1
|
Rong M, Jia JJ, Lin MQ, He XLS, Xie ZY, Wang N, Zhang ZH, Dong YJ, Xu WF, Huang JH, Li B, Jiang NH, Lv GY, Chen SH. The effect of modified Qiyuan paste on mice with low immunity and sleep deprivation by regulating GABA nerve and immune system. Chin Med 2024; 19:84. [PMID: 38867320 PMCID: PMC11167779 DOI: 10.1186/s13020-024-00939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Low immunity and sleep disorders are prevalent suboptimal health conditions in contemporary populations, which render them susceptible to the infiltration of pathogenic factors. LJC, which has a long history in traditional Chinese medicine for nourishing the Yin and blood and calming the mind, is obtained by modifying Qiyuan paste. Dendrobium officinale Kimura et Migo has been shown to improve the immune function in sleep-deprived mice. In this study, based on the traditional Chinese medicine theory, LJC was prepared by adding D. officinale Kimura et Migo to Qiyuan paste decoction. METHODS Indicators of Yin deficiency syndrome, such as back temperature and grip strength, were measured in each group of mice; furthermore, behavioral tests and pentobarbital sodium-induced sleep tests were performed. An automatic biochemical analyzer, enzyme-linked immunosorbent assay kit, and other methods were used to determine routine blood parameters, serum immunoglobulin (IgG, IgA, and IgM), cont (C3, C4), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels in the spleen, serum hemolysin, and delayed-type hypersensitivity (DTH) levels. In addition, serum levels of γ-aminobutyric acid (GABA) and glutamate (Glu) were detected using high-performance liquid chromatography (HPLC). Hematoxylin-eosin staining and Nissl staining were used to assess the histological alterations in the hypothalamus tissue. Western blot and immunohistochemistry were used to detect the expressions of the GABA pathway proteins GABRA1, GAD, GAT1, and GABAT1 and those of CD4+ and CD8+ proteins in the thymus and spleen tissues. RESULTS The findings indicated that LJC prolonged the sleep duration, improved the pathological changes in the hippocampus, effectively upregulated the GABA content in the serum of mice, downregulated the Glu content and Glu/GABA ratio, enhanced the expressions of GABRA1, GAT1, and GAD, and decreased the expression of GABAT1 to assuage sleep disorders. Importantly, LJC alleviated the damage to the thymus and spleen tissues in the model mice and enhanced the activities of ACP and LDH in the spleen of the immunocompromised mice. Moreover, serum hemolysin levels and serum IgG, IgA, and IgM levels increased after LJC administration, which manifested as increased CD4+ content, decreased CD8+ content, and enhanced DTH response. In addition, LJC significantly increased the levels of complement C3 and C4, increased the number of white blood cells and lymphocytes, and decreased the percentage of neutrophils in the blood. CONCLUSIONS LJC can lead to improvements in immunocompromised mice models with insufficient sleep. The underlying mechanism may involve regulation of the GABA/Glu content and the expression levels of GABA metabolism pathway-related proteins in the brain of mice, enhancing their specific and nonspecific immune functions.
Collapse
Affiliation(s)
- Mei Rong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Jiu-Jie Jia
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Min-Qiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Zhi-Yi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Wan-Feng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Jia-Hui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China.
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China.
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China.
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China.
| |
Collapse
|
2
|
Nuanmanee S, Sriwanayos P, Boonyo K, Chaisri W, Saengsitthisak B, Tajai P, Pikulkaew S. Synergistic Effect between Eugenol and 1,8-Cineole on Anesthesia in Guppy Fish ( Poecilia reticulata). Vet Sci 2024; 11:165. [PMID: 38668432 PMCID: PMC11054333 DOI: 10.3390/vetsci11040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to evaluate the synergistic effect between eugenol and 1,8-cineole on anesthesia in female guppy fish (Poecilia reticulata). Experiment I evaluated the concentrations of 0, 12.5, 25, 50, and 75 mg/L of eugenol and 0, 100, 200, 300, and 400 mg/L of 1,8-cineole for times of induction and recovery from anesthesia. Experiment II divided fish into 16 study groups, combining eugenol and 1,8-cineole in pairs at varying concentrations, based on the dosage of the chemicals in experiment I. The results of the anesthesia showed that eugenol induced fish anesthesia at concentrations of 50 and 70 mg/L, with durations of 256.5 and 171.5 s, respectively. In contrast, 1,8-cineole did not induce fish anesthesia. In combination, using eugenol at 12.5 mg/L along with 1,8-cineole at 400 mg/L resulted in fish anesthesia at a time of 224.5 s. Increasing the eugenol concentration to 25 mg/L, combined with 1,8-cineole at 300 and 400 mg/L, induced fish anesthesia at times of 259.0 and 230.5 s, respectively. For treatments with eugenol at 50 mg/L combined with 1,8-cineole at 100 to 400 mg/L, fish exhibited anesthesia at times of 189.5, 181.5, 166.0, and 157.5 s. In the case of eugenol at 75 mg/L, fish showed anesthesia at times of 175.5, 156.5, 140.5, and 121.5 s, respectively. The testing results revealed that 1,8-cineole as a single treatment could not induce fish anesthesia. However, when supplementing 1,8-cineole in formulations containing eugenol, fish exhibited a significantly faster induction of anesthesia (p < 0.05). Furthermore, all fish that underwent anesthesia were able to fully recover without any mortality. However, the shorter anesthesia duration resulted in a significantly prolonged recovery time. In conclusion, eugenol and 1,8-cineole work better together as anesthetics than when used separately, and demonstrated the safety of using these anesthetic agents on guppy fish.
Collapse
Affiliation(s)
- Saransiri Nuanmanee
- Songkhla Aquatic Animal Health Research and Development Center, Department of Fisheries, Songkhla 90100, Thailand
| | - Preeyanan Sriwanayos
- Aquatic Animal Health Research and Development Division, Department of Fisheries, Bangkok 10900, Thailand
| | - Khemmapat Boonyo
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok 10400, Thailand
| | - Wasana Chaisri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Preechaya Tajai
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surachai Pikulkaew
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
3
|
Hotha A, Ganesh CB. GABA-immunoreactive neurons in the Central Nervous System of the viviparous teleost Poecilia sphenops. J Chem Neuroanat 2023; 133:102339. [PMID: 37689218 DOI: 10.1016/j.jchemneu.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates. In this study, we examined the distribution pattern of GABA-immunoreactive (GABA-ir) cells and fibres in the CNS of the viviparous teleost Poecilia sphenops using immunofluorescence method. GABA immunoreactivity was seen in the glomerular, mitral, and granular layers of the olfactory bulbs, as well as in most parts of the dorsal and ventral telencephalon. The preoptic area consisted of a small cluster of GABA-ir cells, whereas extensively labelled GABA-ir neurons were observed in the hypothalamic areas, including the paraventricular organ, tuberal hypothalamus, nucleus recessus lateralis, nucleus recessus posterioris, and inferior lobes. In the thalamus, GABA-positive neurons were only found in the ventral thalamic and central posterior thalamic nuclei, whereas the dorsal part of the nucleus pretectalis periventricularis consisted of a few GABA-ir cells. GABA-immunoreactivity was extensively seen in the alar and basal subdivisions of the midbrain, whereas in the rhombencephalon, GABA-ir cells and fibres were found in the cerebellum, motor nucleus of glossopharyngeal and vagal nerves, nucleus commissuralis of Cajal, and reticular formation. In the spinal cord, GABA-ir cells and fibres were observed in the dorsal horn, ventral horn, and around the central canal. Overall, the extensive distribution of GABA-ir cells and fibres throughout the CNS suggests several roles for GABA, including the neuroendocrine, viscerosensory, and somatosensory functions, for the first time in a viviparous teleost.
