1
|
Bandara D, Riccardi K. Graph Node Classification to Predict Autism Risk in Genes. Genes (Basel) 2024; 15:447. [PMID: 38674382 PMCID: PMC11049455 DOI: 10.3390/genes15040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This study explores the genetic risk associations with autism spectrum disorder (ASD) using graph neural networks (GNNs), leveraging the Sfari dataset and protein interaction network (PIN) data. We built a gene network with genes as nodes, chromosome band location as node features, and gene interactions as edges. Graph models were employed to classify the autism risk associated with newly introduced genes (test set). Three classification tasks were undertaken to test the ability of our models: binary risk association, multi-class risk association, and syndromic gene association. We tested graph convolutional networks, Graph Sage, graph transformer, and Multi-Layer Perceptron (Baseline) architectures on this problem. The Graph Sage model consistently outperformed the other models, showcasing its utility in classifying ASD-related genes. Our ablation studies show that the chromosome band location and protein interactions contain useful information for this problem. The models achieved 85.80% accuracy on the binary risk classification, 81.68% accuracy on the multi-class risk classification, and 90.22% on the syndromic classification.
Collapse
Affiliation(s)
- Danushka Bandara
- Department of Computer Science and Engineering, Fairfield University, Fairfield, CT 06824, USA;
| | | |
Collapse
|
2
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Boxy P, Nykjær A, Kisiswa L. Building better brains: the pleiotropic function of neurotrophic factors in postnatal cerebellar development. Front Mol Neurosci 2023; 16:1181397. [PMID: 37251644 PMCID: PMC10213292 DOI: 10.3389/fnmol.2023.1181397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The cerebellum is a multifunctional brain region that controls diverse motor and non-motor behaviors. As a result, impairments in the cerebellar architecture and circuitry lead to a vast array of neuropsychiatric and neurodevelopmental disorders. Neurotrophins and neurotrophic growth factors play essential roles in the development as well as maintenance of the central and peripheral nervous system which is crucial for normal brain function. Their timely expression throughout embryonic and postnatal stages is important for promoting growth and survival of both neurons and glial cells. During postnatal development, the cerebellum undergoes changes in its cellular organization, which is regulated by a variety of molecular factors, including neurotrophic factors. Studies have shown that these factors and their receptors promote proper formation of the cerebellar cytoarchitecture as well as maintenance of the cerebellar circuits. In this review, we will summarize what is known on the neurotrophic factors' role in cerebellar postnatal development and how their dysregulation assists in developing various neurological disorders. Understanding the expression patterns and signaling mechanisms of these factors and their receptors is crucial for elucidating their function within the cerebellum and for developing therapeutic strategies for cerebellar-related disorders.
Collapse
Affiliation(s)
- Pia Boxy
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Anders Nykjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Lilian Kisiswa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Sharma V, Singh TG, Kaur A, Mannan A, Dhiman S. Brain-Derived Neurotrophic Factor: A Novel Dynamically Regulated Therapeutic Modulator in Neurological Disorders. Neurochem Res 2023; 48:317-339. [PMID: 36308619 DOI: 10.1007/s11064-022-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 02/04/2023]
Abstract
The growth factor brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin-related kinase receptor type B (TrkB) play an active role in numerous areas of the adult brain, where they regulate the neuronal activity, function, and survival. Upregulation and downregulation of BDNF expression are critical for the physiology of neuronal circuits and functioning in the brain. Loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric disorders. This article reviews the BDNF gene structure, transport, secretion, expression and functions in the brain. This article also implicates BDNF in several brain-related disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, major depressive disorder, schizophrenia, epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| |
Collapse
|
5
|
Ryan NM, Heron EA. Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. J Appl Genet 2023; 64:303-317. [PMID: 36710277 PMCID: PMC10076404 DOI: 10.1007/s13353-022-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
Collapse
Affiliation(s)
- Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Uemura T, Suzuki-Kouyama E, Kawase S, Kurihara T, Yasumura M, Yoshida T, Fukai S, Yamazaki M, Fei P, Abe M, Watanabe M, Sakimura K, Mishina M, Tabuchi K. Neurexins play a crucial role in cerebellar granule cell survival by organizing autocrine machinery for neurotrophins. Cell Rep 2022; 39:110624. [PMID: 35385735 DOI: 10.1016/j.celrep.2022.110624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023] Open
Abstract
Neurexins (NRXNs) are key presynaptic cell adhesion molecules that regulate synapse formation and function via trans-synaptic interaction with postsynaptic ligands. Here, we generate cerebellar granule cell (CGC)-specific Nrxn triple-knockout (TKO) mice for complete deletion of all NRXNs. Unexpectedly, most CGCs die in these mice, and this requirement for NRXNs for cell survival is reproduced in cultured CGCs. The axons of cultured Nrxn TKO CGCs that are not in contact with a postsynaptic structure show defects in the formation of presynaptic protein clusters and in action-potential-induced Ca2+ influxes. These cells also show impaired secretion of depolarization-induced, fluorescence-tagged brain-derived neurotrophic factor (BDNF) from their axons, and the cell-survival defect is rescued by the application of BDNF. These results suggest that CGC survival is maintained by autocrine neurotrophic factors and that NRXNs organize the presynaptic protein clusters and the autocrine neurotrophic-factor secretory machinery independent of contact with postsynaptic ligands.
Collapse
Affiliation(s)
- Takeshi Uemura
- Division of Gene Research, Research Center for Advanced Science, Shinshu University, Nagano 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; JST CREST, Saitama 332-0012, Japan.
| | - Emi Suzuki-Kouyama
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST CREST, Saitama 332-0012, Japan
| | - Shiori Kawase
- Division of Gene Research, Research Center for Advanced Science, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST CREST, Saitama 332-0012, Japan
| | - Taiga Kurihara
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Misato Yasumura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; JST PRESTO, Saitama 332-0012, Japan
| | - Shuya Fukai
- JST CREST, Saitama 332-0012, Japan; Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Peng Fei
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Brain Science Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Katsuhiko Tabuchi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST PRESTO, Saitama 332-0012, Japan.
| |
Collapse
|
7
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
8
|
Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 2022; 163:105606. [PMID: 34974125 DOI: 10.1016/j.nbd.2021.105606] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.
