1
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Lee CLM, Brabander CJ, Nomura Y, Kanda Y, Yoshida S. Embryonic exposure to acetamiprid insecticide induces CD68-positive microglia and Purkinje cell arrangement abnormalities in the cerebellum of neonatal rats. Toxicol Appl Pharmacol 2025; 495:117215. [PMID: 39719252 DOI: 10.1016/j.taap.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Concerns have been raised regarding acetamiprid (ACE), a neonicotinoid insecticide, due to its potential neurodevelopmental toxicity. ACE, which is structurally similar to nicotine, acts as an agonist of nicotinic acetylcholine receptors (nAChRs) and resists degradation by acetylcholinesterase. Furthermore, ACE has been reported to disrupt neuronal transmission and induce developmental neurotoxicity and ataxia in animal models. However, the prenatal ACE exposure and its pathological changes, including impacts on motor control, remains unclear. In this study, we investigated the effects of ACE exposure, focusing on the development of cerebellar neurons and glia, which are linked to motor impairment. ACE at doses of 20, 40-, and 60 mg/kg body weight was administered to Pregnant Wistar rats via feed on gestational day (G) 15. The developing cerebellum of the pups was examined on postnatal days (P) 7, 14, and 18, corresponding to the critical periods of cerebellar maturation in rodents. Our data revealed that ACE exposure at 40 and 60 mg/kg induced abnormal neuronal alignment on P14, and neuronal cell loss on P18. Additionally, ACE altered microglial behavior, with an increase in the number of CD68-positive microglia, suggesting that the exposure results in an increase in phagocytic microglia in response to neuronal abnormalities, ultimately leading to neuronal cell loss. Pups exposed to 60 mg/kg ACE exhibited hindlimb clasping during the hindlimb suspension test, indicating motor impairment. These findings suggest that ACE exposure causes neuronal cell loss of developing Purkinje cells and promotes a phase shift to the activate mode of microglia. This study further highlights the crucial role of neuron-glia interactions in ACE-induced motor impairment, thus contributing to our understanding of the potential risks associated with prenatal ACE exposure.
Collapse
Affiliation(s)
- Christine Li Mei Lee
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Claire J Brabander
- Department of Psychology, Queens College, CUNY, NY 11367, USA; Graduate Center, CUNY, New York, NY 10023, USA
| | - Yoko Nomura
- Department of Psychology, Queens College, CUNY, NY 11367, USA; Graduate Center, CUNY, New York, NY 10023, USA
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Sachiko Yoshida
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Diversity and Inclusion, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
3
|
Boonstra JT. The cerebellar connectome. Behav Brain Res 2025; 482:115457. [PMID: 39884319 DOI: 10.1016/j.bbr.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The cerebellum, once primarily associated with motor functions, has emerged as a critical component in higher cognitive processes and emotional regulation. This paradigm shift frames the cerebellum as an essential focal point for elucidating sophisticated functional brain circuitry. Network neuroscience often maintains a cortical-centric viewpoint, potentially overlooking the significant contributions of the cerebellum in connectome organization. Enhanced recognition and integration of cerebellar aspects in connectomic analyses hold significant potential for elucidating cerebellar circuitry within comprehensive brain networks and in neuropsychiatric conditions where cerebellar involvement is evident. This review explores the intricate anatomy, connectivity, and functional organization of the cerebellum within the broader context of large-scale brain networks. Cerebellar-specific networks are examined, emphasizing their role in supporting diverse cognitive functions via the cerebellum's hierarchical functional organization. The clinical significance of cerebellar connectomics is then addressed, highlighting the interplay between cerebellar circuitry and neurological and psychiatric conditions. The paper concludes by considering neurostimulation treatments and future directions in the field. This comprehensive review underscores the cerebellum's integral role in the human connectome.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
4
|
Lafleur A, Caron V, Forgeot d'Arc B, Soulières I. Atypical implicit and explicit sense of agency in autism: A complete characterization using the cue integration approach. Q J Exp Psychol (Hove) 2025:17470218241311582. [PMID: 39704361 DOI: 10.1177/17470218241311582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
There exist indications that sense of agency (SoA), the experience of being the cause of one's own actions and actions' outcomes, is altered in autism. However, no studies in autism have simultaneously investigated the integration mechanisms underpinning both implicit and explicit SoA, the two levels of agency proposed by the innovative cue integration approach. Our study establishes a first complete characterization of SoA functioning in autism, by comparing age- and IQ-matched samples of autistic versus neurotypical adults. Intentional binding and judgments of agency were used to assess implicit and explicit SoA over pinching movements with visual outcomes. Sensorimotor and contextual cues were manipulated using feedback alteration and induced belief about the cause of actions' outcome. Implicit SoA was altered in autism, as showed by an overall abolished intentional binding effect and greater inter-individual heterogeneity. At the explicit level, we observed under-reliance on retrospective sensorimotor cues. The implicit-explicit dynamic was also altered in comparison to neurotypical individuals. Our results show that both implicit and explicit levels of SoA, as well as the dynamic between the two levels, present atypicalities in autism.
Collapse
Affiliation(s)
- Alexis Lafleur
- Psychology Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Vicky Caron
- Psychology Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Baudouin Forgeot d'Arc
- Département de Psychiatrie et d'addictologie, Université de Montréal & Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, Canada
| | - Isabelle Soulières
- Psychology Department, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Mohamed AF, El-Gammal MA, El-Yamany MF, Khodeir AE. Sigma-1 receptor modulation by fluvoxamine ameliorates valproic acid-induced autistic behavior in rats: Involvement of chronic ER stress modulation, enhanced autophagy and M1/M2 microglia polarization. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111192. [PMID: 39510157 DOI: 10.1016/j.pnpbp.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. While, fluvoxamine (FVX) is an antidepressant and widely prescribed to ASD patients, clinical results are inconclusive and the mechanism of FVX in the management of ASD is unclear. This study determined the potential therapeutic impact of FVX, a sigma-1 receptor (S1R) agonist, against the valproic acid (VPA)-induced model of autism. On gestational day 12.5, Wistar pregnant rats were given a single intraperitoneal (i.p.) injection of either VPA (600 mg/kg) or normal saline (10 mL/kg, vehicle-control). Starting on postnatal day (PND) 21 to PND 50, FVX (30 mg/kg, P·O. daily) and NE-100, (S1R) antagonist, (1 mg/kg, i.p. daily) were given to male pups. Behavior tests and histopathological changes were identified at the end of the experiment. In addition, the cerebellum biomarkers of endoplasmic reticulum (ER) stress and autophagy were assessed. Microglial cell polarization to M1 and M2 phenotypes was also assessed. FVX effectively mitigated the histopathological alterations in the cerebellum caused by VPA. FVX enhanced sociability and stereotypic behaviors in addition to its noteworthy impact on autophagy enhancement, ER stress deterioration, and controlling microglial cell polarization. The current investigation confirmed that the S1R agonist, FVX, can lessen behavioral and neurochemical alterations in the VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza 11562, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.
| | - Mohamad A El-Gammal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza 11562, Egypt.
| | - Ahmed E Khodeir
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| |
Collapse
|
6
|
Parsaei M, Barahman G, Roumiani PH, Ranjbar E, Ansari S, Najafi A, Karimi H, Aarabi MH, Moghaddam HS. White matter correlates of cognition: A diffusion magnetic resonance imaging study. Behav Brain Res 2025; 476:115222. [PMID: 39216828 DOI: 10.1016/j.bbr.2024.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Our comprehension of the interplay of cognition and the brain remains constrained. While functional imaging studies have identified cognitive brain regions, structural correlates of cognitive functions remain underexplored. Advanced methods like Diffusion Magnetic Resonance Imaging (DMRI) facilitate the exploration of brain connectivity and White Matter (WM) tract microstructure. Therefore, we conducted connectometry method on DMRI data, to reveal WM tracts associated with cognition. METHODS 125 healthy participants from the National Institute of Mental Health Intramural Healthy Volunteer Dataset were recruited. Multiple regression analyses were conducted between DMRI-derived Quantitative Anisotropy (QA) values within WM tracts and scores of participants in Flanker Inhibitory Control and Attention Test (attention), Dimensional Change Card Sort (executive function), Picture Sequence Memory Test (episodic memory), and List Sorting Working Memory Test (working memory) tasks from National Institute of Health toolbox. The significance level was set at False Discovery Rate (FDR)<0.05. RESULTS We identified significant positive correlations between the QA of WM tracts within the left cerebellum and bilateral fornix with attention, executive functioning, and episodic memory (FDR=0.018, 0.0002, and 0.0002, respectively), and a negative correlation between QA of WM tracts within bilateral cerebellum with attention (FDR=0.028). Working memory demonstrated positive correlations with QA of left inferior longitudinal and left inferior fronto-occipital fasciculi (FDR=0.0009), while it showed a negative correlation with QA of right cerebellar tracts (FDR=0.0005). CONCLUSION Our results underscore the intricate link between cognitive performance and WM integrity in frontal, temporal, and cerebellar regions, offering insights into early detection and targeted interventions for cognitive disorders.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gelayol Barahman
- School of Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Ehsan Ranjbar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ansari
- Psychosomatic Medicine Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Najafi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Butera C, Delafield-Butt J, Lu SC, Sobota K, McGowan T, Harrison L, Kilroy E, Jayashankar A, Aziz-Zadeh L. Motor Signature Differences Between Autism Spectrum Disorder and Developmental Coordination Disorder, and Their Neural Mechanisms. J Autism Dev Disord 2025; 55:353-368. [PMID: 38062243 DOI: 10.1007/s10803-023-06171-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 02/07/2025]
Abstract
Autism spectrum disorder (ASD) and Developmental Coordination Disorder (DCD) are distinct clinical groups with overlapping motor features. We attempted to (1) differentiate children with ASD from those with DCD, and from those typically developing (TD) (ages 8-17; 18 ASD, 16 DCD, 20 TD) using a 5-min coloring game on a smart tablet and (2) identify neural correlates of these differences. We utilized standardized behavioral motor assessments (e.g. fine motor, gross motor, and balance skills) and video recordings of a smart tablet task to capture any visible motor, behavioral, posture, or engagement differences. We employed machine learning analytics of motor kinematics during a 5-min coloring game on a smart tablet. Imaging data was captured using functional magnetic resonance imaging (fMRI) during action production tasks. While subject-rated motor assessments could not differentiate the two clinical groups, machine learning computational analysis provided good predictive discrimination: between TD and ASD (76% accuracy), TD and DCD (78% accuracy), and ASD and DCD (71% accuracy). Two kinematic markers which strongly drove categorization were significantly correlated with cerebellar activity. Findings demonstrate unique neuromotor patterns between ASD and DCD relate to cerebellar function and present a promising route for computational techniques in early identification. These are promising preliminary results that warrant replication with larger samples.
