1
|
Tana M, Piccinini R, Moffa L, Tana C. Heart Failure with Preserved Ejection Fraction and Cardiac Amyloidosis in the Aging Heart. Int J Mol Sci 2024; 25:11519. [PMID: 39519069 PMCID: PMC11546592 DOI: 10.3390/ijms252111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Heart Failure with Preserved Ejection Fraction (HFpEF) is one of the most frequent causes of heart failure in the world's population (about 19-55%), and is commonly associated with a high rate of hospitalization (almost 70-80%) and with increased mortality (40-50% in a 5-year timeframe). The elderly are more often affected, with higher rates of hospitalizations than young people, and currently almost 70% of the population aged 65 years old has HFpEF. An increase in cardiomyocyte stiffness, thus resulting in diastolic dysfunction, increased filling pressures and heart failure with preserved ejection fraction are characteristics features of the disease. In addition, among the various causes of HFpEF, cardiac amyloidosis (CA) can provoke diastolic dysfunction and increased wall stiffness directly from intercellular deposition of insoluble proteic substances and their toxic activity. Totally, almost 30 different proteins are able to form deposits, but the most frequently involved are transthyretin and misfolded monoclonal immunoglobulin light chains, which bring to two clinical conditions called transthyretin amyloidosis (ATTR) and light-chain amyloidosis (AL). Although there has been increasing attention on ATTR-CA in recent years, the actual prevalence remains underestimated, especially in people of advanced age, as well as its real impact as a cause of HFpEF, and only data derived from autoptic exams are currently available. Moreover, CA itself often mimics HFpEF, and some conflicting data on the use of predictive scores are described in the literature. The close relationship between HFpEF and CA, especially in older population and the main pathophysiological mechanisms which bond these two conditions are described in this focused review. The need to screen red flags for ATTR-CA in elderly patients with HFpEF is urgently advised, because a prompt recognition of the disease can optimize the approach to the disease with an early therapeutic, life-saving choice.
Collapse
Affiliation(s)
- Marco Tana
- Internal Medicine and Cardiovascular Ultrasound Unit, Medical Department, SS. Annunziata Hospital, 66100 Chieti, Italy
- School of Internal Medicine, Faculty of Medicine, G. D’Annunzio University, 66100 Chieti, Italy
| | - Rachele Piccinini
- School of Internal Medicine, Faculty of Medicine, G. D’Annunzio University, 66100 Chieti, Italy
| | - Livia Moffa
- School of Internal Medicine, Faculty of Medicine, G. D’Annunzio University, 66100 Chieti, Italy
| | - Claudio Tana
- Geriatric Clinic, SS. Annunziata Hospital, 66100 Chieti, Italy
| |
Collapse
|
2
|
Stamerra CA, Di Giosia P, Giorgini P, Jamialahmadi T, Sahebkar A. Cardiovascular Effects of Stimulators of Soluble Guanylate Cyclase Administration: A Meta-analysis of Randomized Controlled Trials. Curr Atheroscler Rep 2024; 26:177-187. [PMID: 38564140 DOI: 10.1007/s11883-024-01197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW Heart failure (HF) is one of the main causes of cardiovascular mortality in the western world. Despite great advances in treatment, recurrence and mortality rates remain high. Soluble guanylate cyclase is an enzyme which, by producing cGMP, is responsible for the effects of vasodilation, reduction of cardiac pre- and after-load and, therefore, the improvement of myocardial performance. Thus, a new therapeutic strategy is represented by the stimulators of soluble guanylate cyclase (sGCs). The aim of this meta-analysis was to analyze the effects deriving from the administration of sGCs, in subjects affected by HF. A systematic literature search of Medline, SCOPUS, and Google Scholar was conducted up to December 2022 to identify RCTs assessing the cardiovascular effects, as NT-pro-BNP values and ejection fraction (EF), and all-cause mortality, of the sGCs. Quantitative data synthesis was performed using a random-effects model, with weighted mean difference (WMD) and 95% confidence interval (CI) as summary statistics. RECENT FINDINGS The results obtained documented a statistically significant improvement in NT-proBNP values (SMD: - 0.258; 95% CI: - 0.398, - 0.118; p < 0.001) and EF (WMD: 0.948; 95% CI: 0.485, 1.411; p < 0.001) in subjects treated with sGCs; however, no significant change was found in the all-cause mortality rate (RR 0.96; 95% CI 0.868 to 1.072; I2, p = 0). The sGCs represent a valid therapeutic option in subjects suffering from HF, leading to an improvement in cardiac performance.
Collapse
Affiliation(s)
| | - Paolo Di Giosia
- Department of Internal Medicine-Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Giorgini
- Department of Emergency-Madonna del Soccorso Hospital, San Benedetto del Tronto, Italy
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Bae S, Park SM, Kim SR, Kim MN, Cho DH, Kim HD, Yoon HJ, Kim MA, Kim HL, Hong KS, Shin MS, Jeong JO, Shim WJ. Early menopause is associated with abnormal diastolic function and poor clinical outcomes in women with suspected angina. Sci Rep 2024; 14:6306. [PMID: 38491090 PMCID: PMC10943187 DOI: 10.1038/s41598-024-57058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Early identification of women at high risk for cardiovascular diseases (CVD), with subsequent monitoring, will allow for improved clinical outcomes and generally better quality of life. This study aimed to identify the associations between early menopause, abnormal diastolic function, and clinical outcomes. This retrospective study included 795 menopausal women from is a nationwide, multicenter, registry of patients with suspected angina visiting outpatient clinic. The patients into two groups: early and normal menopause (menopausal age ≤ 45 and > 45 years, respectively). If participants met > 50% of the diastolic function criteria, they were classified as having normal diastolic function. Multivariable-adjusted Cox models were used to test associations between menopausal age and clinical outcomes including the incidence of major adverse cardiovascular events (MACE), over a median follow-up period of 771 days. Early menopause was associated with increased waist circumference (p = 0.001), diabetes prevalence (p = 0.003), obstructive coronary artery disease (p = 0.005), abnormal diastolic function (p = 0.003) and greater incidences of MACE, acute coronary syndrome, and hospitalization for heart failure. In patients with abnormal diastolic function, early menopause increased MACE risk significantly, with no significant difference in normal diastolic function. These findings highlight early menopause and abnormal diastolic function as being potential risk markers in women for midlife CVD events.
Collapse
Affiliation(s)
- SungA Bae
- Department of Cardiology, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Gyeonggi-Do, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seong-Mi Park
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - So Ree Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Mi-Na Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Dong-Hyuk Cho
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Hee-Dong Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyun Ju Yoon
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Myung-A Kim
- Department of Cardiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hack-Lyoung Kim
- Department of Cardiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kyung-Soon Hong
- Department of Cardiology, Hallym University Medical Center, Seoul, Chuncheon, Republic of Korea
| | - Mi-Seung Shin
- Department of Cardiology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Jin-Ok Jeong
- Department of Cardiology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Wan-Joo Shim
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Goryeodae-Ro 73, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Mangmool S, Duangrat R, Parichatikanond W, Kurose H. New Therapeutics for Heart Failure: Focusing on cGMP Signaling. Int J Mol Sci 2023; 24:12866. [PMID: 37629047 PMCID: PMC10454066 DOI: 10.3390/ijms241612866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and β-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection fraction (HFrEF). Novel drug classes, including angiotensin receptor blocker/neprilysin inhibitor (ARNI), sodium-glucose co-transporter-2 (SGLT2) inhibitor, hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, soluble guanylyl cyclase (sGC) stimulator/activator, and cardiac myosin activator, have recently been introduced for HF intervention based on their proposed novel mechanisms. SGLT2 inhibitors have been shown to be effective not only for HFrEF but also for HF with preserved ejection fraction (HFpEF). In the myocardium, excess cyclic adenosine monophosphate (cAMP) stimulation has detrimental effects on HFrEF, whereas cyclic guanosine monophosphate (cGMP) signaling inhibits cAMP-mediated responses. Thus, molecules participating in cGMP signaling are promising targets of novel drugs for HF. In this review, we summarize molecular pathways of cGMP signaling and clinical trials of emerging drug classes targeting cGMP signaling in the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | | | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
5
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
6
|
Rosas PC, Solaro RJ. Implications of S-glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis. Front Cardiovasc Med 2023; 9:1060716. [PMID: 36762302 PMCID: PMC9902711 DOI: 10.3389/fcvm.2022.1060716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The discovery that cardiac sarcomere proteins are substrates for S-glutathionylation and that this post-translational modification correlates strongly with diastolic dysfunction led to new concepts regarding how levels of oxidative stress affect the heartbeat. Major sarcomere proteins for which there is evidence of S-glutathionylation include cardiac myosin binding protein C (cMyBP-C), actin, cardiac troponin I (cTnI) and titin. Our hypothesis is that these S-glutathionylated proteins are significant factors in acquired and familial disorders of the heart; and, when released into the serum, provide novel biomarkers. We consider the molecular mechanisms for these effects in the context of recent revelations of how these proteins control cardiac dynamics in close collaboration with Ca2+ fluxes. These revelations were made using powerful approaches and technologies that were focused on thin filaments, thick filaments, and titin filaments. Here we integrate their regulatory processes in the sarcomere as modulated mainly by neuro-humoral control of phosphorylation inasmuch evidence indicates that S-glutathionylation and protein phosphorylation, promoting increased dynamics and modifying the Frank-Starling relation, may be mutually exclusive. Earlier studies demonstrated that in addition to cTnI as a well-established biomarker for cardiac disorders, serum levels of cMyBP-C are also a biomarker for cardiac disorders. We describe recent studies approaching the question of whether serum levels of S-glutathionylated-cMyBP-C could be employed as an important clinical tool in patient stratification, early diagnosis in at risk patients before HFpEF, determination of progression, effectiveness of therapeutic approaches, and as a guide in developing future therapies.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of Pharmacy, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
The Role of Mitochondria in Metabolic Syndrome–Associated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9196232. [PMID: 35783195 PMCID: PMC9246605 DOI: 10.1155/2022/9196232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
With the rapid development of society, the incidence of metabolic syndrome (MS) is increasing rapidly. Evidence indicated that patients diagnosed with MS usually suffered from cardiomyopathy, called metabolic syndrome–associated cardiomyopathy (MSC). The clinical characteristics of MSC included cardiac hypertrophy and diastolic dysfunction, followed by heart failure. Despite many studies on this topic, the detailed mechanisms are not clear yet. As the center of cellular metabolism, mitochondria are crucial for maintaining heart function, while mitochondria dysfunction plays a vital role through mechanisms such as mitochondrial energy deprivation, calcium disorder, and ROS (reactive oxygen species) imbalance during the development of MSC. Accordingly, in this review, we will summarize the characteristics of MSC and especially focus on the mechanisms related to mitochondria. In addition, we will update new therapeutic strategies in this field.