Collapse
|
9
|
Urbina-Varela R, Soto-Espinoza MI, Vargas R, Quiñones L, Del Campo A. Influence of BDNF Genetic Polymorphisms in the Pathophysiology of Aging-related Diseases. Aging Dis 2020; 11:1513-1526. [PMID: 33269104 PMCID: PMC7673859 DOI: 10.14336/ad.2020.0310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
For the first time in history, most of the population has a life expectancy equal or greater than 60 years. By the year 2050, it is expected that the world population in that age range will reach 2000 million, an increase of 900 million with respect to 2015, which poses new challenges for health systems. In this way, it is relevant to analyze the most common diseases associated with the aging process, namely Alzheimer´s disease, Parkinson Disease and Type II Diabetes, some of which may have a common genetic component that can be detected before manifesting, in order to delay their progress. Genetic inheritance and epigenetics are factors that could be linked in the development of these pathologies. Some researchers indicate that the BDNF gene is a common factor of these diseases, and apparently some of its polymorphisms favor the progression of them. In this regard, alterations in the level of BDNF expression and secretion, due to polymorphisms, could be linked to the development and/or progression of neurodegenerative and metabolic disorders. In this review we will deepen on the different polymorphisms in the BDNF gene and their possible association with age-related pathologies, to open the possibilities of potential therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Urbina-Varela
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Romina Vargas
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Quiñones
- 3Laboratorio de Carcinogenesis Química y Farmacogenética (CQF), Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile
| | - Andrea Del Campo
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Pavone P, Corsello G, Marino SD, Ruggieri M, Falsaperla R. 7q31.32 partial duplication: First report of a child with dysmorphism, autistic spectrum disorder, moderate intellectual disability and, epilepsy. Literature review. Epilepsy Res 2019; 158:106223. [PMID: 31707317 DOI: 10.1016/j.eplepsyres.2019.106223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/10/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Duplication of long arm of chromosome 7(q) is uncommon. It may occur as "pure", isolated anomaly or in association with other mutations involving the same or other chromosomes. "Pure" chromosome 7q duplication has recently been classified by segment involved: the interstitial, proximal, or distal segment of the arm. Attempts to correlate genotype with phenotype in each group has yielded questionable results even though intellective disability and minor dysmorphic features of variable types are typically seen. MATERIAL AND METHODS In a young boy showing minor facial dysmorphism, language delay, autistic spectrum disorder, epileptic seizures, behavioral disturbances and irritability an array-CGH analysis was carried out. RESULTS Array-CGH analysis found in the proband a de novo variant of partial duplication of 7q31.32 (122.254.792-122.376.908). DISCUSSION A very few cases of partial 7q duplication have been reported thus far mainly presenting with clinical signs of dysmorphic features, large head, developmental delay, epileptic seizures and skeletal anomalies. To our knowledge, this is the first report of a case of a de novo variant of 7q31.32 duplication, showing dysmorphic anomalies and neurologic impairment including ASD and seizures. In the 7q31.32 region is located the gene CADPS2, which has been associated to autistic spectrum disorder and other neurologic disorders. In the child, a genotype-phenotype correlation may be hypothesized. Further similar reports may be useful to confirm this observation.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Pediatrics, University Hospital. "Vittorio Emanuele-Policlinico" Catania, Italy.
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Italy
| | - Simona Domenica Marino
- Pediatrics and Pediatric Emergency Complex Unity, University-Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Vittorio Emanuele-Policlinico of Catania, Italy
| | - Raffaele Falsaperla
- Pediatrics and Pediatric Emergency Complex Unity, University-Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
11
|
Castora FJ. Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:83-108. [PMID: 30599156 DOI: 10.1016/j.pnpbp.2018.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are the powerhouse that generate over 90% of the ATP produced in cells. In addition to its role in energy production, the mitochondrion also plays a major role in carbohydrate, fatty acid, amino acid and nucleotide metabolism, programmed cell death (apoptosis), generation of and protection against reactive oxygen species (ROS), immune response, regulation of intracellular calcium ion levels and even maintenance of gut microbiota. With its essential role in bio-energetic as well as non-energetic biological processes, it is not surprising that proper cellular, tissue and organ function is dependent upon proper mitochondrial function. Accordingly, mitochondrial dysfunction has been shown to be directly linked to a variety of medical disorders, particularly neuromuscular disorders and increasing evidence has linked mitochondrial dysfunction to neurodegenerative and neurodevelopmental disorders such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Rett Syndrome (RS) and Autism Spectrum Disorders (ASD). Over the last 40 years there has been a dramatic increase in the diagnosis of ASD and, more recently, an increasing body of evidence indicates that mitochondrial dysfunction plays an important role in ASD development. In this review, the latest evidence linking mitochondrial dysfunction and abnormalities in mitochondrial DNA (mtDNA) to the pathogenesis of autism will be presented. This review will also summarize the results of several recent `approaches used for improving mitochondrial function that may lead to new therapeutic approaches to managing and/or treating ASD.
Collapse
Affiliation(s)
- Frank J Castora
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA; Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
12
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
13
|
Shinoda Y, Sadakata T, Yagishita K, Kinameri E, Katoh-Semba R, Sano Y, Furuichi T. Aspects of excitatory/inhibitory synapses in multiple brain regions are correlated with levels of brain-derived neurotrophic factor/neurotrophin-3. Biochem Biophys Res Commun 2018; 509:429-434. [PMID: 30594389 DOI: 10.1016/j.bbrc.2018.12.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022]
Abstract
Appropriate synapse formation during development is necessary for normal brain function, and synapse impairment is often associated with brain dysfunction. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are key factors in regulating synaptic development. We previously reported that BDNF/NT-3 secretion was enhanced by calcium-dependent activator protein for secretion 2 (CADPS2). Although BDNF/NT-3 and CADPS2 are co-expressed in various brain regions, the effect of Cadps2-deficiency on brain region-specific BDNF/NT-3 levels and synaptic development remains elusive. Here, we show developmental changes of BDNF/NT-3 levels and we assess disruption of excitatory/inhibitory synapses in multiple brain regions (cerebellum, hypothalamus, striatum, hippocampus, parietal cortex and prefrontal cortex) of Cadps2 knockout (KO) mice compared with wild-type (WT) mice. Compared with WT, BDNF levels in KO mice were reduced in young/adult hippocampus, but increased in young hypothalamus, while NT-3 levels were reduced in adult cerebellum and young hippocampus, but increased in adult parietal cortex. Immunofluorescence of vGluT1, an excitatory synapse marker, and vGAT, an inhibitory synapse marker, in adult KO showed that vGluT1 was higher in the cerebellum and parietal cortex but lower in the hippocampus, whereas vGAT was lower in the hippocampus and parietal cortex compared with WT. Immunolabeling for both vGluT1 and vGAT was increased in the parietal cortex but vGAT was decreased in the cerebellum in adult KO compared with WT. These data suggest that CADPS2-mediated secretion of BDNF/NT-3 may be involved in development and maturation of synapses and in the balance between inhibitory and excitatory synapses.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
| | - Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Kaori Yagishita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Emi Kinameri
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Ritsuko Katoh-Semba
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
14
|
Corbière A, Walet-Balieu ML, Chan P, Basille-Dugay M, Hardouin J, Vaudry D. A Peptidomic Approach to Characterize Peptides Involved in Cerebellar Cortex Development Leads to the Identification of the Neurotrophic Effects of Nociceptin. Mol Cell Proteomics 2018; 17:1737-1749. [PMID: 29895708 PMCID: PMC6126386 DOI: 10.1074/mcp.ra117.000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is a brain structure involved in motor and cognitive functions. The development of the cerebellar cortex (the external part of the cerebellum) is under the control of numerous factors. Among these factors, neuropeptides including PACAP or somatostatin modulate the survival, migration and/or differentiation of cerebellar granule cells. Interestingly, such peptides contributing to cerebellar ontogenesis usually exhibit a specific transient expression profile with a low abundance at birth, a high expression level during the developmental processes, which take place within the first two postnatal weeks in rodents, and a gradual decline toward adulthood. Thus, to identify new peptides transiently expressed in the cerebellum during development, rat cerebella were sampled from birth to adulthood, and analyzed by a semi-quantitative peptidomic approach. A total of 33 peptides were found to be expressed in the cerebellum. Among these 33 peptides, 8 had a clear differential expression pattern during development, 4 of them i.e. cerebellin 2, nociceptin, somatostatin and VGF [353-372], exhibiting a high expression level during the first two postnatal weeks followed by a significative decrease at adulthood. A focus by a genomic approach on nociceptin, confirmed that its precursor mRNA is transiently expressed during the first week of life in granule neurons within the internal granule cell layer of the cerebellum, and showed that the nociceptin receptor is also actively expressed between P8 and P16 by the same neurons. Finally, functional studies revealed a new role for nociceptin, acting as a neurotrophic peptide able to promote the survival and differentiation of developing cerebellar granule neurons.