Collapse
Affiliation(s)
- Achyutham Hotha
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
4
|
Chaoul V, Dib EY, Bedran J, Khoury C, Shmoury O, Harb F, Soueid J. Assessing Drug Administration Techniques in Zebrafish Models of Neurological Disease. Int J Mol Sci 2023; 24:14898. [PMID: 37834345 PMCID: PMC10573323 DOI: 10.3390/ijms241914898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
Neurological diseases, including neurodegenerative and neurodevelopmental disorders, affect nearly one in six of the world's population. The burden of the resulting deaths and disability is set to rise during the next few decades as a consequence of an aging population. To address this, zebrafish have become increasingly prominent as a model for studying human neurological diseases and exploring potential therapies. Zebrafish offer numerous benefits, such as genetic homology and brain similarities, complementing traditional mammalian models and serving as a valuable tool for genetic screening and drug discovery. In this comprehensive review, we highlight various drug delivery techniques and systems employed for therapeutic interventions of neurological diseases in zebrafish, and evaluate their suitability. We also discuss the challenges encountered during this process and present potential advancements in innovative techniques.
Collapse
Affiliation(s)
- Victoria Chaoul
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Emanuel-Youssef Dib
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Joe Bedran
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Chakib Khoury
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Omar Shmoury
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Frédéric Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| |
Collapse
|
5
|
Alba‐González A, Folgueira M, Castro A, Anadón R, Yáñez J. Distribution of neurogranin-like immunoreactivity in the brain and sensory organs of the adult zebrafish. J Comp Neurol 2022; 530:1569-1587. [PMID: 35015905 PMCID: PMC9415131 DOI: 10.1002/cne.25297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.
Collapse
Affiliation(s)
- Anabel Alba‐González
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Mónica Folgueira
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Antonio Castro
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Julián Yáñez
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| |
Collapse
|
6
|
Ma X, Liu K, Han Y, Bai Y, Shen F, Wang M, Wei W, Qin J, Hao E, Hou X, Hou Y, Bai G. Cinnamaldehyde Regulates the Generation of γ-aminobutyric Acid to Exert Sedation via Irreversible Inhibition of ENO1 in the Cerebellar Granular Layer. Mol Nutr Food Res 2022; 66:e2100963. [PMID: 35332659 DOI: 10.1002/mnfr.202100963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Indexed: 11/07/2022]
Abstract
SCOPE Glutamate (Glu) and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters that control information flow in the brain. GABA dysfunction is a general vulnerability factor for mental illness. Cinnamaldehyde (CA) is found to have sedation in a mental illness model. However, the specific targets and molecular mechanisms related to the sedative effects of CA have not been elucidated. METHODS AND RESULTS Metabolomics analysis and target fishing showed CA could increase the expression of GABA in vivo, and α-enolase (ENO1) is the primary target protein of CA associated with sedation. CA mainly binds with ENO1 in the cerebellar granular layer of brain, which influences the first transformations of the input signals arriving in the cerebellar cortex. The α,β-unsaturated aldehyde group of CA blocks the hydroxy group of Ser40, which induces a loss in ENO1 activation. CA also disturbs the glycolysis pathway and influences the tricarboxylic acid cycle and oxidative phosphorylation, which activate gluconeogenesis to provide energy to the brain. This mechanism is verified in zebrafish with ENO1 or glutamic acid decarboxylase (GAD) deficiency. CONCLUSIONS CA demonstrates sedation and alleviates GABA dysfunction via covalent binding ENO1, which shows the potential to improve the therapy of mental illness.
Collapse
Affiliation(s)
- Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| | - Yiman Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| | - Yongping Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| | - Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| | - Wei Wei
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jianfeng Qin
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Erwei Hao
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiaotao Hou
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300381, China
| |
Collapse
|
7
|
Volkova YA, Rassokhina IV, Kondrakhin EA, Rossokhin AV, Kolbaev SN, Tihonova TB, Kh. Dzhafarov M, Schetinina MA, Chernoburova EI, Vasileva EV, Dmitrenok AS, Kovalev GI, Sharonova IN, Zavarzin IV. Synthesis and Evaluation of Avermectin–Imidazo[1,2-a]pyridine Hybrids as Potent GABAA Receptor Modulators. Bioorg Chem 2022; 127:105904. [DOI: 10.1016/j.bioorg.2022.105904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/08/2023]
|
8
|
Elucidating Pathway and Anesthetic Mechanism of Action of Clove Oil Nanoformulations in Fish. Pharmaceutics 2022; 14:pharmaceutics14050919. [PMID: 35631505 PMCID: PMC9147060 DOI: 10.3390/pharmaceutics14050919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Clove oil (CO), an essential oil of Syzygium aromaticum, has been reported as an anesthetic for many fish species. However, its insoluble properties require a suitable delivery system for its application. In the present study, nanoformulations of CO as a nanoemulsion (CO-NE), a self-microemulsifying drug-delivery system (CO-SMEDDS), and a self-nanoemulsifying drug-delivery system (CO-SNEDDS) were prepared for delivering CO. Zebrafish were used as a fish model to investigate oil pathways. The result shows fluorescence spots of fluorescence-labeled CO accumulate on the gills, skin, and brain. All CO nanoformulations significantly increased penetration flux compared to CO ethanolic solution. Investigation of the anesthetic mechanism of action using a rat brain γ-aminobutyric acid subtype A (GABAA) receptor-binding test demonstrates that CO and its major compound, eugenol, modulate [3H]muscimol binding. CO-NE exhibited a concentration-dependent binding activity with an EC50 value of 175 µg/mL, significantly higher than CO solution in dimethyl sulfoxide. In conclusion, CO enters the fish through the skin and gills. The anesthetic mechanism of action of CO is based on modulation of [3H] muscimol binding to GABAA receptors. Among three nanoformulations tested, CO-NE is the most effective at increasing permeability and enhancing the receptor-binding activity of the oil.
Collapse
|
9
|
Agues-Barbosa T, da Silva Junior FC, Gomes-de-Lima JN, Batistuzzo de Medeiros SR, Luchiari AC. Behavioral genetics of alcohol's effects in three zebrafish (Danio rerio) populations. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110495. [PMID: 34915060 DOI: 10.1016/j.pnpbp.2021.110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Alcohol abuse is one of the most dangerous and serious problems for patients and society. Interpopulation studies are important in understanding how genetic background contributes to the effects of alcohol. In this study, we applied a chronic alcohol exposure protocol in three zebrafish populations (Danio rerio; both sexes; AB, TU, and outbred fish - OB). We analyzed the behavioral responses and mRNA expression involved in neurotransmitter metabolism - th1, tph1, ache, ada1, gaba1, gad1b, and bdnf. Locomotion patterns were similar between populations (increased speed after acute alcohol and unaltered locomotion after chronic and withdrawal treatments). All populations exhibited increased expression of genes associated with locomotion (th1, gad1b, and gaba1) after acute alcohol exposure. Anxiety-like responses increased in AB and TU fish during withdrawal and decreased in AB fish after acute alcohol exposure. Genes related to anxiety-like behavior (tph1 and ada1) were overexpressed in AB and TU fish after acute and withdrawal treatments, while OB fish exhibited unaltered responses. Bdnf levels decreased during withdrawal in AB and OB fish, while TU showed upregulated levels in both chronic and withdrawal treatments. Our results suggest that zebrafish populations respond differently to alcohol exposure, which may contribute to understanding the mechanisms underlying alcohol use and dependence. Moreover, we found that a more diverse genetic background (OB) was related to higher variability in behavioral and mRNA expression, demonstrating that inbred populations (AB and TU) may be useful tools in identifying alcohol use and abuse mechanisms.
Collapse
Affiliation(s)
- Thais Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | | | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
10
|
Fish Sedation and Anesthesia. Vet Clin North Am Exot Anim Pract 2021; 25:13-29. [PMID: 34823688 DOI: 10.1016/j.cvex.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Veterinarians often need to sedate or anesthetize fish to perform physical examinations or other diagnostic procedures. Sedation may also be required to transport fish. Painful procedures require complete anesthesia with appropriate antinociceptive agents. Regulations and withdrawal times apply to food animal species in many countries. Specific protocols are therefore warranted in commercial fish versus ornamentals. Tonic immobility of elasmobranchs and electric anesthesia should never be used to perform painful procedures. Anesthetic monitoring in fish remains challenging. This review summarizes ornamental fish anesthesia and discusses techniques used in the commercial fish industry and in field conditions.