Collapse
|
9
|
Adhikari G, Baral N, Rauniyar R, Tse G, Karki S, Abdelazeem B, Gergis K, Savarapu P, Isa S, Sud P, Kunadi A. Meta-analysis examining phosphodiesterase-5 inhibitors in heart failure with preserved ejection fraction. Proc AMIA Symp 2022; 35:643-648. [DOI: 10.1080/08998280.2022.2078633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Govinda Adhikari
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Nischit Baral
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Rohit Rauniyar
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
| | - Sandip Karki
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Basel Abdelazeem
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Kirolos Gergis
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Pramod Savarapu
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Sakiru Isa
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Parul Sud
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Arvind Kunadi
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| |
Collapse
|
10
|
Kamynina A, Guttzeit S, Eaton P, Cuello F. Nitroxyl Donor CXL-1020 Lowers Blood Pressure by Targeting C195 in Cyclic Guanosine-3',5'-Monophosphate-Dependent Protein Kinase I. Hypertension 2022; 79:946-956. [PMID: 35168371 DOI: 10.1161/hypertensionaha.122.18756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.
Collapse
Affiliation(s)
- Alisa Kamynina
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Sebastian Guttzeit
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
| |
Collapse
|
11
|
Sharma D, Prashar A. Associations between the gut microbiome, gut microbiology and heart failure: Current understanding and future directions. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 17:100150. [PMID: 38559891 PMCID: PMC10978367 DOI: 10.1016/j.ahjo.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 04/04/2024]
Abstract
The role of the gut microbiome in pathophysiology, prognostication and clinical management of heart failure (HF) patients is of great clinical and research interest. Both preclinical and clinical studies have shown promising results, and the gut microbiome has been implicated in other cardiovascular conditions that are risk factors for HF. There is an increasing interest in the use of biological compounds produced as biomarkers for prognostication as well as exploration of therapeutic options targeting the various markers and pathways from the gut microbiome that are implicated in HF. However, study variations exist, and targeted research for individual putative biomarkers is necessary. There is also limited evidence pertaining to decompensated HF in particular. In this review, we synthesize current understandings around pathophysiology, prognostication and clinical management of heart failure (HF) patients, and also provide an outline of potential areas of future research and scientific advances.
Collapse
Affiliation(s)
| | - Abhisheik Prashar
- University of New South Wales, Sydney, NSW 2052, Australia
- Department of Cardiology, St George Hospital, Sydney, NSW 2217, Australia
| |
Collapse
|
12
|
Deschaine B, Verma S, Rayatzadeh H. Clinical Evidence and Proposed Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors in Heart Failure with Preserved Ejection Fraction: A Class Effect? Card Fail Rev 2022; 8:e23. [PMID: 35846984 PMCID: PMC9272408 DOI: 10.15420/cfr.2022.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
Effective treatment for heart failure with preserved ejection fraction (HFpEF) is an unmet need in cardiovascular medicine. The pathophysiological drivers of HFpEF are complex, differing depending on phenotype, making a one-size-fits-all treatment approach unlikely. Remarkably, sodium-glucose cotransporter 2 inhibitors (SGLT2is) may be the first drug class to improve cardiovascular outcomes in HFpEF. Randomised controlled trials suggest a benefit in mortality, and demonstrate decreased hospitalisations and improvement in functional status. Limitations in trials exist, either due to small sample sizes, differing results between trials or decreased efficacy at higher ejection fractions. SGLT2is may provide a class effect by targeting various pathophysiological HFpEF mechanisms. Inhibition of SGLT2 and Na+/H+ exchanger 3 in the kidney promotes glycosuria, osmotic diuresis and natriuresis. The glucose deprivation activates sirtuins - protecting against oxidation and beneficially regulating metabolism. SGLT2is reduce excess epicardial adipose tissue and its deleterious adipokines. Na+/H+ exchanger 1 inhibition in the heart and lungs reduces sodium-induced calcium overload and pulmonary hypertension, respectively.
Collapse
Affiliation(s)
- Brent Deschaine
- University of Florida College of Medicine Gainesville, FL, US
| | - Sahil Verma
- Florida State University College of Medicine Tallahassee, FL, US
| | - Hussein Rayatzadeh
- Florida State University College of Medicine Tallahassee, FL, US.,Tallahassee Research Institute Tallahassee, FL, US.,Southern Medical Group Tallahassee, FL, US
| |
Collapse
|
13
|
Priksz D, Lampe N, Kovacs A, Herwig M, Bombicz M, Varga B, Wilisicz T, Szilvassy J, Posa A, Kiss R, Gesztelyi R, Raduly A, Szekeres R, Sieme M, Papp Z, Toth A, Hamdani N, Szilvassy Z, Juhasz B. Nicotinic-acid derivative BGP-15 improves diastolic function in a rabbit model of atherosclerotic cardiomyopathy. Br J Pharmacol 2021; 179:2240-2258. [PMID: 34811751 DOI: 10.1111/bph.15749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Small molecule BGP-15 has been reported to alleviate signs of heart failure and improve muscle function in murine models. Here, we investigated the acute and chronic effects of BGP-15 in a rabbit model of atherosclerotic cardiomyopathy. EXPERIMENTAL APPROACH Rabbits were maintained on standard chow (Control) or atherogenic diet (HC) for 16 weeks. BGP-15 was administered intravenously (once) or orally (for 16 weeks), to assess acute and chronic effects. Cardiac function was evaluated by echocardiography, endothelium-dependent vasorelaxation was assessed, and key molecules of the protein kinase G (PKG) axis were examined by ELISA and Western blot. Passive force generation was investigated in skinned cardiomyocytes. KEY RESULTS Both acute and chronic BGP-15 treatment improved the diastolic performance of the diseased heart, however, vasorelaxation and serum lipid markers were unaffected. Myocardial cGMP levels were elevated in the BGP-15-treated group, along with preserved PKG activity and increased phospholamban Ser16-phosphorylation. PDE5 expression decreased in the BGP-15-treated group, and the substance inhibited PDE1 enzyme. Cardiomyocyte passive tension reduced in BGP-15-treated rabbits, the ratio of titin N2BA/N2B isoforms increased, and PKG-dependent N2B-titin phosphorylation elevated in the BGP-15-treated group. CONCLUSIONS AND IMPLICATIONS Here we report that BGP-15-treatment improves diastolic function, reduces cardiomyocyte stiffness, and restores titin compliance in a rabbit model of atherosclerotic cardiomyopathy by increasing the activity of the cGMP-PKG axis. As BGP-15 is proven to be safe, it may have clinical value in the treatment of diastolic dysfunction.