Collapse
Affiliation(s)
- Auriane Corbière
- From the ‡Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal death and Cell plasticity team, 76000 Rouen, France
| | - Marie-Laure Walet-Balieu
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Philippe Chan
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Magali Basille-Dugay
- From the ‡Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal death and Cell plasticity team, 76000 Rouen, France
| | - Julie Hardouin
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - David Vaudry
- From the ‡Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal death and Cell plasticity team, 76000 Rouen, France;
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
- ¶Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France
| |
Collapse
|
15
|
Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4. Cell Rep 2018; 21:2118-2133. [PMID: 29166604 PMCID: PMC5714612 DOI: 10.1016/j.celrep.2017.10.084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023] Open
Abstract
Delivery of neurotrophins and neuropeptides via long-range trafficking of dense core vesicles (DCVs) from the cell soma to nerve terminals is essential for synapse modulation and circuit function. But the mechanism by which transiting DCVs are captured at specific sites is unknown. Here, we discovered that Synaptotagmin-4 (Syt4) regulates the capture and spatial distribution of DCVs in hippocampal neurons. We found that DCVs are highly mobile and undergo long-range translocation but switch directions only at the distal ends of axons, revealing a circular trafficking pattern. Phosphorylation of serine 135 of Syt4 by JNK steers DCV trafficking by destabilizing Syt4-Kif1A interaction, leading to a transition from microtubule-dependent DCV trafficking to capture at en passant presynaptic boutons by actin. Furthermore, neuronal activity increased DCV capture via JNK-dependent phosphorylation of the S135 site of Syt4. Our data reveal a mechanism that ensures rapid, site-specific delivery of DCVs to synapses. Syt4-bearing dense core vesicles in axons traffic continually in a circular pattern Phosphorylation of S135 of Syt4 by JNK destabilizes Syt4-Kif1A binding Destabilized Syt4-Kif1A binding promotes capture of vesicles at synapses by actin Neuronal activity increases vesicle capture via S135-dependent JNK phosphorylation
Collapse
|
16
|
Rose DR, Yang H, Serena G, Sturgeon C, Ma B, Careaga M, Hughes HK, Angkustsiri K, Rose M, Hertz-Picciotto I, Van de Water J, Hansen RL, Ravel J, Fasano A, Ashwood P. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav Immun 2018; 70:354-368. [PMID: 29571898 PMCID: PMC5953830 DOI: 10.1016/j.bbi.2018.03.025] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Many studies have reported the increased presence of gastrointestinal (GI) symptoms in children with autism spectrum disorders (ASD). Altered microbiome profiles, pro-inflammatory responses and impaired intestinal permeability have been observed in children with ASD and co-morbid GI symptoms, yet few studies have compared these findings to ASD children without GI issues or similarly aged typical developing children. The aim of this study was to determine whether there are biological signatures in terms of immune dysfunction and microbiota composition in children with ASD with GI symptoms. METHODS Children were enrolled in one of four groups: ASD and GI symptoms of irregular bowel habits (ASDGI), children with ASD but without current or previous GI symptoms (ASDNoGI), typically developing children with GI symptoms (TDGI) and typically developing children without current or previous GI symptoms (TDNoGI). Peripheral blood mononuclear cells (PBMC) were isolated from the blood, stimulated and assessed for cytokine production, while stool samples were analyzed for microbial composition. RESULTS Following Toll-Like receptor (TLR)-4 stimulation, the ASDGI group produced increased levels of mucosa-relevant cytokines including IL-5, IL-15 and IL-17 compared to ASDNoGI. The production of the regulatory cytokine TGFβ1 was decreased in the ASDGI group compared with both the ASDNoGI and TDNoGI groups. Analysis of the microbiome at the family level revealed differences in microbiome composition between ASD and TD children with GI symptoms; furthermore, a predictive metagenome functional content analysis revealed that pathways were differentially represented between ASD and TD subjects, independently of the presence of GI symptoms. The ASDGI also showed an over-representation of the gene encoding zonulin, a molecule regulating gut permeability, compared to the other groups. CONCLUSIONS Overall our findings suggest that children with ASD who experience GI symptoms have an imbalance in their immune response, possibly influenced by or influencing metagenomic changes, and may have a propensity to impaired gut barrier function which may contribute to their symptoms and clinical outcome.
Collapse
Affiliation(s)
- Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Houa Yang
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, MassGeneral Hospital for Children, Boston, MA, USA; Graduate Program in Life Sciences University of Maryland School of Medicine, Baltimore, MD, USA
| | - Craig Sturgeon
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, MassGeneral Hospital for Children, Boston, MA, USA; Graduate Program in Life Sciences University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute of Genomic Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Heather K Hughes
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA
| | - Kathy Angkustsiri
- MIND Institute, University of California Davis, USA; Department of Pediatrics, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA
| | - Melissa Rose
- Children's Center for Environmental Health, University of California Davis, CA, USA; Public Health Sciences, University of California Davis, CA, USA
| | - Irva Hertz-Picciotto
- MIND Institute, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA; Public Health Sciences, University of California Davis, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA; Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, CA, USA
| | - Robin L Hansen
- MIND Institute, University of California Davis, USA; Department of Pediatrics, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA
| | - Jacques Ravel
- Institute of Genomic Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, MassGeneral Hospital for Children, Boston, MA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, USA; MIND Institute, University of California Davis, USA; Children's Center for Environmental Health, University of California Davis, CA, USA.