Collapse
Affiliation(s)
- Christiana Butera
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA.
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Jonathan Delafield-Butt
- Laboratory for Innovation in Autism, University of Strathclyde, Glasgow, Scotland, UK
- Faculty of Humanities and Social Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Szu-Ching Lu
- Laboratory for Innovation in Autism, University of Strathclyde, Glasgow, Scotland, UK
- Faculty of Humanities and Social Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | - Timothy McGowan
- Laboratory for Innovation in Autism, University of Strathclyde, Glasgow, Scotland, UK
- Faculty of Humanities and Social Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Laura Harrison
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Emily Kilroy
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Aditya Jayashankar
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lisa Aziz-Zadeh
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Parvathy S, Basu B, Surya S, Jose R, Meera V, Riya PA, Jyothi NP, Sanalkumar R, Praz V, Riggi N, Nair BS, Gulia KK, Kumar M, Binukumar BK, James J. TLX3 regulates CGN progenitor proliferation during cerebellum development and its dysfunction can lead to autism. iScience 2024; 27:111260. [PMID: 39628587 PMCID: PMC11612787 DOI: 10.1016/j.isci.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/06/2024] Open
Abstract
Tlx3, a master regulator of the fate specification of excitatory neurons, is primarily known to function in post-mitotic cells. Although we have previously identified TLX3 expression in the proliferating granule neuron progenitors (GNPs) of cerebellum, its primary role is unknown. Here, we demonstrate that the dysfunction of Tlx3 from the GNPs significantly reduced its proliferation through regulating anti-proliferative genes. Consequently, the altered generation of GNPs resulted in cerebellar hypoplasia, patterning defects, granule neuron-Purkinje ratio imbalance, and aberrant synaptic connections in the cerebellum. This altered cerebellar homeostasis manifested into a typical autism-like behavior in mice with motor, and social function disabilities. We also show the presence of TLX3 variants with uncharacterized mutations in human cases of autism spectrum disorder (ASD). Altogether, our study establishes Tlx3 as a critical gene involved in developing GNPs and that its deletion from the early developmental stage culminates in autism.
Collapse
Affiliation(s)
- Surendran Parvathy
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Budhaditya Basu
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| | - Suresh Surya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Rahul Jose
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| | - Vadakkath Meera
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Nair Pradeep Jyothi
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | | | - Viviane Praz
- CHUV-Lausanne University Hospital, Rue du Bugnon 46, 1005 Lausanne, Switzerland
| | - Nicolò Riggi
- CHUV-Lausanne University Hospital, Rue du Bugnon 46, 1005 Lausanne, Switzerland
| | - Biju Surendran Nair
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
| | - Kamalesh K. Gulia
- Division of Sleep Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala 695012, India
| | - Mukesh Kumar
- Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India
| | | | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| |
Collapse
|
9
|
Kshetri R, Beavers JO, Hyde R, Ewa R, Schwertman A, Porcayo S, Richardson BD. Behavioral decline in Shank3 Δex4-22 mice during early adulthood parallels cerebellar granule cell glutamatergic synaptic changes. Mol Autism 2024; 15:52. [PMID: 39633421 PMCID: PMC11616285 DOI: 10.1186/s13229-024-00628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND SHANK3, a gene encoding a synaptic scaffolding protein, is implicated in autism spectrum disorder (ASD) and is disrupted in Phelan-McDermid syndrome (PMS). Despite evidence of regression or worsening of ASD-like symptoms in individuals with PMS, the underlying mechanisms remain unclear. Although Shank3 is highly expressed in the cerebellar cortical granule cells, its role in cerebellar function and contribution to behavioral deficits in ASD models are unknown. This study investigates behavioral changes and cerebellar synaptic alterations in Shank3Δex4-22 mice at two developmental stages. METHODS Shank3Δex4-22 wildtype, heterozygous, and homozygous knockout mice lacking exons 4-22 (all functional isoforms) were subjected to a behavioral battery in both juvenile (5-7 weeks old) and adult (3-5 months old) mouse cohorts of both sexes. Immunostaining was used to show the expression of Shank3 in the cerebellar cortex. Spontaneous excitatory postsynaptic currents (sEPSCs) from cerebellar granule cells (CGCs) were recorded by whole-cell patch-clamp electrophysiology. RESULTS Deletion of Shank3 caused deficits in motor function, heightened anxiety, and repetitive behaviors. These genotype-dependent behavioral alterations were more prominent in adult mice than in juveniles. Reduced social preference was only identified in adult Shank3Δex4-22 knockout male mice, while self-grooming was uniquely elevated in males across both age groups. Heterozygous mice showed little to no changes in behavioral phenotypes in most behavioral tests. Immunofluorescence staining indicated the presence of Shank3 predominantly in the dendrite-containing rosette-like structures in CGCs, colocalizing with presynaptic markers of glutamatergic mossy fiber. Electrophysiological findings identified a parallel relationship between the age-related exacerbation of behavioral impairments and the enhancement of sEPSC amplitude in CGCs. LIMITATIONS Other behavioral tests of muscle strength (grip strength test), memory (Barnes/water maze), and communication (ultrasonic vocalization), were not performed. Further study is necessary to elucidate how Shank3 modulates synaptic function at the mossy fiber-granule cell synapse in the cerebellum and whether these changes shape the behavioral phenotype. CONCLUSIONS Our findings reveal an age-related exacerbation of behavioral impairments in Shank3Δex4-22 mutant mice. These results suggest that Shank3 may alter the function of glutamatergic receptors at the mossy fiber-cerebellar granule cell synapse as a potential mechanism causing cerebellar disruption in ASD.
Collapse
Affiliation(s)
- Rajaram Kshetri
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - James O Beavers
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Romana Hyde
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Roseline Ewa
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Amber Schwertman
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Sarahi Porcayo
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA
| | - Ben D Richardson
- Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
10
|
Bahaaeldin M, Bülte C, Luelsberg F, Kumar S, Kappler J, Völker C, Schilling K, Baader SL. Engrailed-2 and inflammation convergently and independently impinge on cerebellar Purkinje cell differentiation. J Neuroinflammation 2024; 21:306. [PMID: 39609827 PMCID: PMC11603920 DOI: 10.1186/s12974-024-03301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorders (ASD) have a complex pathogenesis thought to include both genetic and extrinsic factors. Among the latter, inflammation of the developing brain has recently gained growing attention. However, how genetic predisposition and inflammation might converge to precipitate autistic behavior remains elusive. Cerebellar structure and function are well known to be affected in autism. We therefore used cerebellar slice cultures to probe whether inflammatory stimulation and (over)expression of the autism susceptibility gene Engrailed-2 interact in shaping differentiation of Purkinje cells, key organizers of cerebellar histogenesis and function. We show that lipopolysaccharide treatment reduces Purkinje cell dendritogenesis and that this effect is enhanced by over-expression of Engrailed-2 in these cells. The effects of lipopolysaccharide can be blocked by inhibiting microglia proliferation and also by blocking tumor necrosis factor alpha receptor signaling, suggesting microglia and tumor necrosis factor alpha are major players in this scenario. These findings identify Purkinje cells as a potential integrator of genetic and environmental signals that lead to an autism-associated morphology.