Collapse
Affiliation(s)
- Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Nora Lampe
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Arpad Kovacs
- Department of Molecular and Experimental Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology Ruhr University Bochum, Bochum, Germany
| | - Melissa Herwig
- Department of Molecular and Experimental Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology Ruhr University Bochum, Bochum, Germany
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Tician Wilisicz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Szilvassy
- Department of Otorhinolaryngology and Head-Neck Surgery, University of Debrecen, Debrecen, Hungary
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Arnold Raduly
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Reka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Marcel Sieme
- Department of Molecular and Experimental Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology Ruhr University Bochum, Bochum, Germany
| | - Zoltan Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Lu Y, Zhang X, Hu W, Yang Q. The Identification of Candidate Biomarkers and Pathways in Atherosclerosis by Integrated Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6276480. [PMID: 34804194 PMCID: PMC8598374 DOI: 10.1155/2021/6276480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a type of yellow substance containing cholesterol in the intima of large and middle arteries, which is mostly caused by fat metabolism disorders and neurovascular dysfunction. MATERIALS AND METHODS The GSE100927 data got analyzed to find out the differentially expressed genes (DEGs) using the limma package in R software. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the DEGs were assessed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Search Tool for the Retrieval of Interacting Genes (STRING) visualized the Protein-Protein Interaction (PPI) network of the aggregated DEGs. GSEA software was used to verify the biological process. RESULT We screened 1574 DEGs from 69 groups of atherosclerotic carotid artery and 35 groups of control carotid artery, including 1033 upregulated DEGs and 541 downregulated DEGs. DEGs of AS were chiefly related to immune response, Epstein-Barr virus infection, vascular smooth muscle contraction, and cGMP-PKG signaling pathway. Through PPI networks, we found that the hub genes of AS were PTAFR, VAMP8, RNF19A, VPRBP, RNF217, KLHL42, NEDD4, SH3RF1, UBE2N, PJA2, RNF115, ITCH, SKP1, FBXW4, and UBE2H. GSEA analysis showed that GSE100927 was concentrated in RIPK1-mediated regulated necrosis, FC epsilon receptor fceri signaling, Fceri-mediated NF KB activation, TBC rabgaps, TRAF6-mediated induction of TAK1 complex within TLR4 complex, and RAB regulation of trafficking. CONCLUSION Our analysis reveals that immune response, Epstein-Barr virus infection, and so on were major signatures of AS. PTAFR, VAMP8, VPRBP, RNF217, KLHL42, and NEDD4 might facilitate the AS tumorigenesis, which could be new biomarkers for diagnosis and therapy of AS.
Collapse
Affiliation(s)
- Youwei Lu
- Department of Geriatrics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| | - Xi Zhang
- Department of Geriatrics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China 201199
| | - Qianhong Yang
- Department of Geriatrics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| |
Collapse
|
15
|
Bódi B, Kovács Á, Gulyás H, Mártha L, Tóth A, Mátyás C, Barta BA, Oláh A, Merkely B, Radovits T, Papp Z. Long-Term PDE-5A Inhibition Improves Myofilament Function in Left and Right Ventricular Cardiomyocytes through Partially Different Mechanisms in Diabetic Rat Hearts. Antioxidants (Basel) 2021; 10:antiox10111776. [PMID: 34829647 PMCID: PMC8615283 DOI: 10.3390/antiox10111776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) and right ventricular (RV) dysfunction are frequent complications of diabetic cardiomyopathy. Here we aimed to characterize RV and left ventricular (LV) remodeling and its prevention by vardenafil (a long-acting phosphodiesterase-5A (PDE-5A) inhibitor) administration in a diabetic HFpEF model. Zucker Diabetic Fatty (ZDF) and control, ZDF Lean (Lean) male rats received 10 mg/kg vardenafil (ZDF + Vard; Lean + Vard) per os, on a daily basis for a period of 25 weeks. In vitro force measurements, biochemical and histochemical assays were employed to assess cardiomyocyte function and signaling. Vardenafil treatment increased cyclic guanosine monophosphate (cGMP) levels and decreased 3-nitrotyrosine (3-NT) levels in the left and right ventricles of ZDF animals, but not in Lean animals. Cardiomyocyte passive tension (Fpassive) was higher in LV and RV cardiomyocytes of ZDF rats than in those receiving preventive vardenafil treatment. Levels of overall titin phosphorylation did not differ in the four experimental groups. Maximal Ca2+-activated force (Fmax) of LV and RV cardiomyocytes were preserved in ZDF animals. Ca2+-sensitivity of isometric force production (pCa50) was significantly higher in LV (but not in RV) cardiomyocytes of ZDF rats than in their counterparts in the Lean or Lean + Vard groups. In accordance, the phosphorylation levels of cardiac troponin I (cTnI) and myosin binding protein-C (cMyBP-C) were lower in LV (but not in RV) cardiomyocytes of ZDF animals than in their counterparts of the Lean or Lean + Vard groups. Vardenafil treatment normalized pCa50 values in LV cardiomyocytes, and it decreased pCa50 below control levels in RV cardiomyocytes in the ZDF + Vard group. Our data illustrate partially overlapping myofilament protein alterations for LV and RV cardiomyocytes in diabetic rat hearts upon long-term PDE-5A inhibition. While uniform patterns in cGMP, 3-NT and Fpassive levels predict identical effects of vardenafil therapy for the diastolic function in both ventricles, the uneven cTnI, cMyBP-C phosphorylation levels and pCa50 values implicate different responses for the systolic function.
Collapse
Affiliation(s)
- Beáta Bódi
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (Á.K.); (H.G.); (L.M.); (A.T.)
| | - Árpád Kovács
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (Á.K.); (H.G.); (L.M.); (A.T.)
| | - Hajnalka Gulyás
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (Á.K.); (H.G.); (L.M.); (A.T.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Lilla Mártha
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (Á.K.); (H.G.); (L.M.); (A.T.)
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (Á.K.); (H.G.); (L.M.); (A.T.)
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (C.M.); (B.A.B.); (A.O.); (B.M.); (T.R.)
| | - Bálint András Barta
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (C.M.); (B.A.B.); (A.O.); (B.M.); (T.R.)
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (C.M.); (B.A.B.); (A.O.); (B.M.); (T.R.)
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (C.M.); (B.A.B.); (A.O.); (B.M.); (T.R.)
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (C.M.); (B.A.B.); (A.O.); (B.M.); (T.R.)
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (Á.K.); (H.G.); (L.M.); (A.T.)
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
16
|
Chen X, Ashraf S, Ashraf N, Harmancey R. UCP3 (Uncoupling Protein 3) Insufficiency Exacerbates Left Ventricular Diastolic Dysfunction During Angiotensin II-Induced Hypertension. J Am Heart Assoc 2021; 10:e022556. [PMID: 34533037 PMCID: PMC8649532 DOI: 10.1161/jaha.121.022556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Left ventricular diastolic dysfunction, an early stage in the pathogenesis of heart failure with preserved ejection fraction, is exacerbated by joint exposure to hypertension and obesity; however, the molecular mechanisms involved remain uncertain. The mitochondrial UCP3 (uncoupling protein 3) is downregulated in the heart with obesity. Here, we used a rat model of UCP3 haploinsufficiency (ucp3+/‐) to test the hypothesis that decreased UCP3 promotes left ventricular diastolic dysfunction during hypertension. Methods and Results Ucp3+/‐ rats and ucp3+/+ littermates fed a high‐salt diet (HS; 2% NaCl) and treated with angiotensin II (190 ng/kg per min for 28 days) experienced a similar rise in blood pressure (158±4 versus 155±7 mm Hg). However, UCP3 insufficiency worsened diastolic dysfunction according to echocardiographic assessment of left ventricular filling pressures (E/e’; 18.8±1.0 versus 14.9±0.6; P<0.05) and the isovolumic relaxation time (24.7±0.6 versus 21.3±0.5 ms; P<0.05), as well as invasive monitoring of the diastolic time constant (Tau; 15.5±0.8 versus 12.7±0.2 ms; P<0.05). Exercise tolerance on a treadmill also decreased for HS/angiotensin II‐treated ucp3+/‐ rats. Histological and molecular analyses further revealed that UCP3 insufficiency accelerated left ventricular concentric remodeling, detrimental interstitial matrix remodeling, and fetal gene reprogramming during hypertension. Moreover, UCP3 insufficiency increased oxidative stress and led to greater impairment of protein kinase G signaling. Conclusions Our findings identified UCP3 insufficiency as a cause for increased incidence of left ventricular diastolic dysfunction during hypertension. The results add further support to the use of antioxidants targeting mitochondrial reactive oxygen species as an adjuvant therapy for preventing heart failure with preserved ejection fraction in individuals with obesity.
