1
|
Mondal NK, Mondal B, Koley R, Koley A, Balachandran S. Efficacy of two different forms of selenium towards reduction of arsenic toxicity and accumulation in Cicer arietinum L. J Trace Elem Med Biol 2024; 86:127541. [PMID: 39383660 DOI: 10.1016/j.jtemb.2024.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Arsenic migration from soil to crop plants and subsequently human consumption of contaminated foodstuffs is a serious threat for society. In the present study, two oxidation states of selenium [Se(0) and Se(VI)] were used to check their efficacy towards amelioration of arsenic toxicity in chickpeas (Cicer arietinum L.). Three different concentrations (1, 5, and 10 mg/L) of both oxidation states of selenium were applied separately and in combination against a fixed dose (10 mg/L) of arsenic [(As(V)] treatment on chickpea seedlings. Further, seed germination and seedling growth attributes, oxidative stress, and antioxidant defense under different treatments were analyzed. The changes in anatomical structures and arsenic accumulation in different parts of seedlings were also studied. Results revealed that increased generation of oxidative stress affected physiobiochemical parameters of seedlings and diminished plant growth and deformation in vascular bundles under arsenic stress. However, the combined application of Se with As showed overall improvement in seedling growth, reduced oxidative stress, and organized vascular bundles of chickpea seedlings as compared to arsenic stress alone. The arsenic uptake and accumulation in chickpea seedlings were also reduced upon supplementation of Se. The highest reduction of arsenic accumulation by 42 and 56 % in roots, while 47 and 58 % in shoots were recorded by the application of 10 mg/L of Se(0) and Se (VI) under As stress, respectively. Overall, Se(VI) showed much better performance towards the minimization of arsenic-induced phytotoxicity and arsenic accumulation as compared to Se(0). Therefore, this study explored the efficacy of different forms of selenium towards the mitigation of arsenic toxicity in plants.
Collapse
Affiliation(s)
- Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India.
| | - Barnali Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Rajesh Koley
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Apurba Koley
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| |
Collapse
|
2
|
Jalil S, Nazir MM, Eweda MA, Zulfiqar F, Ahmed T, Noman M, Asad MAU, Siddique KHM, Jin X. Zinc oxide application alleviates arsenic-mediated oxidative stress via physio-biochemical mechanism in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34200-34213. [PMID: 38702484 DOI: 10.1007/s11356-024-33380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Arsenic (As) pollution in cultivated soils poses a significant risk to the sustainable growth of agriculture and jeopardizes food security. However, the mechanisms underlying how zinc (Zn) regulates the toxic effects induced by As in plants remain poorly understood. Hence, this study aimed to explore the potential of ZnO as an effective and environmentally friendly amendment to alleviate As toxicity in rice, thereby addressing the significant risk posed by As pollution in cultivated soils. Through a hydroponic experiment, the study assessed the mitigating effects of different ZnO dosages (Zn5, 5 mg L-1; Zn15, 15 mg L-1; Zn30, 30 mg L-1) on rice seedlings exposed to varying levels of As stress (As0, 0 µM L-1; As25, 25 µM L-1). The findings of the study demonstrate significant improvements in plant height and biomass (shoot and root), with a notable increase of 16-40% observed in the Zn15 treatment, and an even more substantial enhancement of 29-53% observed in the Zn30 treatment under As stress, compared to respective control treatment. Furthermore, in the Zn30 treatment, the shoot and root As contents substantially reduced by 47% and 63%, respectively, relative to the control treatment. The elevated Zn contents in shoots and roots enhanced antioxidant enzyme activities (POD, SOD, and CAT), and decreased MDA contents (13-25%) and H2O2 contents (11-27%), indicating the mitigation of oxidative stress. Moreover, the expression of antioxidant-related genes, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 was reduced when rice seedlings were exposed to As stress and significantly enhanced after Zn addition. Overall, the research suggests that ZnO application could effectively mitigate As uptake and toxicity in rice plants cultivated in As-contaminated soils, offering potential solutions for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | | | - Mohamed A Eweda