Collapse
Affiliation(s)
- Mohammed Bahaaeldin
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Carolin Bülte
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Fabienne Luelsberg
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Sujeet Kumar
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
- National Reference Laboratory for Tuberculosis, ICMR-RMRC, Bhubaneswar, Odisha, India
| | - Joachim Kappler
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, 53125, Bonn, Germany
| | - Christof Völker
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, 53125, Bonn, Germany
| | - Karl Schilling
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany
| | - Stephan L Baader
- Institute of Anatomy, Anatomy and Cell Biology, University of Bonn, Nussallee 10, 53125, Bonn, Germany.
| |
Collapse
|
11
|
Vallese A, Cordone V, Ferrara F, Guiotto A, Gemmo L, Cervellati F, Hayek J, Pecorelli A, Valacchi G. NLRP3 inflammasome-mitochondrion loop in autism spectrum disorder. Free Radic Biol Med 2024; 225:581-594. [PMID: 39433111 DOI: 10.1016/j.freeradbiomed.2024.10.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD. For this reason, our study focused on evaluating the mitochondrial component and activation of the NLRP3 inflammasome, a critical player of the innate immune system. The assembly of NLRP3 with ASC mediates activation of Caspase-1, which in turn, by proteolytic cleavage, activates Gasdermin D and the proinflammatory cytokines IL-1β/IL-18 with their subsequent secretion. Using primary fibroblasts of autistic and control patients we studied basal and stimulated conditions. Specifically, LPS and ATP were used to activate the NLRP3 inflammasome and MCC950 for its inhibition. In addition, FCCP was used as a mitochondrial stressor and MitoTEMPO as a scavenger of mitochondrial ROS. Our results showed a hyperactivation of NLRP3 inflammasome in ASDs, as evidenced by the co-localization of the two main components, NLRP3 and ASC, by the higher levels of ASC specks, oligomers and dimers and by the increased amounts of active Caspase-1 and IL-1β. In addition, increased mitochondrial superoxide anion and reduced mitochondrial membrane potential were detected in ASD cells. These data are in accordance with the abnormal mitochondrial morphology evidenced by transmission electron microscopy analysis. Interestingly, NLRP3 inflammasome inhibition with MCC950 improved mitochondrial parameters, while the use of MitoTEMPO, in addition to decrease mitochondrial ROS production, was able to prevent NLRP3 inflammasome activation suggesting for the first time an abnormal bidirectional crosstalk between mitochondria and NLRP3 inflammasome in ASD.
Collapse
Affiliation(s)
- Andrea Vallese
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Laura Gemmo
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Dept. of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
12
|
Yenkoyan K, Grigoryan A, Kutna V, Shorter S, O'Leary VB, Asadollahi R, Ovsepian SV. Cerebellar impairments in genetic models of autism spectrum disorders: A neurobiological perspective. Prog Neurobiol 2024; 242:102685. [PMID: 39515458 DOI: 10.1016/j.pneurobio.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive. Studies in experimental animals have been critical in uncovering molecular pathology and neuro-behavioural correlates, providing a model for investigating complex disease conditions. Herein, we review commonalities and differences of the most extensively characterised genetic lines of ASD with reference to the cerebellum. We revisit structural, functional, and molecular alterations which may contribute to neurobehavioral phenotypes. The cross-model analysis of this study provides an integrated outlook on the role of cerebellar alterations in pathobiology of ASD that may benefit future translational research and development of therapies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia.
| | - Artem Grigoryan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia
| | - Viera Kutna
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10000, Czech Republic
| | - Reza Asadollahi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom.
| |
Collapse
|
13
|
Dhar D, Chaturvedi M, Sehwag S, Malhotra C, Udit, Saraf C, Chakrabarty M. Gray Matter Volume Correlates of Co-Occurring Depression in Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06602-0. [PMID: 39441477 DOI: 10.1007/s10803-024-06602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Autism Spectrum Disorder (ASD) involves neurodevelopmental syndromes with significant deficits in communication, motor behaviors, emotional and social comprehension. Often, individuals with ASD exhibit co-occurring depression characterized by a change in mood and diminished interest in previously enjoyable activities. Due to communicative challenges and a lack of appropriate assessments in this cohort, co-occurring depression can often go undiagnosed during routine clinical examinations and, thus, its management neglected. The literature on co-occurring depression in adults with ASD is limited. Therefore, understanding the neural basis of the co-occurring psychopathology of depression in ASD is crucial for identifying brain-based markers for its timely and effective management. Using structural MRI and phenotypic data from the Autism Brain Imaging Data Exchange (ABIDE II) repository, we examined the pattern of relationship regional grey matter volume (rGMV) has with co-occurring depression and autism severity within regions of a priori interest in adults with ASD (n = 44; age = 17-28 years). Further, we performed an exploratory analysis of the rGMV differences between ASD and matched typically developed (TD, n = 39; age = 18-31 years) samples. The severity of co-occurring depression correlated negatively with the rGMV of the right thalamus. Additionally, a significant interaction was evident between the severity of co-occurring depression and core ASD symptoms towards explaining the rGMV in the left cerebellum crus II. The results further the understanding of the neurobiological underpinnings of co-occurring depression in adults with ASD towards exploring neuroimaging-based biomarkers in the same cohort.
Collapse
Affiliation(s)
- Dolcy Dhar
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Manasi Chaturvedi
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- School of Information, University of Texas at Austin, Texas 78712, USA
| | - Saanvi Sehwag
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chehak Malhotra
- Department of Mathematics, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Udit
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chetan Saraf
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Mrinmoy Chakrabarty
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
| |
Collapse
|
14
|
van der Heijden ME. Converging and Diverging Cerebellar Pathways for Motor and Social Behaviors in Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1754-1767. [PMID: 38780757 PMCID: PMC11489171 DOI: 10.1007/s12311-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA.
- Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Abbott PW, Hardie JB, Walsh KP, Nessler AJ, Farley SJ, Freeman JH, Wemmie JA, Wendt L, Kim YC, Sowers LP, Parker KL. Knockdown of the Non-canonical Wnt Gene Prickle2 Leads to Cerebellar Purkinje Cell Abnormalities While Cerebellar-Mediated Behaviors Remain Intact. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1741-1753. [PMID: 38165577 PMCID: PMC11217148 DOI: 10.1007/s12311-023-01648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 01/04/2024]
Abstract
Autism spectrum disorders (ASD) involve brain wide abnormalities that contribute to a constellation of symptoms including behavioral inflexibility, cognitive dysfunction, learning impairments, altered social interactions, and perceptive time difficulties. Although a single genetic variation does not cause ASD, genetic variations such as one involving a non-canonical Wnt signaling gene, Prickle2, has been found in individuals with ASD. Previous work looking into phenotypes of Prickle2 knock-out (Prickle2-/-) and heterozygous mice (Prickle2-/+) suggest patterns of behavior similar to individuals with ASD including altered social interaction and behavioral inflexibility. Growing evidence implicates the cerebellum in ASD. As Prickle2 is expressed in the cerebellum, this animal model presents a unique opportunity to investigate the cerebellar contribution to autism-like phenotypes. Here, we explore cerebellar structural and physiological abnormalities in animals with Prickle2 knockdown using immunohistochemistry, whole-cell patch clamp electrophysiology, and several cerebellar-associated motor and timing tasks, including interval timing and eyeblink conditioning. Histologically, Prickle2-/- mice have significantly more empty spaces or gaps between Purkinje cells in the posterior lobules and a decreased propensity for Purkinje cells to fire action potentials. These structural cerebellar abnormalities did not impair cerebellar-associated behaviors as eyeblink conditioning and interval timing remained intact. Therefore, although Prickle-/- mice show classic phenotypes of ASD, they do not recapitulate the involvement of the adult cerebellum and may not represent the pathophysiological heterogeneity of the disorder.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Jason B Hardie
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Kyle P Walsh
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Aaron J Nessler
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52245, USA
| | | | - John H Freeman
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - John A Wemmie
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Linder Wendt
- Department of Biostatistics, The University of Iowa, Iowa City, IA, 52245, USA
| | - Young-Cho Kim
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
- Department of Neurology, The University of Iowa, Iowa City, IA, 52245, USA
| | - Levi P Sowers
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
- Department of Pediatrics, The University of Iowa, Iowa City, IA, 52245, USA
| | - Krystal L Parker
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA.