Collapse
Affiliation(s)
- Xu Chen
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | - Sadia Ashraf
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| | | | - Romain Harmancey
- Department of Physiology and Biophysics University of Mississippi Medical Center Jackson MS.,Mississippi Center for Obesity Research University of Mississippi Medical Center Jackson MS
| |
Collapse
|
17
|
Ying W, Post WS, Michos ED, Subramanya V, Ndumele CE, Ouyang P, Ambale-Venkatesh B, Doria De Vasconcellos H, Nwabuo CC, Schreiner PJ, Lewis CE, Reis J, Lloyd-Jones D, Sidney S, Lima JAC, Vaidya D. Associations between menopause, cardiac remodeling, and diastolic function: the CARDIA study. Menopause 2021; 28:1166-1175. [PMID: 34127631 DOI: 10.1097/gme.0000000000001815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Heart failure with preserved ejection fraction (HFpEF) affects more women than men. Menopause may influence HFpEF development in women. We assessed cross-sectional and longitudinal associations between menopause and echocardiographic measures of left ventricular (LV) function and cardiac remodeling. METHODS We studied 1,723 women with available echo data from at least two of: year 5 (Y5) (1990-1991), Y25 (2010-2011), or Y30 (2015-2016) in the Coronary Artery Risk Development in Young Adults study. Cardiac structure and function were measured using 2D and Doppler echocardiography. Cross-sectional associations between menopausal status and repeated echo measures at Y25 and Y30 were analyzed using linear mixed models. Two-segmented models were used to compare longitudinal changes in echocardiographic measures in the premenopausal period to changes in the postmenopausal period. RESULTS Mean ± SD age (years) at enrollment was 27 ± 3 in those with menopause by Y25, 25 ± 3 in those with menopause between Y25 and Y30, and 21 ± 3 in those premenopausal at Y30. There were no significant differences in race, body mass index, systolic blood pressure, or diabetes between the groups. Postmenopausal women had higher early diastolic mitral inflow (E) to annular (e') velocity ratio than premenopausal after adjusting for demographics and risk factors (P < 0.05). Menopause was associated with relative increases in the rates of change in LV mass and left atrial volume, even after adjustment. Change in E/e' ratio was similar before and after menopause. CONCLUSIONS Menopause is associated cross-sectionally with worse diastolic function and longitudinally with adverse LV and left atrial remodeling. This may contribute to the increased HFpEF risk in postmenopausal women.
Collapse
Affiliation(s)
- Wendy Ying
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wendy S Post
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Erin D Michos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Vinita Subramanya
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
| | - Chiadi E Ndumele
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Pamela Ouyang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Chike C Nwabuo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN
| | - Cora E Lewis
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL
| | - Jared Reis
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Donald Lloyd-Jones
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Joao A C Lima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dhananjay Vaidya
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
18
|
Jung YH, Ren X, Suffredini G, Dodd-O JM, Gao WD. Right ventricular diastolic dysfunction and failure: a review. Heart Fail Rev 2021; 27:1077-1090. [PMID: 34013436 DOI: 10.1007/s10741-021-10123-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/08/2023]
Abstract
Right ventricular diastolic dysfunction and failure (RVDDF) has been increasingly identified in patients with cardiovascular diseases, including heart failure and other diseases with cardiac involvement. It is unknown whether RVDDF exists as a distinct clinical entity; however, its presence and degree have been shown to be a sensitive marker of end-organ dysfunction related to multiple disease processes including systemic hypertension, pulmonary hypertension, heart failure, and endocrine disease. In this manuscript, we review issues pertaining to RVDDF including anatomic features of the right ventricle, physiologic measurements, RVDDF diagnosis, underlying mechanisms, clinical impact, and clinical management. Several unique features of RVDDF are also discussed.
Collapse
Affiliation(s)
- Youn-Hoa Jung
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Xianfeng Ren
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Giancarlo Suffredini
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jeffery M Dodd-O
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
19
|
Schauer A, Adams V, Augstein A, Jannasch A, Draskowski R, Kirchhoff V, Goto K, Mittag J, Galli R, Männel A, Barthel P, Linke A, Winzer EB. Sacubitril/Valsartan Improves Diastolic Function But Not Skeletal Muscle Function in a Rat Model of HFpEF. Int J Mol Sci 2021; 22:3570. [PMID: 33808232 PMCID: PMC8036273 DOI: 10.3390/ijms22073570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The angiotensin receptor/neprilysin inhibitor Sacubitril/Valsartan (Sac/Val) has been shown to be beneficial in patients suffering from heart failure with reduced ejection fraction (HFrEF). However, the impact of Sac/Val in patients presenting with heart failure with preserved ejection fraction (HFpEF) is not yet clearly resolved. The present study aimed to reveal the influence of the drug on the functionality of the myocardium, the skeletal muscle, and the vasculature in a rat model of HFpEF. Female obese ZSF-1 rats received Sac/Val as a daily oral gavage for 12 weeks. Left ventricle (LV) function was assessed every four weeks using echocardiography. Prior to organ removal, invasive hemodynamic measurements were performed in both ventricles. Vascular function of the carotid artery and skeletal muscle function were monitored. Sac/Val treatment reduced E/é ratios, left ventricular end diastolic pressure (LVEDP) and myocardial stiffness as well as myocardial fibrosis and heart weight compared to the obese control group. Sac/Val slightly improved endothelial function in the carotid artery but had no impact on skeletal muscle function. Our results demonstrate striking effects of Sac/Val on the myocardial structure and function in a rat model of HFpEF. While vasodilation was slightly improved, functionality of the skeletal muscle remained unaffected.
Collapse
Affiliation(s)
- Antje Schauer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Antje Augstein
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstrasse 76, 01307 Dresden, Germany; (A.J.); (J.M.)
| | - Runa Draskowski
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Keita Goto
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Jeniffer Mittag
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstrasse 76, 01307 Dresden, Germany; (A.J.); (J.M.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anita Männel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Peggy Barthel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Ephraim B. Winzer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| |
Collapse
|
20
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
21
|
Ghosh A, Koziol-White CJ, Jester WF, Erzurum SC, Asosingh K, Panettieri RA, Stuehr DJ. An inherent dysfunction in soluble guanylyl cyclase is present in the airway of severe asthmatics and is associated with aberrant redox enzyme expression and compromised NO-cGMP signaling. Redox Biol 2021; 39:101832. [PMID: 33360351 PMCID: PMC7772568 DOI: 10.1016/j.redox.2020.101832] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
A subset of asthmatics develop a severe form of the disease whose etiology involves airway inflammation along with inherent drivers that remain ill-defined. To address this, we studied human airway smooth muscle cells (HASMC), whose relaxation drives airway bronchodilation and whose dysfunction contributes to airway obstruction and hypersensitivity in severe asthma. Because HASMC relaxation can be driven by the NO-soluble guanylyl cyclase (sGC)-cGMP signaling pathway, we questioned if HASMC from severe asthma donors might possess inherent defects in their sGC or in redox enzymes that support sGC function. We analyzed HASMC primary lines derived from 17 severe asthma and 16 normal donors and corresponding lung tissue samples regarding sGC activation by NO or by pharmacologic agonists, and also determined expression levels of sGC α1 and β1 subunits, supporting redox enzymes, and related proteins. We found a majority of the severe asthma donor HASMC (12/17) and lung samples primarily expressed a dysfunctional sGC that was NO-unresponsive and had low heterodimer content and high Hsp90 association. This sGC phenotype correlated with lower expression levels of the supporting redox enzymes cytochrome b5 reductase, catalase, and thioredoxin-1, and higher expression of heme oxygenases 1 and 2. Together, our work reveals that severe asthmatics are predisposed toward defective NO-sGC-cGMP signaling in their airway smooth muscle due to an inherent sGC dysfunction, which in turn is associated with inherent changes in the cell redox enzymes that impact sGC maturation and function.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - William F Jester
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
22
|
Pappritz K, Klein O, Dong F, Hamdani N, Kovacs A, O'Flynn L, Elliman S, O'Brien T, Tschöpe C, Van Linthout S. MALDI-IMS as a Tool to Determine the Myocardial Response to Syndecan-2-Selected Mesenchymal Stromal Cell Application in an Experimental Model of Diabetic Cardiomyopathy. Proteomics Clin Appl 2021; 15:e2000050. [PMID: 33068073 DOI: 10.1002/prca.202000050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Mesenchymal stromal cells (MSC) are an attractive tool for treatment of diabetic cardiomyopathy. Syndecan-2/CD362 has been identified as a functional marker for MSC isolation. Imaging mass spectrometry (IMS) allows for the characterization of therapeutic responses in the left ventricle. This study aims to investigate whether IMS can assess the therapeutic effect of CD362+ -selected MSC on early onset experimental diabetic cardiomyopathy. EXPERIMENTAL DESIGN 1 × 106 wild type (WT), CD362- , or CD362+ MSC are intravenously injected into db/db mice. Four weeks later, mice are hemodynamically characterized and subsequently sacrificed for IMS combined with bottom-up mass spectrometry, and isoform and phosphorylation analyses of cardiac titin. RESULTS Overall alterations of the cardiac proteome signatures, especially titin, are observed in db/db compared to control mice. Interestingly, only CD362+ MSC can overcome the reduced titin intensity distribution and shifts the isoform ratio toward the more compliant N2BA form. In contrast, WT and CD362- MSCs improve all-titin phosphorylation and protein kinase G activity, which is reflected in an improvement in diastolic performance. CONCLUSIONS AND CLINICAL RELEVANCE IMS enables the characterization of differences in titin intensity distribution following MSC application. However, further analysis of titin phosphorylation is needed to allow for the assessment of the therapeutic efficacy of MSC.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
| | - Oliver Klein
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
| | - Nazha Hamdani
- Department of Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, 44780, Germany
| | - Arpad Kovacs
- Department of Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, 44780, Germany
| | - Lisa O'Flynn
- Orbsen Therapeutics, National University of Ireland (NUIG), Galway, H91 TK33, Ireland
| | - Steve Elliman
- Orbsen Therapeutics, National University of Ireland (NUIG), Galway, H91 TK33, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute and Department of Medicine, NUIG, Galway, H91 TK33, Ireland
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, 13353, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, 13353 and 10178, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, 13347, Germany
| |
Collapse
|
23
|
Zhao W, Chen Y, Yang W, Han Y, Wang Z, Huang F, Qiu Z, Yang K, Jin W. Effects of Cardiomyocyte-Specific Deletion of STAT3-A Murine Model of Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2020; 7:613123. [PMID: 33365331 PMCID: PMC7750364 DOI: 10.3389/fcvm.2020.613123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Aims: There is a high incidence of heart failure with preserved ejection fraction (HFpEF), but the options of treatment are limited. A new animal model of HFpEF is urgently needed for in-depth research on HFpEF. Signal transducer and activator of transcription 3 (STAT3) may affect the passive stiffness of myocardium, which determines cardiac diastolic function. We hypothesized that cardiomyocyte-specific deletion of STAT3 increases cardiac passive stiffness, which results the murine features of HFpEF. Methods and Results: Cardiomyocyte-specific deletion of STAT3 (STAT3cKO) mice was generated by the Cre/FLOXp method. The STAT3cKO mice showed heavier cardiac fibrosis and cardiac hypertrophy comparing with wild-type (WT) mice. Furthermore, STAT3cKO mice showed increased serum brain natriuretic peptide (BNP) level, and growth stimulation expressed gene 2 (ST2) level. Other indicators reflecting cardiac passive stiffness and diastolic function, including end diastolic pressure volume relation, MV A value, MV E value, E/A and E/E' had different fold changes. All these changes were accompanied by decreasing levels of protein kinase G (PKG). Bioinformatic analysis of STAT3cKO mice hearts suggested cGMP-PKG signaling pathway might participate in the pathogenesis of HFpEF by means of adjusting different biological functions. Conclusions: Cardiomyocyte-specific deletion of STAT3 results in a murine HFpEF model which imitates the clinical characteristics partly by affecting cardiac PKG levels. Better understanding of the factors influencing HFpEF may finally provided innovative therapies.