| |
Collapse
|
17
|
Shinoda Y, Sadakata T, Akagi T, Sakamaki Y, Hashikawa T, Sano Y, Furuichi T. Calcium-dependent activator protein for secretion 2 (CADPS2) deficiency causes abnormal synapse development in hippocampal mossy fiber terminals. Neurosci Lett 2018; 677:65-71. [PMID: 29689341 DOI: 10.1016/j.neulet.2018.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
Hippocampal mossy fibers (MFs) project from dentate gyrus granule cells onto the CA2-CA3 region. MF-mediated synaptic transmission plays an important role in hippocampal learning and memory. However, the molecular mechanisms underlying MF synaptic development and subsequent functional organization are not fully understood. We previously reported that calcium-dependent activator protein for secretion 2 (CADPS2, also known as CAPS2) regulates the secretion of dense-core vesicles (DCVs). Because CADPS2 is strongly expressed in MF terminals, we hypothesized that CADPS2 regulates the development and functional organization of MF synapses by controlling the secretion of DCVs and their contents. To test this, we compared the synaptic microstructures of hippocampal MF terminals in Cadps2 knockout (KO) mice and wild-type (WT) mice by electron microscopy (EM). On postnatal day 15 (P15), KO mice exhibited morphological abnormalities in MF boutons, including smaller bouton size, a larger number of DCVs and a smaller number of post-synaptic densities (PSDs), compared with WT mice. In adults (P56), MF boutons were larger in KO mice. Synaptic vesicles (SVs) were increased but with a lower density compared with the WT. Furthermore, the number of SVs was decreased near the active zone. Moreover, MF-innervated CA3 postsynapses in KO mice displayed aberrant structures at the postsynaptic density (PSD), with an increased number of PSDs (likely because of a larger number of perforated PSDs), compared with WT mice. Taken together, our findings suggest that CADPS2 plays a critical role in MF synaptic development and functional organization.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takumi Akagi
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuriko Sakamaki
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Research Core, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tsutomu Hashikawa
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
18
|
Lizen B, Moens C, Mouheiche J, Sacré T, Ahn MT, Jeannotte L, Salti A, Gofflot F. Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function. Front Mol Neurosci 2017; 10:369. [PMID: 29187810 PMCID: PMC5695161 DOI: 10.3389/fnmol.2017.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P)1–P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem.
Collapse
Affiliation(s)
- Benoit Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Charlotte Moens
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinane Mouheiche
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thomas Sacré
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.,Centre de Recherche sur le Cancer, Université Laval, Quebec City, QC, Canada.,Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Ahmad Salti
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
CAPS2 deficiency affects environmental enrichment-induced adult neurogenesis and differentiation/survival of newborn neurons in the hippocampal dentate gyrus. Neurosci Lett 2017; 661:121-125. [PMID: 28963059 DOI: 10.1016/j.neulet.2017.09.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 11/23/2022]
Abstract
Hippocampal adult neurogenesis is observed in the subgranular zone of the dentate gyrus (DG), and is associated with hippocampal memory formation and several psychiatric disorders including autism spectrum disorder (ASD). Calcium-dependent activator protein for secretion 2 (CAPS2) is a candidate gene related to ASD, and is highly expressed in the hippocampal DG region, with Caps2 knockout (KO) mice exhibiting ASD-like behavior. Accordingly, CAPS2 is potentially associated with hippocampal adult neurogenesis, the relationship between CAPS2 and adult neurogenesis has not yet been investigated. Here, we determined whether deficit of the Caps2 gene affects hippocampal adult neurogenesis and maturation of newborn neurons. To induce adult neurogenesis, we used the environmental enrichment (EE) condition. Both wild-type (WT) and Caps2 KO mice were housed in control or EE conditions for 3 or 14days. Hippocampal levels of brain-derived neurotrophic factor (BDNF) can be used as a physiological EE conditioned marker, and were increased at 14days in the EE condition in both WT and KO mice. Newborn cells during control and EE conditions were labeled by BrdU, and the labeled cells co-immunostained with the immature and mature neuron markers, calretinin (CR) and NeuN. The ratio of CR/BrdU and NeuN/BrdU double positive cells to all of BrdU positive cells were significantly increased in WT mice housed in the EE condition for 14days compared with the control condition. Whereas KO mice in the EE condition showed no significant increase of newborn neurons. These findings suggest that CAPS2 deficiency strongly impairs hippocampal adult neurogenesis and maturation of newborn neurons.
Collapse
|
20
|
Analysis of gene expression in Ca2+-dependent activator protein for secretion 2 (Cadps2) knockout cerebellum using GeneChip and KEGG pathways. Neurosci Lett 2017; 639:88-93. [DOI: 10.1016/j.neulet.2016.12.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022]
|
21
|
Peñagarikano O. New Therapeutic Options for Autism Spectrum Disorder: Experimental Evidences. Exp Neurobiol 2015; 24:301-11. [PMID: 26713078 PMCID: PMC4688330 DOI: 10.5607/en.2015.24.4.301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairment in two behavioral domains: social interaction/communication together with the presence of stereotyped behaviors and restricted interests. The heterogeneity in the phenotype among patients and the complex etiology of the disorder have long impeded the advancement of the development of successful pharmacotherapies. However, in the recent years, the integration of findings of multiple levels of research, from human genetics to mouse models, have made considerable progress towards the understanding of ASD pathophysiology, allowing the development of more effective targeted drug therapies. The present review discusses the current state of pharmacological research in ASD based on the emerging common pathophysiology signature.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country, Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
22
|
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 2015; 9:313. [PMID: 26483618 PMCID: PMC4586332 DOI: 10.3389/fnins.2015.00313] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Christina K Timmerman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Joshua L Schwartz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Daniel L Pham
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Mollie K Meffert
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
23
|
Panizzutti B, Gubert C, Schuh AL, Ferrari P, Bristot G, Fries GR, Massuda R, Walz J, Rocha NP, Berk M, Teixeira AL, Gama CS. Increased serum levels of eotaxin/CCL11 in late-stage patients with bipolar disorder: An accelerated aging biomarker? J Affect Disord 2015; 182:64-9. [PMID: 25973785 DOI: 10.1016/j.jad.2014.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is commonly comorbid with many medical disorders including atopy, and appears characterized by progressive social, neurobiological, and functional impairment associated with increasing number of episodes and illness duration. Early and late stages of BD may present different biological features and may therefore require different treatment strategies. Consequently, the aim of this study was to evaluate serum levels of eotaxin/CCL11, eotaxin-2/CCL24, IL-2, IL-4, IL-6, IL-10, IL-17, TNF-α, IFNγ, BDNF, TBARS, carbonyl, and GPx in a sample of euthymic patients with BD at early and late stages compared to controls. METHODS Early-stage BD patients, 12 late-stage patients, and 25 controls matched for sex and age were selected. 10mL of peripheral blood was drawn from all subjects by venipuncture. Serum levels of BDNF, TBARS, carbonyl content, glutathione-peroxidase activity (GPx), cytokines (IL-2, IL-4, IL-6, IL-10, IL-17, TNF-α and IFNγ), and chemokines (eotaxin/CCL11 and eotaxin-2/CCL24) were measured. RESULTS There were no demographic differences between patients and controls. No significant differences were found for any of the biomarkers, except chemokine eotaxin/CCL11, whose serum levels were higher in late-stage patients with BD when compared to controls (p=0.022; Mann-Whitney U test). LIMITATIONS Small number of subjects and use of medication may have influenced in our results. CONCLUSION The present study suggests a link between biomarkers of atopy and eosinophil function and bipolar disorder. These findings are also in line with progressive biological changes partially mediated by inflammatory imbalance, a process referred to as neuroprogression.