Collapse
|
11
|
de Abreu MS, Giacomini ACVV, Genario R, Rech N, Carboni J, Lakstygal AM, Amstislavskaya TG, Demin KA, Leonard BE, Vlok M, Harvey BH, Piato A, Barcellos LJG, Kalueff AV. Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacol Biochem Behav 2020; 193:172928. [PMID: 32289330 DOI: 10.1016/j.pbb.2020.172928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Acute and chronic stressors are common triggers of human mental illnesses. Experimental animal models and their cross-species translation to humans are critical for understanding of the pathogenesis of stress-related psychiatric disorders. Mounting evidence suggests that both pharmacological and non-pharmacological approaches can be efficient in treating these disorders. Here, we analyze human, rodent and zebrafish (Danio rerio) data to compare the impact of non-pharmacological and pharmacological therapies of stress-related psychopathologies. Emphasizing the likely synergism and interplay between pharmacological and environmental factors in mitigating daily stress both clinically and in experimental models, we argue that environmental enrichment emerges as a promising complementary therapy for stress-induced disorders across taxa. We also call for a broader use of novel model organisms, such as zebrafish, to study such treatments and their potential interplay.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália Rech
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Júlia Carboni
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia
| | - Brian E Leonard
- University College Galway, Pharmacology Department, Galway, Ireland
| | - Marli Vlok
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Angelo Piato
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Postgraduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leonardo J G Barcellos
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
12
|
GABAa receptor subunits expression in silver catfish (Rhamdia quelen) brain and its modulation by Nectandra grandiflora Nees essential oil and isolated compounds. Behav Brain Res 2019; 376:112178. [PMID: 31454673 DOI: 10.1016/j.bbr.2019.112178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/23/2022]
Abstract
Studies using silver catfish (Rhamdia quelen) as experimental models are often applied to screen essential oils (EO) with GABAergic-mediated effects. However, the expression of GABAa receptors in the silver catfish brain remains unknown. Thus, we assessed whether silver catfish express GABAa receptor subunits associated with sedation/anesthetic process and/or neurological diseases. Additionally, we evaluated the brain expression of GABAa receptor subunits in fish sedated with Nectandra grandiflora EO and its isolated compounds, the fish anesthetic (+)-dehydrofukinone (DHF), and dehydrofukinone epoxide (DFX), eremophil-11-en-10-ol (ERM) and selin-11-en-4-α-ol (SEL), which have GABAa-mediated anxiolytic-like effects in mice. The expression of the subunits gabra1, gabra2, gabra3, gabrb1, gabrd and gabrg2 in the silver catfish brain were assessed after a 24h-sedation bath by real time PCR. Since qPCR data rarely describes mechanisms of action, which are usually found through interactions with receptors, we also performed an antagonist-driven experiment using flumazenil (FMZ). Real-time PCR detected the mRNA expression of all targeted genes in R. quelen brain. The expression of gabra1 was decreased in fish sedated with ERM; EO increased gabra2, gabra3, gabrb1 and gabrg2 expression; SEL increased gabrb1, gabrd and gabrg2 expression. EO and compounds DFX, SEL and ERM induced sustained sedation in fish and FMZ-bath prompted the recovery from ERM- and DFX-induced sedation. Our results suggest that the EO, SEL, ERM and DFX sedative effects involve interaction with the GABAergic system. Our findings support the use of the silver catfish as robust and reliable experimental model to evaluate the efficacy of drugs with putative GABAergic-mediated effects.
Collapse
|
13
|
Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish. Cell Tissue Res 2019; 379:349-372. [PMID: 31471710 DOI: 10.1007/s00441-019-03089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
Collapse
|
14
|
Lauková M, Velíšková J, Velíšek L, Shakarjian MP. Tetramethylenedisulfotetramine neurotoxicity: What have we learned in the past 70 years? Neurobiol Dis 2019; 133:104491. [PMID: 31176716 DOI: 10.1016/j.nbd.2019.104491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Tetramethylenedisulfotetramine (tetramine, TETS, TMDT) is a seizure-producing neurotoxic chemical formed by the condensation of sulfamide and formaldehyde. Serendipitously discovered through an occupational exposure in 1949, it was promoted as a rodenticide but later banned worldwide due to its danger to human health. However, exceptional activity of the agent against rodent pests resulted in its clandestine manufacture with large numbers of inadvertent, intentional, and mass poisonings, which continue to this day. Facile synthesis, extreme potency, persistence, lack of odor, color, and taste identify it as an effective food adulterant and potential chemical agent of terror. No known antidote or targeted treatment is currently available. In this review we examine the origins of tetramethylenedisulfotetramine, from its identification as a neurotoxicant 70 years ago, through early research, to the most recent findings including the risk it poses in the post-911 world. Included is the information known regarding its in vitro pharmacology as a GABAA receptor channel antagonist, the toxic syndrome it produces in vivo, and its effect upon vulnerable populations. We also summarize the available information about potential therapeutic countermeasures and treatment strategies as well as the contribution of clinical development of TMDT poisoning to our understanding of epileptogenesis. Finally we identify gaps in our knowledge and suggest potentially fruitful directions for continued research on this dangerous, yet intriguing compound.
Collapse
Affiliation(s)
- Marcela Lauková
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Pediatrics, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Obstetrics and Gynecology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Neurology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Neurology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Pediatrics, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA
| | - Michael P Shakarjian
- Department of Public Health, Division of Environmental Health Science, School of Health Sciences and Practice, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Cell Biology and Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Ln W, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Podlasz P, Jakimiuk A, Kasica-Jarosz N, Czaja K, Wasowicz K. Neuroanatomical Localization of Galanin in Zebrafish Telencephalon and Anticonvulsant Effect of Galanin Overexpression. ACS Chem Neurosci 2018; 9:3049-3059. [PMID: 30095254 DOI: 10.1021/acschemneuro.8b00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Galanin is a neuropeptide widely expressed in the nervous system, but it is also present in non-neuronal locations. In the brain, galanin may function as an inhibitory neurotransmitter. Several studies have shown that galanin is involved in seizure regulation and can modulate epileptic activity in the brain. The overall goal of the study was to establish zebrafish as a model to study the antiepileptic effect of galanin. The goal of this study was achieved by (1) determining neuroanatomical localization of galanin in zebrafish lateral pallium, which is considered to be the zebrafish homologue of the mammalian hippocampus, the brain region essential for initiation of seizures, and (2) testing the anticonvulsant effect of galanin overexpression. Whole mount immunofluorescence staining and pentylenotetrazole (PTZ)-seizure model in larval zebrafish using automated analysis of motor function and qPCR were used in the study. Immunohistochemical staining of zebrafish larvae revealed numerous galanin-IR fibers innervating the subpallium, but only scarce fibers reaching the dorsal parts of telencephalon, including lateral pallium. In three-month old zebrafish, galanin-IR innervation of the telencephalon was similar; however, many more galanin-IR fibers reached the dorsal telencephalon, but in the lateral pallium only scarce galanin-IR fibers were visible. qRT-PCR revealed, as expected, a strong increase in the expression of galanin in the Tg(hsp70l:galn) line after heat shock; however, also without heat shock, the galanin expression was several-fold higher than in the control animals. Galanin overexpression resulted in downregulation of c-fos after PTZ treatment. Behavioral analysis showed that galanin overexpression inhibited locomotor activity in PTZ-treated and control larvae. The obtained results show that galanin overexpression reduced the incidence of seizure-like behavior episodes and their intensity but had no significant effect on their duration. The findings indicate that in addition to antiepileptic action, galanin modulates arousal behavior and demonstrates a sedative effect. The current study showed that galanin overexpression correlated with a potent anticonvulsant effect in the zebrafish PTZ-seizure model.