Collapse
Affiliation(s)
- Weilin Zhao
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjia Chen
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Yang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxin Han
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyan Wang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanyi Huang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping Qiu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yang
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jin
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Guan X, Guan X, Lu C, Shang B, Zhao Y, Meng Y, Zhang Z. Nebivolol combined with tetrahydrobiopterin affects diastolic function in spontaneously hypertensive rats via the nitric oxide/cyclic guanosine monophosphate signalling pathway. BMC Pharmacol Toxicol 2020; 21:84. [PMID: 33267901 PMCID: PMC7709331 DOI: 10.1186/s40360-020-00460-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hypertension is the the primary cause of diastolic heart failure. Oxidative stress plays an important role in cardiac diastolic dysfunction caused by hypertension. The occurrence of oxidative stress is related to the level of nitric oxide (NO) in the body. Tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. Nebivolol can reduce myocardial oxidative stress and increase NO activity. Therefore, we investigated the effects of monotherapy or combination therapy of different doses of BH4 and nebivolol on cardiac diastolic function in spontaneously hypertensive rats, and preliminarily expounded the related mechanisms. METHODS Left ventricular function was evaluated by non-invasive echocardiographic assessment and invasive right carotid artery catheterization methods. ELISA was used to measure myocardial 3-nitrotyrosine content, NO production, and cyclic guanosine monophosphate (cGMP) concentration in the myocardium; quantitative real-time PCR (qRT-PCR) was used to determine endothelial nitric oxide synthase (eNOS), phospholamban and sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) mRNA expression levels; Western blot was used to detect the protein expression levels of eNOS and eNOS dimers in myocardial tissue, and immunohistochemical detection of cGMP expression in the myocardium was performed. RESULTS Studies have shown that compared with those in the control group, NO generation and the expression level of myocardial eNOS mRNA, eNOS expression of dimers, phospholamban, SERCA2a and cGMP increased significantly after the combined intervention of BH4 and nebivolol, while the expression of 3-nitrotyrosine was significantly decreased. CONCLUSIONS The combined treatment group had a synergistic effect on reducing myocardial oxidative stress, increasing eNOS content, and increasing NO production, and had a more obvious protective effect on diastolic dysfunction through the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway.
Collapse
Affiliation(s)
- Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Changhong Lu
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bo Shang
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yuan Zhao
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ying Meng
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhengyi Zhang
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
25
|
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger, which critically regulates cardiac pump function and protects from the development of cardiac hypertrophy by acting in various subcellular microdomains. Although clinical studies testing the potential of cGMP elevating drugs in patients suffering from cardiac disease showed promising results, deeper insight into the local actions of these drugs at the subcellular level are indispensable to inspire novel therapeutic strategies. Detailed information on the spatio-temporal dynamics of cGMP production and degradation can be provided by the use of fluorescent biosensors that are capable of monitoring this second messenger at different locations inside the cell with high temporal and spatial resolution. In this review, we will summarize how these emerging new tools have improved our understanding of cardiac cGMP signaling in health and disease, and attempt to anticipate future challenges in the field.
Collapse
|
26
|
Shuai W, Wen J, Li X, Wang D, Li Y, Xiang J. High-Choline Diet Exacerbates Cardiac Dysfunction, Fibrosis, and Inflammation in a Mouse Model of Heart Failure With Preserved Ejection Fraction. J Card Fail 2020; 26:694-702. [PMID: 32417378 DOI: 10.1016/j.cardfail.2020.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Trimethylamine N-oxide, a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients, has been associated with a poor prognosis for patients with cardiovascular disease. However, the role and underlying mechanisms of trimethylamine N-oxide in the cardiac function of patients with heart failure with preserved ejection fraction (HFpEF) have not been elucidated. METHODS AND RESULTS C57BL/6 mice were fed a normal diet, high-choline (1.2%) diet, and/or 3-dimethyl-1-butanol diet 3 weeks before the operation (uninephrectomy followed by a continuous saline or aldosterone infusion). Mice were assessed for 4 weeks after the operation. Echocardiographic and hemodynamic measurements were performed. Blood samples were evaluated for choline, trimethylamine N-oxide, and inflammatory factor levels. Left ventricular tissues were collected to assess myocardial fibrosis and inflammation. Left ventricular hypertrophy, pulmonary congestion, and diastolic dysfunction were markedly exacerbated in HFpEF mice fed high-choline diets compared with mice fed the control diet. Myocardial fibrosis and inflammation were markedly increased in HFpEF mice fed high-choline diets compared with animals fed the control diet. Additionally, 3,3-dimethyl-1-butanol DMB markedly ameliorated cardiac diastolic dysfunction, myocardial fibrosis and inflammation in the choline-fed HFpEF mice. CONCLUSIONS A high-choline diet exacerbates cardiac dysfunction, myocardial fibrosis, and inflammation in HFpEF mice, and 3,3-dimethyl-1-butanol ameliorates the high-choline diet-induced cardiac remodeling.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuli Li
- From the (1)Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Dan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunde Li
- From the (1)Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xiang
- From the (1)Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Chen X, Wang S, Huang Y, Zhao X, Jia X, Meng G, Zheng Q, Zhang M, Wu Y, Wang L. Obesity Reshapes Visceral Fat-Derived MHC I Associated-Immunopeptidomes and Generates Antigenic Peptides to Drive CD8 + T Cell Responses. iScience 2020; 23:100977. [PMID: 32217358 PMCID: PMC7109454 DOI: 10.1016/j.isci.2020.100977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Adaptive CD8+ T cells were observed to contribute to the initiation and progression of obesity-induced visceral adipose tissue (VAT) chronic inflammation that is critically linked to metabolic disorders. Numerous peptides presented by the major histocompatibility complex (MHC) class I molecules at the cell surface are collectively termed as MHC I-associated immunopeptidome (MIP) for the interaction with CD8+ T cells. We conducted the in-depth mapping of MIP of VAT from lean and obese mice using large-scale high-resolution mass spectrometry and observed that obesity significantly alters the landscape of VAT MIPs. Additionally, the obese VAT-exclusive MIP source proteome reflected a distinct obesity-associated signature. A peptide derived from lactate dehydrogenase A (LDHA) or B chain, named LDHA237-244, was identified as an obese VAT-exclusive immunogenic peptide that was capable of eliciting pro-inflammatory CD8+ T cells responses. Our findings suggest that certain immunogenic peptides generated by obesity may trigger CD8+ T cell-mediated VAT inflammation. Obesity reshapes the landscape of VAT-derived MIP The obese VAT-exclusive MIP reflects an obesity-associated signature An obese VAT-exclusive peptide LDHA237-244 can stimulate CD8+ T cell responses LDHA237-244-reactive CD8+ T cells were present in obese mice but not lean mice
Collapse
Affiliation(s)
- Xiaoling Chen
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shufeng Wang
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xia Zhao
- Bioinformatics Center, Department of Microbiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xu Jia
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Physiology, North Sichuan Medical College, Nanchong 637007, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Zheng
- Department of Physiology, North Sichuan Medical College, Nanchong 637007, China
