1
|
Kong P, Rosnan SM, Enomae T. Carboxymethyl cellulose-chitosan edible films for food packaging: A review of recent advances. Carbohydr Polym 2024; 346:122612. [PMID: 39245494 DOI: 10.1016/j.carbpol.2024.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Polysaccharide-based edible films have been widely developed as food packaging materials in response to the rising environmental concerns caused by the extensive use of plastic packaging. In recent years, the integration of carboxymethyl cellulose (CMC) and chitosan (CS) for a binary edible film has received considerable interest because this binary edible film can retain the advantages of both constituents (e.g., the great oxygen barrier ability of CMC and moderate antimicrobial activity of CS) while mitigating their respective disadvantages (e.g., the low water resistance of CMC and poor mechanical strength of CS). This review aims to present the latest advancements in CMC-CS edible films. The preparation methods and properties of CMC-CS edible films are comprehensively introduced. Potential additives and technologies utilized to enhance the properties are discussed. The applications of CMC-CS edible films on food products are summarized. Literature shows that the current preparation methods for CMC-CS edible film are solvent-casting (main) and thermo-mechanical methods. The CMC-CS binary films have superior properties compared to films made from a single constituent. Moreover, some properties, such as physical strength, antibacterial ability, and antioxidant activity, can be greatly enhanced via the incorporation of some bioactive substances (e.g. essential oils and nanomaterials). To date, several applications of CMC-CS edible films in vegetables, fruits, dry foods, dairy products, and meats have been studied. Overall, CMC-CS edible films are highly promising as food packaging materials.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Shalida Mohd Rosnan
- College of Creative Arts, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Toshiharu Enomae
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
2
|
Shankar S, Mohanty AK, DeEll JR, Carter K, Lenz R, Misra M. Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. NPJ SUSTAINABLE AGRICULTURE 2024; 2:25. [PMID: 39759422 PMCID: PMC11698397 DOI: 10.1038/s44264-024-00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/08/2024] [Indexed: 01/07/2025]
Abstract
This review will provide new ideas for preserving fruits and decreasing fruit waste. This review outlines and evaluates research concerning postharvest fruit preservation employing antimicrobial strategies, which involve the integration of biological control alongside physical or chemical methods. The concurrent deployment of two or three of these techniques, particularly biological approaches, has demonstrated enhanced and synergistic antimicrobial outcomes in practical scenarios.
Collapse
Affiliation(s)
- Shiv Shankar
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Kathryn Carter
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Ruben Lenz
- Advanced Micro Polymers Inc., Steeles Ave E, Milton, ON Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| |
Collapse
|
3
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
4
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
5
|
Vicente-Zurdo D, Gómez-Mejía E, Rosales-Conrado N, León-González ME. A Comprehensive Analytical Review of Polyphenols: Evaluating Neuroprotection in Alzheimer's Disease. Int J Mol Sci 2024; 25:5906. [PMID: 38892094 PMCID: PMC11173253 DOI: 10.3390/ijms25115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's Disease (AD), a prevalent neurodegenerative disorder, is the primary cause of dementia. Despite significant advancements in neuroscience, a definitive cure or treatment for this debilitating disease remains elusive. A notable characteristic of AD is oxidative stress, which has been identified as a potential therapeutic target. Polyphenols, secondary metabolites of plant origin, have attracted attention due to their potent antioxidant properties. Epidemiological studies suggest a correlation between the consumption of polyphenol-rich foods and the prevention of chronic diseases, including neurodegenerative disorders, which underscores the potential of polyphenols as a therapeutic strategy in AD management. Hence, this comprehensive review focuses on the diverse roles of polyphenols in AD, with a particular emphasis on neuroprotective potential. Scopus, ScienceDirect, and Google Scholar were used as leading databases for study selection, from 2018 to late March 2024. Analytical chemistry serves as a crucial tool for characterizing polyphenols, with a nuanced exploration of their extraction methods from various sources, often employing chemometric techniques for a holistic interpretation of the advances in this field. Moreover, this review examines current in vitro and in vivo research, aiming to enhance the understanding of polyphenols' role in AD, and providing valuable insights for forthcoming approaches in this context.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Montepríncipe Urbanization, 28660 Boadilla del Monte, Spain
| | - Esther Gómez-Mejía
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - Noelia Rosales-Conrado
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - María Eugenia León-González
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| |
Collapse
|
6
|
Firdaus S, Ahmad F, Zaidi S. Preparation and characterization of biodegradable food packaging films using lemon peel pectin and chitosan incorporated with neem leaf extract and its application on apricot fruit. Int J Biol Macromol 2024; 263:130358. [PMID: 38412939 DOI: 10.1016/j.ijbiomac.2024.130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The present study aims to develop and characterize biodegradable packaging films from lemon peel-derived pectin and chitosan incorporated with a bioactive extract from neem leaves. The films (PCNE) contained varying concentrations of neem leaf extract and were comprehensively assessed for their physical, optical, mechanical, and antimicrobial attributes. The thickness, moisture content, water solubility, and water vapor permeability of the biodegradable packaging films increased with the increasing concentration of neem leaf extract. Comparatively, the tensile strength of the films decreased by 42.05 % compared to the control film. The Scanning Electron Microscopy (SEM) confirmed that the resultant blended pectin-chitosan films showed a uniform structure without cracks. Furthermore, the analysis targeting Staphylococcus aureus and Aspergillus niger indicated that the films had potent antimicrobial activity. Based on these results, the optimum films were selected and subsequently applied on apricot fruits to increase their shelf life at ambient temperature. The findings, after examining factors such as colour, firmness, total soluble solids, shrinkage, weight loss, and appearance, concluded that the apricots coated by PCNE-5 had the most delayed signs of spoilage and increased their shelf life by 50 %. The results showed the potential applicability of lemon peel pectin-chitosan-neem leaf extract blend films in biodegradable food packaging.
Collapse
Affiliation(s)
- Sadia Firdaus
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India..
| | - Sadaf Zaidi
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India..
| |
Collapse
|
7
|
Gumus T, Kaynarca GB, Kamer DDA. Optimization of an edible film formulation by incorporating carrageenan and red wine lees into fish gelatin film matrix. Int J Biol Macromol 2024; 258:128854. [PMID: 38123042 DOI: 10.1016/j.ijbiomac.2023.128854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The study aimed to use response surface methodology (RSM) to create and understand a novel edible film made from fish gelatin (FG). This film includes wine lees (WL) and carrageenan (CAR). The concentrations of WL (0, 1, 2, and 3 %) and CAR (0, 1, and 3 %) were considered independent variables. The process variable combinations for the optimal response functions were 1.926 % WL and 3 % CAR, forming soft and rigid films with low tensile strength (TS) and high elongation at break (EAB%). Based on the evaluation of each response, FG film had the highest TS value, FG/CAR(3 %) film had the maximum EAB, and FG/WL (3 %)/CAR (3 %) film had the lowest vapor permeability (WVP) and the highest opacity (OP). The incorporation of WL considerably improved the functional properties of these films, enabling strong antioxidant activity and high phenolic content. Characterization of the films with analytical techniques: Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis demonstrated a considerable interaction between WL and FG, indicating a high level of compatibility between the two substances. Our data suggest that the formulation of edible films can be adjusted to fit the specific requirements of the design.