| |
Collapse
|
16
|
King C, Plakke B. Maternal choline supplementation modulates cognition and induces anti-inflammatory signaling in the prefrontal cortices of adolescent rats exposed to maternal immune activation. Brain Behav Immun Health 2024; 40:100836. [PMID: 39206430 PMCID: PMC11350509 DOI: 10.1016/j.bbih.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Maternal infection has long been described as a risk factor for neurodevelopmental disorders, especially autism spectrum disorders (ASD) and schizophrenia. Although many pathogens do not cross the placenta and infect the developing fetus directly, the maternal immune response to them is sufficient to alter fetal neurodevelopment, a phenomenon termed maternal immune activation (MIA). Low maternal choline is also a risk factor for neurodevelopmental disorders, and most pregnant people do not receive enough of it. In addition to its role in neurodevelopment, choline is capable of inducing anti-inflammatory signaling through a nicotinic pathway. Therefore, it was hypothesized that maternal choline supplementation would blunt the neurodevelopmental impact of MIA in offspring through long-term instigation of cholinergic anti-inflammatory signaling. To model MIA in rats, the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)) was used to elicit a maternal antiviral innate immune response in dams both with and without choline supplementation. Offspring were reared to both early and late adolescent stages (postnatal days 28 and 50, respectively), where anxiety-related behaviors and cognition were examined. After behavioral testing, animals were euthanized, and their prefrontal cortices (PFCs) were collected for analysis. MIA offspring demonstrated sex-specific patterns of altered cognition and repetitive behaviors, which were modulated by maternal choline supplementation. Choline supplementation also bolstered anti-inflammatory signaling in the PFCs of MIA animals at both early and late adolescent stages. These findings suggest that maternal choline supplementation may be sufficient to blunt some of the behavioral and neurobiological impacts of inflammatory exposures in utero, indicating that it may be a cheap, safe, and effective intervention for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, 1114 Mid-Campus Drive, Manhattan, KS, 66502, USA
| |
Collapse
|
17
|
Bazbaz W, Kartawy M, Hamoudi W, Ojha SK, Khaliulin I, Amal H. The Role of Thioredoxin System in Shank3 Mouse Model of Autism. J Mol Neurosci 2024; 74:90. [PMID: 39347996 PMCID: PMC11457715 DOI: 10.1007/s12031-024-02270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by difficulties in social interaction and communication, repetitive behaviors, and restricted interests. Unfortunately, the underlying molecular mechanism behind ASD remains unknown. It has been reported that oxidative and nitrosative stress are strongly linked to ASD. We have recently found that nitric oxide (NO•) and its products play an important role in this disorder. One of the key proteins associated with NO• is thioredoxin (Trx). We hypothesize that the Trx system is altered in the Shank3 KO mouse model of autism, which may lead to a decreased activity of the nuclear factor erythroid 2-related factor 2 (Nrf2), resulting in oxidative stress, and thus, contributing to ASD-related phenotypes. To test this hypothesis, we conducted in vivo behavioral studies and used primary cortical neurons derived from the Shank3 KO mice and human SH-SY5Y cells with SHANK3 mutation. We showed significant changes in the levels and activity of Trx redox proteins in the Shank3 KO mice. A Trx1 inhibitor PX-12 decreased Trx1 and Nrf2 expression in wild-type mice, causing abnormal alterations in the levels of synaptic proteins and neurotransmission markers, and an elevation of nitrosative stress. Trx inhibition resulted in an ASD-like behavioral phenotype, similar to that of Shank3 KO mice. Taken together, our findings confirm the strong link between the Trx system and ASD pathology, including the increased oxidative/nitrosative stress, and synaptic and behavioral deficits. The results of this study may pave the way for identifying novel drug targets for ASD.
Collapse
Affiliation(s)
- Wisam Bazbaz
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shashank Kumar Ojha
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Khaliulin
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
18
|
Reza Naghdi M, Ahadi R, Motamed Nezhad A, Sadat Ahmadi Tabatabaei F, Soleimani M, Hajisoltani R. The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res 2024; 1838:148963. [PMID: 38705555 DOI: 10.1016/j.brainres.2024.148963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental disorder with two core behavioral symptoms restricted/repetitive behavior and social-communication deficit. The unknown etiology of ASD makes it difficult to identify potential treatments. Valproic acid (VPA) is an anticonvulsant drug with teratogenic effects during pregnancy in humans and rodents. Prenatal exposure to VPA induces autism-like behavior in both humans and rodents. This study aimed to investigate the protective effects of Diosgenin in prenatal Valproic acid-induced autism in rats. METHOD pregnant Wister female rats were given a single intraperitoneal injection of VPA (600 mg/kg, i.p.) on gestational day 12.5. The male offspring were given oral Dios (40 mg/kg, p.o.) or Carboxymethyl cellulose (5 mg/kg, p.o.) for 30 days starting from postnatal day 23. On postnatal day 52, behavioral tests were done. Additionally, biochemical assessments for oxidative stress markers were carried out on postnatal day 60. Further, histological evaluations were performed on the prefrontal tissue by Nissl staining and Immunohistofluorescence. RESULTS The VPA-exposed rats showed increased anxiety-like behavior in the elevated plus maze (EPM). They also demonstrated repetitive and grooming behaviors in the marble burying test (MBT) and self-grooming test. Social interaction was reduced, and they had difficulty detecting the novel object in the novel object recognition (NOR) test. Also, VPA-treated rats have shown higher levels of oxidative stress malondialdehyde (MDA) and lower GPX, TAC, and superoxide dismutase (SOD) levels. Furthermore, the number of neurons decreased and the ERK signaling pathway upregulated in the prefrontal cortex (PFC). On the other hand, treatment with Dios restored the behavioral consequences, lowered oxidative stress, and death of neurons, and rescued the overly activated ERK1/2 signaling in the prefrontal cortex. CONCLUSION Chronic treatment with Dios restored the behavioral, biochemical, and histological abnormalities caused by prenatal VPA exposure.
Collapse
Affiliation(s)
| | - Reza Ahadi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mansoureh Soleimani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Qiao Z, Sun Z, Cai K, Zhu L, Xiong X, Dong X, Shi Y, Yang S, Cheng W, Yang Y, Xu D, Mao H, Chen A. Effects of mini-basketball training program on social communication impairments and salience network in preschool children with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2024:1-14. [DOI: 10.1080/20473869.2024.2394736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 11/10/2024]
Affiliation(s)
- Zhiyuan Qiao
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Zhiyuan Sun
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Lina Zhu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Xuan Xiong
- Nanjing University, Sports, Nanjing, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yifan Shi
- College of Physical Education, Yangzhou University, Yangzhou, China
| | | | - Wei Cheng
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yang Yang
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Decheng Xu
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Haiyong Mao
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou, China
- Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
20
|
Hanzel M, Fernando K, Maloney SE, Horn Z, Gong S, Mätlik K, Zhao J, Pasolli HA, Heissel S, Dougherty JD, Hull C, Hatten ME. Mice lacking Astn2 have ASD-like behaviors and altered cerebellar circuit properties. Proc Natl Acad Sci U S A 2024; 121:e2405901121. [PMID: 39150780 PMCID: PMC11348334 DOI: 10.1073/pnas.2405901121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/05/2024] [Indexed: 08/18/2024] Open
Abstract
Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals with ASTN2 mutations exhibit neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), learning difficulties, and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity, repetitive behaviors, altered behavior in the three-chamber test, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors are also prominent in Astn2 cKO animals, but they do not show altered behavior in the three-chamber test. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrate a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.
Collapse
Affiliation(s)
- Michalina Hanzel
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Kayla Fernando
- Neurobiology Department, Duke University, Durham, NC27710
| | - Susan E. Maloney
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
| | - Zachi Horn
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
- InVitro Cell Research LLC, Englewood, NJ07631
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer’s Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10021
| | - Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Jiajia Zhao
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY10065
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY10065
| | - Joseph D. Dougherty
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
- Department of Genetics, Washington University Medical School, St. Louis, MO63130
| | - Court Hull
- Neurobiology Department, Duke University, Durham, NC27710
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| |
Collapse
|
21
|
Mohammad S, Gentreau M, Dubol M, Rukh G, Mwinyi J, Schiöth HB. Association of polygenic scores for autism with volumetric MRI phenotypes in cerebellum and brainstem in adults. Mol Autism 2024; 15:34. [PMID: 39113134 PMCID: PMC11304666 DOI: 10.1186/s13229-024-00611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.
Collapse
Affiliation(s)
- Salahuddin Mohammad
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Abstract
The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.
Collapse
Affiliation(s)
- Linda H Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| | - Detlef H Heck
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, Minnesota, USA
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Roy V Sillitoe
- Departments of Neuroscience and Pediatrics, Program in Developmental Biology, and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
23
|
Yuan YX, Liu Y, Zhang J, Bing YH, Chen CY, Li GG, Chu CP, Yin MJ, Qiu DL. Gestational valproic acid exposure enhances facial stimulation-evoked cerebellar mossy fiber-granule cell transmission via GluN2A subunit-containing NMDA receptor in offspring mice. Transl Psychiatry 2024; 14:272. [PMID: 38961057 PMCID: PMC11222518 DOI: 10.1038/s41398-024-02990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.
Collapse
Affiliation(s)
- Yong-Xue Yuan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, 133000, Jilin, China
| | - Yang Liu
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Yan-Hua Bing
- Functional Experiment Center, College of Medicine, Yanbian University, Yanji City, 133000, Jilin, China
| | - Chao-Yue Chen
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Guang-Gao Li
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, 133000, Jilin, China
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, 132013, Jilin, China
| | - Ming-Ji Yin
- Department of Pediatrics, Affiliated Hospital of Yanbian University, Yanji City, 133000, Jilin, China.