| | - Mengjun Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuzhang Wu
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Li Wang
- Institute of Immunology PLA, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
28
|
Wan X, Belanger K, Widen SG, Kuyumcu-Martinez MN, Garg NJ. Genes of the cGMP-PKG-Ca 2+ signaling pathway are alternatively spliced in cardiomyopathy: Role of RBFOX2. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165620. [PMID: 31778749 PMCID: PMC6954967 DOI: 10.1016/j.bbadis.2019.165620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
Aberrations in the cGMP-PKG-Ca2+ pathway are implicated in cardiovascular complications of diverse etiologies, though involved molecular mechanisms are not understood. We performed RNA-Seq analysis to profile global changes in gene expression and exon splicing in Chagas disease (ChD) murine myocardium. Ingenuity-Pathway-Analysis of transcriptome dataset identified 26 differentially expressed genes associated with increased mobilization and cellular levels of Ca2+ in ChD hearts. Mixture-of-isoforms and Enrichr KEGG pathway analyses of the RNA-Seq datasets from ChD (this study) and diabetic (previous study) murine hearts identified alternative splicing (AS) in eleven genes (Arhgef10, Atp2b1, Atp2a3, Cacna1c, Itpr1, Mef2a, Mef2d, Pde2a, Plcb1, Plcb4, and Ppp1r12a) of the cGMP-PKG-Ca2+ pathway in diseased hearts. AS of these genes was validated by an exon exclusion-inclusion assay. Further, Arhgef10, Atp2b1, Mef2a, Mef2d, Plcb1, and Ppp1r12a genes consisted RBFOX2 (RNA-binding protein) binding-site clusters, determined by analyzing the RBFOX2 CLIP-Seq dataset. H9c2 rat heart cells transfected with Rbfox2 (vs. scrambled) siRNA confirmed that expression of Rbfox2 is essential for proper exon splicing of genes of the cGMP-PKG-Ca2+ pathway. We conclude that changes in gene expression may influence the Ca2+ mobilization pathway in ChD, and AS impacts the genes involved in cGMP/PKG/Ca2+ signaling pathway in ChD and diabetes. Our findings suggest that ChD patients with diabetes may be at increased risk of cardiomyopathy and heart failure and provide novel ways to restore cGMP-PKG regulated signaling networks via correcting splicing patterns of key factors using oligonucleotide-based therapies for the treatment of cardiovascular complications.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America
| | - KarryAnne Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, 77555-1070, TX, United States of America; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, 77555, TX, United States of America.
| |
Collapse
|
29
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
30
|
Ying W, Zhao D, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, Guallar E, Sharma K, Shah SJ, Kass DA, Hoogeveen RC, Lima JA, Heckbert SR, deFilippi CR, Post WS, Michos ED. Associations Between the Cyclic Guanosine Monophosphate Pathway and Cardiovascular Risk Factors: MESA. J Am Heart Assoc 2019; 8:e013149. [PMID: 31838972 PMCID: PMC6951064 DOI: 10.1161/jaha.119.013149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background cGMP mediates numerous cardioprotective functions and is a potential therapeutic target for cardiovascular disease. Preclinical studies suggest that plasma cGMP is reflective of natriuretic peptide stimulation. Epidemiologic associations between cGMP and natriuretic peptide, as well as cardiovascular disease risk factors, are unknown. Methods and Results We measured plasma cGMP in 542 men and 496 women free of cardiovascular disease and heart failure in MESA (Multi‐Ethnic Study of Atherosclerosis). Cross‐sectional associations of N‐terminal pro‐B type natriuretic peptide, sex hormones, and cardiovascular disease/heart failure risk factors with log(cGMP) were analyzed using multivariable linear regression models. Mean (SD) cGMP was 4.7 (2.6) pmol/mL, with no difference between the sexes. After adjusting for cardiovascular risk factors, N‐terminal pro‐B type natriuretic peptide was significantly positively associated with cGMP (P<0.05). Higher blood pressure and lower estimated glomerular filtration rate were associated with higher cGMP (P<0.05). Triglyceride levels, total/high‐density lipoprotein cholesterol ratio, presence of diabetes mellitus, and the homeostatic model assessment of insulin resistance were inversely associated with cGMP (P<0.05). Among women, free testosterone and dehydroepiandrosterone were inversely associated with cGMP, while sex hormone binding globulin was positively associated (P<0.05). Conclusions In a community‐cohort, plasma cGMP was associated with natriuretic peptide signaling. Higher blood pressure and greater renal dysfunction were positively associated with cGMP, while adverse metabolic risk factors were inversely associated. Increased androgenicity in postmenopausal women was inversely associated with cGMP. These novel associations further our understanding of the role of cGMP in a general population.
Collapse
Affiliation(s)
- Wendy Ying
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Di Zhao
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD
| | - Pamela Ouyang
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Vinita Subramanya
- Department of Epidemiology Emory University Rollins School of Public Health Atlanta GA
| | - Dhananjay Vaidya
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD.,Division of General Internal Medicine Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Chiadi E Ndumele
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD.,Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD
| | - Eliseo Guallar
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD
| | - Kavita Sharma
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Sanjiv J Shah
- Division of Cardiology Department of Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - David A Kass
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Ron C Hoogeveen
- Division of Atherosclerosis & Vascular Medicine Department of Medicine Baylor College of Medicine Houston TX
| | - Joao A Lima
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology University of Washington Seattle WA
| | | | - Wendy S Post
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD.,Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD
| | - Erin D Michos
- Division of Cardiology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD.,Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD
| |
Collapse
|
31
|
D'Amario D, Migliaro S, Borovac JA, Restivo A, Vergallo R, Galli M, Leone AM, Montone RA, Niccoli G, Aspromonte N, Crea F. Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2019; 10:1347. [PMID: 31749710 PMCID: PMC6848263 DOI: 10.3389/fphys.2019.01347] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an increasingly studied entity accounting for 50% of all diagnosed heart failure and that has claimed its own dignity being markedly different from heart failure with reduced EF in terms of etiology and natural history (Graziani et al., 2018). Recently, a growing body of evidence points the finger toward microvascular dysfunction as the major determinant of the pathological cascade that justifies clinical manifestations (Crea et al., 2017). The high burden of comorbidities such as metabolic syndrome, hypertension, atrial fibrillation, chronic kidney disease, obstructive sleep apnea, and similar, could lead to a systemic inflammatory state that impacts the physiology of the endothelium and the perivascular environment, engaging complex molecular pathways that ultimately converge to myocardial fibrosis, stiffening, and dysfunction (Paulus and Tschope, 2013). These changes could even self-perpetrate with a positive feedback where hypoxia and locally released inflammatory cytokines trigger interstitial fibrosis and hypertrophy (Ohanyan et al., 2018). Identifying microvascular dysfunction both as the cause and the maintenance mechanism of this condition has opened the field to explore specific pharmacological targets like nitric oxide (NO) pathway, sarcomeric titin, transforming growth factor beta (TGF-β) pathway, immunomodulators or adenosine receptors, trying to tackle the endothelial impairment that lies in the background of this syndrome (Graziani et al., 2018;Lam et al., 2018). Yet, many questions remain, and the new data collected still lack a translation to improved treatment strategies. To further elaborate on this tangled and exponentially growing topic, we will review the evidence favoring a microvasculature-driven etiology of this condition, its clinical correlations, the proposed diagnostic workup, and the available/hypothesized therapeutic options to address microvascular dysfunction in the failing heart.