Collapse
Affiliation(s)
- Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Jakimiuk
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Natalia Kasica-Jarosz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Krzysztof Czaja
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States
| | - Krzysztof Wasowicz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
16
|
Balko JA, Oda A, Posner LP. Use of tricaine methanesulfonate or propofol for immersion euthanasia of goldfish (Carassius auratus). J Am Vet Med Assoc 2018; 252:1555-1561. [DOI: 10.2460/javma.252.12.1555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Oda A, Messenger KM, Carbajal L, Posner LP, Gardner BR, Hammer SH, Cerreta AJ, Lewbart GA, Bailey KM. Pharmacokinetics and pharmacodynamic effects in koi carp (Cyprinus carpio) following immersion in propofol. Vet Anaesth Analg 2018; 45:529-538. [PMID: 29705687 DOI: 10.1016/j.vaa.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test the hypothesis that plasma propofol concentration (PPC) is associated with anesthetic effect in koi carp administered propofol by immersion. STUDY DESIGN Prospective study. ANIMALS Twenty mature koi carp (mean ± standard deviation, 409.4 ± 83.7 g). METHODS Fish were immersed in propofol (5 mg L-1). Physiological variables and induction and recovery times were recorded. In phase I, blood was sampled for PPC immediately following induction and at recovery. In phase II, following induction, fish were maintained with propofol (4 mg L-1) via a recirculating system for 20 minutes. Following established induction, blood was sampled at 1, 10 and 20 minutes. In phase III (n = 19), fish were anesthetized as in phase II with blood sampled nine times in a sparse sampling strategy. Simultaneously, a pharmacodynamics rubric was used to evaluate anesthetic depth. PPC was determined using high performance liquid chromatography with fluorescence detection. Following evaluation of normality, data were analyzed using paired t test or Spearman correlation test (significance was set at p < 0.05). RESULTS In phase I, mean PPCs at induction (20.12 μg mL-1) and recovery (11.62 μg mL-1) were different (p < 0.001). In phase II, only mean PPCs at induction (17.92 μg mL-1) and 10 minutes (21.50 μg mL-1) were different (p = 0.013). In phase III, a correlation between PPCs and the pharmacodynamic rubric scores was found (p < 0.001, r = -0.93). There was no correlation between PPCs and recovery time (p = 0.057, r = 0.433). A two-compartment open model was chosen for the pharmacokinetic model. Absorption rate constant, elimination rate constant and intercompartmental rate constant were 0.48, 0.006 and 0.02 minute-1, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Measurable PPCs were achieved in koi carp anesthetized with propofol by immersion. Anesthetic depth of fish was negatively correlated with PPCs, but recovery time was not.
Collapse
Affiliation(s)
- Ayako Oda
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Kristen M Messenger
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Liliana Carbajal
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lysa P Posner
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Brett R Gardner
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Scott H Hammer
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Anthony J Cerreta
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Gregory A Lewbart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Kate M Bailey
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
18
|
Weger M, Diotel N, Weger BD, Beil T, Zaucker A, Eachus HL, Oakes JA, do Rego JL, Storbeck KH, Gut P, Strähle U, Rastegar S, Müller F, Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish. J Neuroendocrinol 2018; 30:e12586. [PMID: 29486070 DOI: 10.1111/jne.12586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023]
Abstract
The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a translational model with respect to understanding the roles of the genes for glucocorticoid biosynthesis and fdx co-factors during embryonic development and stress, as well as in brain homeostasis and function.
Collapse
Affiliation(s)
- M Weger
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis de La Réunion, France
| | - B D Weger
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - T Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - A Zaucker
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - H L Eachus
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J A Oakes
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| | - J L do Rego
- Plateforme d'Analyse Comportementale (SCAC), Institut de Recherche et d'Innovation Biomédicale, Inserm U1234, Université de Rouen, Rouen Cedex, France
| | - K-H Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Gut
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - U Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - S Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - F Müller
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - N Krone
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, The Bateson Centre, Sheffield, UK
| |
Collapse
|
19
|
Elnagar MR, Walls AB, Helal GK, Hamada FM, Thomsen MS, Jensen AA. Probing the putative α7 nAChR/NMDAR complex in human and murine cortex and hippocampus: Different degrees of complex formation in healthy and Alzheimer brain tissue. PLoS One 2017; 12:e0189513. [PMID: 29261717 PMCID: PMC5738045 DOI: 10.1371/journal.pone.0189513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/28/2017] [Indexed: 01/20/2023] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartate receptors (NMDARs) are key mediators of central cholinergic and glutamatergic neurotransmission, respectively. In addition to numerous well-established functional interactions between α7 nAChRs and NMDARs, the two receptors have been proposed to form a multimeric complex, and in the present study we have investigated this putative α7 nAChR/NMDAR assembly in human and murine brain tissues. By α-bungarotoxin (BGT) affinity purification, α7 and NMDAR subunits were co-purified from human and murine cortical and hippocampal homogenates, substantiating the notion that the receptors are parts of a multimeric complex in the human and rodent brain. Interestingly, the ratios between GluN1 and α7 levels in BGT pull-downs from cortical homogenates from Alzheimer's disease (AD) brains were significantly lower than those in pull-downs from non-AD controls, indicating a reduced degree of α7 nAChR/NMDAR complex formation in the diseased tissue. A similar difference in GluN1/α7 ratios was observed between pull-downs from cortical homogenates from adult 3xTg-AD and age-matched wild type (WT) mice, whereas the GluN1/α7 ratios determined in pull-downs from young 3xTg-AD and age-matched WT mice did not differ significantly. The observation that pretreatment with oligomeric amyloid-β1-42 reduced GluN1/α7 ratios in BGT pull-downs from human cortical homogenate in a concentration-dependent manner provided a plausible molecular mechanism for this observed reduction. In conclusion, while it will be important to further challenge the existence of the putative α7 nAChR/NMDAR complex in future studies applying other methodologies than biochemical assays and to investigate the functional implications of this complex for cholinergic and glutamatergic neurotransmission, this work supports the formation of the complex and presents new insights into its regulation in healthy and diseased brain tissue.
Collapse
Affiliation(s)
- Mohamed R. Elnagar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen Ø, Denmark
- Faculty of Pharmacy, Al-Azhar University, Al-Mokhaym Al-Daem, Nasr City, Cairo, Egypt
| | - Anne Byriel Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen Ø, Denmark
| | - Gouda K. Helal
- Faculty of Pharmacy, Al-Azhar University, Al-Mokhaym Al-Daem, Nasr City, Cairo, Egypt
| | - Farid M. Hamada
- Faculty of Pharmacy, Al-Azhar University, Al-Mokhaym Al-Daem, Nasr City, Cairo, Egypt
| | - Morten Skøtt Thomsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen Ø, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen Ø, Denmark
| |
Collapse
|
20
|
PROPOFOL AS AN IMMERSION ANESTHETIC AND IN A MINIMUM ANESTHETIC CONCENTRATION (MAC) REDUCTION MODEL IN GOLDFISH (CARASSIUS AURATUS). J Zoo Wildl Med 2017; 48:48-54. [PMID: 28363074 DOI: 10.1638/2016-0079.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Propofol is a novel immersion anesthetic in goldfish ( Carassius auratus ). Objectives were to characterize propofol as an anesthetic and assess its suitability in a minimum anesthetic concentration (MAC) reduction model. Using a crossover design, eight goldfish were submerged in 1, 5, or 10 mg/L propofol. Data included induction time, recovery time, heart rate, opercular rate, and response to supramaximal stimulation. Baseline MAC (Dixon's up-and-down method) was determined, and 15 fish were anesthetized with propofol on 4 consecutive days with MAC determination on the fifth day, weekly, for 1 mo. Using a crossover design, MAC of propofol (n = 15) was determined 1 hr following administration of i.m. butorphanol 0.05, 0.5, and 1 mg/kg, dexmedetomidine 0.01, 0.02, and 0.04 mg/kg, ketoprofen 0.5, 1, and 2 mg/kg, morphine 5, 10, and 15 mg/kg, or saline 1 ml/kg. Comparisons were performed with Wilcoxon signed-rank tests (P < 0.05) and Tango's score confidence interval. Propofol at 1 mg/L did not produce anesthesia. Induction time with 10 mg/L (112, 84-166 s) was faster than 5 mg/L (233, 150-289 s; P = 0.0078). Heart and opercular rates for 5 and 10 mg/L were 36 (24-72) beats/min, 58 (44-68) operculations/min and 39 (20-48) beats/min, 57 (48-80) operculations/min, respectively. Recovery time was 249 (143-396) s and 299 (117-886) s with 5 and 10 mg/L, respectively. Response to supramaximal stimulation was not significantly different with 5 mg/L (1/8) compared with 10 mg/L (0/8). Baseline and weekly MAC following daily exposure was 8.4 and 9.0, 8.1, 8.1, and 8.7 mg/L, respectively. MAC reduction was no more than 8% following any drug or dosage. Propofol at 5 and 10 mg/L produced anesthesia, and anesthetic needs were similar following repeated exposure. Propofol was not suitable to test MAC reduction in goldfish in this study.