Collapse
Affiliation(s)
- B Panizzutti
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Psiquiatria, UFRGS, Porto Alegre, Brazil.
| | - C Gubert
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Brazil
| | - A L Schuh
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - P Ferrari
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Psiquiatria, UFRGS, Porto Alegre, Brazil
| | - G Bristot
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - G R Fries
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Brazil
| | - R Massuda
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Psiquiatria, UFRGS, Porto Alegre, Brazil; Department of Psychiatry, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - J Walz
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Psiquiatria, UFRGS, Porto Alegre, Brazil; Centro Universitário UNILASALLE, Canoas, Brazil
| | - N P Rocha
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - M Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - A L Teixeira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - C S Gama
- Laboratory of Molecular Psychiatry, INCT for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Psiquiatria, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
24
|
Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biol Psychiatry 2015; 78:116-25. [PMID: 25444170 DOI: 10.1016/j.biopsych.2014.07.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Identifying beneficial surrogate genetic markers in psychiatric disorders is crucial but challenging. METHODS Given that scalp hair follicles are easily accessible and, like the brain, are derived from the ectoderm, expressions of messenger RNA (mRNA) and microRNA in the organ were examined between schizophrenia (n for first/second = 52/42) and control subjects (n = 62/55) in two sets of cohort. Genes of significance were also analyzed using postmortem brains (n for case/control = 35/35 in Brodmann area 46, 20/20 in cornu ammonis 1) and induced pluripotent stem cells (n = 4/4) and pluripotent stem cell-derived neurospheres (n = 12/12) to see their role in the central nervous system. Expression levels of mRNA for autism (n for case/control = 18/24) were also examined using scalp hair follicles. RESULTS Among mRNA examined, FABP4 was downregulated in schizophrenia subjects by two independent sample sets. Receiver operating characteristic curve analysis determined that the sensitivity and specificity were 71.8% and 66.7%, respectively. FABP4 was expressed from the stage of neurosphere. Additionally, microarray-based microRNA analysis showed a trend of increased expression of hsa-miR-4449 (p = .0634) in hair follicles from schizophrenia. hsa-miR-4449 expression was increased in Brodmann area 46 from schizophrenia (p = .0007). Finally, we tested the expression of nine putative autism candidate genes in hair follicles and found decreased CNTNAP2 expression in the autism cohort. CONCLUSIONS Scalp hair follicles could be a beneficial genetic biomarker resource for brain diseases, and further studies of FABP4 are merited in schizophrenia pathogenesis.
Collapse
|
25
|
Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:111-44. [PMID: 25621659 DOI: 10.1146/annurev-pathol-012414-040405] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is defined by impaired social interaction and communication accompanied by stereotyped behaviors and restricted interests. Although ASD is common, its genetic and clinical features are highly heterogeneous. A number of recent breakthroughs have dramatically advanced our understanding of ASD from the standpoint of human genetics and neuropathology. These studies highlight the period of fetal development and the processes of chromatin structure, synaptic function, and neuron-glial signaling. The initial efforts to systematically integrate findings of multiple levels of genomic data and studies of mouse models have yielded new clues regarding ASD pathophysiology. This early work points to an emerging convergence of disease mechanisms in this complex and etiologically heterogeneous disorder.
Collapse
|
26
|
Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. World J Biol Chem 2014; 5:409-428. [PMID: 25426265 PMCID: PMC4243146 DOI: 10.4331/wjbc.v5.i4.409] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/10/2014] [Accepted: 08/31/2014] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.
Collapse
|
27
|
Abstract
Ca(2+)/calmodulin-dependent Kinase II (CaMKII) is a calcium-regulated serine threonine kinase whose functions include regulation of synaptic activity (Coultrap and Bayer 2012). A postsynaptic role for CaMKII in triggering long-lasting changes in synaptic activity at some synapses has been established, although the relevant downstream targets remain to be defined (Nicoll and Roche 2013). A presynaptic role for CaMKII in regulating synaptic activity is less clear with evidence for CaMKII either increasing or decreasing release of neurotransmitter from synaptic vesicles (SVs) (Wang 2008). In this issue Hoover et al. (2014) further expand upon the role of CaMKII in presynaptic cells by demonstrating a role in regulating another form of neuronal signaling, that of dense core vesicles (DCVs), whose contents can include neuropeptides and insulin-related peptides, as well as other neuromodulators such as serotonin and dopamine (Michael et al. 2006). Intriguingly, Hoover et al. (2014) demonstrate that active CaMKII is required cell autonomously to prevent premature release of DCVs after they bud from the Golgi in the soma and before they are trafficked to their release sites in the axon. This role of CaMKII requires it to have kinase activity as well as an activating calcium signal released from internal ER stores via the ryanodine receptor. Not only does this represent a novel function for CaMKII but also it offers new insights into how DCVs are regulated. Compared to SVs we know much less about how DCVs are trafficked, docked, and primed for release. This is despite the fact that neuropeptides are major regulators of human brain function, including mood, anxiety, and social interactions (Garrison et al. 2012; Kormos and Gaszner 2013; Walker and Mcglone 2013). This is supported by studies showing mutations in genes for DCV regulators or cargoes are associated with human mental disorders (Sadakata and Furuichi 2009; Alldredge 2010; Quinn 2013; Quinn et al. 2013). We lack even a basic understanding of DCV function, such as, are there defined DCV docking sites and, if so, how are DCVs delivered to these release sites? These results from Hoover et al. (2014) promise to be a starting point in answering some of these questions.