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Xianghu Laboratory, Hangzhou, 311231, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad A U Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, the Advanced Seed Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
3
|
Mishra N, Tripathi S, Nahar L, Sarker SD, Kumar A. Mitigation of arsenic poisoning induced oxidative stress and genotoxicity by Ocimum gratissimum L. Toxicon 2024; 238:107603. [PMID: 38184283 DOI: 10.1016/j.toxicon.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Arsenic toxicity is a major problem across the world due to geogenic activity and has been supposed to generate free radicals and genotoxicity among the arsenic-poisoned population. There is a need to find suitable free radical quenching compounds for the arsenic-induced free radical-affected population. In the present study, Na3AsO3- induced oxidative stress and genotoxicity were evaluated in Oryctolagus cuniculus L, and quenching competency of Ocimum species was examined by applying enzymatic and non-enzymatic in vitro tests, comet assay, and Random Amplified Polymorphic Deoxyribonucleic acid - Polymerase Chain Reaction (RAPD-PCR) methods. In the present study, oxidative damage due to Na3AsO3 intoxication in O. cuniculus L has been confirmed followed by substantive genotoxicity, and in a further study, it has also been reported that the extract of O. gratissimum L lowers the oxidative stress in experimental animals confirmed by a decrease in Malondialdehyde (MDA) 4.78 ± 0.05 (nmol/mg protein), and an increase in Glutathione (GSH) 2.87 ± 0.50 (μmoles/mg proteins), Superoxide Dismutase (SOD) 1.78 ± 0.03(Units/mg protein), Catalase (CAT) 2.72 ± 0.02 (μmoles of H2O2 consumed/min/mg proteins) and Glutathione peroxidase (GPX) 7.43 ± 0.01 (μg of glutathione utilized/min/mg protein). A positive impact of extract of O. gratissimum L on protection of genotoxicity has been also confirmed by Random Amplified Polymorphic DNA (RAPD) based reduction in polymorphic bands of Deoxyribonucleic acid (DNA) from 6.5 to 3.16 and comet assay-based increase in head DNA % (87.86 ± 1.58), tail moment (1.07 ± 0.27) and decrease in tail DNA % (12.13 ± 1.58) & tail length (8.2 ± 1.46) at 5% P in lymphocytes. A significant level reduction in free radicals and reduction in DNA polymorphism has proved the competency of test material for the development of suitable antidotes against arsenicosis.
Collapse
Affiliation(s)
- Nikhil Mishra
- Department of Biotechnology, Government V.Y.T.PG Autonomous College, Durg, Chhattisgarh, India
| | - Seema Tripathi
- Women Scientist, Department of Science and Technology, Government of India, India
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Satyajit D Sarker
- Centre of Natural Product Discovery, School of Pharmacy and Biomolecular Science, Liverpool John Moores University, UK
| | - Anil Kumar
- Department of Biotechnology, Government V.Y.T.PG Autonomous College, Durg, Chhattisgarh, India.
| |
Collapse
|
4
|
Jalil S, Alghanem SMS, Al-Huqail AA, Nazir MM, Zulfiqar F, Ahmed T, Ali S, H A Abeed A, Siddique KHM, Jin X. Zinc oxide nanoparticles mitigated the arsenic induced oxidative stress through modulation of physio-biochemical aspects and nutritional ions homeostasis in rice (Oryza sativa L.). CHEMOSPHERE 2023; 338:139566. [PMID: 37474036 DOI: 10.1016/j.chemosphere.2023.139566] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Zinc oxide nanoparticles (nZn) have emerged as vital agents in combating arsenic (As) stress in plants. However, their role in mitigation of As induced oxidative stress is less studied. Therefore, this study aimed to assess the comparative role of nZn and ZnO in alleviating As toxicity in rice genotype "9311". The results of this study revealed that nZn demonstrated superior efficacy compared to ZnO in mitigating As toxicity. This superiority can be attributed to the unique size and structure of nZn, which enhances its ability to alleviate As toxicity. Exposure to As at a concentration of 25 μM L-1 led to significant reductions in shoot length, root length, shoot dry weight, and root dry weight by 39%, 51%, 30%, and 46%, respectively, while the accumulation of essential nutrients such as magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), and zinc (Zn) decreased by 25%-47% compared to the control plants. Additionally, As exposure resulted in stomatal closure and structural damage to vital cellular components such as grana thylakoids (GT), starch granules (SG), and the nucleolus. However, the application of nZn at a concentration of 30 mg L-1 exhibited significant alleviation of As toxicity, resulting in a reduction of As accumulation by 54% in shoots and 62% in roots of rice seedlings. Furthermore, nZn demonstrated the ability to scavenge reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion (O2.-), while significantly promoted the gas exchange parameters, chlorophyll content (SPAD value), fluorescence efficiency (Fv/m) and antioxidant enzyme activities under As-induced stress. These findings highlight the potential of nZn in mitigating the adverse impacts of As contamination in rice plants. However, further research is necessary to fully comprehend the underlying mechanisms responsible for the protective effects of nZn and to determine the optimal conditions for their application in real-world agricultural settings.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Suliman M S Alghanem