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, 133002, Jilin, China.
- Institute of Brain Science, Jilin Medical University, Jilin City, 132013, Jilin, China.
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, 132013, Jilin, China.
| |
Collapse
|
24
|
Biswas MS, Roy SK, Hasan R, PK MMU. The crucial role of the cerebellum in autism spectrum disorder: Neuroimaging, neurobiological, and anatomical insights. Health Sci Rep 2024; 7:e2233. [PMID: 38966075 PMCID: PMC11222293 DOI: 10.1002/hsr2.2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
Background and Aims Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and challenges. While ASD is primarily associated with atypical social and communicative behaviors, increasing research has pointed towards the involvement of various brain regions, including the cerebellum. This review article aims to provide a comprehensive overview of the role of cerebellar lobules in ASD, highlighting recent findings and potential therapeutic implications. Methods Using published articles found in PubMed, Scopus, and Google Scholar, we extracted pertinent data to complete this review work. We have searched for terms including anatomical insights, neuroimaging, neurobiological, and autism spectrum disorder. Results The intricate relationship between the cerebellum and other brain regions linked to ASD has been highlighted by neurobiological research, which has shown abnormalities in neurotransmitter systems and cerebellar circuitry. The relevance of the cerebellum in the pathophysiology of ASD has been further highlighted by anatomical studies that have revealed evidence of cerebellar abnormalities, including changes in volume, morphology, and connectivity. Conclusion Thorough knowledge of the cerebellum's function in ASD may lead to new understandings of the underlying mechanisms of the condition and make it easier to create interventions and treatments that are more specifically targeted at treating cerebellar dysfunction in ASD patients.
Collapse
Affiliation(s)
- Mohammad Shahangir Biswas
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
- Department of Public HealthDaffodil International UniversityDhakaBangladesh
| | - Suronjit Kumar Roy
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
| | - Rubait Hasan
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
| | - Md Moyen Uddin PK
- Institute of Biological ScienceRajshahi UniversityMotihar, RajshahiBangladesh
| |
Collapse
|
25
|
Perez-Pouchoulen M, Holley AS, Reinl EL, VanRyzin JW, Mehrabani A, Dionisos C, Mirza M, McCarthy MM. Viral-mediated inflammation by Poly I:C induces the chemokine CCL5 in NK cells and its receptors CCR1 and CCR5 in microglia in the neonatal rat cerebellum. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:155-168. [PMID: 39175524 PMCID: PMC11338497 DOI: 10.1515/nipt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Objectives To study the effect of viral inflammation induced by Polyinosinic:polycytidylic acid (PIC) on the cerebellum during a critical period of development in rats. Methods Neonatal rat pups were treated with PIC on postnatal days (PN) 8 and 10 after which we quantified RNA using Nanostring, qRT-PCR and RNAscope and analyzed immune cells through flow cytometry and immunohistochemistry on PN11. Using the same paradigm, we also analyzed play juvenile behavior, anxiety-like behavior, motor balance using the balance beam and the rotarod assays as well as fine motor behavior using the sunflower seed opening test. Results We determined that male and female pups treated with PIC reacted with a significant increase in CCL5, a chemotactic cytokine that attracts T-cells, eosinophils and basophils to the site of inflammation, at PN11. PIC treatment also increased the expression of two receptors for CCL5, CCR1 and CCR5 in the cerebellar vermis in both males and females at PN11. In-situ hybridization (RNAscope®) for specific transcripts revealed that microglia express both CCL5 receptors under inflammatory and non-inflammatory conditions in both males and females. PIC treatment also increased the total number of CCL5+ cells in the developing cerebellum which were determined to be both natural killer cells and T-cells. There were modest but significant impacts of PIC treatment on large and fine motor skills and juvenile play behavior. Conclusions Our findings suggest an important role for CCL5 and other immune cells in mediating inflammation in the developing cerebellum that potentially impact the maturation of cerebellar neurons during a critical period of development.
Collapse
Affiliation(s)
| | - Amanda S. Holley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin L. Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amir Mehrabani
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christie Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammed Mirza
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Klaus J, Stoodley CJ, Schutter DJLG. Neurodevelopmental trajectories of cerebellar grey matter associated with verbal abilities in males with autism spectrum disorder. Dev Cogn Neurosci 2024; 67:101379. [PMID: 38615557 PMCID: PMC11026694 DOI: 10.1016/j.dcn.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition frequently associated with structural cerebellar abnormalities. Whether cerebellar grey matter volumes (GMV) are linked to verbal impairments remains controversial. Here, the association between cerebellar GMV and verbal abilities in ASD was examined across the lifespan. Lobular segmentation of the cerebellum was performed on structural MRI scans from the ABIDE I dataset in male individuals with ASD (N=144, age: 8.5-64.0 years) and neurotypical controls (N=188; age: 8.0-56.2 years). Stepwise linear mixed effects modeling including group (ASD vs. neurotypical controls), lobule-wise GMV, and age was performed to identify cerebellar lobules which best predicted verbal abilities as measured by verbal IQ (VIQ). An age-specific association between VIQ and GMV of bilateral Crus II was found in ASD relative to neurotypical controls. In children with ASD, higher VIQ was associated with larger GMV of left Crus II but smaller GMV of right Crus II. By contrast, in adults with ASD, higher VIQ was associated with smaller GMV of left Crus II and larger GMV of right Crus II. These findings indicate that relative to the contralateral hemisphere, an initial reliance on the language-nonspecific left cerebellar hemisphere is offset by more typical right-lateralization in adulthood.
Collapse
Affiliation(s)
- Jana Klaus
- Department of Experimental Psychology, Utrecht University, the Netherlands; Helmholtz Institute, Utrecht, the Netherlands.
| | | | - Dennis J L G Schutter
- Department of Experimental Psychology, Utrecht University, the Netherlands; Helmholtz Institute, Utrecht, the Netherlands
| |
Collapse
|
27
|
Seiffe A, Kazlauskas N, Campolongo M, Depino AM. Juvenile peripheral LPS exposure overrides female resilience to prenatal VPA effects on adult sociability in mice. Sci Rep 2024; 14:11435. [PMID: 38763939 PMCID: PMC11102908 DOI: 10.1038/s41598-024-62217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024] Open
Abstract
Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Araceli Seiffe
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Nadia Kazlauskas
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Marcos Campolongo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2, 2do piso, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Baizer JS. Neuroanatomy of autism: what is the role of the cerebellum? Cereb Cortex 2024; 34:94-103. [PMID: 38696597 PMCID: PMC11484497 DOI: 10.1093/cercor/bhae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/04/2024] Open
Abstract
Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
29
|
Fatemi SH, Eschenlauer A, Aman J, Folsom TD, Chekouo T. Quantitative proteomics of dorsolateral prefrontal cortex reveals an early pattern of synaptic dysmaturation in children with idiopathic autism. Cereb Cortex 2024; 34:161-171. [PMID: 38696595 PMCID: PMC11484494 DOI: 10.1093/cercor/bhae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 05/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Arthur Eschenlauer
- Minnesota Supercomputing Institute, 599 Walter Library, 117 Pleasant Street, Minneapolis, MN 55455, USA
| | - Justin Aman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Timothy D Folsom
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Thierry Chekouo
- University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| |
Collapse
|
30
|
Guan Z, Yu J, Shi Z, Liu X, Yu R, Lai T, Yang C, Dong H, Chen R, Wei L. Dynamic graph transformer network via dual-view connectivity for autism spectrum disorder identification. Comput Biol Med 2024; 174:108415. [PMID: 38599070 DOI: 10.1016/j.compbiomed.2024.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that requires objective and accurate identification methods for effective early intervention. Previous population-based methods via functional connectivity (FC) analysis ignore the differences between positive and negative FCs, which provide the potential information complementarity. And they also require additional information to construct a pre-defined graph. Meanwhile, two challenging demand attentions are the imbalance of performance caused by the class distribution and the inherent heterogeneity of multi-site data. In this paper, we propose a novel dynamic graph Transformer network based on dual-view connectivity for ASD Identification. It is based on the Autoencoders, which regard the input feature as individual feature and without any inductive bias. First, a dual-view feature extractor is designed to extract individual and complementary information from positive and negative connectivity. Then Graph Transformer network is innovated with a hot plugging K-Nearest Neighbor (KNN) algorithm module which constructs a dynamic population graph without any additional information. Additionally, we introduce the PolyLoss function and the Vrex method to address the class imbalance and improve the model's generalizability. The evaluation experiment on 1102 subjects from the ABIDE I dataset demonstrates our method can achieve superior performance over several state-of-the-art methods and satisfying generalizability for ASD identification.