Collapse
|
21
|
dos Santos AC, Junior GB, Zago DC, Zeppenfeld CC, da Silva DT, Heinzmann BM, Baldisserotto B, da Cunha MA. Anesthesia and anesthetic action mechanism of essential oils of Aloysia triphylla and Cymbopogon flexuosus in silver catfish (Rhamdia quelen). Vet Anaesth Analg 2017; 44:106-113. [DOI: 10.1111/vaa.12386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
|
22
|
Horzmann KA, Freeman JL. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity. TOXICS 2016; 4:19. [PMID: 28730152 PMCID: PMC5515482 DOI: 10.3390/toxics4030019] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.
Collapse
Affiliation(s)
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
23
|
Characterization of the γ-aminobutyric acid signaling system in the zebrafish (Danio rerio Hamilton) central nervous system by reverse transcription-quantitative polymerase chain reaction. Neuroscience 2016; 343:300-321. [PMID: 27453477 DOI: 10.1016/j.neuroscience.2016.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
Abstract
In the vertebrate brain, inhibition is largely mediated by γ-aminobutyric acid (GABA). This neurotransmitter comprises a signaling machinery of GABAA, GABAB receptors, transporters, glutamate decarboxylases (gads) and 4-aminobutyrate aminotransferase (abat), and associated proteins. Chloride is intimately related to GABAA receptor conductance, GABA uptake, and GADs activity. The response of target neurons to GABA stimuli is shaped by chloride-cation co-transporters (CCCs), which strictly control Cl- gradient across plasma membranes. This research profiled the expression of forty genes involved in GABA signaling in the zebrafish (Danio rerio) brain, grouped brain regions and retinas. Primer pairs were developed for reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The mRNA levels of the zebrafish GABA system share similarities with that of mammals, and confirm previous studies in non-mammalian species. Proposed GABAA receptors are α1β2γ2, α1β2δ, α2bβ3γ2, α2bβ3δ, α4β2γ2, α4β2δ, α6bβ2γ2 and α6bβ2δ. Regional brain differences were documented. Retinal hetero- or homomeric ρ-composed GABAA receptors could exist, accompanying α1βyγ2, α1βyδ, α6aβyγ2, α6aβyδ. Expression patterns of α6a and α6b were opposite, with the former being more abundant in retinas, the latter in brains. Given the stoichiometry α6wβyγz, α6a- or α6b-containing receptors likely have different regulatory mechanisms. Different gene isoforms could originate after the rounds of genome duplication during teleost evolution. This research depicts that one isoform is generally more abundantly expressed than the other. Such observations also apply to GABAB receptors, GABA transporters, GABA-related enzymes, CCCs and GABAA receptor-associated proteins, whose presence further strengthens the proof of a GABA system in zebrafish.
Collapse
|
24
|
Shakarjian MP, Laukova M, Velíšková J, Stanton PK, Heck DE, Velíšek L. Tetramethylenedisulfotetramine: pest control gone awry. Ann N Y Acad Sci 2016; 1378:68-79. [PMID: 27384716 DOI: 10.1111/nyas.13120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023]
Abstract
Incidences of pesticide poisonings are a significant cause of morbidity and mortality worldwide. The seizure-inducing rodenticide tetramethylenedisulfotetramine is one of the most toxic of these agents. Although banned, it has been responsible for thousands of accidental, intentional, and mass poisonings in mainland China and elsewhere. An optimal regimen for treatment of poisoning has not been established. Its facile synthesis from easily obtained starting materials, extreme potency, and lack of odor, color, or taste make it a potential chemical threat agent. This review describes the toxicologic properties of this agent, more recent advances in our understanding of its properties, and recommendations for future research.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York. .,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York. .,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey.
| | - Marcela Laukova
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York
| | - Diane E Heck
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York.,Department of Pediatrics, New York Medical College, Valhalla, New York
| |
Collapse
|
25
|
Biechl D, Dorigo A, Köster RW, Grothe B, Wullimann MF. Eppur Si Muove: Evidence for an External Granular Layer and Possibly Transit Amplification in the Teleostean Cerebellum. Front Neuroanat 2016; 10:49. [PMID: 27199681 PMCID: PMC4852188 DOI: 10.3389/fnana.2016.00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 01/12/2023] Open
Abstract
The secreted signaling factor Sonic Hedgehog (Shh) acts in the floor plate of the developing vertebrate CNS to promote motoneuron development. In addition, shh has dorsal expression domains in the amniote alar plate (i.e., in isocortex, superior colliculus, and cerebellum). For example, shh expressing Purkinje cells act in transit amplification of external granular layer (EGL) cells of the developing cerebellum. Our previous studies had indicated the presence of an EGL in anamniote zebrafish, but a possible role of shh in the zebrafish cerebellar plate remained elusive. Therefore, we used an existing zebrafish transgenic line Tg(2.4shha-ABC-GFP)sb15; Shkumatava et al., 2004) to show this gene activity and its cellular localization in the larval zebrafish brain. Clearly, GFP expressing cells occur in larval alar zebrafish brain domains, i.e., optic tectum and cerebellum. Analysis of critical cerebellar cell markers on this transgenic background and a PH3 assay for mitotic cells reveals that Purkinje cells and eurydendroid cells are completely non-overlapping postmitotic cell populations. Furthermore, shh-GFP cells never express Zebrin II or parvalbumin, nor calretinin. They are thus neither Purkinje cells nor calretinin positive migrating rhombic lip derived cells. The shh-GFP cells also never correspond to PH3 positive cells of the ventral cerebellar proliferative zone or the upper rhombic lip-derived EGL. From this marker analysis and the location of shh-GFP cells sandwiched between calretinin positive rhombic lip derived cells and parvalbumin positive Purkinje cells, we conclude that shh-GFP expressing cells qualify as previously reported olig2 positive eurydendroid cells, which are homologous to the amniote deep cerebellar nuclei. We confirm this using double transgenic progeny of shh-GFP and olig2-dsRed zebrafish. Thus, these zebrafish eurydendroid cells may have the same role in transit amplification as Purkinje cells do in amniotes.