- Biology Department, College of Science, Qassim University, Burydah, 52571, Saudi Arabia
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, PR China; Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Sharafat Ali
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Xiaoli Jin
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Impact of Ferrous Sulfate on Thylakoidal Multiprotein Complexes, Metabolism and Defence of Brassica juncea L. under Arsenic Stress. PLANTS 2022; 11:plants11121559. [PMID: 35736711 PMCID: PMC9228442 DOI: 10.3390/plants11121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Forty-day-old Brassica juncea (var. Pusa Jai Kisan) plants were exposed to arsenic (As, 250 µM Na2HAsO4·7H2O) stress. The ameliorative role of ferrous sulfate (2 mM, FeSO4·7H2O, herein FeSO4) was evaluated at 7 days after treatment (7 DAT) and 14 DAT. Whereas, As induced high magnitude oxidative stress, FeSO4 limited it. In general, As decreased the growth and photosynthetic parameters less when in the presence of FeSO4. Furthermore, components of the antioxidant system operated in better coordination with FeSO4. Contents of non-protein thiols and phytochelatins were higher with the supply of FeSO4. Blue-Native polyacrylamide gel electrophoresis revealed an As-induced decrease in almost every multi-protein-pigment complex (MPC), and an increase in PSII subcomplex, LHCII monomers and free proteins. FeSO4 supplication helped in the retention of a better stoichiometry of light-harvesting complexes and stabilized every MPC, including supra-molecular complexes, PSI/PSII core dimer/ATP Synthase, Cytochrome b6/f dimer and LHCII dimer. FeSO4 strengthened the plant defence, perhaps by channelizing iron (Fe) and sulfur (S) to biosynthetic and anabolic pathways. Such metabolism could improve levels of antioxidant enzymes, and the contents of glutathione, and phytochelatins. Important key support might be extended to the chloroplast through better supply of Fe-S clusters. Therefore, our results suggest the importance of both iron and sulfur to combat As-induced stress in the Indian mustard plant at biochemical and molecular levels through enhanced antioxidant potential and proteomic adjustments in the photosynthetic apparatus.
Collapse
|
6
|
Abstract
The non-essential metalloid arsenic (As) is widely distributed in soil and underground water of many countries. Arsenic contamination is a concern because it creates threat to food security in terms of crop productivity and food safety. Plants exposed to As show morpho-physiological, growth and developmental disorder which altogether result in loss of productivity. At physiological level, As-induced altered biochemistry in chloroplast, mitochondria, peroxisome, endoplasmic reticulum, cell wall, plasma membrane causes reactive oxygen species (ROS) overgeneration which damage cell through disintegrating the structure of lipids, proteins, and DNA. Therefore, plants tolerance to ROS-induced oxidative stress is a vital strategy for enhancing As tolerance in plants. Plants having enhanced antioxidant defense system show greater tolerance to As toxicity. Depending upon plant diversity (As hyperaccumulator/non-hyperaccumulator or As tolerant/susceptible) the mechanisms of As accumulation, absorption or toxicity response may differ. There can be various crop management practices such as exogenous application of nutrients, hormones, antioxidants, osmolytes, signaling molecules, different chelating agents, microbial inoculants, organic amendments etc. can be effective against As toxicity in plants. There is information gap in understanding the mechanism of As-induced response (damage or tolerance response) in plants. This review presents the mechanism of As uptake and accumulation in plants, physiological responses under As stress, As-induced ROS generation and antioxidant defense system response, various approaches for enhancing As tolerance in plants from the available literatures which will make understanding the to date knowledge, knowledge gap and future guideline to be worked out for the development of As tolerant plant cultivars.