Collapse
Affiliation(s)
- Zihao Guan
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaming Yu
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenshan Shi
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Xiumei Liu
- Developmental and Behavior Pediatrics Department, Fujian Children's Hospital - Fujian Branch of Shanghai Children's Medical Center, Fuzhou, 350002, China; College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350012, China
| | - Renping Yu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Taotao Lai
- College of Computer and Control Engineering, Minjiang University, Fuzhou, 350108, China
| | - Changcai Yang
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Heng Dong
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Riqing Chen
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lifang Wei
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
31
|
Richard Williams N, Tremblay L, Hurt-Thaut C, Brian J, Kowaleski J, Mertel K, Shlüter S, Thaut M. Auditory feedback decreases timing variability for discontinuous and continuous motor tasks in autistic adults. Front Integr Neurosci 2024; 18:1379208. [PMID: 38690085 PMCID: PMC11058991 DOI: 10.3389/fnint.2024.1379208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Autistic individuals demonstrate greater variability and timing error in their motor performance than neurotypical individuals, likely due at least in part to atypical cerebellar characteristics and connectivity. These motor difficulties may differentially affect discrete as opposed to continuous movements in autistic individuals. Augmented auditory feedback has the potential to aid motor timing and variability due to intact auditory-motor pathways in autism and high sensitivity in autistic individuals to auditory stimuli. Methods This experiment investigated whether there were differences in timing accuracy and variability in autistic adults as a function of task (discontinuous vs. continuous movements) and condition (augmented auditory feedback vs. no auditory feedback) in a synchronization-continuation paradigm. Ten autistic young adults aged 17-27 years of age completed the within-subjects study that involved drawing circles at 800 milliseconds intervals on a touch screen. In the discontinuous task, participants traced a series of discrete circles and paused at the top of each circle for at least 60 milliseconds. In the continuous task, participants traced the circles without pausing. Participants traced circles in either a non-auditory condition, or an auditory condition in which they heard a tone each time that they completed a circle drawing. Results Participants had significantly better timing accuracy on the continuous timing task as opposed to the discontinuous task. Timing consistency was significantly higher for tasks performed with auditory feedback. Discussion This research reveals that motor difficulties in autistic individuals affect discrete timing tasks more than continuous tasks, and provides evidence that augmented auditory feedback may be able to mitigate some of the timing variability present in autistic persons' movements. These results provide support for future investigation on the use of music-based therapies involving auditory feedback to address motor dysfunction in autistic individuals.
Collapse
Affiliation(s)
- Nicole Richard Williams
- Music and Health Science Research Collaboratory, University of Toronto, Faculty of Music, Toronto, ON, Canada
- College of Music and Performing Arts, Belmont University, Nashville, TN, United States
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Corene Hurt-Thaut
- Music and Health Science Research Collaboratory, University of Toronto, Faculty of Music, Toronto, ON, Canada
| | - Jessica Brian
- Bloorview Research Institute, University of Toronto, Toronto, ON, Canada
| | - Julia Kowaleski
- Music and Health Science Research Collaboratory, University of Toronto, Faculty of Music, Toronto, ON, Canada
| | - Kathrin Mertel
- Music and Health Science Research Collaboratory, University of Toronto, Faculty of Music, Toronto, ON, Canada
| | | | - Michael Thaut
- Music and Health Science Research Collaboratory, University of Toronto, Faculty of Music, Toronto, ON, Canada
- Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
33
|
Gaiser C, van der Vliet R, de Boer AAA, Donchin O, Berthet P, Devenyi GA, Mallar Chakravarty M, Diedrichsen J, Marquand AF, Frens MA, Muetzel RL. Population-wide cerebellar growth models of children and adolescents. Nat Commun 2024; 15:2351. [PMID: 38499518 PMCID: PMC10948906 DOI: 10.1038/s41467-024-46398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
In the past, the cerebellum has been best known for its crucial role in motor function. However, increasingly more findings highlight the importance of cerebellar contributions in cognitive functions and neurodevelopment. Using a total of 7240 neuroimaging scans from 4862 individuals, we describe and provide detailed, openly available models of cerebellar development in childhood and adolescence (age range: 6-17 years), an important time period for brain development and onset of neuropsychiatric disorders. Next to a traditionally used anatomical parcellation of the cerebellum, we generated growth models based on a recently proposed functional parcellation. In both, we find an anterior-posterior growth gradient mirroring the age-related improvements of underlying behavior and function, which is analogous to cerebral maturation patterns and offers evidence for directly related cerebello-cortical developmental trajectories. Finally, we illustrate how the current approach can be used to detect cerebellar abnormalities in clinical samples.
Collapse
Affiliation(s)
- Carolin Gaiser
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Augustijn A A de Boer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Pierre Berthet
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Jörn Diedrichsen
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Lyu W, Wu Y, Huynh KM, Ahmad S, Yap PT. A multimodal submillimeter MRI atlas of the human cerebellum. Sci Rep 2024; 14:5622. [PMID: 38453991 PMCID: PMC10920891 DOI: 10.1038/s41598-024-55412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Hanzel M, Fernando K, Maloney SE, Gong S, Mätlik K, Zhao J, Pasolli HA, Heissel S, Dougherty JD, Hull C, Hatten ME. Mice lacking Astn2 have ASD-like behaviors and altered cerebellar circuit properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.18.580354. [PMID: 38405978 PMCID: PMC10888872 DOI: 10.1101/2024.02.18.580354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. We recently reported a family with a paternally inherited intragenic ASTN2 duplication with a range of neurodevelopmental disorders, including autism spectrum disorder (ASD), learning difficulties, and speech and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity and repetitive behaviors, altered social behaviors, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors were also prominent in Astn2 cKO animals. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrates a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents (IPSCs) in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.
Collapse
Affiliation(s)
- Michalina Hanzel
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| | - Kayla Fernando
- Neurobiology Department, Duke University, Durham, NC, USA
| | - Susan E. Maloney
- Dept of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St Louis, MO, USA
| | | | - Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| | - Jiajia Zhao
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA 10065
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA 10065
| | - Joseph D. Dougherty
- Dept of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St Louis, MO, USA
- Dept of Genetics, Washington University Medical School, St Louis, MO, USA
| | - Court Hull
- Neurobiology Department, Duke University, Durham, NC, USA
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| |
Collapse
|
36
|
Hur SW, Safaryan K, Yang L, Blair HT, Masmanidis SC, Mathews PJ, Aharoni D, Golshani P. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex. eLife 2024; 12:RP88439. [PMID: 38345922 PMCID: PMC10942583 DOI: 10.7554/elife.88439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.
Collapse
Affiliation(s)
- Sung Won Hur
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen Safaryan
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
| | - Long Yang
- Department of Neurobiology, University of California Los AngelesLos AngelesUnited States
| | - Hugh T Blair
- Department of Psychology, University of California Los AngelesLos AngelesUnited States
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los AngelesLos AngelesUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| | - Daniel Aharoni
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
| | - Peyman Golshani
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
| |
Collapse
|
37
|
Demopoulos C, Jesson X, Gerdes MR, Jurigova BG, Hinkley LB, Ranasinghe KG, Desai S, Honma S, Mizuiri D, Findlay A, Nagarajan SS, Marco EJ. Global MEG Resting State Functional Connectivity in Children with Autism and Sensory Processing Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577499. [PMID: 38352614 PMCID: PMC10862722 DOI: 10.1101/2024.01.26.577499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sensory processing dysfunction not only affects most individuals with autism spectrum disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory processing. Our understanding of the relationship between sensory dysfunction and resting state brain activity is still emerging. This study compared long-range resting state functional connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet ASD criteria, and typically developing control participants (TDC; N=24) using magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha and beta frequency bands, which are known to be implicated in sensory information processing. Group differences in functional connectivity and associations between sensory abilities and functional connectivity were examined. Distinct patterns of functional connectivity differences between ASD and SPD groups were found only in the beta band, but not in the alpha band. In both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory cortical beta-band functional connectivity was associated with tactile processing abilities, while higher-order auditory cortical alpha-band functional connectivity was associated with auditory processing abilities. These findings demonstrate distinct long-range neural synchrony alterations in SPD and ASD that are associated with sensory processing abilities. Neural synchrony measures could serve as potential sensitive biomarkers for ASD and SPD.
