan, found in notable amounts in the bark of Magnolia tree, and has been reported to exert diverse pharmacological properties including neuroprotective activities. Honokiol can permeate the blood brain barrier and the blood-cerebrospinal fluid to increase its bioavailability in neurological tissues. Diverse studies have provided evidence on the neuroprotective effect of honokiol in the central nervous system, due to its potent antioxidant activity, and amelioration of the excitotoxicity mainly related to the blockade of glutamate receptors and reduction in neuroinflammation. In addition, recent studies suggest that honokiol can attenuate neurotoxicity exerted by abnormally aggregated Aβ in Alzheimer's disease. The present work summarizes what is currently known concerning the neuroprotective effects of honokiol and its potential molecular mechanisms of action, which make it considered as a promising agent in the treatment and management of neurodegenerative diseases. © 2017 BioFactors, 43(6):760-769, 2017.
Collapse
Affiliation(s)
- Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin 20-093, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin 20-093, Poland
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Balearic Islands, Spain
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Jiang Y, Liao Q, Zou Y, Liu Y, Lan J. Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.). BOTANICAL STUDIES 2017; 58:41. [PMID: 29058093 PMCID: PMC5651534 DOI: 10.1186/s40529-017-0195-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. However, as a non-model plant, knowledge about the genome sequences of ginger is extremely limited, and this limits molecular studies on this plant. In this study, de novo transcriptome sequencing was performed to investigate the expression of genes associated with the biosynthesis of major bioactive compounds in matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR). RESULTS A total of 361,876 unigenes were generated by de novo assembly. The expression of genes involved in the pathways responsible for the biosynthesis of major bioactive compounds differed between tissues (MG, YG, and FR). Two pathways that give rise to volatile oil, gingerols, and diarylheptanoids, the "terpenoid backbone biosynthesis" and "stilbenoid, diarylheptanoid and gingerol biosynthesis" pathways, were significantly enriched (adjusted P value < 0.05) for differentially expressed genes (DEGs) (FDR < 0.005) both between the FR and YG libraries, and the FR and MG libraries. Most of the unigenes mapped in these two pathways, including curcumin synthase, phenylpropanoylacetyl-CoA synthase, trans-cinnamate 4-monooxygenase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, were expressed to a significantly higher level (log2 (fold-change) ≥ 1) in FR than in YG or MG. CONCLUSION This study provides the first insight into the biosynthesis of bioactive compounds in ginger at a molecular level and provides valuable genome resources for future molecular studies on ginger. Moreover, our results establish that bioactive compounds in ginger may predominantly synthesized in the root and then transported to rhizomes, where they accumulate.
Collapse
Affiliation(s)
- Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Qinhong Liao
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Yong Zou
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Yiqing Liu
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160 China
| | - Jianbin Lan
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160 China
| |
Collapse
|
23
|
Lu CH, Chen SH, Chang YS, Liu YW, Wu JY, Lim YP, Yu HI, Lee YR. Honokiol, a potential therapeutic agent, induces cell cycle arrest and program cell death in vitro and in vivo in human thyroid cancer cells. Pharmacol Res 2016; 115:288-298. [PMID: 27940017 DOI: 10.1016/j.phrs.2016.11.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/18/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy, the global incidence rate of which is rapidly rising. Surgery and radioiodine therapies are common and effective treatments only for nonmetastasized primary tumors. Therefore, effective treatment modalities are imperative for patients with radioiodine-resistant thyroid cancer. Honokiol, a biophenolic compound derived from Magnolia spp., has been shown have diverse biological and pharmacological activities, including anti-inflammatory, antioxidative, antiangiogenic, and anticancer properties. In the present study, three human thyroid cancer cell lines, namely anaplastic, follicular, and poorly differentiated thyroid cancer cells, were used to evaluate the chemotherapeutic activity of honokiol. Cell viability, cell cycle, apoptosis, and autophagy induction were determined through flow cytometry and western blot analysis. We found that honokiol treatment can suppress cell growth, induce cell cycle arrest, and enhance the induction of caspase-dependent apoptosis and autophagy in cancer cells. Moreover, honokiol treatment modulated signaling pathways including Akt/mTOR, ERK, JNK, and p38 in the studied cells. In addition, the antitumorigenic activity of honokiol was also confirmed in vitro and in vivo. Our data provide evidence that honokiol has a unique application in chemotherapy for human thyroid cancers.