Collapse
Affiliation(s)
- Tuncay Gumus
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | | |
Collapse
|
8
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Čutović N, Marković T, Carević T, Stojković D, Bugarski B, Jovanović AA. Liposomal and Liposomes-Film Systems as Carriers for Bioactives from Paeonia tenuifolia L. Petals: Physicochemical Characterization and Biological Potential. Pharmaceutics 2023; 15:2742. [PMID: 38140083 PMCID: PMC10747293 DOI: 10.3390/pharmaceutics15122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Paeonia tenuifolia L. (steppe peony) petal extract was proficiently encapsulated into liposomes and biopolymer films in the current work, both times utilizing a single-step procedure. The encapsulation efficiency, size of the particles, and index of polydispersity (PDI), as well as the ζ potential of the obtained liposomes were determined, whereas in the case of films, the test included moisture content and mechanical property assessment. Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the chemical composition and existence of numerous interactions in the systems. All the obtained encapsulates were subjected to antibacterial, antifungal and antibiofilm activity testing of the pathogens associated with human skin. The results indicated that the liposomes prepared using Phospholipon had the highest encapsulation efficiency (72.04%), making them the most favorable ones in the release study as well. The biological assays also revealed that Phospholipon was the most beneficial phospholipid mixture for the preparation of liposomes, whereas the film containing these liposomes did not have the ability to inhibit pathogen growth, making the double encapsulation of P. tenuifolia L. petal extract needless. These findings may be a first step toward the potential use of steppe peony extract-loaded films and liposomes in pharmaceutical and cosmetical industries.
Collapse
Affiliation(s)
- Natalija Čutović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tatjana Marković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (D.S.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, Banatska 31b, Zemun, 11080 Belgrade, Serbia;
| |
Collapse
|
10
|
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, Yap PS. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnol Adv 2023; 69:108265. [PMID: 37783293 DOI: 10.1016/j.biotechadv.2023.108265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| | | | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
11
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
12
|
Giannakas AE, Zaharioudakis K, Kollia E, Kopsacheili A, Avdylaj L, Georgopoulos S, Leontiou A, Karabagias VK, Kehayias G, Ragkava E, Proestos C, Salmas CE. The Development of a Novel Sodium Alginate-Based Edible Active Hydrogel Coating and Its Application on Traditional Greek Spreadable Cheese. Gels 2023; 9:807. [PMID: 37888380 PMCID: PMC10606390 DOI: 10.3390/gels9100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
The necessity of reducing the greenhouse effect by decreasing the carbon dioxide fingerprint directed the food packaging technology to use biobased raw materials. Alginates, which are derived from brown algae species, are one of the most promising biobased biopolymers for the development of edible active coatings capable of protecting food from oxidation/bacterial spoilage. In this study, sodium alginate, which was plasticized with glycerol and mixed with a biobased thymol/natural halloysite nanohybrid, was used to develop novel edible active coatings. Nanocomposite coatings were also developed in this project by mixing pure halloysite with sodium alginate/glycerol matrix and were used as reference material for comparison reasons. Instrumental analysis indicated a higher compatibility of a thymol/halloysite nanohybrid with a sodium alginate/glycerol matrix compared to pure halloysite with a sodium alginate/glycerol matrix. Increased compatibility resulted in improved tensile properties, water/oxygen barrier properties, and total antioxidant activity. These edible active coatings were applied to traditional Greek spread cheese and showed a reduction in the mesophilic microbial population over one log10 unit (cfu/g) compared to uncoated cheese. Moreover, the reduction in the mesophilic microbial population increased with the increase in halloysite and thymol content, indicating such sodium alginate/glycerol/thymol/halloysite hydrogels as promising edible active coatings for dairy products.
Collapse
Affiliation(s)
- Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Anna Kopsacheili
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Learda Avdylaj
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Efthymia Ragkava
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
13
|
Dutta D, Sit N. Application of natural extracts as active ingredient in biopolymer based packaging systems. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1888-1902. [PMID: 35698604 PMCID: PMC9177344 DOI: 10.1007/s13197-022-05474-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 10/28/2022]
Abstract
Active packaging systems come under novel techniques and are creating demands in food packaging aspects. They are specially designed for food products where shelf life is a key driving factor. Their wide range of functionality preserves the color, texture, smell, and taste of the food item retaining their freshness and edibility for longer than any other methods available on market. An active ingredient in packaging systems enables efficient consumable quality which resulted in reduced complaints from consumers. However, techniques must be inexpensive and environment-friendly. The use of biodegradable packaging systems reinforced by exploiting natural compounds forms the latest trend to attract consumer demand in substituting synthetic preservatives in foods that can protect against food spoilage. Natural extracts have gained commercial importance in active packaging nowadays for the delivery of safe and high-quality foods that are being employed in both fresh and processed produce. Development and use of innovative active packaging systems in varied forms are expected to increase in the future for food safety, quality, and stability. The review overviews the beneficial effects of plant acquired components in modulating product quality in packaged form for commercial aspects in the market.
Collapse
Affiliation(s)
- Ditimoni Dutta
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| |
Collapse
|
14
|
Song Z, Wei J, Cao Y, Yu Q, Han L. Development and characterization of tapioca starch/pectin composite films incorporated with broccoli leaf polyphenols and the improvement of quality during the chilled mutton storage. Food Chem 2023; 418:135958. [PMID: 36965391 DOI: 10.1016/j.foodchem.2023.135958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
This study aimed at the composition of active packaging film from tapioca starch/pectin (TSP) incorporated with broccoli leaf polyphenols (BLP) was prepared and applied to improve the qualities of the chilled mutton during storage. The results indicated the addition of BLP significantly improved the thickness, density, barrier ability, mechanical properties, water solubility and antioxidant activity of the composite films while inducing decreases in the brightness (p < 0.05), enhancing inter-molecular interactions of TSP + BLP composite films. The WVP, oxygen permeability and elongation at break of the composite film reached the minimum when BLP concentration was 3 % while exhibiting the highest tensile strength and the best performance. This composite film delayed microbial growth and minimized oxidative rancidity during chilled mutton storage, causing the improvement of its quality and extending its shelf life to 12 days. Therefore, TSP + BLP composite films possessed the promise to be applied as bioactive materials in food packaging sectors.