Collapse
Affiliation(s)
- Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Munich, Germany
| | - Alessandro Dorigo
- Institute of Zoology, Cellular and Molecular Neurobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Reinhard W Köster
- Institute of Zoology, Cellular and Molecular Neurobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|
26
|
Garlet QI, Pires LC, Silva DT, Spall S, Gressler LT, Bürger ME, Baldisserotto B, Heinzmann BM. Effect of (+)-dehydrofukinone on GABAA receptors and stress response in fish model. ACTA ACUST UNITED AC 2015; 49:e4872. [PMID: 26628396 PMCID: PMC4681417 DOI: 10.1590/1414-431x20154872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
(+)-Dehydrofukinone (DHF) is a major component of the essential oil of
Nectandra grandiflora (Lauraceae), and exerts a depressant effect
on the central nervous system of fish. However, the neuronal mechanism underlying DHF
action remains unknown. This study aimed to investigate the action of DHF on
GABAA receptors using a silver catfish (Rhamdia
quelen) model. Additionally, we investigated the effect of DHF exposure on
stress-induced cortisol modulation. Chemical identification was performed using gas
chromatography-mass spectrometry and purity was evaluated using gas chromatography
with a flame ionization detector. To an aquarium, we applied between 2.5 and 50 mg/L
DHF diluted in ethanol, in combination with 42.7 mg/L diazepam. DHF within the range
of 10-20 mg/L acted collaboratively in combination with diazepam, but the sedative
action of DHF was reversed by 3 mg/L flumazenil. Additionally, fish exposed for 24 h
to 2.5-20 mg/L DHF showed no side effects and there was sustained sedation during the
first 12 h of drug exposure with 10-20 mg/L DHF. DHF pretreatment did not increase
plasma cortisol levels in fish subjected to a stress protocol. Moreover, the
stress-induced cortisol peak was absent following pretreatment with 20 mg/L DHF. DHF
proved to be a relatively safe sedative or anesthetic, which interacts with GABAergic
and cortisol pathways in fish.
Collapse
Affiliation(s)
- Q I Garlet
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L C Pires
- Curso de Farmácia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - D T Silva
- Programa de Pós-Graduação em Engenharia Florestal, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - S Spall
- Curso de Farmácia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L T Gressler
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - M E Bürger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B Baldisserotto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M Heinzmann
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
27
|
Stewart AM, Ullmann JF, Norton WH, Brennan CH, Parker MO, Gerlai R, Kalueff AV. Molecular psychiatry of zebrafish. Mol Psychiatry 2015; 20:2-17. [PMID: 25349164 PMCID: PMC4318706 DOI: 10.1038/mp.2014.128] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Jeremy F.P. Ullmann
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - William H.J. Norton
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Matthew O. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Rd N Mississauga, Ontario L5L1C6, Canada
| | - Allan V. Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| |
Collapse
|
28
|
Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto) 2015; 55:1-16. [PMID: 25109898 DOI: 10.1111/cga.12079] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Japan; Mie University Medical Zebrafish Research Center, Tsu, Japan; Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Japan; Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Oda A, Bailey KM, Lewbart GA, Griffith EH, Posner LP. Physiologic and biochemical assessments of koi (Cyprinus carpio) following immersion in propofol. J Am Vet Med Assoc 2014; 245:1286-91. [DOI: 10.2460/javma.245.11.1286] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Feldman B, Tuchman M, Caldovic L. A zebrafish model of hyperammonemia. Mol Genet Metab 2014; 113:142-7. [PMID: 25069822 PMCID: PMC4191821 DOI: 10.1016/j.ymgme.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Hyperammonemia is the principal consequence of urea cycle defects and liver failure, and the exposure of the brain to elevated ammonia concentrations leads to a wide range of neuro-cognitive deficits, intellectual disabilities, coma and death. Current treatments focus almost exclusively on either reducing ammonia levels through the activation of alternative pathways for ammonia disposal or on liver transplantation. Ammonia is toxic to most fish and its pathophysiology appears to be similar to that in mammals. Since hyperammonemia can be induced in fish simply by immersing them in water with elevated concentration of ammonia, we sought to develop a zebrafish (Danio rerio) model of hyperammonemia. When exposed to 3mM ammonium acetate (NH4Ac), 50% of 4-day old (dpf) fish died within 3hours and 4mM NH4Ac was 100% lethal. We used 4dpf zebrafish exposed to 4mM NH4Ac to test whether the glutamine synthetase inhibitor methionine sulfoximine (MSO) and/or NMDA receptor antagonists MK-801, memantine and ketamine, which are known to protect the mammalian brain from hyperammonemia, prolong survival of hyperammonemic fish. MSO, MK-801, memantine and ketamine all prolonged the lives of the ammonia-treated fish. Treatment with the combination of MSO and an NMDA receptor antagonist was more effective than either drug alone. These results suggest that zebrafish can be used to screen for ammonia-neuroprotective agents. If successful, drugs that are discovered in this screen could complement current treatment approaches to improve the outcome of patients with hyperammonemia.
Collapse
Affiliation(s)
- B Feldman
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - M Tuchman
- Children's National Medical Center, Washington DC, USA
| | - L Caldovic
- Children's National Medical Center, Washington DC, USA.
| |
Collapse
|
31
|
Wirbisky SE, Weber GJ, Lee JW, Cannon JR, Freeman JL. Novel dose-dependent alterations in excitatory GABA during embryonic development associated with lead (Pb) neurotoxicity. Toxicol Lett 2014; 229:1-8. [PMID: 24875535 DOI: 10.1016/j.toxlet.2014.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 01/22/2023]
Abstract
Lead (Pb) is a heavy metal that is toxic to numerous physiological processes. Its use in industrial applications is widespread and results in an increased risk of human environmental exposure. The central nervous system (CNS) is most sensitive to Pb exposure during early development due to rapid cell proliferation and migration, axonal growth, and synaptogenesis. One of the key components of CNS development is the Gamma-aminobutyric acid (GABA)-ergic system. GABA is the primary inhibitory neurotransmitter in the adult brain. However, during development GABA acts as an excitatory neurotrophic factor which contributes to these cellular processes. Multiple studies report effects of Pb on GABA in the mature brain; however, little is known regarding the adverse effects of Pb exposure on the GABAergic system during embryonic development. To characterize the effects of Pb on the GABAergic system during development, zebrafish embryos were exposed to 10, 50, or 100 ppb Pb or a control treatment. Tissue up-take, gross morphological alterations, gene expression, and neurotransmitter levels were analyzed. Analysis revealed that alterations in gene expression throughout the GABAergic system and GABA levels were dose and developmental time point specific. These data provide a framework for further analysis of the effects of Pb on the GABAergic system during the excitatory phase and as GABA transitions to an inhibitory neurotransmitter during development.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jang-Won Lee
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Téllez-Bañuelos MC, Ortiz-Lazareno PC, Jave-Suárez LF, Siordia-Sánchez VH, Bravo-Cuellar A, Santerre A, Zaitseva GP. Endosulfan decreases cytotoxic activity of nonspecific cytotoxic cells and expression of granzyme gene in Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2014; 38:196-203. [PMID: 24657320 DOI: 10.1016/j.fsi.2014.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/23/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
The effect of the organochlorinated insecticide endosulfan, on the cytotoxic activity of Nile tilapia nonspecific cytotoxic cells (NCC) was assessed. Juvenile Nile tilapia were exposed to endosulfan (7 ppb) for 96 h and splenic NCC were isolated. Flow cytometric phenotyping of NCC was based on the detection of the NCC specific membrane signaling protein NCCRP-1 by using the monoclonal antibody Mab 5C6; granzyme expression was evaluated by quantitative RT-PCR. The cytotoxic activity of sorted NCC on HL-60 tumoral cells was assessed using propidium iodide (PI) staining of DNA in HL-60 nuclei, indicating dead cells. Nile tilapia splenic NCC had the ability to kill HL-60 tumoral cells, however, the exposure to endosulfan significantly reduced, by a 65%, their cytotoxic activity when using the effector:target ratio of 40:1. Additionally, the exposure to endosulfan tended to increase the expression of NCCRP-1, which is involved in NCC antigen recognition and signaling. Moreover, it decreased the expression of the granzyme gene in exposed group as compared with non-exposed group; however significant differences between groups were not detected. In summary, the acute exposure of Nile tilapia to sublethal concentration of endosulfan induces alteration in function of NCC: significant decrease of cytotoxic activity and a tendency to lower granzyme expression, severe enough to compromise the immunity of this species.