Collapse
Affiliation(s)
- Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan; College of Nursing and Health Sciences, Dayeh University, Changhua, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yi-Sheng Chang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Emergency, Toxicology Center, China Medical University Hospital, Taichung, Taiwan
| | - Hui-I Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan.
| |
Collapse
|
24
|
Du H, Wang K, Su L, Zhao H, Gao S, Lin Q, Ma X, Zhu B, Dong X, Lou Z. Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression. J Pharm Biomed Anal 2016; 128:469-479. [DOI: 10.1016/j.jpba.2016.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
|
25
|
Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells. Neurochem Int 2016; 97:8-14. [DOI: 10.1016/j.neuint.2016.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
|
26
|
Comparative pharmacokinetics and brain distribution of magnolol and honokiol after oral administration ofMagnolia officinaliscortex extract and its compatibility with other herbal medicines in Zhi-Zi-Hou-Po Decoction to rats. Biomed Chromatogr 2015; 30:369-75. [DOI: 10.1002/bmc.3557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/02/2015] [Accepted: 07/06/2015] [Indexed: 02/03/2023]
|
27
|
Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice. Eur J Pharmacol 2015; 755:66-73. [DOI: 10.1016/j.ejphar.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
|
28
|
Liu Y, Lan N, Ren J, Wu Y, Wang ST, Huang XF, Yu Y. Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 2015; 59:1130-42. [PMID: 25788013 DOI: 10.1002/mnfr.201400753] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 01/11/2023]
Abstract
SCOPE Oxidative stress is involved in chronic stress-induced depression and the disruption of neurotransmission and neuroplasticity. Recently, orientin, a phenolic compound abundant in some fruits, millet, and herbs, has been shown to have antioxidant properties. This study investigated the potential antidepressant effects of orientin against chronic stress and its underlying mechanisms. METHODS AND RESULTS The chronic unpredictable mild stress (CUMS) model was used to investigate the effects of orientin on behavior and biochemical alterations in mice. After 2 weeks of the CUMS protocol, the mice were treated with orientin (20 mg/kg and 40 mg/kg, oral gavage) for 3 weeks. Administration of orientin significantly alleviated the CUMS-induced depression-like behavior, including sucrose preference reduction, locomotor activity decline, and hypomotility. Orientin treatment attenuated the oxidative stress markers and increased the concentrations of serotonin and norepinephrine in the hippocampus and prefrontal cortex of CUMS mice. Orientin treatment also increased the brain-derived neurotrophic factor and synapse-associated proteins (synaptophysin and postsynaptic density protein 95) of CUMS mice. CONCLUSION Orientin exerts antidepressant-like effects on CUMS mice, specifically by improving central oxidative stress, neurotransmission, and neuroplasticity. Therefore, supplementation with orientin-enriched food or fruit could be beneficial as a preventive strategy for chronic stress-induced depression.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Nuo Lan
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Jing Ren
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Yizhen Wu
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Shu-ting Wang
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Xu-Feng Huang
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Yinghua Yu
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| |
Collapse
|
29
|
Honokiol downregulates Kruppel-like factor 4 expression, attenuates inflammation, and reduces histopathology after spinal cord injury in rats. Spine (Phila Pa 1976) 2015; 40:363-8. [PMID: 25774462 DOI: 10.1097/brs.0000000000000758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Randomized experimental study. OBJECTIVE To investigate the neuroprotective effect of honokiol (HNK) on rats subjected to traumatic spinal cord injury (SCI) and the molecular mechanisms. SUMMARY OF BACKGROUND DATA Inflammation contributes to the secondary injury to the spinal cord. Honokiol has been used as a neuroprotective agent because of its strong antioxidant and anti-inflammatory properties. Kruppel-like factor 4 (Klf4) is a newly identified critical target for the anti-inflammatory effect of HNK. Whether HNK can inhibit inflammatory response in rat model of SCI through mediating the expression of Klf4 has yet to be elucidated. METHODS Eighty-four adult female Sprague-Dawley rats were randomly divided into 4 groups as sham, SCI, SCI + Vehicle (0.1% propylene glycol in saline, intraperitoneally), and SCI + HNK (20 mg/kg, intraperitoneally) groups. The influences of HNK on the proinflammatory cytokines, microglial activation, neutrophil infiltration, histological changes, and improvement in motor function were assessed. RESULTS In the SCI group, proinflammatory cytokines, microglial activation, neutrophil infiltration, and Klf4 expression levels were increased compared with the sham group (P < 0.001). HNK intervention downregulated the expression of Klf4, reduced the production of proinflammatory cytokines, inhibited microglial activation, and neutrophil infiltration (P < 0.05). Furthermore, HNK also reduced histopathology and improved functional outcome after traumatic SCI. CONCLUSION HNK reduces secondary tissue damage and improves locomotor function recovery after SCI through suppressing inflammatory response, and can be used as a potential therapeutic agent for SCI. LEVEL OF EVIDENCE NA.