Collapse
|
28
|
Axonal localization of Ca2+-dependent activator protein for secretion 2 is critical for subcellular locality of brain-derived neurotrophic factor and neurotrophin-3 release affecting proper development of postnatal mouse cerebellum. PLoS One 2014; 9:e99524. [PMID: 24923991 PMCID: PMC4055771 DOI: 10.1371/journal.pone.0099524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022] Open
Abstract
Ca2+-dependent activator protein for secretion 2 (CAPS2) is a protein that is essential for enhanced release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from cerebellar granule cells. We previously identified dex3, a rare alternative splice variant of CAPS2, which is overrepresented in patients with autism and is missing an exon 3 critical for axonal localization. We recently reported that a mouse model CAPS2Δex3/Δex3 expressing dex3 showed autistic-like behavioral phenotypes including impaired social interaction and cognition and increased anxiety in an unfamiliar environment. Here, we verified impairment in axonal, but not somato-dendritic, localization of dex3 protein in cerebellar granule cells and demonstrated cellular and physiological phenotypes in postnatal cerebellum of CAPS2Δex3/Δex3 mice. Interestingly, both BDNF and NT-3 were markedly reduced in axons of cerebellar granule cells, resulting in a significant decrease in their release. As a result, dex3 mice showed developmental deficits in dendritic arborization of Purkinje cells, vermian lobulation and fissurization, and granule cell precursor proliferation. Paired-pulse facilitation at parallel fiber-Purkinje cell synapses was also impaired. Together, our results indicate that CAPS2 plays an important role in subcellular locality (axonal vs. somato-dendritic) of enhanced BDNF and NT-3 release, which is indispensable for proper development of postnatal cerebellum.
Collapse
|
29
|
Vaaga CE, Borisovska M, Westbrook GL. Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr Opin Neurobiol 2014; 29:25-32. [PMID: 24816154 DOI: 10.1016/j.conb.2014.04.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 11/18/2022]
Abstract
Co-transmission, the ability of a neuron to release multiple transmitters, has long been recognized in selected circuits. However, the release of multiple primary neurotransmitters from a single neuron is only beginning to be appreciated. Here we consider recent examples of co-transmission as well as co-release-the packaging of multiple neurotransmitters into a single vesicle. The properties associated with each mode of release greatly enhance the possible action of such neurons within circuits. The functional importance of dual- (or multi-) transmitter neurons extends beyond actions on postsynaptic receptors, due in part to differential spatial and temporal profiles of each neurotransmitter. Recent evidence also suggests that the dual-transmitter phenotype can be dynamically regulated during development and following injury or disease.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, USA; Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Maria Borisovska
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
30
|
Bonora E, Graziano C, Minopoli F, Bacchelli E, Magini P, Diquigiovanni C, Lomartire S, Bianco F, Vargiolu M, Parchi P, Marasco E, Mantovani V, Rampoldi L, Trudu M, Parmeggiani A, Battaglia A, Mazzone L, Tortora G, Maestrini E, Seri M, Romeo G. Maternally inherited genetic variants of CADPS2 are present in autism spectrum disorders and intellectual disability patients. EMBO Mol Med 2014; 6:795-809. [PMID: 24737869 PMCID: PMC4203356 DOI: 10.1002/emmm.201303235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASDs) are complex neuropsychiatric conditions, with overlapping clinical boundaries in many patients. We identified a novel intragenic deletion of maternal origin in two siblings with mild ID and epilepsy in the CADPS2 gene, encoding for a synaptic protein involved in neurotrophin release and interaction with dopamine receptor type 2 (D2DR). Mutation screening of 223 additional patients (187 with ASD and 36 with ID) identified a missense change of maternal origin disrupting CADPS2/D2DR interaction. CADPS2 allelic expression was tested in blood and different adult human brain regions, revealing that the gene was monoallelically expressed in blood and amygdala, and the expressed allele was the one of maternal origin. Cadps2 gene expression performed in mice at different developmental stages was biallelic in the postnatal and adult stages; however, a monoallelic (maternal) expression was detected in the embryonal stage, suggesting that CADPS2 is subjected to tissue- and temporal-specific regulation in human and mice. We suggest that CADPS2 variants may contribute to ID/ASD development, possibly through a parent-of-origin effect.
Collapse
Affiliation(s)
- Elena Bonora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Fiorella Minopoli
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pamela Magini
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Chiara Diquigiovanni
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Silvia Lomartire
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Bianco
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Manuela Vargiolu
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Piero Parchi
- Department of Neurology, University of Bologna, Bologna, Italy
| | | | - Vilma Mantovani
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy CRBA, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Trudu
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology San Raffaele Scientific Institute, Milan, Italy
| | | | - Agatino Battaglia
- Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry, Calambrone (Pisa), Italy
| | - Luigi Mazzone
- Unit of Child Neuropsychiatry, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Giada Tortora
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | | | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Prakash YS, Martin RJ. Brain-derived neurotrophic factor in the airways. Pharmacol Ther 2014; 143:74-86. [PMID: 24560686 DOI: 10.1016/j.pharmthera.2014.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States; Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, United States.
| | - Richard J Martin
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, United States
| |
Collapse
|
32
|
Sadakata T, Shinoda Y, Sato A, Iguchi H, Ishii C, Matsuo M, Yamaga R, Furuichi T. Mouse models of mutations and variations in autism spectrum disorder-associated genes: mice expressing Caps2/Cadps2 copy number and alternative splicing variants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6335-53. [PMID: 24287856 PMCID: PMC3881117 DOI: 10.3390/ijerph10126335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by disturbances in interpersonal relationships and behavior. Although the prevalence of autism is high, effective treatments have not yet been identified. Recently, genome-wide association studies have identified many mutations or variations associated with ASD risk on many chromosome loci and genes. Identification of the biological roles of these mutations or variations is necessary to identify the mechanisms underlying ASD pathogenesis and to develop clinical treatments. At present, mice harboring genetic modifications of ASD-associated gene candidates are the best animal models to analyze hereditary factors involved in autism. In this report, the biological significance of ASD-associated genes is discussed by examining the phenotypes of mouse models with ASD-associated mutations or variations in mouse homologs, with a focus on mice harboring genetic modifications of the Caps2/Cadps2 (Ca2+-dependent activator protein for secretion 2) gene.
Collapse
Affiliation(s)
- Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan; E-Mail:
- JST-CREST, Kawaguchi, Saitama 332-0012, Japan
| | - Yo Shinoda
- JST-CREST, Kawaguchi, Saitama 332-0012, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Akira Sato
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Hirotoshi Iguchi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Chiaki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Makoto Matsuo
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Ryosuke Yamaga
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Teiichi Furuichi
- JST-CREST, Kawaguchi, Saitama 332-0012, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-4-7122-9303; Fax: +81-4-7123-9767
| |
Collapse
|
33
|
Vohra PK, Thompson MA, Sathish V, Kiel A, Jerde C, Pabelick CM, Singh BB, Prakash YS. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2953-2960. [PMID: 23899746 DOI: 10.1016/j.bbamcr.2013.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
Abstract
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.