Collapse
Affiliation(s)
- Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jinwen Wei
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
15
|
Magalhães D, Vilas-Boas AA, Teixeira P, Pintado M. Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods 2023; 12:foods12051095. [PMID: 36900612 PMCID: PMC10001058 DOI: 10.3390/foods12051095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus trees are among the most abundant fruit trees in the world, with an annual production of around 124 million tonnes. Lemons and limes are among the most significant contributors, producing nearly 16 million tonnes per year. The processing and consumption of citrus fruits generates a significant amount of waste, including peels, pulp, seeds, and pomace, which represents about 50% of the fresh fruit. Citrus limon (C. limon) by-products are composed of significant amounts of bioactive compounds, such as phenolic compounds, carotenoids, vitamins, essential oils, and fibres, which give them nutritional value and health benefits such as antimicrobial and antioxidant properties. These by-products, which are typically discarded as waste in the environment, can be explored to produce new functional ingredients, a desirable approach from a circular economy perspective. The present review systematically summarizes the potential high-biological-value components extracted from by-products to achieve a zero-waste goal, focusing on the recovery of three main fractions: essential oils, phenolic compounds, and dietary fibres, present in C. limon by-products, and their applications in food preservation.
Collapse
|
16
|
Characterization and antibacterial properties of fish skin gelatin/guava leaf extract bio-composited films incorporated with catechin. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
17
|
Tavassoli M, Khezerlou A, Bangar SP, Bakhshizadeh M, Haghi PB, Moghaddam TN, Ehsani A. Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Derbew Gedif H, Tkaczewska J, Jamróz E, Zając M, Kasprzak M, Pająk P, Grzebieniarz W, Nowak N. Developing Technology for the Production of Innovative Coatings with Antioxidant Properties for Packaging Fish Products. Foods 2022; 12:foods12010026. [PMID: 36613241 PMCID: PMC9818252 DOI: 10.3390/foods12010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the effects of furcellaran−gelatine (FUR/GEL) coatings incorporated with herb extracts on the quality retention of carp fish during refrigeration. Nutmeg, rosemary, thyme, milfoil, marjoram, parsley, turmeric, basil and ginger were subjected to water and ethanol extraction methods (10% concentration of herbs). The water extractions of the rosemary and thyme (5%) were used for the further development of coatings due to their high 2,2-Diphenyl-1-picrylhydrazyl (DPPH: 85.49 and 83.28%) and Ferric Reducing Antioxidant Power Assay values (FRAP: 0.46 and 0.56 mM/L) (p < 0.05), respectively. A new, ready-to-cook product with the coatings (carp fillets) was evaluated regarding quality in terms of colour parameters, texture profile, water activity, Thiobarbituric Acid Reactive Substances (TBARSs) and sensory analyses during 12 days of storage at 4 °C. The results show that the colour of the carp fillets treated with the rosemary and thyme extracts became slightly darker and had a propensity towards redness and yellowness. In contrast to the control group, the carp fillets stored in the coatings with the rosemary extract effectively slowed the lipid oxidation processes. Therefore, the innovative coatings produced from carp processing waste may have high potential as components in convenience food products and could extend the shelf-life of carp fillets during refrigerated storage. However, further research is needed to assess the microbiological stability of the obtained food products.
Collapse
Affiliation(s)
- Hana Derbew Gedif
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Department of Food Engineering, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar 26, Ethiopia
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Correspondence:
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Marzena Zając
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Paulina Pająk
- Department of Food Analysis and Quality Assessment, Faculty of Food Technology, University of Agriculture in Kraków, ul. Balicka 122, 30-149 Kraków, Poland
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
19
|
Nanocellulose reinforced corn starch-based biocomposite films: Composite optimization, characterization and storage studies. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ma Y, Luo Y, Zhang Q, Gao Y, Li J, Shah S, Wang X, Zhang X. Biodegradable Films Prepared from Pulp Lignocellulose Adhesives of Urea Formaldehyde Resin Modified by Biosulfonate. Polymers (Basel) 2022; 14:2863. [PMID: 35890638 PMCID: PMC9319740 DOI: 10.3390/polym14142863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional low-density polyethylene (LDPE) film causes environmental pollution; there is a pressing need to make new bio-based polymers for alternative products, to meet agricultural production needs and for sustainable ecological development. In this study, urea-formaldehyde resin (UF) was modified with polyvinyl alcohol (PVA) and 1-2.5% bio-based sulfonate (BBS). The influence of BBS inducing on the functional groups, microstructure, and thermal behavior was evaluated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). A biodegradable film was prepared with modified UF resin as adhesive and pulp lignocellulose as raw material. The biodegradable mulch film samples were tested for biodegradability, water retention, and cooling soil temperature characters using LDPE and no mulching (NM) as a control. The results showed that with the increase of BBS content, the viscosity and reactivity of modified PUF resin increased, and the free formaldehyde content decreased. A 2%BBS modified PUF resin (2.0BBS/PUF) accelerated the curing process of the PUF resin, formed a flexible macromolecular network structure, and enhanced the toughness of the resin. The biodegradable mulch prepared with PUF, BBS, and 2.0BBS/PUF as adhesives had good water retention. BBS modification increased the degradation rate of mulch by 17.53% compared to the PUF. Three biodegradable films compared with LDPE and NM significantly reduced the soil temperature under summer cucumber cultivation, and the 2.0BBS/PUF coating had the lowest diurnal temperature difference, which provided a suitable soil environment for crop growth.
Collapse
Affiliation(s)
- Yongjie Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.M.); (Y.L.); (Q.Z.); (Y.G.); (J.L.)
| | - Yanxin Luo
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.M.); (Y.L.); (Q.Z.); (Y.G.); (J.L.)
| | - Qiannan Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.M.); (Y.L.); (Q.Z.); (Y.G.); (J.L.)
| | - Yanming Gao
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.M.); (Y.L.); (Q.Z.); (Y.G.); (J.L.)
| | - Jianshe Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.M.); (Y.L.); (Q.Z.); (Y.G.); (J.L.)
| | - Sadiq Shah
- Abdul Wali Khan Univ Dept Food Sci & Technol, Garden Campus, Mardan 23200, Pakistan;
| | - Xiaozhuo Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.M.); (Y.L.); (Q.Z.); (Y.G.); (J.L.)
| | - Xueyan Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (Y.M.); (Y.L.); (Q.Z.); (Y.G.); (J.L.)
| |
Collapse
|
21
|
Fernandes GDJC, Campelo PH, de Abreu Figueiredo J, Barbosa de Souza HJ, Peixoto Joele MRS, Yoshida MI, Henriques Lourenço LDF. Effect of polyvinyl alcohol and carboxymethylcellulose on the technological properties of fish gelatin films. Sci Rep 2022; 12:10497. [PMID: 35729201 PMCID: PMC9213542 DOI: 10.1038/s41598-022-14258-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
The objective of this work was to develop biodegradable films by mixing gelatin/carboxymethylcellulose (FG/CMC) and gelatin/polyvinyl alcohol (FG/PVOH) and to evaluate the effect of adding these polymers on the properties of fish gelatin films. The films FG/CMC and FG/PVOH were produced in the proportions 90/10, 80/20 and 70/30 and characterized their physical, chemical and functional properties. The addition of CMC and PVOH improved the mechanical strength, barrier property and water solubility of gelatin films. FG/CMC films showed greater tensile strength and greater solubility than FG/PVOH. The maximum concentration of CMC promoted the highest mechanical resistance, while the highest PVOH content produced the film with the lowest solubility. The proposed mixing systems proved to be adequate to improve the properties of fish gelatin films, with potential for application in the packaging sector.