Collapse
|
7
|
Ramzan M, Ayub F, Shah AA, Naz G, Shah AN, Malik A, Sardar R, Telesiński A, Kalaji HM, Dessoky ES, Elgawad HA. Synergistic Effect of Zinc Oxide Nanoparticles and Moringa oleifera Leaf Extract Alleviates Cadmium Toxicity in Linum usitatissimum: Antioxidants and Physiochemical Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:900347. [PMID: 35982701 PMCID: PMC9380429 DOI: 10.3389/fpls.2022.900347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 05/06/2023]
Abstract
Among heavy metals, cadmium (Cd) is one of the toxic metals, which significantly reduce the growth of plants even at a low concentration. Cd interacts with various plant mechanisms at the physiological and antioxidant levels, resulting in decreased plant growth. This research was conducted to exploit the potential of synergistic application of zinc oxide nanoparticles (ZnO NPs) and Moringa oleifera leaf extract in mitigation of Cd stress in linseed (Linum usitatissimum L.) plants. The main aim of this study was to exploit the role of M. oleifera leaf extract and ZnO NPs on Cd-exposed linseed plants. Cd concentrations in the root and shoot of linseed plants decreased after administration of MZnO NPs. Growth parameters of plants, antioxidant system, and physiochemical parameters decreased as the external Cd level increased. The administration of MZnO NPs to the Cd-stressed linseed plant resulted in a significant increase in growth and antioxidant enzymes. Furthermore, the antioxidative enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) exhibited a considerable increase in the activity when MZnO NPs were applied to Cd-stressed seedlings. The introduction of MZnO NPs lowered the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the linseed plant grown in Cd-toxic conditions. The NPs decreased electrolyte leakage (EL) in Cd-stressed linseed leaves and roots. It was concluded that synergistic application of ZnO NPs and M. oleifera leaf extract alleviated Cd stress in linseed plants through enhanced activity of antioxidant enzymes. It is proposed that role of MZnO NPs may be evaluated for mitigation of numerous abiotic stresses.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Musarrat Ramzan
| | - Fazila Ayub
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Anis Ali Shah
| | - Gul Naz
- Faculty of Science, Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Gul Naz
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Punjab, Pakistan
- Adnan Noor Shah
| | - Aqsa Malik
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Arkadiusz Telesiński
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, West Pomeranian University of Technology, Szczecin, Poland
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Science, Warsaw, Poland
- Institute of Technology and Life Sciences - National Research Institute, Raszyn, Poland
| | | | - Hamada Abd Elgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Faizan M, Sehar S, Rajput VD, Faraz A, Afzal S, Minkina T, Sushkova S, Adil MF, Yu F, Alatar AA, Akhter F, Faisal M. Modulation of Cellular Redox Status and Antioxidant Defense System after Synergistic Application of Zinc Oxide Nanoparticles and Salicylic Acid in Rice ( Oryza sativa) Plant under Arsenic Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112254. [PMID: 34834617 PMCID: PMC8618137 DOI: 10.3390/plants10112254] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
The objective of this research was to determine the effect of zinc oxide nanoparticles (ZnONPs) and/or salicylic acid (SA) under arsenic (As) stress on rice (Oryza sativa). ZnONPs are analyzed for various techniques viz., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). All of these tests established that ZnONPs are pure with no internal defects, and can be potentially used in plant applications. Hence, we further investigated for better understanding of the underlying mechanisms and the extent of ZnONPs and SA induced oxidative stress damages. More restricted plant growth, gas exchange indices, significant reduction in the SPAD index and maximum quantum yield (Fv/Fm) and brutal decline in protein content were noticed in As-applied plants. In contrast, foliar fertigation of ZnONPs and/or SA to As-stressed rice plants lessens the oxidative stress, as exposed by subordinate levels of reactive oxygen species (ROS) synthesis. Improved enzymatic activities of catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), proline and total soluble protein contents under ZnONPs and SA treatment plays an excellent role in the regulation of various transcriptional pathways participated in oxidative stress tolerance. Higher content of nitrogen (N; 13%), phosphorus (P; 10%), potassium (K; 13%), zinc (Zn; 68%), manganese (Mn; 14%), and iron (Fe; 19) in ZnONPs and SA treated plants under As-stress, thus hampered growth and photosynthetic efficiency of rice plants. Our findings suggest that toxicity of As was conquering by the application of ZnONPs and SA in rice plants.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China; (M.F.); (F.Y.)
| | - Shafaque Sehar
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Ahmad Faraz
- School of Life Sciences, Glocal University, Saharanpur 247121, India;
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Pryagraj 211004, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (S.S.)