Collapse
Affiliation(s)
- Carly Demopoulos
- Department of Psychiatry, University of California San Francisco, 675 18 Street, San Francisco, CA 94107
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Xuan Jesson
- Department of Psychology, Palo Alto University, 1791 Arastradero Road, Palo Alto, CA 94304
| | - Molly Rae Gerdes
- Cortica Healthcare, Department of Neurodevelopmental Medicine, 4000 Civic Center Drive, San Rafael, CA 94903
| | - Barbora G. Jurigova
- Cortica Healthcare, Department of Neurodevelopmental Medicine, 4000 Civic Center Drive, San Rafael, CA 94903
| | - Leighton B. Hinkley
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Kamalini G. Ranasinghe
- University of California-San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94143
| | - Shivani Desai
- University of California-San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94143
| | - Susanne Honma
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Danielle Mizuiri
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Anne Findlay
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Srikantan S. Nagarajan
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143
| | - Elysa J. Marco
- Cortica Healthcare, Department of Neurodevelopmental Medicine, 4000 Civic Center Drive, San Rafael, CA 94903
| |
Collapse
|
38
|
Wilkes BJ, Archer DB, Farmer AL, Bass C, Korah H, Vaillancourt DE, Lewis MH. Cortico-basal ganglia white matter microstructure is linked to restricted repetitive behavior in autism spectrum disorder. Mol Autism 2024; 15:6. [PMID: 38254158 PMCID: PMC10804694 DOI: 10.1186/s13229-023-00581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Restricted repetitive behavior (RRB) is one of two behavioral domains required for the diagnosis of autism spectrum disorder (ASD). Neuroimaging is widely used to study brain alterations associated with ASD and the domain of social and communication deficits, but there has been less work regarding brain alterations linked to RRB. METHODS We utilized neuroimaging data from the National Institute of Mental Health Data Archive to assess basal ganglia and cerebellum structure in a cohort of children and adolescents with ASD compared to typically developing (TD) controls. We evaluated regional gray matter volumes from T1-weighted anatomical scans and assessed diffusion-weighted scans to quantify white matter microstructure with free-water imaging. We also investigated the interaction of biological sex and ASD diagnosis on these measures, and their correlation with clinical scales of RRB. RESULTS Individuals with ASD had significantly lower free-water corrected fractional anisotropy (FAT) and higher free-water (FW) in cortico-basal ganglia white matter tracts. These microstructural differences did not interact with biological sex. Moreover, both FAT and FW in basal ganglia white matter tracts significantly correlated with measures of RRB. In contrast, we found no significant difference in basal ganglia or cerebellar gray matter volumes. LIMITATIONS The basal ganglia and cerebellar regions in this study were selected due to their hypothesized relevance to RRB. Differences between ASD and TD individuals that may occur outside the basal ganglia and cerebellum, and their potential relationship to RRB, were not evaluated. CONCLUSIONS These new findings demonstrate that cortico-basal ganglia white matter microstructure is altered in ASD and linked to RRB. FW in cortico-basal ganglia and intra-basal ganglia white matter was more sensitive to group differences in ASD, whereas cortico-basal ganglia FAT was more closely linked to RRB. In contrast, basal ganglia and cerebellar volumes did not differ in ASD. There was no interaction between ASD diagnosis and sex-related differences in brain structure. Future diffusion imaging investigations in ASD may benefit from free-water estimation and correction in order to better understand how white matter is affected in ASD, and how such measures are linked to RRB.
Collapse
Affiliation(s)
- Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA.
| | - Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Department of Neurology, Vanderbilt School of Medicine, Nashville, TN, USA
- Department of Neurology, Vanderbilt Genetics Institute, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Carly Bass
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Hannah Korah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, P.O. Box 118205, Gainesville, FL, 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Center for Neurological Diseases, Program in Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Newman J, Tong X, Tan A, Yeasky T, De Paiva VN, Presicce P, Kannan PS, Williams K, Damianos A, Tamase Newsam M, Benny MK, Wu S, Young KC, Miller LA, Kallapur SG, Chougnet CA, Jobe AH, Brambilla R, Schmidt AF. Chorioamnionitis accelerates granule cell and oligodendrocyte maturation in the cerebellum of preterm nonhuman primates. J Neuroinflammation 2024; 21:16. [PMID: 38200558 PMCID: PMC10777625 DOI: 10.1186/s12974-024-03012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.
Collapse
Affiliation(s)
- Josef Newman
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - April Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Toni Yeasky
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Vanessa Nunes De Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Pietro Presicce
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Paranthaman S Kannan
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Kevin Williams
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Andreas Damianos
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Marione Tamase Newsam
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Merline K Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Karen C Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, USA
| | - Suhas G Kallapur
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Alan H Jobe
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Augusto F Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
- Batchelor Children's Research Institute, 1580 NW 10Th Ave, Room 348, Miami, FL, 33146, USA.
| |
Collapse
|
40
|
Lin P, Zhang Q, Sun J, Li Q, Li D, Zhu M, Fu X, Zhao L, Wang M, Lou X, Chen Q, Liang K, Zhu Y, Qu C, Li Z, Ma P, Wang R, Liu H, Dong K, Guo X, Cheng X, Sun Y, Sun J. A comparison between children and adolescents with autism spectrum disorders and healthy controls in biomedical factors, trace elements, and microbiota biomarkers: a meta-analysis. Front Psychiatry 2024; 14:1318637. [PMID: 38283894 PMCID: PMC10813399 DOI: 10.3389/fpsyt.2023.1318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. Methods Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. Results From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. Interpretation Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Qingtian Li
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Fu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiwei Qu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyu Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafen Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Ke Dong
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Jing Sun
- School of Medicine and Dentistry, Institute for Integrated Intelligence and Systems, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
- Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
41
|
Hegarty JP, Monterrey JC, Tian Q, Cleveland SC, Gong X, Phillips JM, Wolke ON, McNab JA, Hallmayer JF, Reiss AL, Hardan AY, Lazzeroni LC. A Twin Study of Altered White Matter Heritability in Youth With Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2024; 63:65-79. [PMID: 37406770 PMCID: PMC10802971 DOI: 10.1016/j.jaac.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE White matter alterations are frequently reported in autism spectrum disorder (ASD), yet the etiology is currently unknown. The objective of this investigation was to examine, for the first time, the impact of genetic and environmental factors on white matter microstructure in twins with ASD compared to control twins without ASD. METHOD Diffusion-weighted MRIs were obtained from same-sex twin pairs (6-15 years of age) in which at least 1 twin was diagnosed with ASD or neither twin exhibited a history of neurological or psychiatric disorders. Fractional anisotropy (FA) and mean diffusivity (MD) were examined across different white matter tracts in the brain, and statistical and twin modeling were completed to assess the proportion of variation associated with additive genetic (A) and common/shared (C) or unique (E) environmental factors. We also developed a novel Twin-Pair Difference Score analysis method that produces quantitative estimates of the genetic and environmental contributions to shared covariance between different brain and behavioral traits. RESULTS Good-quality data were available from 84 twin pairs, 50 ASD pairs (32 concordant for ASD [16 monozygotic; 16 dizygotic], 16 discordant for ASD [3 monozygotic; 13 dizygotic], and 2 pairs in which 1 twin had ASD and the other exhibited some subthreshold symptoms [1 monozygotic; 1 dizygotic]) and 34 control pairs (20 monozygotic; 14 dizygotic). Average FA and MD across the brain, respectively, were primarily genetically mediated in both control twins (A = 0.80, 95% CI [0.57, 1.02]; A = 0.80 [0.55, 1.04]) and twins concordant for having ASD (A = 0.71 [0.33, 1.09]; A = 0.84 [0.32,1.36]). However, there were also significant tract-specific differences between groups. For instance, genetic effects on commissural fibers were primarily associated with differences in general cognitive abilities and perhaps some diagnostic differences for ASD because Twin-Pair Difference-Score analysis indicated that genetic factors may have contributed to ∼40% to 50% of the covariation between IQ scores and FA of the corpus callosum. Conversely, the increased impact of environmental factors on some projection and association fibers were primarily associated with differences in symptom severity in twins with ASD; for example, our analyses suggested that unique environmental factors may have contributed to ∼10% to 20% of the covariation between autism-related symptom severity and FA of the cerebellar peduncles and external capsule. CONCLUSION White matter alterations in youth with ASD are associated with both genetic contributions and potentially increased vulnerability or responsivity to environmental influences. DIVERSITY & INCLUSION STATEMENT We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. One or more of the authors of this paper self-identifies as living with a disability. The author list of this paper includes contributors from the location and/or community where the research was conducted and they participated in the data collection, design, analysis, and/or interpretation of the work.
Collapse
Affiliation(s)
- John P Hegarty
- Stanford University School of Medicine, Stanford, California.
| | | | - Qiyuan Tian
- Tsinghua University School of Medicine, Beijing, China
| | - Sue C Cleveland
- Stanford University School of Medicine, Stanford, California
| | - Xinyi Gong
- Stanford University School of Medicine, Stanford, California
| | | | - Olga N Wolke
- Stanford University School of Medicine, Stanford, California
| | | | | | - Allan L Reiss
- Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
42
|
Rai S, Keservani RK, Kumar P, Nikam VK, Kachave RN, Kumar Y, Kesharwani RK. Importance of functional foods in the management of autism. NUTRACEUTICAL FRUITS AND FOODS FOR NEURODEGENERATIVE DISORDERS 2024:151-171. [DOI: 10.1016/b978-0-443-18951-7.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Martínez de Lagrán M, Bascón-Cardozo K, Dierssen M. Neurodevelopmental disorders: 2024 update. FREE NEUROPATHOLOGY 2024; 5:5-20. [PMID: 39252863 PMCID: PMC11382549 DOI: 10.17879/freeneuropathology-2024-5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Neurodevelopmental disorders encompass a range of conditions such as intellectual disability, autism spectrum disorder, rare genetic disorders and developmental and epileptic encephalopathies, all manifesting during childhood. Over 1,500 genes involved in various signaling pathways, including numerous transcriptional regulators, spliceosome elements, chromatin-modifying complexes and de novo variants have been recognized for their substantial role in these disorders. Along with new machine learning tools applied to neuroimaging, these discoveries facilitate genetic diagnoses, providing critical insights into neuropathological mechanisms and aiding in prognosis, and precision medicine. Also, new findings underscore the importance of understanding genetic contributions beyond protein-coding genes and emphasize the role of RNA and non-coding DNA molecules but also new players, such as transposable elements, whose dysregulation generates gene function disruption, epigenetic alteration, and genomic instability. Finally, recent developments in analyzing neuroimaging now offer the possibility of characterizing neuronal cytoarchitecture in vivo, presenting a viable alternative to traditional post-mortem studies. With a recently launched digital atlas of human fetal brain development, these new approaches will allow answering complex biological questions about fetal origins of cognitive function in childhood. In this review, we present ten fascinating topics where major progress has been made in the last year.