Collapse
Affiliation(s)
- Gleyca de Jesus Costa Fernandes
- Animal Research Laboratory - LAPOA, Graduate Program in Food Science and Technology - PPGCTA, Federal University of Pará - UFPA, Belém, PA, Brazil.
| | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Vicosa, Av. PH Rolfs, s/n, Vicosa, MG, 36570-900, Brazil
| | | | | | | | - Maria Irene Yoshida
- Chemical Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lúcia de Fátima Henriques Lourenço
- Animal Research Laboratory - LAPOA, Graduate Program in Food Science and Technology - PPGCTA, Federal University of Pará - UFPA, Belém, PA, Brazil
| |
Collapse
|
22
|
Sabaghi M, Tavasoli S, Jamali SN, Katouzian I, Faridi Esfanjani A. The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Yabalak E, Erdoğan Eliuz EA, Nazlı MD. Evaluation of Citrus reticulata essential oil: Chemical composition and antibacterial effectiveness incorporated gelatin on E. coli and S. aureus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1261-1270. [PMID: 33427494 DOI: 10.1080/09603123.2021.1872059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
In the present study, we evaluated the antibacterial activity of Citrus reticulata (C. reticulata) essential oil-incorporated gelatin film solution against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The minimum inhibitory concentration (MIC) of C. reticulata essential oil (CrEO) on E. coli and S. aureus were found to be 10.1 and 9.1 mg mL-1, respectively, using spectrophotometric microdilution technique. The antimicrobial effect of CrEO alone and incorporated gelatin-based film solutions (CrEO-F) against these pathogens were determined by the disc diffusion method. While the inhibition zones of CrEO were 2.4 mm and 10.05 mm, CrEO-F was reported as 1.5 and 7.8 mm against E. coli and S. aureus, respectively. These findings demonstrated that the CrEO can compete with coating agents with antimicrobial additives and it can find a place in the application areas. Besides, the chemical composition of the CrEO was determined by GC-MS.
Collapse
Affiliation(s)
- Erdal Yabalak
- Mersin University, Faculty of Arts and Science, Department of Chemistry, Çiftlikköy Campus, TR-33343, Mersin, Turkey
- Mersin University, Technical Sciences Vocational School, Department of Food Technology, TR-33343, Mersin, Turkey
| | - Elif Ayşe Erdoğan Eliuz
- Mersin University, Technical Sciences Vocational School, Department of Food Technology, TR-33343, Mersin, Turkey
| | - M Dilek Nazlı
- İzmir Biomedicine and Genome Center, Dokuz Eylül University, Health Campus, İzmir, Turkey
| |
Collapse
|
24
|
Vargas VH, Flôres SH, Mercali GD, Marczak LDF. Effect of OHMIC heating and ultrasound on functional properties of biodegradable gelatin‐based films. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Victoria Hermes Vargas
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | | |
Collapse
|
25
|
Kumar N, Daniloski D, Pratibha, Neeraj, D'Cunha NM, Naumovski N, Petkoska AT. Pomegranate peel extract – A natural bioactive addition to novel active edible packaging. Food Res Int 2022; 156:111378. [DOI: 10.1016/j.foodres.2022.111378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
|
26
|
Zhou L, Fu J, Bian L, Chang T, Zhang C. Preparation of a novel curdlan/bacterial cellulose/cinnamon essential oil blending film for food packaging application. Int J Biol Macromol 2022; 212:211-219. [PMID: 35609836 DOI: 10.1016/j.ijbiomac.2022.05.137] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
With the increasing attention to food preservation and environmental safety, there is great pressing demand to explore novel edible and environment-friendly food packaging films. In the present study, a new kind natural curdlan (CD) film was developed with the addition of bacterial cellulose (BC) and cinnamon essential oil (CEO) at 2% and 10% (w/w) amounts, with regard to improve mechanical properties and investigate potential food applications. Our results showed that the tensile strength, the crystallinity and the thermal stability of the CD/BC blending film were improved, while the water vapor permeability, moisture content and the lightness were reduced. Moreover, the CEO addition to the CD/BC film further increased the barrier properties and also mechanical properties. The results of FTIR and XRD were applied for analyzing the potential interactions of the film matrix. Finally, addition of CEO endowed the blending films with good antibacterial activity and antioxidant capacity, which could effectively inhibit the bacterial growth and the lipid oxidation of chilled chicken during the preservative period. Thus, this work demonstrates that the novel CD/BC/CEO blending film with improved mechanical and barrier properties can be of great potential for developing food packaging material for promising applications.
Collapse
Affiliation(s)
- Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingchao Fu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luyao Bian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tingting Chang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
27
|
Yadav A, Kumar N, Upadhyay A, Sethi S, Singh A. Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.): An overview. J Food Sci 2022; 87:2256-2290. [PMID: 35502679 DOI: 10.1111/1750-3841.16145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
Tomato is considered as one of the most grown horticultural crops having a short shelf-life due to its climacteric nature of ripening, susceptibility to postharvest microbial decay, and mechanical damage, resulting in huge postharvest losses. Recently, the use of edible coatings has been seen as a promising environment friendly and sustainable technology for preserving the quality attributes and prolonging the shelf-life of tomato during storage. Although a lot of literature is available on the aspects of edible coating for fresh produce, especially stone and tropical fruits, but there is no dedicated comprehensive review that specifically addresses the requirements of edible coatings for whole fresh tomato. This review aims to provide the information about the desirable coating property requirements specific to tomato and summarizes or analyzes the recent studies conducted on the application of edible coating on tomato. The article also deals with recent trends on utilization of bioactive compounds as well as nanotechnological approaches for improving the performance and functionality of coating materials used for tomato. However, the edible coating technology for tomato is still at infancy state, and adoption of technology on a commercial scale requires economic viability and large-scale consumer acceptability.