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.S.); (M.F.A.)
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China; (M.F.); (F.Y.)
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, New York, NY 11794-5281, USA;
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence: ; Tel.: +966-(011)-4675877
| |
Collapse
|
9
|
Das S, Majumder B, Biswas AK. Selenium alleviates arsenic induced stress by modulating growth, oxidative stress, antioxidant defense and thiol metabolism in rice seedlings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:763-777. [PMID: 34579603 DOI: 10.1080/15226514.2021.1975639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study aims to investigate the potentiality of selenium in modulating arsenic stress in rice seedlings. Arsenate accumulation along with its transformation to arsenite was enhanced in arsenate exposed seedlings. Arsenite induced oxidative stress and severely affected the growth of the seedlings. Arsenate exposure caused an elevation in ascorbate and glutathione levels along with the activities of their metabolizing enzymes viz., ascorbate peroxidase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase. Phytochelatins content was increased under arsenic stress to subdue the toxic effects in the test seedlings. Co-application of arsenate and selenate in rice seedlings manifested pronounced alteration of oxidative stress, antioxidant defense, and thiol metabolism as compared to arsenate treatment only. ANOVA analysis (Tukey's HSD test) demonstrated the relevance of using selenate along with arsenate to maintain the normal growth and development of rice seedlings. Thus, exogenous supplementation of selenium will be a beneficial approach to cultivate rice seedlings in arsenic polluted soil.
Collapse
Affiliation(s)
- Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, India
| | - Barsha Majumder
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
10
|
Manuka R, Saddhe AA, Srivastava AK, Kumar K, Penna S. Overexpression of rice OsWNK9 promotes arsenite tolerance in transgenic Arabidopsis plants. J Biotechnol 2021; 332:114-125. [PMID: 33864842 DOI: 10.1016/j.jbiotec.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/03/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022]
Abstract
Protein kinases are involved in the transfer of phosphate group to serine, threonine, and tyrosine residues of a target protein. With No Lysine (WNK) kinase is a member of the serine/threonine protein kinase family, which has conserved catalytic lysine (K) residue in subdomain I instead of being in subdomain II.The WNKs family members in plants are stress inducible and have been validated for their role in abiotic stress tolerance. In the present study, we have characterized Arabidopsis overexpressed lines of OsWNK9 regulated by the constitutive promoter under arsenite stress. Moreover, we have performed In silico expression analysis of OsWNK9 under nutrient deficiency and heavy metal stress. Three independent transgenic Arabidopsis (OsWNK9-OX T11, T12,andT13) lines showed tolerance to arsenite stress compared to wild-type (WT) plants. Under arsenite stress, transgenic lines T11, T12 and T13 showed 56.46, 57.8 and 51.66 % increased biomass respectively, as compared to WT plants. All three ArabidopsisOsWNK9-OX lines exhibited higher proline content, increased antioxidant enzyme activities and lower hydrogen peroxide levels under arsenite stress. Besides, the total antioxidant capacity in terms of DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging percentage was increased by 8-15 % in three independent OsWNK9-OX lines compared with those of WT plants. Protein-protein interaction analysis of OsWNK9 predicted interaction partners with protein kinase and oxidative stress-responsive protein. Co-expression analysis of OsWNK9 in phosphate deficiency and arsenate stress condition predicted various proteins including membrane transporter and transcription factors. Taken together, our results, for the first time, provide evidence that OsWNK9 could positively mediate arsenite stress tolerance in plants.
Collapse
Affiliation(s)
- Rakesh Manuka
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India; Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, 382426, India
| | - Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India.