Collapse
Affiliation(s)
- Pawan K Vohra
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Michael A Thompson
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Alexander Kiel
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Calvin Jerde
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Brij B Singh
- Department of Biochemistry and Molecular Biology, University of North Dakota, 264 Centennial Dr, Grand Forks, ND 58202, USA
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha CD, Mittleman G. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst Neurosci 2013; 7:15. [PMID: 23717269 PMCID: PMC3650713 DOI: 10.3389/fnsys.2013.00015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/23/2013] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders are a group of neurodevelopmental disorders characterized by deficits in social skills and communication, stereotyped and repetitive behavior, and a range of deficits in cognitive function. While the etiology of autism is unknown, current research indicates that abnormalities of the cerebellum, now believed to be involved in cognitive function and the prefrontal cortex (PFC), are associated with autism. The current paper proposes that impaired cerebello-cortical circuitry could, at least in part, underlie autistic symptoms. The use of animal models that allow for manipulation of genetic and environmental influences are an effective means of elucidating both distal and proximal etiological factors in autism and their potential impact on cerebello-cortical circuitry. Some existing rodent models of autism, as well as some models not previously applied to the study of the disorder, display cerebellar and behavioral abnormalities that parallel those commonly seen in autistic patients. The novel findings produced from research utilizing rodent models could provide a better understanding of the neurochemical and behavioral impact of changes in cerebello-cortical circuitry in autism.
Collapse
Affiliation(s)
- Tiffany D Rogers
- Department of Psychology, The University of Memphis Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
35
|
Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 2013; 36:3-16. [PMID: 23269408 PMCID: PMC3610799 DOI: 10.1016/j.ntt.2012.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Karin M. Streifel
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Paula E. Goines
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| |
Collapse
|
36
|
Reduced axonal localization of a Caps2 splice variant impairs axonal release of BDNF and causes autistic-like behavior in mice. Proc Natl Acad Sci U S A 2012; 109:21104-9. [PMID: 23213205 DOI: 10.1073/pnas.1210055109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ca(2)(+)-dependent activator protein for secretion 2 (CAPS2 or CADPS2) potently promotes the release of brain-derived neurotrophic factor (BDNF). A rare splicing form of CAPS2 with deletion of exon3 (dex3) was identified to be overrepresented in some patients with autism. Here, we generated Caps2-dex3 mice and verified a severe impairment in axonal Caps2-dex3 localization, contributing to a reduction in BDNF release from axons. In addition, circuit connectivity, measured by spine and interneuron density, was diminished globally. The collective effect of reduced axonal BDNF release during development was a striking and selective repertoire of deficits in social- and anxiety-related behaviors. Together, these findings represent a unique mouse model of a molecular mechanism linking BDNF-mediated coordination of brain development to autism-related behaviors and patient genotype.
Collapse
|
37
|
Autistic-like behavioral phenotypes in a mouse model with copy number variation of the CAPS2/CADPS2 gene. FEBS Lett 2012; 587:54-9. [PMID: 23159942 DOI: 10.1016/j.febslet.2012.10.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/24/2012] [Accepted: 10/29/2012] [Indexed: 01/04/2023]
Abstract
Ca²⁺-dependent activator protein for secretion 2 (CAPS2 or CADPS2) facilitates secretion and trafficking of dense-core vesicles. Recent genome-wide association studies of autism have identified several microdeletions due to copy number variation (CNV) in one of the chromosome 7q31.32 alleles on which the locus for CAPS2 is located in autistic patients. To evaluate the biological significance of reducing CAPS2 copy number, we analyzed CAPS2 heterozygous mice. Our present findings suggest that adequate levels of CAPS2 protein are critical for normal brain development and behavior, and that allelic changes due to CNV may contribute to autistic symptoms in combination with deficits in other autism-associated genes.
Collapse
|
38
|
Sbacchi S, Acquadro F, Calò I, Calì F, Romano V. Functional annotation of genes overlapping copy number variants in autistic patients: focus on axon pathfinding. Curr Genomics 2011; 11:136-45. [PMID: 20885821 PMCID: PMC2874223 DOI: 10.2174/138920210790886880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 12/30/2022] Open
Abstract
We have used Gene Ontology (GO) and pathway analyses to uncover the common functions associated to the genes overlapping Copy Number Variants (CNVs) in autistic patients. Our source of data were four published studies [1-4]. We first applied a two-step enrichment strategy for autism-specific genes. We fished out from the four mentioned studies a list of 2928 genes overall overlapping 328 CNVs in patients and we first selected a sub-group of 2044 genes after excluding those ones that are also involved in CNVs reported in the Database of Genomic Variants (enrichment step 1). We then selected from the step 1-enriched list a sub-group of 514 genes each of which was found to be deleted or duplicated in at least two patients (enrichment step 2). The number of statistically significant processes and pathways identified by the Database for Annotation, Visualization and Integrated Discovery and Ingenuity Pathways Analysis softwares with the step 2-enriched list was significantly higher compared to the step 1-enriched list. In addition, statistically significant GO terms, biofunctions and pathways related to nervous system development and function were exclusively identified by the step 2-enriched list of genes. Interestingly, 21 genes were associated to axon growth and pathfinding. The latter genes and other ones associated to nervous system in this study represent a new set of autism candidate genes deserving further investigation. In summary, our results suggest that the autism’s “connectivity genes” in some patients affect very early phases of neurodevelopment, i.e., earlier than synaptogenesis.
Collapse
Affiliation(s)
- Silvia Sbacchi
- Dipartimento di Oncologia Sperimentale e Applicazioni Cliniche, Università degli Studi di Palermo, Palermo
| | | | | | | | | |
Collapse
|
39
|
Napolioni V, Persico AM, Porcelli V, Palmieri L. The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 2011; 44:83-92. [PMID: 21691713 DOI: 10.1007/s12035-011-8192-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Autism spectrum disorder (ASD) is a severe, complex neurodevelopmental disorder characterized by impairments in reciprocal social interaction and communication, and restricted and stereotyped patterns of interests and behaviors. Recent evidence has unveiled an important role for calcium (Ca(2+)) signaling in the pathogenesis of ASD. Post-mortem studies of autistic brains have pointed toward abnormalities in mitochondrial function as possible downstream consequences of altered Ca(2+) signaling, abnormal synapse formation, and dysreactive immunity. SLC25A12, an ASD susceptibility gene, encodes the Ca(2+)-regulated mitochondrial aspartate-glutamate carrier, isoform 1 (AGC1). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate (ATP) production. Here, we review the physiological roles of AGC1, its links to calcium homeostasis, and its involvement in autism pathogenesis.