Collapse
Affiliation(s)
- Ajay Yadav
- Agro Produce Processing Division, ICAR-Central Institute if Agricultural Engineering, Bhopal, Madhya Pradesh, India.,Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Shruti Sethi
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
28
|
Tamošaitis A, JaruševičienĖ A, StrykaitĖ M, Damašius J. Analysis of antimicrobial whey protein‐based biocomposites with lactic acid, tea tree (
Melaleuca alternifolia
) and garlic (
Allium sativum
) essential oils for Edam cheese coating. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Almantas Tamošaitis
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - AušrinĖ JaruševičienĖ
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - Monika StrykaitĖ
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| | - Jonas Damašius
- Department of Food Science and Technology Faculty of Chemical Technology Kaunas University of Technology Radvilenu Road 19 Kaunas LT‐50254 Lithuania
| |
Collapse
|
29
|
Murugan A, Banu AT, Lakshmi DS. Edible Coatings to Enhance Shelf life of Fruits and Vegetables -A Mini Review. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220303161527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, edible coatings or films have gained enormous importance in fruits and vegetables preservation. This review summarises edible coatings, the classification of coating materials, formulation procedures, and the benefits of active edible coating. Studies reported that edible coating or films from natural resources benefit the consumer as well as the environment. In general, edible coatings or films are a combination of polysaccharides, proteins, lipids, and plasticizers, used to enhance the functional properties and the general quality parameters of fruits and vegetables, such as texture, colour, acidity, total soluble solids, thus preventing their browning and oxidation. Casting (wet process) and extrusion (dry process) are two prominent methods used to fabricate edible thin films. General techniques for applying edible coatings are dipping, spraying, coating, panning, using a fluidized bed, and film wrapping. Active edible coatings or films are developed with herbal extracts to improve the functional properties, i.e., antioxidant and antimicrobial. Therefore, based on the literature review, future research exploration will focus on underutilized edible natural resources, along with some natural edible plasticizers used to improve the postharvest quality of fruits and vegetables without affecting their nutritional, organoleptic, and sensory attributes. The primary objective of the present review was to summarize the different types of edible coating with an infusion of herbal extracts and their application on fruits and vegetables.
Collapse
Affiliation(s)
- Aswini Murugan
- School of Sciences, Department of Home Science
The Gandhigram Rural Institute- Deemed to be University
Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - A. Thahira Banu
- School of Sciences, Department of Home Science
The Gandhigram Rural Institute- Deemed to be University
Gandhigram-624302, Dindigul, Tamil Nadu, India
| | | |
Collapse
|
30
|
Improved functionality of cinnamon oil emulsion-based gelatin films as potential edible packaging film for wax apple. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Kawhena TG, Opara UL, Fawole OA. Effects of Gum Arabic Coatings Enriched with Lemongrass Essential Oil and Pomegranate Peel Extract on Quality Maintenance of Pomegranate Whole Fruit and Arils. Foods 2022; 11:593. [PMID: 35206069 PMCID: PMC8871292 DOI: 10.3390/foods11040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
The effects of gum arabic coatings combined with lemongrass oil and/or pomegranate peel extract on freshly harvested mature 'Wonderful' pomegranate fruit were studied. Fruit were coated with gum arabic (GA) (1.5% w/v) alone or enriched with lemongrass oil (LM) (0.1% v/v) and/or pomegranate peel extract (PP) (1% w/v). Fruit were packed into standard open top ventilated cartons (dimensions: 0.40 m long, 0.30 m wide and 0.12 m high), and stored for 6 weeks at 5 ± 1 °C (90% RH). Evaluations were made every 2 weeks of cold storage and after 5 d of shelf life (20 °C and 65% RH). Fruit coated with GA + PP (4.09%) and GA + PP + LM (4.21%) coatings recorded the least cumulative weight loss compared to the uncoated control (9.87%). After 6 weeks, uncoated control and GA + PP + LM recorded the highest (24.55 mg CO2Kg-1h-1) and lowest (10.76 mg CO2Kg-1h-1) respiration rate, respectively. Coating treatments reduced the incidence of decay and treatments GA + LM + PP and GA + PP recorded the highest total flavonoid content between 2 and 6 weeks of storage. The findings suggest that GA coatings with/without LM and PP can be a beneficial postharvest treatment for 'Wonderful' pomegranates to reduce weight loss and decay development during cold storage.
Collapse
Affiliation(s)
- Tatenda Gift Kawhena
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa;
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Enugu State, Nigeria
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
32
|
Advanced Technologies Applied to Enhance Properties and Structure of Films and Coatings: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02768-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Sultana A, Kathuria A, Gaikwad KK. Metal-organic frameworks for active food packaging. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1479-1495. [PMID: 35035339 PMCID: PMC8748186 DOI: 10.1007/s10311-022-01387-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 05/07/2023]
Abstract
Food wastage is a major concern for sustainable health and agriculture. To reduce food waste, classical preservation techniques such as drying, pasteurization, freeze-drying, fermentation, and microwave are available. Nonetheless, these techniques display shortcomings such as alteration of food and taste. Such shortcomings may be solved by active food packaging, which involves the incorporation of active agents into the packaging material. Recently, metal-organic frameworks, a class of porous hybrid supramolecular materials, have been developed as an active agent to extend food shelf life and maintain safety. Here, we review metal-organic frameworks in active packaging as oxygen scavengers, antimicrobials, moisture absorbers, and ethylene scavengers. We present methods of incorporation of metal-organic frameworks into packaging materials and their applications.
Collapse
Affiliation(s)
- Afreen Sultana
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Ajay Kathuria
- Industrial of Technology and Packaging, California Polytechnic State University, San Luis Obispo, CA 93407 USA
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
34
|
Natural Polymers Used in Edible Food Packaging—History, Function and Application Trends as a Sustainable Alternative to Synthetic Plastic. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides3010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, a historical perspective, functional and application trends of natural polymers used to the development of edible food packaging were presented and discussed. Polysaccharides and proteins, i.e., alginate; carrageenan; chitosan; starch; pea protein, were considered. These natural polymers are important materials obtained from renewable plant, algae and animal sources, as well as from agroindustrial residues. Historically, some of them have been widely used by ancient populations for food packaging until these were replaced by petroleum-based plastic materials after World War II. Nowadays, biobased materials for food packaging have attracted attention. Their use was boosted especially because of the environmental pollution caused by inappropriate disposal of plastic packaging. Biobased materials are welcome to the design of food packaging because they possess many advantages, such as biodegradability, biocompatibility and low toxicity. Depending on the formulation, certain biopolymer-based packaging may present good barrier properties, antimicrobial and antioxidant activities Thus, polysaccharides and proteins can be combined to form diverse composite films with improved mechanical and biological behaviors, making them suitable for packaging of different food products.