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India.
| |
Collapse
|
11
|
Song Y, Zhang F, Li H, Qiu B, Gao Y, Cui D, Yang Z. Antioxidant defense system in lettuces tissues upon various As species exposure. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123003. [PMID: 32534392 DOI: 10.1016/j.jhazmat.2020.123003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Characterization of antioxidant response is essential to elucidate the mechanism for plants tolerating arsenic (As) stress. Ten-day old lettuces were exposed to 50, 100, and 200 μg L-1 of arsenite (As(III)), arsenate (As(V)) or dimethylarsinic acid (DMA) for 50 days in hydroponic culture. The activities of superoxide dismutase, catalase, peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase, as well as the glutathione concentration in tissues, were monitored. And the speciation and occurrence of As were concurrently analyzed in roots and leaves. The results showed that As(III) was the predominant As species in lettuces upon inorganic As exposure, while DMA was the primary As species upon DMA exposure. DMA presented higher mobility than inorganic As. The reduction of As(V) in roots upon As(V) exposure and in leaves upon As(III) exposure were suggested. The alterations of enzymatic antioxidant activities and non-enzymatic antioxidant contents showed that the antioxidant responses were As species-dependent, dose-dependent and tissue-dependent. And upon As(V) and DMA exposures, antioxidant responses were more intense than that upon As(III) exposure. Further the results indicated that the antioxidant responses in lettuce were associated with the conversion and transport of As species.
Collapse
Affiliation(s)
- Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Fenglin Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Bo Qiu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Di Cui
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| |
Collapse
|
12
|
Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of as and Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System. PLANTS 2020; 9:plants9070825. [PMID: 32630094 PMCID: PMC7411960 DOI: 10.3390/plants9070825] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/24/2023]
Abstract
Accumulation of arsenic (As) in soils is increasing consistently day-by-day, which has resulted in increased toxicity of this element in various crop plants. Arsenic interferes with several plant metabolic processes at molecular, biochemical and physiological levels, which result in reduced plant productivity. Hence, the introduction of novel ameliorating agents to combat this situation is the need of the hour. The present study was designed to examine the effect of zinc oxide nanoparticles (ZnO-NPs) in As-stressed soybean plants. Various plant growth factors and enzymes were studied at varying concentrations of As and ZnO-NPs. Our results showed that with the application of ZnO-NPs, As concentration declined in both root and shoot of soybean plants. The lengths of shoot and root, net photosynthetic rate, transpiration, stomatal conductance, photochemical yield and other factors declined with an increase in external As level. However, the application of ZnO-NPs to the As-stressed soybean plants resulted in a considerable increase in these factors. Moreover, the enzymes involved in the ascorbate-glutathione cycle including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) showed a significant increase in their activity with the application of ZnO-NPs to the As-stressed plants. Hence, our study confirms the significance of ZnO-NPs in alleviating the toxicity of As in soybean plants.
Collapse
|
13
|
Ahmad P, Alam P, Balawi TH, Altalayan FH, Ahanger MA, Ashraf M. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. CHEMOSPHERE 2020; 244:125480. [PMID: 31821927 DOI: 10.1016/j.chemosphere.2019.125480] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 05/19/2023]
Abstract
The present study was conducted to evaluate the effect of arsenic (As) toxicity and the mitigating role of nitric oxide (NO) donor sodium nitroprusside (SNP) on Vicia faba. Arsenics stress decreased the growth and biomass yield, and photosynthetic pigments, but it enhanced As accumulation. Supplementation of NO enhanced the afore-mentioned parameters except As accumulation which decreased in both shoot and root. Supplementation of NO enhanced the shoot tolerance index (Shoot TI%), root tolerance index (Root TI%) but it declined the As translocation factor (TF). Application of NO alleviated the As-induced decline in net assimilation rate, stomatal conductance, transpiration and leaf relative water content. The levels of proline and glycine betaine (GB) further increased due to NO application, whereas malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL) and methylglyoxal (MG) declined considerably. Activities of enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT) increased under As stress. Supplementation of NO up-regulated the enzymes involved in Asc-Glu cycle and glyoxalase cycle under As toxicity. Another experiment was setup to authenticate whether NO was certainly able to alleviate As toxicity. For this purpose, the NO scavenger [2-(4-carboxy-2 phenyl)-4,4,5,5-tertamethylimidazoline-1-oxyl-3-oxide (cPTIO)] was added to As and NO supplemented plants. Addition of cPTIO to NO supplemented As-treated plants showed the same effect when As alone was supplied to plants. In conclusion, addition of NO to the growth medium maintained the plant performance under As toxicity through modulation of physio-biochemical attributes, antioxidant enzymes, and the Asc-Glu and glyoxalase systems.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia.