Collapse
Affiliation(s)
- Valerio Napolioni
- Laboratory of Molecular Psychiatry & Neurogenetics, University Campus Bio-Medico, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | | | | | | |
Collapse
|
40
|
Glatt SJ, Cohen OS, Faraone SV, Tsuang MT. Dysfunctional gene splicing as a potential contributor to neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:382-92. [PMID: 21438146 PMCID: PMC3082621 DOI: 10.1002/ajmg.b.31181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/18/2011] [Indexed: 12/31/2022]
Abstract
Alternative pre-mRNA splicing is a major mechanism by which the proteomic diversity of eukaryotic genomes is amplified. Much akin to neuropsychiatric disorders themselves, alternative splicing events can be influenced by genetic, developmental, and environmental factors. Here, we review the evidence that abnormalities of splicing may contribute to the liability toward these disorders. First, we introduce the phenomenon of alternative splicing and describe the processes involved in its regulation. We then review the evidence for specific splicing abnormalities in a wide range of neuropsychiatric disorders, including psychotic disorders (schizophrenia), affective disorders (bipolar disorder and major depressive disorder), suicide, substance abuse disorders (cocaine abuse and alcoholism), and neurodevelopmental disorders (autism). Next, we provide a theoretical reworking of the concept of "gene-focused" epidemiologic and neurobiologic investigations. Lastly, we suggest potentially fruitful lines for future research that should illuminate the nature, extent, causes, and consequences of alternative splicing abnormalities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Stephen J. Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Medical Genetics Research Center; SUNY Upstate Medical University; Syracuse, NY 13210; U.S.A,To whom correspondence should be addressed: SUNY Upstate Medical University, 750 East Adams Street, Weiskotten Hall, Room 3283, Syracuse, NY 13210, U.S.A., , Facsimile: (315) 464-7744, Telephone: (315) 464-7742
| | - Ori S. Cohen
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Medical Genetics Research Center; SUNY Upstate Medical University; Syracuse, NY 13210; U.S.A
| | - Stephen V. Faraone
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab); Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology; Medical Genetics Research Center; SUNY Upstate Medical University; Syracuse, NY 13210; U.S.A
| | - Ming T. Tsuang
- Center for Behavioral Genomics; Department of Psychiatry; Institute of Genomic Medicine; University of California, San Diego; 9500 Gilman Drive; La Jolla, CA 92039; U.S.A, Veterans Affairs San Diego Healthcare System; 3350 La Jolla Village Drive; San Diego, CA 92161; U.S.A, Harvard Institute of Psychiatric Epidemiology and Genetics; Harvard Departments of Epidemiology and Psychiatry; 25 Shattuck Street; Boston, MA 02115; U.S.A
| |
Collapse
|
41
|
Mitsumura K, Hosoi N, Furuya N, Hirai H. Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibre-Purkinje cell synapses in staggerer mutant mice. J Physiol 2011; 589:3191-209. [PMID: 21558162 DOI: 10.1113/jphysiol.2011.207563] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Staggerer mutant mice have functional loss of a transcription factor, retinoid-related orphan receptor α (RORα), which is abundantly expressed in Purkinje cells (PCs) of the cerebellum.Homozygous staggerer (sg/sg)mice show cerebellar hypoplasia and congenital ataxia. Sg/sg mice serve as an important extreme mouse model of the hereditary spinocerebellar ataxia type 1 (SCA1), since it has been shown that RORα dysfunction is strongly correlated with SCA1 pathogenesis. However, synaptic abnormalities, especially at parallel fibre (PF)-PC synapses, in SCA1-related sg/sg mice have not been examined in detail electrophysiologically. In this study, we report that PFs can still establish functional synapses onto PCs in sg/sg mice in spite of reduction in the number of PF-PC synapses. Compared with PF-evoked EPSCs in the wild-type or heterozygotes, the success rate of the EPSC recordings in sg/sg was quite low (∼40%) and the EPSCs showed faster kinetics and slightly decreased paired pulse facilitation at short intervals. The prominent synaptic dysfunction is that sg/sg mice lack metabotropic glutamate receptor (mGluR)-mediated slow EPSCs completely. Neither intense PF stimulation nor an exogenously applied mGluR agonist, DHPG, could elicit mGluR-mediated responses.Western blot analysis in the sg/sg cerebellum revealed low-level expression of mGluR1 and TRPC3, both of which underlie mGluR-mediated slow currents in PCs. Immunohistochemical data demonstrated marked mislocalization of mGluR1 on sg/sg PCs.We found that mGluR-mediated retrograde suppression of PF-PC EPSCs by endocannabinoid is also impaired completely in sg/sg mice. These results suggest that disruption of mGluR signalling at PF-PC synapses is one of the major synaptic defects in sg/sg mice and may manifest itself in SCA1 pathology.
Collapse
Affiliation(s)
- Kazuhiro Mitsumura
- Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | |
Collapse
|
42
|
Characterization of the deleted in autism 1 protein family: implications for studying cognitive disorders. PLoS One 2011; 6:e14547. [PMID: 21283809 PMCID: PMC3023760 DOI: 10.1371/journal.pone.0014547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/21/2010] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of commonly occurring, highly-heritable developmental disabilities. Human genes c3orf58 or Deleted In Autism-1 (DIA1) and cXorf36 or Deleted in Autism-1 Related (DIA1R) are implicated in ASD and mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1 evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues. By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An additional DIA1-related gene we named DIA1-Like (DIA1L), lacks a signal peptide and is restricted to the genomes of the echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function. We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of DIA1-family members will have implications for our understanding of autism and mental retardation.
Collapse
|
43
|
Furuichi T, Shiraishi-Yamaguchi Y, Sato A, Sadakata T, Huang J, Shinoda Y, Hayashi K, Mishima Y, Tomomura M, Nishibe H, Yoshikawa F. Systematizing and cloning of genes involved in the cerebellar cortex circuit development. Neurochem Res 2011; 36:1241-52. [PMID: 21243430 DOI: 10.1007/s11064-011-0398-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
The cerebellar cortical circuit of mammals develops via a series of magnificent cellular events in the postnatal stage of development to accomplish the formation of functional circuit architectures. The contribution of genetic factors is thought to be crucial to cerebellar development. Therefore, it is essential to analyze the underlying transcriptome during development to understand the genetic blueprint of the cerebellar cortical circuit. In this review, we introduce the profiling of large numbers of spatiotemporal gene expression data obtained by developmental time-series microarray analyses and in situ hybridization cellular mRNA mapping, and the creation of a neuroinformatics database called the Cerebellar Development Transcriptome Database. Using this database, we have identified thousands of genes that are classified into various functional categories and are expressed coincidently with related cellular developmental stages. We have also suggested the molecular mechanisms of cerebellar development by functional characterization of several identified genes (Cupidin, p130Cas, very-KIND, CAPS2) responsible for distinct cellular events of developing cerebellar granule cells. Taken together, the gene expression profiling during the cerebellar development demonstrates that the development of cerebellar cortical circuit is attributed to the complex but orchestrated transcriptome.
Collapse
Affiliation(s)
- Teiichi Furuichi
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Aziz A, Harrop SP, Bishop NE. DIA1R is an X-linked gene related to Deleted In Autism-1. PLoS One 2011; 6:e14534. [PMID: 21264219 PMCID: PMC3022024 DOI: 10.1371/journal.pone.0014534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/21/2010] [Indexed: 01/28/2023] Open
Abstract
Background Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.
Collapse
Affiliation(s)
- Azhari Aziz
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Sean P. Harrop
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Naomi E. Bishop
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
- * E-mail:
| |
Collapse
|
45
|
SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Hum Mol Genet 2010; 19:1368-78. [DOI: 10.1093/hmg/ddq013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|