Collapse
Affiliation(s)
- Martha Cecilia Téllez-Bañuelos
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico.
| | - Pablo Cesar Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente, IMSS, Sierra Mojada 800, Col. Independencia, 44340 Guadalajara, Jalisco, Mexico
| | - Luis Felipe Jave-Suárez
- Centro de Investigación Biomédica de Occidente, IMSS, Sierra Mojada 800, Col. Independencia, 44340 Guadalajara, Jalisco, Mexico
| | - Victor Hugo Siordia-Sánchez
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico
| | - Alejandro Bravo-Cuellar
- Centro de Investigación Biomédica de Occidente, IMSS, Sierra Mojada 800, Col. Independencia, 44340 Guadalajara, Jalisco, Mexico
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico
| | - Galina P Zaitseva
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico
| |
Collapse
|
33
|
Heldwein CG, Silva LDL, Gai EZ, Roman C, Parodi TV, Bürger ME, Baldisserotto B, Flores ÉMDM, Heinzmann BM. S-(+)-Linalool from Lippia alba: sedative and anesthetic for silver catfish (Rhamdia quelen). Vet Anaesth Analg 2014; 41:621-9. [PMID: 24628858 DOI: 10.1111/vaa.12146] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The present study describes the isolation of linalool from the essential oil of Lippia alba (Mill.) N. E. Brown, and its anesthetic effect in silver catfish (Rhamdia quelen) in comparison with essential oil. The potentiation of depressant effects of linalool with a benzodiazepine (BDZ) and the involvement of GABAergic system in its antagonism by flumazenil were also evaluated. STUDY DESIGN Prospective experimental study. ANIMALS Juvenile silver catfish unknown sex weighing mean 9.24 ± 2.83 g (n = 6 for each experimental group per experiment). METHODS Column chromatography was used for the isolation of S-(+)-linalool. Fish (n = 6 for each concentration) were transferred to aquaria with linalool (30, 60, and 180 μL L(-1)) or EO of L. alba (50, 100, and 300 μL L(-1)) to determine the induction time for anesthesia. After induction, the animals were transferred to anesthetic-free aquaria to assess their recovery time. To observe the potentiation, fish were exposed to linalool (30, 60, and 180 μL L(-1)) in the presence or absence of BDZ (diazepam 150 μm). In another experiment, fish exposed to linalool (30 and 180 μL L(-1) or BDZ were transferred to an anesthetic-free aquaria containing flumazenil (5 μm) or water to assess recovery time. RESULTS Linalool had a similar sedation profile to the essential oil at a proportional concentration in silver catfish. However, the anesthesia profile was different. Potentiation of linalool effect occurred only when tested at low concentration. Fish exposed to BDZ showed faster anesthesia recovery in water with flumazenil, but the same did not occur with linalool. CONCLUSIONS AND CLINICAL RELEVANCE The use of linalool as a sedative and anesthetic for silver catfish was effective at 30 and 180 μL L(-1), respectively. The mechanism of action seems not to involve the benzodiazepine site of the GABAergic system.
Collapse
|
34
|
Schneider H, Fritzky L, Williams J, Heumann C, Yochum M, Pattar K, Noppert G, Mock V, Hawley E. Cloning and expression of a zebrafish 5-HT(2C) receptor gene. Gene 2012; 502:108-17. [PMID: 22521866 DOI: 10.1016/j.gene.2012.03.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 11/18/2022]
Abstract
The 5-HT(2C) receptor is one of 14 different serotonin (5-HT) receptors that control neural function and behavior. Here, we present the entire sequence of a zebrafish 5-HT(2C) receptor cDNA including the 3' untranslated region and the previously unknown 5' untranslated region. The cloned 5-HT(2C) receptor gene is located on chromosome 7, is approximately 202 kbp long, and contains six exons. The coding region of the gene is 1557 bp long and flanked by a 504 bp 5' UTR and a 1474 bp 3' UTR. The deduced protein sequence of 518 amino acids aligns with orthologs of other vertebrates and is 54% identical to the human and mouse 5-HT(2C) receptor protein sequences. The region of the cDNA that encodes the 2nd cytoplasmic loop of the protein shows a 66% identity with vertebrate orthologs and clearly identifies the gene as a 5-HT(2C) receptor gene. Coupling sites for beta-arrestin and calmodulin are conserved in zebrafish. In-situ hybridization shows that the receptor is expressed in the brain and spinal cord including areas such as the olfactory bulb, the dorsal thalamus, the posterior tuberculum, the hypothalamus and the medulla oblongata. Reverse Transcriptase-PCR experiments indicate that the receptor gene can also be active in other tissues such as skin, ovaries, and axial muscle of adult zebrafish. Expression of the 5-HT(2C) receptor during ontogeny was found as early as 2.5 hpf. Five edited adenines in the region of the human, rat and mouse mRNA that encodes the 2nd cytoplasmic loop are conserved in the zebrafish transcript. However, RNA editing was not detected in the zebrafish. The results characterize the zebrafish 5-HT(2C) receptor gene and gene expression pattern for the first time. The similarities to mammalian 5-HT(2C) receptor genes suggest the use of zebrafish for the study of 5-HT(2C) receptor function in behavior, development and drug discovery.
Collapse
Affiliation(s)
- Henning Schneider
- DePauw University, Department of Biology, Greencastle, IN 46135, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heldwein CG, Silva LL, Reckziegel P, Barros FMC, Bürger ME, Baldisserotto B, Mallmann CA, Schmidt D, Caron BO, Heinzmann BM. Participation of the GABAergic system in the anesthetic effect of Lippia alba (Mill.) N.E. Brown essential oil. Braz J Med Biol Res 2012; 45:436-43. [PMID: 22473320 PMCID: PMC3854290 DOI: 10.1590/s0100-879x2012007500052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 03/20/2012] [Indexed: 02/03/2023] Open
Abstract
The objective of this study was to identify the possible involvement of the GABAergic system in the anesthetic effect of Lippia alba essential oil (EO). We propose a new animal model using silver catfish (Rhamdia quelen) exposed to an anesthetic bath to study the mechanism of action of EO. To observe the induction and potentiation of the anesthetic effect of EO, juvenile silver catfish (9.30 ± 1.85 g; 10.15 ± 0.95 cm; N = 6) were exposed to various concentrations of L. alba EO in the presence or absence of diazepam [an agonist of high-affinity binding sites for benzodiazepinic (BDZ) sites coupled to the GABA A receptor complex]. In another experiment, fish (N = 6) were initially anesthetized with the EO and then transferred to an anesthetic-free aquarium containing flumazenil (a selective antagonist of binding sites for BDZ coupled to the GABA A receptor complex) or water to assess recovery time from the anesthesia. In this case, flumazenil was used to observe the involvement of the GABA-BDZ receptor in the EO mechanism of action. The results showed that diazepam potentiates the anesthetic effect of EO at all concentrations tested. Fish exposed to diazepam and EO showed faster recovery from anesthesia when flumazenil was added to the recovery bath (12.0 ± 0.3 and 7.2 ± 0.7, respectively) than those exposed to water (9.2 ± 0.2 and 3.5 ± 0.3, respectively). In conclusion, the results demonstrated the involvement of the GABAergic system in the anesthetic effect of L. alba EO on silver catfish.