Collapse
|
35
|
Hamed I, Jakobsen AN, Lerfall J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr Rev Food Sci Food Saf 2021; 21:198-226. [PMID: 34907649 DOI: 10.1111/1541-4337.12870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
The global food processing industries represent a challenge and a risk to the environment due to the poor handling of residues, which are often discarded as waste without being used in further sidestreams. Although some part of this biomass is utilized, large quantities are, however, still under- or unutilized despite these byproducts being a rich resource of valuable compounds. These biowastes contain biopolymers and other compounds such as proteins, polysaccharides, lipids, pigments, micronutrients, and minerals with good nutritional values and active biological properties with applications in various fields including the development of sustainable food packaging. This review offers an update on the recent advancement of food byproducts recycling and upgrading toward the production of food packaging materials, which could be edible, (bio)degradable, and act as carriers of biobased active agents such as antimicrobials, antioxidants, flavoring additives, and health-promoting compounds. This should be a global initiative to promote the well-being of humans and achieve sustainability while respecting the ecological boundaries of our planet. Edible films and coatings formulations based on biopolymers and active compounds extracted from biowastes offer great opportunities to decrease the devastating overuse of plastic-based packaging. It has become evident that a transition from a fuel-based to a circular bio-based economy is potentially beneficial. Therefore, the exploitation of food discards within the context of a zero-waste biorefinery approach would improve waste management by minimizing its generation, reduce pollution, and provide value-added compounds. Most importantly, the development of edible packaging materials from food byproducts does not compete with food resources, and it also helps decrease our dependency on petroleum-based products. Practical Application Almost 99% of current plastics are petroleum-based, and their continuous use has been devastating to the planet as plastic-derived components have been detected in all trophic levels. Besides, the increasing amounts of food by-products are a socioeconomic and environmental challenge, and halving food loss and waste and turning it into valuable products has become necessary to achieve sustainability and economic circularity. The development of new packaging systems such as edible materials could be one of the solutions to limit the use of persistent plastics. Edible films and coatings by-products-based could also enhance food packaging performance due to their compounds' bioactivities.
Collapse
Affiliation(s)
- Imen Hamed
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
36
|
Shivangi S, Dorairaj D, Negi PS, Shetty NP. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Bioactive Edible Films and Coatings Based in Gums and Starch: Phenolic Enrichment and Foods Application. COATINGS 2021. [DOI: 10.3390/coatings11111393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Edible films and coatings allow preserving fresh and processed food, maintaining quality, preventing microbial contamination and/or oxidation reactions and increasing the shelf life of food products. The structural matrix of edible films and coatings is mainly constituted by proteins, lipids or polysaccharides. However, it is possible to increase the bioactive potential of these polymeric matrices by adding phenolic compounds obtained from plant extracts. Phenolic compounds are known to possess several biological properties such as antioxidant and antimicrobial properties. Incorporating phenolic compounds enriched plant extracts in edible films and coatings contribute to preventing food spoilage/deterioration and the extension of shelf life. This review is focused on edible films and coatings based on gums and starch. Special attention is given to bioactive edible films and coatings incorporating plant extracts enriched in phenolic compounds.
Collapse
|
38
|
Chaudhary V, Thakur N, Kajla P, Thakur S, Punia S. Application of Encapsulation Technology in Edible Films: Carrier of Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.734921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nutraceuticals, functional foods, immunity boosters, microcapsules, nanoemulsions, edible packaging, and safe food are the new progressive terms, adopted to describe the food industry. Also, the rising awareness among the consumers regarding these has created an opportunity for the food manufacturers and scientists worldwide to use food as a delivery vehicle. Packaging performs a very imminent role in the food supply chain as well as it is a consequential part of the process of food manufacturing. Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc. and other consumable constituents extracted from various non-conventional sources like microorganisms are used alone or imbibed together. These edible packaging are indispensable and are meant to be consumed with the food. This shift in paradigm from traditional food packaging to edible, environment friendly, delivery vehicles for bioactive compounds have opened new avenues for the packaging industry. Bioactive compounds imbibed in food systems are gradually degenerated, or may change their properties due to internal or external factors like oxidation reactions, or they may react with each other thus reducing their bioavailability and ultimately may result in unacceptable color or flavor. A combination of novel edible food-packaging material and innovative technologies can serve as an excellent medium to control the bioavailability of these compounds in food matrices. One promising technology for overcoming the aforesaid problems is encapsulation. It can be used as a method for entrapment of desirable flavors, probiotics, or other additives in order to apprehend the impediments of the conventional edible packaging. This review explains the concept of encapsulation by exploring various encapsulating materials and their potential role in augmenting the performance of edible coatings/films. The techniques, characteristics, applications, scope, and thrust areas for research in encapsulation are discussed in detail with focus on development of sustainable edible packaging.
Collapse
|
39
|
Assessment of toxic effect of
Centella asiatica
extract and its application as natural preservative in fresh‐cut mango, pear and cabbage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Dammak I, Luciano CG, Pérez-Córdoba LJ, Monteiro ML, Conte-Junior CA, Sobral PJDA. Advances in biopolymeric active films incorporated with emulsified lipophilic compounds: a review. RSC Adv 2021; 11:28148-28168. [PMID: 35480739 PMCID: PMC9038010 DOI: 10.1039/d1ra04888k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The attention towards active films has increased due to consumer demand for high-quality foods without chemical additives. Active biopolymer-based films have shown great potential for active films by impacting food safety, acting as the carriers of various natural antioxidant and antimicrobial compounds, and decreasing environmental pollution from petrol-derived packaging materials. However, there is a wide range of challenges concerning the different characteristics of biopolymers and plasticizers, often hygroscopic/hydrophilic, compared to numerous lipophilic bioactive compounds. Therefore, recent studies have focused on applying oil-in-water emulsion-based systems to enhance the lipophilic bioactive compounds' dispersibility into the film matrix, improving their performance. It is worth emphasizing that resulting complex systems give rise to new challenges such as (i) dispersion technology of the bioactive compounds with minimum adverse effects on its bioactivities, (ii) interactions between different components of the active films, giving rise to new physicochemical properties, and (iii) the change of the diffusion properties of bioactive compounds into the active films, resulting in different release properties. These challenges are profound and critically discussed in this review, as well as the encapsulation techniques employed in preparing emulsions loaded with lipophilic bioactive compounds for the active film development. An outlook of future directions in the research, development, and application of these active films are given.