Collapse
Affiliation(s)
- Domenico D'Amario
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Stefano Migliaro
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Attilio Restivo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Rocco Vergallo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mattia Galli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Maria Leone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giampaolo Niccoli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
32
|
Shea CM, Price GM, Liu G, Sarno R, Buys ES, Currie MG, Masferrer JL. Soluble guanylate cyclase stimulator praliciguat attenuates inflammation, fibrosis, and end-organ damage in the Dahl model of cardiorenal failure. Am J Physiol Renal Physiol 2019; 318:F148-F159. [PMID: 31608671 DOI: 10.1152/ajprenal.00247.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduced nitric oxide (NO) and a decrease in cGMP signaling mediated by soluble guanylate cyclase (sGC) has been linked to the development of several cardiorenal diseases. Stimulation of sGC is a potential means for enhancing cGMP production in conditions of reduced NO bioavailability. The purpose of our studies was to determine the effects of praliciguat, a clinical-stage sGC stimulator, in a model of cardiorenal failure. Dahl salt-sensitive rats fed a high-salt diet to induce hypertension and organ damage were treated with the sGC stimulator praliciguat to determine its effects on hemodynamics, biomarkers of inflammation, fibrosis, tissue function, and organ damage. Praliciguat treatment reduced blood pressure, improved cardiorenal damage, and attenuated the increase in circulating markers of inflammation and fibrosis. Notably, praliciguat affected markers of renal damage at a dose that had minimal effect on blood pressure. In addition, liver fibrosis and circulating markers of tissue damage were attenuated in praliciguat-treated rats. Stimulation of the NO-sGC-cGMP pathway by praliciguat attenuated or normalized indicators of chronic inflammation, fibrosis, and tissue dysfunction in the Dahl salt-sensitive rat model. Stimulation of sGC by praliciguat may present an effective mechanism for treating diseases linked to NO deficiency, particularly those associated with cardiac and renal failure. Praliciguat is currently being evaluated in patients with diabetic nephropathy and heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
| | | | - Guang Liu
- Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Renee Sarno
- Cyclerion Therapeutics, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
33
|
Molecular Mechanisms of Cardiac Remodeling and Regeneration in Physical Exercise. Cells 2019; 8:cells8101128. [PMID: 31547508 PMCID: PMC6829258 DOI: 10.3390/cells8101128] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Regular physical activity with aerobic and muscle-strengthening training protects against the occurrence and progression of cardiovascular disease and can improve cardiac function in heart failure patients. In the past decade significant advances have been made in identifying mechanisms of cardiomyocyte re-programming and renewal including an enhanced exercise-induced proliferational capacity of cardiomyocytes and its progenitor cells. Various intracellular mechanisms mediating these positive effects on cardiac function have been found in animal models of exercise and will be highlighted in this review. 1) activation of extracellular and intracellular signaling pathways including phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), EGFR/JNK/SP-1, nitric oxide (NO)-signaling, and extracellular vesicles; 2) gene expression modulation via microRNAs (miR), in particular via miR-17-3p and miR-222; and 3) modulation of cardiac cellular metabolism and mitochondrial adaption. Understanding the cellular mechanisms, which generate an exercise-induced cardioprotective cellular phenotype with physiological hypertrophy and enhanced proliferational capacity may give rise to novel therapeutic targets. These may open up innovative strategies to preserve cardiac function after myocardial injury as well as in aged cardiac tissue.
Collapse
|
34
|
P66Shc Deletion Ameliorates Oxidative Stress and Cardiac Dysfunction in Pressure Overload-Induced Heart Failure. J Card Fail 2019; 26:243-253. [PMID: 31536807 DOI: 10.1016/j.cardfail.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE p66Shc is a redox enzyme that plays an important role in the response of oxidative stress and the p53-dependent apoptosis. The expression level of p66Shc has a negative correlation with the resistance of oxidative stress in vivo and in vitro. We aim to demonstrate the function of p66Shc in pressure overload-induced heart failure. METHODS AND RESULTS The pressure overload-induced heart failure was induced in mice by transverse aortic constriction (TAC). Cardiac dysfunction was shown by transthoracic echocardiography. Western blot was used to check the protein levels of phosphodiesterase type 5 (PDE5) and ventricular oxidative stress markers. Superoxide dismutase (SOD) mimetic M40401 and PDE5 inhibitor sildenafil were used in the treatment of mice. The deletion of p66Shc attenuated cardiac dysfunction and oxidative stress in pressure overload-induced heart failure. p66Shc deletion also decreased the expression of ventricular oxidative stress markers and enhanced PKG signaling by promoting the expression of PDE5. M40401 and sildenafil attenuated the TAC-induced cardiac dysfunction and oxidative stress in p66Shc overexpression mice. CONCLUSIONS Our findings suggest that p66Shc participates in the regulation of cardiac dysfunction and oxidative stress in TAC-derived pressure overload-induced heart failure in mice, and SOD and PDE5 are molecules downstream of p66Shc in this regulatory process.
Collapse
|
35
|
Michels da Silva D, Langer H, Graf T. Inflammatory and Molecular Pathways in Heart Failure-Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. Int J Mol Sci 2019; 20:ijms20092322. [PMID: 31083399 PMCID: PMC6540104 DOI: 10.3390/ijms20092322] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated pro-inflammatory biomarkers and cytokines are associated with morbidity and mortality in heart failure (HF). Preclinical and clinical studies have shown multiple inflammatory mechanisms causing cardiac remodeling, dysfunction and chronic failure. Therapeutics in trials targeting the immune response in heart failure and its effects did not result in evident benefits regarding clinical endpoints and mortality. This review elaborates pathways of immune cytokines in pathogenesis and worsening of heart failure in clinical and cellular settings. Besides the well-known mechanisms of immune activation and inflammation in atherosclerosis causing ischemic cardiomyopathy or myocarditis, attention is focused on other mechanisms leading to heart failure such as transthyretin (TTR) amyloidosis or heart failure with preserved ejection fraction. The knowledge of the pathogenesis in heart failure and amyloidosis on a molecular and cellular level might help to highlight new disease defining biomarkers and to lead the way to new therapeutic targets.
Collapse
Affiliation(s)
- Diana Michels da Silva
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Harald Langer
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
36
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
37
|
Ren X, Johns RA, Gao WD. EXPRESS: Right Heart in Pulmonary Hypertension: From Adaptation to Failure. Pulm Circ 2019; 9:2045894019845611. [PMID: 30942134 PMCID: PMC6681271 DOI: 10.1177/2045894019845611] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023] Open
Abstract
Right ventricular (RV) failure (RVF) has garnered significant attention in recent years because of its negative impact on clinical outcomes in patients with pulmonary hypertension (PH). PH triggers a series of events, including activation of several signaling pathways that regulate cell growth, metabolism, extracellular matrix remodeling, and energy production. These processes render the RV adaptive to PH. However, RVF develops when PH persists, accompanied by RV ischemia, alterations in substrate and mitochondrial energy metabolism, increased free oxygen radicals, increased cell loss, downregulation of adrenergic receptors, increased inflammation and fibrosis, and pathologic microRNAs. Diastolic dysfunction is also an integral part of RVF. Emerging non-invasive technologies such as molecular or metallic imaging, cardiac MRI, and ultrafast Doppler coronary flow mapping will be valuable tools to monitor RVF, especially the transition to RVF. Most PH therapies cannot treat RVF once it has occurred. A variety of therapies are available to treat acute and chronic RVF, but they are mainly supportive, and no effective therapy directly targets the failing RV. Therapies that target cell growth, cellular metabolism, oxidative stress, and myocyte regeneration are being tested preclinically. Future research should include establishing novel RVF models based on existing models, increasing use of human samples, creating human stem cell-based in vitro models, and characterizing alterations in cardiac excitation–contraction coupling during transition from adaptive RV to RVF. More successful strategies to manage RVF will likely be developed as we learn more about the transition from adaptive remodeling to maladaptive RVF in the future.
Collapse
Affiliation(s)
- Xianfeng Ren
- Department of Anesthesiology,
China-Japan
Friendship Hospital, Beijing, China
| | - Roger A. Johns
- Department of Anesthesiology and
Critical Care Medicine,
Johns
Hopkins University School of Medicine,
Baltimore, MD, USA
| | - Wei Dong Gao
- Department of Anesthesiology and
Critical Care Medicine,
Johns
Hopkins University School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
38
|
Kan C, Cao J, Hou J, Jing X, Zhu Y, Zhang J, Guo Y, Chen X. Correlation of miR-21 and BNP with pregnancy-induced hypertension complicated with heart failure and the diagnostic value. Exp Ther Med 2019; 17:3129-3135. [PMID: 30936985 PMCID: PMC6434261 DOI: 10.3892/etm.2019.7286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Correlation of miR-21 and B-type natriuretic peptide (BNP) with pregnancy-induced hypertension (PIH) complicated with heart failure and the diagnostic value was investigated. Sixty patients with PIH complicated with heart failure admitted to Affiliated Hospital of Chengde Medical University from July 2016 to July 2017 were enrolled as the experimental group, and 35 normal pregnant women as the control group. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method was used to determine the expression level of plasma miR-21 expression level. An automatic biochemical analyzer was used to determine plasma BNP expression level. Spearmans correlation analysis was used for the correlation analysis of miR-21 and BNP. ROC curve was used for evaluating the diagnostic values of miR-21 and BNP for PIH complicated with heart failure. miR-21 and BNP expression levels were higher in patients with PIH complicated with heart failure than those in the normal individuals, and were increased in line with the heart failure grade (P<0.001). The plasma miR-21 expression was positively correlated with BNP in patients with PIH complicated with heart failure (r=0.685, P<0.001). Both miR-21 and BNP had higher diagnostic values for PIH complicated with heart failure, in the diagnosis, the best cut-off value [odds ratio (OR)] of miR-21 was 1.113, with an area under curve (AUC) of 0.889 and a 95% confidence interval (CI) of 82.05-95.76%; the OR of BNP was 123, with an AUC of 0.747 and a 95% CI of 64.95-84.38%. Blood pressure, six-minute walk test (6MWT), left ventricular ejection fraction (LVEF) and left ventricular end diastolic diameter (LVEDD) were independent risk factors for the occurrence of PIH complicated with heart failure (P<0.05). In conclusion, miR-21 and BNP, highly expressed in patients with PIH complicated with heart failure, are expected to become important biomarkers for diagnosing PIH complicated with heart failure and judging the degree of heart failure in the patients, and worthy of clinical popularization and application.