Collapse
Affiliation(s)
- C G Heldwein
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, RS, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pan Y, Chatterjee D, Gerlai R. Strain dependent gene expression and neurochemical levels in the brain of zebrafish: focus on a few alcohol related targets. Physiol Behav 2012; 107:773-80. [PMID: 22313674 DOI: 10.1016/j.physbeh.2012.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/15/2022]
Abstract
The zebrafish is becoming increasingly popular in behavior genetics because it may allow one to conduct large scale mutation and drug screens facilitating the discovery of mechanisms of complex traits. Strain differences in adult zebrafish behavior have already been reported, which may have important implications in neurobehavioral genetics. For example, we have found the AB and SF strains to differ in their behavioral responses to both acute and chronic alcohol exposure. In the current study, we further characterize these strains using semi-quantitative RT-PCR to measure the expression of ten selected genes and HPLC to measure the levels of nine neurochemicals. We chose the target genes and neurochemicals based upon their potential involvement in alcohol and other drugs of abuse related mechanisms. We quantified the expression of the genes encoding D1-R, D2a-R, D4a-R dopamine receptors, GABA(A)-R, GABA(B)-R1, GAD1, MAO, NMDA-R (NR2D subunit), 5HT-R1bd and SLC6 a4a. We found the gene encoding D1 dopamine receptor over-expressed and the genes encoding GABA(B1) receptor and solute family carrier protein 6 (SLC6) 4a under-expressed in SF compared to AB. We also found the level of all (dopamine, DOPAC, Serotonin, GABA, Glutamate, Glycine, Aspartate, Taurine) but one (5HIAA) neurochemicals tested decreased in SF as compared to AB. These results, combined with previously identified behavioral differences between the AB and SF strains, demonstrate the importance of strain characterization in zebrafish. They now also allow formulation of working hypotheses about possible mechanisms underlying the differential effects of acute and chronic alcohol treatment on these two zebrafish strains.
Collapse
Affiliation(s)
- Y Pan
- Departments of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
37
|
Zebrafish: a model for the study of addiction genetics. Hum Genet 2011; 131:977-1008. [PMID: 22207143 DOI: 10.1007/s00439-011-1128-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022]
Abstract
Drug abuse and dependence are multifaceted disorders with complex genetic underpinnings. Identifying specific genetic correlates is challenging and may be more readily accomplished by defining endophenotypes specific for addictive disorders. Symptoms and syndromes, including acute drug response, consumption, preference, and withdrawal, are potential endophenotypes characterizing addiction that have been investigated using model organisms. We present a review of major genes involved in serotonergic, dopaminergic, GABAergic, and adrenoreceptor signaling that are considered to be directly involved in nicotine, opioid, cannabinoid, and ethanol use and dependence. The zebrafish genome encodes likely homologs of the vast majority of these loci. We also review the known expression patterns of these genes in zebrafish. The information presented in this review provides support for the use of zebrafish as a viable model for studying genetic factors related to drug addiction. Expansion of investigations into drug response using model organisms holds the potential to advance our understanding of drug response and addiction in humans.
Collapse
|
38
|
Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 2011; 33:608-17. [PMID: 21907791 DOI: 10.1016/j.ntt.2011.07.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 01/23/2023]
Abstract
Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research.
Collapse
Affiliation(s)
- E P Rico
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Kaeser GE, Rabe BA, Saha MS. Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development. Dev Dyn 2011; 240:862-73. [PMID: 21384470 DOI: 10.1002/dvdy.22580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 11/08/2022] Open
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult nervous system, acts via two classes of receptors, the ionotropic GABA(A) and metabotropic GABA(B) receptors. During the development of the nervous system, GABA acts in a depolarizing, excitatory manner and plays an important role in various neural developmental processes including cell proliferation, migration, synapse formation, and activity-dependent differentiation. Here we describe the spatial and temporal expression patterns of the GABA(A) and GABA(B) receptors during early development of Xenopus laevis. Using in situ hybridization and qRT-PCR, GABA(A) α2 was detected as a maternal mRNA. All other α-subunits were first detected by tailbud through hatching stages. Expression of the various subunits was seen in the brain, spinal cord, cranial ganglia, olfactory epithelium, pineal, and pituitary gland. Each receptor subunit showed a distinctive, unique expression pattern, suggesting these receptors have specific functions and are regulated in a precise spatial and temporal manner.
Collapse
Affiliation(s)
- Gwendolyn E Kaeser
- Department of Biology, The College of William and Mary, Integrated Science Center, Williamsburg, Virginia, USA
| | | | | |
Collapse
|
40
|
Sajan SA, Waimey KE, Millen KJ. Novel approaches to studying the genetic basis of cerebellar development. THE CEREBELLUM 2011; 9:272-83. [PMID: 20387026 DOI: 10.1007/s12311-010-0169-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The list of genes that when mutated cause disruptions in cerebellar development is rapidly increasing. The study of both spontaneous and engineered mouse mutants has been essential to this progress, as it has revealed much of our current understanding of the developmental processes required to construct the mature cerebellum. Improvements in brain imaging, such as magnetic resonance imaging (MRI) and the emergence of better classification schemes for human cerebellar malformations, have recently led to the identification of a number of genes which cause human cerebellar disorders. In this review we argue that synergistic approaches combining classical molecular techniques, genomics, and mouse models of human malformations will be essential to fuel additional discoveries of cerebellar developmental genes and mechanisms.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Human Genetics, The University of Chicago, 920 E 58th Street, CLSC 319, Chicago, IL 60637, USA
| | | | | |
Collapse
|
41
|
Lim AL, Taylor DA, Malone DT. Isolation rearing in rats: effect on expression of synaptic, myelin and GABA-related immunoreactivity and its utility for drug screening via the subchronic parenteral route. Brain Res 2011; 1381:52-65. [PMID: 21241674 DOI: 10.1016/j.brainres.2011.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 01/08/2011] [Indexed: 12/31/2022]
Abstract
Depriving weaned rats of social contact by rearing them in isolation brings about a spectrum of behavioural and neuropathological changes in adulthood which resemble some of the characteristics observed in schizophrenia. Hence, isolation rearing provides a non-pharmacological means to induce in an animal model certain aspects of schizophrenia with a neurodevelopmental origin. We compared the prepulse inhibition and locomotor activity behaviours in group-reared and isolation-reared rats in the context of determining the robustness of any behavioural changes following a subchronic parenteral drug administration protocol. The expression of synaptic, myelin and GABA-related proteins was also assessed in the brains of these rats using semi-quantitative fluorescence immunohistochemistry. Compared to their group-reared counterparts, isolation-reared rats displayed disruption in prepulse inhibition which was lost after repeated testing and subchronic vehicle administration. However, isolation-reared rats showed open-field hyperlocomotion post-subchronic vehicle treatment compared to group-reared rats. Isolation rearing resulted in reduced expression of synaptophysin, synapsin I, myelin basic protein and GABA(B1) receptor proteins, along with an increase in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Of the brain areas examined these observed changes were localised to the hippocampal regions and the substantia nigra. These results suggest an alteration in the synaptic, myelin and GABA-related functions in the brains of isolation-reared rats that displayed behavioural anomalies. Since dysfunction in these systems has also been implicated in schizophrenia, our findings provide additional evidence to support the use of isolation rearing for schizophrenia research; however, its use in the screening of putative antipsychotics following subchronic administration needs to be undertaken warily.
Collapse
Affiliation(s)
- Ann Li Lim
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.
| | | | | |
Collapse
|
42
|
Hortopan GA, Dinday MT, Baraban SC. Zebrafish as a model for studying genetic aspects of epilepsy. Dis Model Mech 2010; 3:144-8. [DOI: 10.1242/dmm.002139] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite a long tradition of using rats and mice to model epilepsy, several aspects of rodent biology limit their use in large-scale genetic and therapeutic drug screening programs. Neuroscientists interested in vertebrate development and diseases have recently turned to zebrafish (Danio rerio) to overcome these limitations. Zebrafish can be studied at all stages of development and several methods are available for the manipulation of genes in zebrafish. In addition, developing zebrafish larvae can efficiently equilibrate drugs placed in the bathing medium. Taking advantage of these features and adapting electrophysiological recording methods to an agar-immobilized zebrafish preparation, we describe here our efforts to model seizure disorders in zebrafish. We also describe the initial results of a large-scale mutagenesis screen to identify gene mutation(s) that confer seizure resistance. Although the adaptation of zebrafish to epilepsy research is in its early stages, these studies highlight the rapid progress that can be made using this simple vertebrate species.
Collapse
Affiliation(s)
- Gabriela A. Hortopan
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Matthew T. Dinday
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Scott C. Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Chatterjee D, Gerlai R. High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav Brain Res 2009; 200:208-13. [DOI: 10.1016/j.bbr.2009.01.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|