Collapse
Affiliation(s)
- Ilyes Dammak
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | | | - Maria Lúcia Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
- Food Research Center (FoRC), University of São Paulo (USP) São Paulo (SP) Brazil
| |
Collapse
|
41
|
Kurek M, Repajić M, Marić M, Ščetar M, Trojić P, Levaj B, Galić K. The influence of edible coatings and natural antioxidants on fresh-cut potato quality, stability and oil uptake after deep fat frying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3073-3085. [PMID: 34294970 PMCID: PMC8249657 DOI: 10.1007/s13197-020-04811-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 06/13/2023]
Abstract
The effect of four edible hydrocolloid coatings (carboxymethyl cellulose, chitosan, pectin and gum arabic) on fresh-cut potato's colour, pH and moisture content during storage was studied. Possibility of coating enrichment with natural olive leaf extract and sodium ascorbate was also evaluated. Coatings scored as the best ones straight after coating or during storage for 7 days at 10 ± 1 °C, were used for deep fat frying of potato. Chitosan was shown to cause significant decrease in pH and browning of potato strips. Pectin was classified as good coating alone but in combination with olive leaf extract showed lower quality parameters of fresh-cut samples compared to control. Only carboxymethyl cellulose and gum arabic itself or enriched with olive leaf extract or sodium ascorbate were shown not to affect colour, pH and moisture during storage. Moreover, these coatings significantly reduced fat content in deep fat fried potato strips, without influence on L*, b*, whiteness index (WI), and ΔE.
Collapse
Affiliation(s)
- M. Kurek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - M. Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - M. Marić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - M. Ščetar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - P. Trojić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - B. Levaj
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - K. Galić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
42
|
Stoleru E, Vasile C, Irimia A, Brebu M. Towards a Bioactive Food Packaging: Poly(Lactic Acid) Surface Functionalized by Chitosan Coating Embedding Clove and Argan Oils. Molecules 2021; 26:4500. [PMID: 34361651 PMCID: PMC8348099 DOI: 10.3390/molecules26154500] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Here we introduce a new method aiming the immobilization of bioactive principles onto polymeric substrates, combining a surface activation and emulsion entrapment approach. Natural products with antimicrobial/antioxidant properties (essential oil from Syzygium aromaticum-clove and vegetal oil from Argania spinosa L-argan) were stabilized in emulsions with chitosan, a natural biodegradable polymer that has antimicrobial activity. The emulsions were laid on poly(lactic acid) (PLA), a synthetic biodegradable plastic from renewable resources, which was previously activated by plasma treatment. Bioactive materials were obtained, with low permeability for oxygen, high radical scavenging activity and strong inhibition of growth for Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli bacteria. Clove oil was better dispersed in a more stable emulsion (no separation after six months) compared with argan oil. This leads to a compact and finely structured coating, with better overall properties. While both clove and argan oils are highly hydrophobic, the coatings showed increased hydrophilicity, especially for argan, due to preferential interactions with different functional groups in chitosan. The PLA films coated with oil-loaded chitosan showed promising results in retarding the food spoilage of meat, and especially cheese. Argan, and in particular, clove oil offered good UV protection, suitable for sterilization purposes. Therefore, using the emulsion stabilization of bioactive principles and immobilization onto plasma activated polymeric surfaces we obtained a bioactive material that combines the physical properties and the biodegradability of PLA with the antibacterial activity of chitosan and the antioxidant function of vegetal oils. This prevents microbial growth and food oxidation and could open new perspectives in the field of food packaging materials.
Collapse
Affiliation(s)
- Elena Stoleru
- Physical Chemistry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (C.V.); (A.I.)
| | | | | | - Mihai Brebu
- Physical Chemistry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iaşi, Romania; (C.V.); (A.I.)
| |
Collapse
|
43
|
Utama-Ang N, Sida S, Wanachantararak P, Kawee-Ai A. Development of edible Thai rice film fortified with ginger extract using microwave-assisted extraction for oral antimicrobial properties. Sci Rep 2021; 11:14870. [PMID: 34290338 PMCID: PMC8295348 DOI: 10.1038/s41598-021-94430-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate microwave-assisted extraction (MAE) of dried ginger and to develop a rice-based edible film incorporating ginger extract. The optimal MAE conditions of 400 W microwave power and an extraction time of 1 min were determined using a 32 full factorial design. The optimized extract showed total phenolic compounds (TPC, 198.2 ± 0.7 mg gallic acid equivalent/g), antioxidant activity measured by DPPH (91.4 ± 0.6% inhibition), ABTS (106.4 ± 3.1 mg Trolox/g), and FRAP (304.6 ± 5.5 mg Trolox/g), and bioactive compounds including 6-gingerol (71.5 ± 3.6 mg/g), 6-shogaol (12.5 ± 1.0 mg/g), paradol (23.1 ± 1.1 mg/g), and zingerone (5.0 ± 0.3 mg/g). Crude extract of dried ginger showed antimicrobial activity against Streptococcus mutans DMST 18777, with a minimum inhibitory concentration and minimum bactericidal concentration of 0.5 and 31.2 mg/mL, respectively. The rice-based edible film incorporating 3.2% (w/v) ginger extract tested against S. mutans DMST 18777 had a mean zone of inhibition of 12.7 ± 0.1 mm. Four main phenolic compounds, 6-gingerol, 6-shogaol, paradol, and zingerone, and six volatile compounds, α-curcumene, α-zingiberene, γ-muurolene, α-farnesene, β-bisabolene, and β-sesquiphellandrene, were found in rice film fortified with crude ginger extract.
Collapse
Affiliation(s)
- Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Cluster of High Value Product from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, 50100, Thailand
- Research Center for Development of Local Lanna Rice and Rice Product, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirinapa Sida
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | | | - Arthitaya Kawee-Ai
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
44
|
Bourbon AI, Costa MJ, Maciel LC, Pastrana L, Vicente AA, Cerqueira MA. Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films' Properties. Foods 2021; 10:1512. [PMID: 34209227 PMCID: PMC8304399 DOI: 10.3390/foods10071512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Carboxymethylcellulose (CMC)-based films can act as a protective barrier in food surfaces and a carrier of bioactive compounds, such as curcumin. However, incorporating curcumin in hydrophilic matrixes can be a challenge, and new strategies need to be explored. In this work, CMC-based films containing free curcumin and curcumin-loaded nanohydrogels (composed of lactoferrin and glycomacropeptide) were produced and characterized. The incorporation of curcumin-loaded nanohydrogels showed a significant decrease in films' thickness (from 0.0791 to 0.029 mm). Furthermore, the water vapor permeability of CMC-based films was significantly decreased (62%) by incorporating curcumin-loaded nanohydrogels in the films. The water affinity's properties (moisture, solubility, and contact angle) of films were also affected by incorporating encapsulated curcumin. The addition of nanohydrogels to CMC-based films reduced the tensile strength values from 16.46 to 9.87 MPa. Chemical interactions were analyzed using Fourier transform infrared spectroscopy. The release profile of curcumin from CMC-based films was evaluated at 25 °C using a hydrophilic food simulant and suggests that the release mechanism of the curcumin happens by Fick's diffusion and Case II transport. Results showed that protein-based nanohydrogels can be a good strategy for incorporating curcumin in edible films, highlighting their potential for use in food applications.