| | - Thamer H Balawi
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Fahad H Altalayan
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | | | | |
Collapse
|
14
|
Garg N, Kashyap L. Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7821-7839. [PMID: 30680683 DOI: 10.1007/s11356-019-04256-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is the most hazardous soil contaminant, which inactivates metabolic enzymes and restrains plant growth. To withstand As stress conditions, use of some alleviative tools, such as arbuscular mycorrhizal (AM) fungi and silicon (Si), has gained importance. Therefore, the present study evaluated comparative and interactive effects of Si and arbuscular mycorrhiza-Rhizophagus irregularis on phytotoxicity of arsenate (As V) and arsenite (As III) on plant growth, ROS generation, and antioxidant defense responses in pigeonpea genotypes (Tolerant-Pusa 2002; Sensitive-Pusa 991). Roots of As III treated plants accumulated significantly higher total As than As V supplemented plants, more in Pusa 991 than Pusa 2002, which corresponded to proportionately decreased plant growth, root to biomass ratio, and oxidative burst. Although Si nutrition and AM inoculations improved plant growth by significantly reducing As uptake and the resultant oxidative burst, AM was relatively more efficient in upregulating enzymatic and non-enzymatic antioxidant defense responses as well as ascorbate-glutathione pathway when compared with Si. Pusa 2002 was more receptive to Si nourishment due to its ability to establish more efficient mycorrhizal symbiosis, which led to higher Si uptake and lower As concentrations. Moreover, +Si+AM bestowed better metalloid resistance by further reducing ROS and strengthening antioxidants. Results demonstrated that the genotype with more efficient AM symbiosis in As-contaminated soils could accrue higher benefits of Si fertilization in terms of metalloid tolerance in pigeonpea.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Lakita Kashyap
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
15
|
Kofroňová M, Mašková P, Lipavská H. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. PLANTA 2018; 248:19-35. [PMID: 29736625 DOI: 10.1007/s00425-018-2906-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Monika Kofroňová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| |
Collapse
|
16
|
Hemmati AA, Olapour S, Varzi HN, Khodayar MJ, Dianat M, Mohammadian B, Yaghooti H. Ellagic acid protects against arsenic trioxide-induced cardiotoxicity in rat. Hum Exp Toxicol 2017; 37:412-419. [PMID: 28474970 DOI: 10.1177/0960327117701986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arsenic trioxide (As2O3) is utilized for treating patients suffering from hematological malignancies particularly acute promyelocytic leukemia. Unfortunately, the extensive application of this chemotherapeutic agent has been limited due to its adverse effects such as cardiotoxicity. Ellagic acid, as a phenolic compound, has shown to exert antioxidant, anti-inflammatory, antifibrotic, and antiatherogenic properties. It is also capable of protecting against drug toxicity. In this study, we evaluated whether ellagic acid can protect against As2O3-induced heart injury in rats. Thirty-two male Wistar rats were randomly divided into four treatment groups, that is, control (0.2 mL of normal saline, intraperitoneally (ip)), As2O3 (5 mg/kg, ip), As2O3 plus ellagic acid, and ellagic acid (30 mg/kg, orally) groups. The drugs were administered daily for 10 days and pretreatment with ellagic acid was performed 1 h prior to As2O3 injection. Cardiotoxicity was characterized by electrocardiological, biochemical, and histopathological evaluations. Our results showed that ellagic acid pretreatment significantly ameliorated As2O3-induced increase in glutathione peroxidase activity and malondialdehyde concentration ( p < 0.05 and p < 0.001, respectively) and also diminished QTc prolongation ( p < 0.0001) and cardiac tissue damages. Pretreatment with ellagic acid also lowered the increased troponin I ( p < 0.0001) and creatine kinase isoenzyme MB ( p < 0.01) levels in response to As2O3. In conclusion, results of this study demonstrated that ellagic acid has beneficial cardioprotective effects against As2O3 toxicity. It is suggested that the protective effects were mediated by antioxidant properties of ellagic acid.
Collapse
Affiliation(s)
- A A Hemmati
- 1 Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Olapour
- 2 Department of Pharmacology, School of Pharmacy, Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - H Najafzadeh Varzi
- 3 Department of Pharmacology, School of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - M J Khodayar
- 4 Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M Dianat
- 5 Physiology Research Center and Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - B Mohammadian
- 6 Department of Pathobiology, School of Veterinary Medicine, Shahid Chamram University, Ahvaz, Iran
| | - H Yaghooti
- 7 Hyperlipidemia Research Center, School of Allied Medical Sciences, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|