Collapse
Affiliation(s)
- María Martínez de Lagrán
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Karen Bascón-Cardozo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona 08003, Spain
- Hospital del Mar Research Institute, Barcelona 08003, Spain
| |
Collapse
|
44
|
Alho J, Samuelsson JG, Khan S, Mamashli F, Bharadwaj H, Losh A, McGuiggan NM, Graham S, Nayal Z, Perrachione TK, Joseph RM, Stoodley CJ, Hämäläinen MS, Kenet T. Both stronger and weaker cerebro-cerebellar functional connectivity patterns during processing of spoken sentences in autism spectrum disorder. Hum Brain Mapp 2023; 44:5810-5827. [PMID: 37688547 PMCID: PMC10619366 DOI: 10.1002/hbm.26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar differences have long been documented in autism spectrum disorder (ASD), yet the extent to which such differences might impact language processing in ASD remains unknown. To investigate this, we recorded brain activity with magnetoencephalography (MEG) while ASD and age-matched typically developing (TD) children passively processed spoken meaningful English and meaningless Jabberwocky sentences. Using a novel source localization approach that allows higher resolution MEG source localization of cerebellar activity, we found that, unlike TD children, ASD children showed no difference between evoked responses to meaningful versus meaningless sentences in right cerebellar lobule VI. ASD children also had atypically weak functional connectivity in the meaningful versus meaningless speech condition between right cerebellar lobule VI and several left-hemisphere sensorimotor and language regions in later time windows. In contrast, ASD children had atypically strong functional connectivity for in the meaningful versus meaningless speech condition between right cerebellar lobule VI and primary auditory cortical areas in an earlier time window. The atypical functional connectivity patterns in ASD correlated with ASD severity and the ability to inhibit involuntary attention. These findings align with a model where cerebro-cerebellar speech processing mechanisms in ASD are impacted by aberrant stimulus-driven attention, which could result from atypical temporal information and predictions of auditory sensory events by right cerebellar lobule VI.
Collapse
Affiliation(s)
- Jussi Alho
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John G. Samuelsson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sheraz Khan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fahimeh Mamashli
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Hari Bharadwaj
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Ainsley Losh
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nicole M. McGuiggan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven Graham
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Zein Nayal
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tyler K. Perrachione
- Department of Speech, Language, and Hearing SciencesBoston UniversityBostonMassachusettsUSA
| | - Robert M. Joseph
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Catherine J. Stoodley
- Department of PsychologyCollege of Arts and Sciences, American UniversityWashingtonDCUSA
| | - Matti S. Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tal Kenet
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
45
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
46
|
Ament SA, Cortes-Gutierrez M, Herb BR, Mocci E, Colantuoni C, McCarthy MM. A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci Transl Med 2023; 15:eade1283. [PMID: 37824600 DOI: 10.1126/scitranslmed.ade1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1- to 5-year-old children, comparing individuals who had died while experiencing inflammation with those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature down-regulation of developmental gene expression programs.
Collapse
Affiliation(s)
- Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian R Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evelina Mocci
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pain Sciences, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Margaret M McCarthy
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Hur SW, Safaryan K, Yang L, Blair HT, Masmanidis SC, Mathews PJ, Aharoni D, Golshani P. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535750. [PMID: 37066345 PMCID: PMC10104017 DOI: 10.1101/2023.04.05.535750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.
Collapse
Affiliation(s)
- Sung Won Hur
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Karen Safaryan
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Long Yang
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Hugh T Blair
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Neurology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Daniel Aharoni
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Peyman Golshani
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
48
|
László K, Vörös D, Correia P, Fazekas CL, Török B, Plangár I, Zelena D. Vasopressin as Possible Treatment Option in Autism Spectrum Disorder. Biomedicines 2023; 11:2603. [PMID: 37892977 PMCID: PMC10603886 DOI: 10.3390/biomedicines11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social communication and accompanied by repetitive behavior. As vasopressin was implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior, its role in the development of ASD might be suggested. In this review, we summarized a wide range of problems associated with ASD to which vasopressin might contribute, from social skills to communication, motor function problems, autonomous nervous system alterations as well as sleep disturbances, and altered sensory information processing. Beside functional connections between vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a). Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover, vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by means of virus vectors) would benefit from this therapy.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dávid Vörös
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Imola Plangár
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| |
Collapse
|
49
|
Wang Y, Long H, Zhou Q, Bo T, Zheng J. PLSNet: Position-aware GCN-based autism spectrum disorder diagnosis via FC learning and ROIs sifting. Comput Biol Med 2023; 163:107184. [PMID: 37356292 DOI: 10.1016/j.compbiomed.2023.107184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Brain function connectivity, derived from functional magnetic resonance imaging (fMRI), has enjoyed high popularity in the studies of Autism Spectrum Disorder (ASD) diagnosis. Albeit rapid progress has been made, most studies still suffer from several knotty issues: (1) the hardship of modeling the sophisticated brain neuronal connectivity; (2) the mismatch of identically graph node setup to the variations of different brain regions; (3) the dimensionality explosion resulted from excessive voxels in each fMRI sample; (4) the poor interpretability giving rise to unpersuasive diagnosis. To ameliorate these issues, we propose a position-aware graph-convolution-network-based model, namely PLSNet, with superior accuracy and compelling built-in interpretability for ASD diagnosis. Specifically, a time-series encoder is designed for context-rich feature extraction, followed by a function connectivity generator to model the correlation with long range dependencies. In addition, to discriminate the brain nodes with different locations, the position embedding technique is adopted, giving a unique identity to each graph region. We then embed a rarefying method to sift the salient nodes during message diffusion, which would also benefit the reduction of the dimensionality complexity. Extensive experiments conducted on Autism Brain Imaging Data Exchange demonstrate that our PLSNet achieves state-of-the-art performance. Notably, on CC200 atlas, PLSNet reaches an accuracy of 76.4% and a specificity of 78.6%, overwhelming the previous state-of-the-art with 2.5% and 6.5% under five-fold cross-validation policy. Moreover, the most salient brain regions predicted by PLSNet are closely consistent with the theoretical knowledge in the medical domain, providing potential biomarkers for ASD clinical diagnosis. Our code is available at https://github.com/CodeGoat24/PLSNet.
Collapse
Affiliation(s)
- Yibin Wang
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Haixia Long
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Qianwei Zhou
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jianwei Zheng
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
50
|
Batouli SAH, Razavi F, Sisakhti M, Oghabian Z, Ahmadzade H, Tehrani Doost M. Examining the Dominant Presence of Brain Grey Matter in Autism During Functional Magnetic Resonance Imaging. Basic Clin Neurosci 2023; 14:585-604. [PMID: 38628837 PMCID: PMC11016874 DOI: 10.32598/bcn.2021.1774.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/07/2021] [Accepted: 06/02/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder with symptoms appearing from early childhood. Behavioral modifications, special education, and medicines are used to treat ASD; however, the effectiveness of the treatments depends on early diagnosis of the disorder. The primary approach in diagnosing ASD is based on clinical interviews and valid scales. Still, methods based on brain imaging could also be possible diagnostic biomarkers for ASD. Methods To identify the amount of information the functional magnetic resonance imaging (fMRI) reveals on ASD, we reviewed 292 task-based fMRI studies on ASD individuals. This study is part of a systematic review with the registration number CRD42017070975. Results We observed that face perception, language, attention, and social processing tasks were mainly studied in ASD. In addition, 73 brain regions, nearly 83% of brain grey matter, showed an altered activation between the ASD and normal individuals during these four tasks, either in a lower or a higher activation. Conclusion Using imaging methods, such as fMRI, to diagnose and predict ASD is a great objective; research similar to the present study could be the initial step.
Collapse
Affiliation(s)
- Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Foroogh Razavi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Sisakhti
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Zeinab Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Haady Ahmadzade
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tehrani Doost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|