Collapse
Affiliation(s)
- Ana I. Bourbon
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
| | - Maria J. Costa
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.C.M.); (A.A.V.)
| | - Luís C. Maciel
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.C.M.); (A.A.V.)
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
| | - António A. Vicente
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.C.M.); (A.A.V.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.I.B.); (M.J.C.); (L.P.)
| |
Collapse
|
45
|
Du H, Liu C, Unsalan O, Altunayar-Unsalan C, Xiong S, Manyande A, Chen H. Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage. Int J Biol Macromol 2021; 184:463-475. [PMID: 34171252 DOI: 10.1016/j.ijbiomac.2021.06.121] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023]
Abstract
Biofilm composition from fish myofibrillar protein (FMP) and chitosan solution (CS) incorporated with rosemary extract (RE) was developed and applied to monitor the freshness of fish fillets. The effects of different concentrations of RE as well as physical, mechanical, structural and functional properties of FMP/CS films were investigated. Films containing RE showed reduced water solubility and water vapor permeability and enhanced tensile strength and elongation at break. Results also showed good compatibility of the components and good dispersion of RE in the matrix. However, the content of RE (0.2%, v/v) added in the composite films produced aggregations and had negative effects on their film-forming properties. The antioxidant capacity of composite films was related to the level of RE and demonstrated by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay. Chilled grass carp fillets wrapped with different films to evaluate the preservative effect. Results of thiobarbituric acid reactive substances, pH value, Free amino acid and total volatile basic nitrogen indicated that FMP/CS/RE composite film could protect the fish fillet well and inhibit the lipid oxidation. The developed FMP/CS/RE composite films possess the potential to be applied as edible films in the food packaging industry and food cold chain transportation.
Collapse
Affiliation(s)
- Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| | - Chen Liu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ozan Unsalan
- Ege University, Faculty of Science, Department of Physics, 35100 Bornova, Izmir, Turkey
| | - Cisem Altunayar-Unsalan
- Ege University Central Research Testing and Analysis Laboratory Research and Application Center, 35100 Bornova, Izmir, Turkey
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
46
|
Lastra Ripoll S, Quintana Martínez SE, García
Zapateiro LA. Rheological and Microstructural Properties of Xanthan Gum-Based Coating Solutions Enriched with Phenolic Mango ( Mangifera indica) Peel Extracts. ACS OMEGA 2021; 6:16119-16128. [PMID: 34179657 PMCID: PMC8223432 DOI: 10.1021/acsomega.1c02011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Mango (Mangifera indica) is a tropical fruit highly desired for its vitamin content and flavor, but its peel is considered a byproduct or waste. However, mango peel contains some bioactive compounds that improve food quality matrix for the development of edible coatings or films. The effect of phenolic mango (Mangifera indica) peel extracts on the physicochemical, rheological, and microstructural properties of xanthan gum-based coating solutions was evaluated. The obtained solutions were stable during the study period and presented a non-Newtonian fluid type shear-thinning behavior described by Ostwald-de Waele. Moreover, viscoelastic properties revealed that the elastic modulus was higher than the viscous modulus, showing a characteristic of weak gels. The addition of extracts did not alter the shear rate and viscoelastic character of the solutions, preserving the pseudoplasticity and weak gel behavior of xanthan gum associated with spreadability and adherence of coatings; it modified the gel structure as a function of temperature. Furthermore, the coating solutions of xanthan gum and phenolic mango peel extracts are an alternative to develop complex food systems such as edible coatings, edible films, or delivery systems.
Collapse
|
47
|
Employing Nanosilver, Nanocopper, and Nanoclays in Food Packaging Production: A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11050509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, there has been an increasing demand for “ready-to-cook” and “ready-to-eat” foods, encouraging food producers, food suppliers, and food scientists to package foods with minimal processing and loss of nutrients during food processing. Following the increasing trend in the customer’s demands for minimally processed foodstuffs, this underscores the importance of promising interests toward industrial applications of novel and practical approaches in food. Along with substantial progress in the emergence of “nanoscience”, which has turned into the call of the century, the efficacy of conventional packaging has faded away. Accordingly, there is a wide range of new types of packaging, including electronic packaging machines, flexible packaging, sterile packaging, metal containers, aluminum foil, and flexographic printing. Hence, it has been demonstrated that these novel approaches can economically improve food safety and quality, decrease the microbial load of foodborne pathogens, and reduce food spoilage. This review study provides a comprehensive overview of the most common chemical or natural nanocomposites used in food packaging that can extend food shelf life, safety and quality. Finally, we discuss applying materials in the production of active and intelligent food packaging nanocomposite, synthesis of nanomaterial, and their effects on human health.
Collapse
|
48
|
Optimization of Gum Arabic and Starch-Based Edible Coatings with Lemongrass Oil Using Response Surface Methodology for Improving Postharvest Quality of Whole “Wonderful” Pomegranate Fruit. COATINGS 2021. [DOI: 10.3390/coatings11040442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effects of edible coatings based on gum arabic (GA) (0.5–1.5%), maize starch (MS) (0.5–1.5%), lemongrass oil (LO) (2–4%), and glycerol (GC) (0.5–1%) developed using response surface methodology (RSM) on “Wonderful” pomegranate fruit were studied. After 42 days of storage (5 ± 1 °C, 95 ± 2% RH) and 5 days at ambient temperature (20 ± 0.2 °C and 60 ± 10% RH), whole fruit were evaluated for weight loss (%) and pomegranate juice (PJ) for total soluble solids (°Brix), titratable acidity (% Citric acid), and antioxidant capacity. The optimization procedure was done using RSM and the response variables were mainly influenced by the concentrations of MS and GA. The optimized coating consisted of GA (0.5%), MS (0.5%), LO (3%), and GC (1.5%) with desirability of 0.614 (0—minimum and 1—maximum). The predicted values of response variables, for the coating were weight loss (%) = 5.51, TSS (°Brix) = 16.45, TA (% Citric acid) = 1.50, and antioxidant capacity (RSA = 58.13 mM AAE/mL PJ and FRAP = 40.03 mM TE/mL PJ). Therefore, the optimized coating formulation is a potential postharvest treatment for “Wonderful” pomegranate to inhibit weight loss and maintain overall quality during storage and shelf-life.
Collapse
|
49
|
Khedri S, Sadeghi E, Rouhi M, Delshadian Z, Mortazavian AM, de Toledo Guimarães J, fallah M, Mohammadi R. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Chen W, Ma S, Wang Q, McClements DJ, Liu X, Ngai T, Liu F. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Crit Rev Food Sci Nutr 2021; 62:5029-5055. [PMID: 33554629 DOI: 10.1080/10408398.2021.1881435] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.
Collapse
Affiliation(s)
- Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|