Collapse
|
30
|
Ye N, Tang M, Ye H, Wang C, Wang C, Yang Q, Wan L, Chen L. 13C stable isotope labeling followed by ultra-high performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF MS) was applied to identify the metabolites of honokiol in rat small intestines. ANALYTICAL METHODS 2015. [DOI: 10.1039/c4ay02403f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Honokiol, as a pharmacological active small-molecule, has received significant attention for its strong pharmacological effects without remarkable toxicity.
Collapse
Affiliation(s)
- Na Ye
- School of Pharmacy
- Chengdu University of TCM
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
| | - Minghai Tang
- State Key Laboratory of Biotherapy
- West China Hospital
- West China Medical School
- Sichuan University
- Chengdu 610041
| | - Haoyu Ye
- State Key Laboratory of Biotherapy
- West China Hospital
- West China Medical School
- Sichuan University
- Chengdu 610041
| | - Chunyan Wang
- School of Pharmacy
- Chengdu University of TCM
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
| | - Chunyu Wang
- State Key Laboratory of Biotherapy
- West China Hospital
- West China Medical School
- Sichuan University
- Chengdu 610041
| | - Qiunan Yang
- School of Pharmacy
- Chengdu University of TCM
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
| | - Li Wan
- School of Pharmacy
- Chengdu University of TCM
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine
- State Key Laboratory Breeding Base of Systematic Research
- Development and Utilization of Chinese Medicine Resources
| | - Lijuan Chen
- State Key Laboratory of Biotherapy
- West China Hospital
- West China Medical School
- Sichuan University
- Chengdu 610041
| |
Collapse
|
31
|
Sulakhiya K, Kumar P, Jangra A, Dwivedi S, Hazarika NK, Baruah CC, Lahkar M. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur J Pharmacol 2014; 744:124-31. [PMID: 25446914 DOI: 10.1016/j.ejphar.2014.09.049] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/21/2014] [Accepted: 09/30/2014] [Indexed: 02/01/2023]
Abstract
Depression is an inflammatory, commonly occurring and lethal psychiatric disorder having high lifetime prevalence. Preclinical and clinical studies suggest that activation of immuno-inflammatory and oxido-nitrosative stress pathways play major role in the pathophysiology of depression. Honokiol (HNK) is a biphenolic neolignan possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and neuroprotective. The present study investigated the effect of HNK (2.5 and 5 mg/kg, i.p.) pretreatment (30 min prior to LPS) on lipopolysaccharide (LPS) (0.83 mg/kg, i.p.) induced depressive like behavior, neuroinflammation, and oxido-nitrosative stress in mice. HNK pretreatment at both the doses significantly attenuated LPS induced depressive-like behavior by reducing the immobility time in forced swim and tail suspension test, and by improving the anhedonic behavior observed in sucrose preference test. HNK pretreatment ameliorated LPS induced neuroinflammation by reducing IL-1β, IL-6 and TNF-α level in hippocampus (HC) and prefrontal cortex (PFC). HNK pretreatment prevented LPS evoked oxidative/nitrosative stress via improving reduced glutathione level along with reduction in the lipid peroxidation and nitrite level in HC and PFC. Pretreatment with HNK also prevented the increase in plasma corticosterone (CORT) and decrease in hippocampal BDNF level in LPS challenged mice. In conclusion, current investigation suggested that HNK pretreatment provided protection against LPS-induced depressive like behavior which may be mediated by repression of pro-inflammatory cytokines as well as oxido-nitrosative stress in HC and PFC. Our results strongly speculated that HNK could be a therapeutic approach for the treatment of depression and other pathophysiological conditions which are closely associated with neuroinflammation and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Kunjbihari Sulakhiya
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India.
| | - Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Ashok Jangra
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Shubham Dwivedi
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Naba K Hazarika
- Department of Microbiology, Guwahati Medical College, Guwahati, Assam 781032, India
| | - Chandana C Baruah
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India
| | - Mangala Lahkar
- Department of Pharmacology, Guwahati Medical College, Guwahati, Assam 781032, India
| |
Collapse
|
32
|
Chen JH, Kuo HC, Lee KF, Tsai TH. Magnolol protects neurons against ischemia injury via the downregulation of p38/MAPK, CHOP and nitrotyrosine. Toxicol Appl Pharmacol 2014; 279:294-302. [DOI: 10.1016/j.taap.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023]
|
33
|
Woodbury A, Yu SP, Wei L, García P. Neuro-modulating effects of honokiol: a review. Front Neurol 2013; 4:130. [PMID: 24062717 PMCID: PMC3769637 DOI: 10.3389/fneur.2013.00130] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/26/2013] [Indexed: 11/23/2022] Open
Abstract
Honokiol is a poly-phenolic compound that exerts neuroprotective properties through a variety of mechanisms. It has therapeutic potential in anxiety, pain, cerebrovascular injury, epilepsy, and cognitive disorders including Alzheimer’s disease. It has been traditionally used in medical practices throughout much of Southeast Asia, but has now become more widely studied due to its pleiotropic effects. Most current research regarding this compound has focused on its chemotherapeutic properties. However, it has the potential to be an effective neuroprotective agent as well. This review summarizes what is currently known regarding the mechanisms involved in the neuroprotective and anesthetic effects of this compound and identifies potential areas for further research.
Collapse
Affiliation(s)
- Anna Woodbury
- Department of Anesthesiology, Emory University , Atlanta, GA , USA
| | | | | | | |
Collapse
|
34
|
Talbott SM, Talbott JA, Pugh M. Effect of Magnolia officinalis and Phellodendron amurense (Relora®) on cortisol and psychological mood state in moderately stressed subjects. J Int Soc Sports Nutr 2013; 10:37. [PMID: 23924268 PMCID: PMC3750820 DOI: 10.1186/1550-2783-10-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background Magnolia (Magnolia officinalis) and Phellodendron (Phellodendron amurense) barks are medicinal plants commonly used as traditional remedies for reducing stress and anxiety. Modern dietary supplements are intended to induce relaxation and reduce stress as well as stress-related eating. Previous studies have shown the combination of Magnolia/Phellodendron (MP) to reduce both cortisol exposure and the perception of stress/anxiety, while improving weight loss in subjects with stress-related eating. Competitive athletes are “stressed” by their intense exercise regimens in addition to their normal activities of daily living and thus may benefit from a natural therapy intended to modulate baseline perceptions of stress and stress hormone exposure. Methods We assessed salivary cortisol exposure and psychological mood state in 56 subjects (35 men and 21 women) screened for moderate stress and supplemented with a standardized/patented MP combination (Relora®, Next Pharmaceuticals) or Placebo for 4 weeks. Results After 4 weeks of supplementation, salivary cortisol exposure was significantly (p<0.05) lower (−18%) in the Relora group compared to Placebo. Compared to Placebo, the Relora group had significantly better (p<0.05) mood state parameters, including lower indices of Overall Stress (−11%), Tension (−13%), Depression (−20%), Anger (−42%), Fatigue (−31%), and Confusion (−27%), and higher indices of Global Mood State (+11%) and Vigor (+18%). Conclusion These results indicate that daily supplementation with a combination of Magnolia bark extract and Phellodendron bark extract (Relora®) reduces cortisol exposure and perceived daily stress, while improving a variety of mood state parameters, including lower fatigue and higher vigor. These results suggest an effective natural approach to modulating the detrimental health effects of chronic stress in moderately stressed adults. Future studies should examine the possible performance and recovery benefits of Relora supplementation in athletes overstressed by the physical and psychological demands of training and competition.
Collapse
|
35
|
Yao AM, Ma FF, Zhang LL, Feng F. Effect of aqueous extract and fractions of Zhi-Zi-Hou-Pu decoction against depression in inescapable stressed mice: Restoration of monoamine neurotransmitters in discrete brain regions. PHARMACEUTICAL BIOLOGY 2013; 51:213-220. [PMID: 23116150 DOI: 10.3109/13880209.2012.717087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Zhi-Zi-Hou-Pu decoction (ZZHPD) is a traditional prescription which has been used to treat "Yu-syndrome" (depression and melancholia) in Chinese herbal medication. OBJECTIVE To evaluate antidepressant activities of ZZHPD, its fractions and possible mechanism(s) of action. MATERIALS AND METHODS ZZHPD (1241, 2482 and 4964 mg/kg), n-butanol fraction (ZH-BA, 1454 mg/kg), cyclohexane fraction (ZH-CH, 17 mg/kg) and aqueous fraction (ZH-AQ, 3493 mg/kg) were administered orally to different groups of mice for seven consecutive days. Forced Swimming Test (FST) and Tail Suspension Test (TST) were conducted 60 min after the last administration to evaluate the antidepressant effect. Norepinephrine, dopamine and 5-hydroxytryptamine levels in discrete brain parts were determined by HPLC-FD immediately after behavioral tests. RESULTS ZZHPD at 2482, 4964 mg/kg, ZH-BA (1454 mg/kg), ZH-CH (17 mg/kg) or clomipramine hydrochloride (20 mg/kg) significantly (p < 0.05) reduced the duration of immobility in FST and TST without affecting locomotor activities in the open field test. Observed from score plot of principle component analysis of monoamine levels in different groups, the monoamine profile of ZZHPD-treated mice were similar to that of the normal control mice. HPLC-UV analysis indicated that iridoid glycosides, flavones and neolignans might be the active chemicals. DISCUSSION AND CONCLUSION The results demonstrated significant antidepressant-like effect of ZZHPD in mice which was related to monoaminergic system, ZH-BA and ZH-CH could be the active fractions responsible for the antidepressant effect of ZZHPD.
Collapse
MESH Headings
- 1-Butanol/chemistry
- Administration, Oral
- Animals
- Antidepressive Agents/administration & dosage
- Antidepressive Agents/analysis
- Antidepressive Agents/pharmacology
- Behavior, Animal/drug effects
- Biogenic Monoamines/metabolism
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Chromatography, High Pressure Liquid
- Cyclohexanes/chemistry
- Depression/drug therapy
- Depression/etiology
- Depression/metabolism
- Depression/physiopathology
- Depression/psychology
- Disease Models, Animal
- Dopamine/metabolism
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/analysis
- Drugs, Chinese Herbal/pharmacology
- Hindlimb Suspension/psychology
- Iridoids/administration & dosage
- Iridoids/analysis
- Iridoids/pharmacology
- Male
- Mice
- Motor Activity/drug effects
- Norepinephrine/metabolism
- Plants, Medicinal
- Principal Component Analysis
- Serotonin/metabolism
- Solvents/chemistry
- Spectrophotometry, Ultraviolet
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Time Factors
- Water/chemistry
Collapse
Affiliation(s)
- Ai-Min Yao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | | | | | | |
Collapse
|
36
|
Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB. Neuroprotection by spice-derived nutraceuticals: you are what you eat! Mol Neurobiol 2011; 44:142-59. [PMID: 21360003 DOI: 10.1007/s12035-011-8168-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/03/2011] [Indexed: 01/03/2023]
Abstract
Numerous lines of evidence indicate that chronic inflammation plays a major role in the development of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, brain tumor, and meningitis. Why these diseases are more common among people from some countries than others is not fully understood, but lifestyle factors have been linked to the development of neurodegenerative diseases. For example, the incidence of certain neurodegenerative diseases among people living in the Asian subcontinent, where people regularly consume spices, is much lower than in countries of the western world. Extensive research over the last 10 years has indicated that nutraceuticals derived from such spices as turmeric, red pepper, black pepper, licorice, clove, ginger, garlic, coriander, and cinnamon target inflammatory pathways, thereby may prevent neurodegenerative diseases. How these nutraceuticals modulate various pathways and how they exert neuroprotection are the focus of this review.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
37
|
Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 2011; 130:157-76. [PMID: 21277893 DOI: 10.1016/j.pharmthera.2011.01.010] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 12/18/2022]
Abstract
The bark and/or seed cones of the Magnolia tree have been used in traditional herbal medicines in Korea, China and Japan. Bioactive ingredients such as magnolol, honokiol, 4-O-methylhonokiol and obovatol have received great attention, judging by the large number of investigators who have studied their pharmacological effects for the treatment of various diseases. Recently, many investigators reported the anti-cancer, anti-stress, anti-anxiety, anti-depressant, anti-oxidant, anti-inflammatory and hepatoprotective effects as well as toxicities and pharmacokinetics data, however, the mechanisms underlying these pharmacological activities are not clear. The aim of this study was to review a variety of experimental and clinical reports and, describe the effectiveness, toxicities and pharmacokinetics, and possible mechanisms of Magnolia and/or its constituents.
Collapse
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
YI LT, WANG X, WANG Y, QIANG LQ, YANG L, XU Q, KONG LD. Antidepressant-like Effects of Monarch Drug Compatibility in Banxia Houpu Decoction. Chin J Nat Med 2011. [DOI: 10.3724/sp.j.1009.2010.00362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
YI LT, WANG X, WANG Y, QIANG LQ, YANG L, XU Q, KONG LD. Antidepressant-like Effects of Monarch Drug Compatibility in Banxia Houpu Decoction. Chin J Nat Med 2010. [DOI: 10.1016/s1875-5364(10)60043-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|