Collapse
Affiliation(s)
- Changli Kan
- Department of Obstetrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Junjie Cao
- Department of Geriatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jing Hou
- Department of Obstetrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiangyang Jing
- Department of Obstetrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yanju Zhu
- Department of Obstetrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jinhuan Zhang
- Department of Obstetrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yanwei Guo
- Department of Obstetrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xuerong Chen
- Department of Obstetrics, Yanan Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
39
|
Patel RB, Shah SJ. Drug Targets for Heart Failure with Preserved Ejection Fraction: A Mechanistic Approach and Review of Contemporary Clinical Trials. Annu Rev Pharmacol Toxicol 2019; 59:41-63. [PMID: 30296895 PMCID: PMC6327844 DOI: 10.1146/annurev-pharmtox-010818-021136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for over half of prevalent heart failure (HF) worldwide, and prognosis after hospitalization for HFpEF remains poor. Due, at least in part, to the heterogeneous nature of HFpEF, drug development has proved immensely challenging. Currently, there are no universally accepted therapies that alter the clinical course of HFpEF. Despite these challenges, important mechanistic understandings of the disease have revealed that the pathophysiology of HFpEF is distinct from that of HF with reduced ejection fraction and have also highlighted potential new therapeutic targets for HFpEF. Of note, HFpEF is a systemic syndrome affecting multiple organ systems. Depending on the organ systems involved, certain novel therapies offer promise in reducing the morbidity of the HFpEF syndrome. In this review, we aim to discuss novel pharmacotherapies for HFpEF based on its unique pathophysiology and identify key research strategies to further elucidate mechanistic pathways to develop novel therapeutics in the future.
Collapse
Affiliation(s)
- Ravi B Patel
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- T1 Center for Cardiovascular Therapeutics, Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
40
|
Alogna A, Schwarzl M, Manninger M, Hamdani N, Zirngast B, Kloth B, Steendijk P, Verderber J, Zweiker D, Westermann D, Blankenberg S, Maechler H, Tschöpe C, Linke WA, Marsche G, Pieske BM, Post H. Acute stimulation of the soluble guanylate cyclase does not impact on left ventricular capacitance in normal and hypertrophied porcine hearts in vivo. Am J Physiol Heart Circ Physiol 2018; 315:H669-H680. [PMID: 29727215 DOI: 10.1152/ajpheart.00510.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Experimental data indicate that stimulation of the nitric oxide-soluble guanylate cyclase(sGC)-cGMP-PKG pathway can increase left ventricular (LV) capacitance via phosphorylation of the myofilamental protein titin. We aimed to test whether acute pharmacological sGC stimulation with BAY 41-8543 would increase LV capacitance via titin phosphorylation in healthy and deoxycorticosteroneacetate (DOCA)-induced hypertensive pigs. Nine healthy Landrace pigs and 7 pigs with DOCA-induced hypertension and LV concentric hypertrophy were acutely instrumented to measure LV end-diastolic pressure-volume relationships (EDPVRs) at baseline and during intravenous infusion of BAY 41-8543 (1 and 3 μg·kg-1·min-1 for 30 min, respectively). Separately, in seven healthy and six DOCA pigs, transmural LV biopsies were harvested from the beating heart to measure titin phosphorylation during BAY 41-8543 infusion. LV EDPVRs before and during BAY 41-8543 infusion were superimposable in both healthy and DOCA-treated pigs, whereas mean aortic pressure decreased by 20-30 mmHg in both groups. Myocardial titin phosphorylation was unchanged in healthy pigs, but total and site-specific (Pro-Glu-Val-Lys and N2-Bus domains) titin phosphorylation was increased in DOCA-treated pigs. Bicoronary nitroglycerin infusion in healthy pigs ( n = 5) induced a rightward shift of the LV EDPVR, demonstrating the responsiveness of the pathway in this model. Acute systemic sGC stimulation with the sGC stimulator BAY 41-8543 did not recruit an LV preload reserve in both healthy and hypertrophied LV porcine myocardium, although it increased titin phosphorylation in the latter group. Thus, increased titin phosphorylation is not indicative of increased in vivo LV capacitance. NEW & NOTEWORTHY We demonstrate that acute pharmacological stimulation of soluble guanylate cyclase does not increase left ventricular compliance in normal and hypertrophied porcine hearts. Effects of long-term soluble guanylate cyclase stimulation with oral compounds in disease conditions associated with lowered myocardial cGMP levels, i.e., heart failure with preserved ejection fraction, remain to be investigated.
Collapse
Affiliation(s)
- Alessio Alogna
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| | - Michael Schwarzl
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf , Hamburg , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Hamburg/Kiel/Lübeck, Hamburg , Germany
| | - Martin Manninger
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz , Graz , Austria
| | - Nazha Hamdani
- Institute of Physiology II, University of Muenster , Muenster , Germany
| | - Birgit Zirngast
- Department of Cardiothoracic Surgery, Medical University of Graz , Graz , Austria
| | - Benjamin Kloth
- Department of Cardiovascular Surgery, University Heart Center Hamburg-Eppendorf , Hamburg , Germany
| | - Paul Steendijk
- Department of Cardiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Jochen Verderber
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz , Graz , Austria
| | - David Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz , Graz , Austria
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf , Hamburg , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Hamburg/Kiel/Lübeck, Hamburg , Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf , Hamburg , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Hamburg/Kiel/Lübeck, Hamburg , Germany
| | - Heinrich Maechler
- Department of Cardiothoracic Surgery, Medical University of Graz , Graz , Austria
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster , Muenster , Germany
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz , Graz , Austria
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| | - Heiner Post
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V.-Partner Site Berlin, Berlin, Germany
| |
Collapse
|
41
|
Ovchinnikova E, Hoes M, Ustyantsev K, Bomer N, de Jong TV, van der Mei H, Berezikov E, van der Meer P. Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:794-807. [PMID: 29456183 PMCID: PMC5918264 DOI: 10.1016/j.stemcr.2018.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy accompanies many forms of cardiovascular diseases. The mechanisms behind the development and regulation of cardiac hypertrophy in the human setting are poorly understood, which can be partially attributed to the lack of a human cardiomyocyte-based preclinical test system recapitulating features of diseased myocardium. The objective of our study is to determine whether human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to mechanical stretch can be used as an adequate in vitro model for studying molecular mechanisms of cardiac hypertrophy. We show that hESC-CMs subjected to cyclic stretch, which mimics mechanical overload, exhibit essential features of a hypertrophic state on structural, functional, and gene expression levels. The presented hESC-CM stretch approach provides insight into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays groundwork for the development of pharmacological approaches as well as for discovering potential circulating biomarkers of cardiac dysfunction.
Collapse
Affiliation(s)
- Ekaterina Ovchinnikova
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands; European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Martijn Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Tristan V de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Henny van der Mei
- University of Groningen, University Medical Center Groningen, Biomedical Engineering Department, Groningen, 9713AV, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands.
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands.
| |
Collapse
|
42
|
Altara R, Giordano M, Nordén ES, Cataliotti A, Kurdi M, Bajestani SN, Booz GW. Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2017; 8:160. [PMID: 28769873 PMCID: PMC5512012 DOI: 10.3389/fendo.2017.00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major unmet medical need that is characterized by the presence of multiple cardiovascular and non-cardiovascular comorbidities. Foremost among these comorbidities are obesity and diabetes, which are not only risk factors for the development of HFpEF, but worsen symptoms and outcome. Coronary microvascular inflammation with endothelial dysfunction is a common denominator among HFpEF, obesity, and diabetes that likely explains at least in part the etiology of HFpEF and its synergistic relationship with obesity and diabetes. Thus, pharmacological strategies to supplement nitric oxide and subsequent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling may have therapeutic promise. Other potential approaches include exercise and lifestyle modifications, as well as targeting endothelial cell mineralocorticoid receptors, non-coding RNAs, sodium glucose transporter 2 inhibitors, and enhancers of natriuretic peptide protective NO-independent cGMP-initiated and alternative signaling, such as LCZ696 and phosphodiesterase-9 inhibitors. Additionally, understanding the role of adipokines in HFpEF may lead to new treatments. Identifying novel drug targets based on the shared underlying microvascular disease process may improve the quality of life and lifespan of those afflicted with both HFpEF and obesity or diabetes, or even prevent its occurrence.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Raffaele Altara,
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Einar S. Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - Mazen Kurdi
- Faculty of Sciences, Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | - Saeed N. Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
43
|
Louridas GE, Lourida KG. Heart Failure in Patients with Preserved Ejection Fraction: Questions Concerning Clinical Progression. J Cardiovasc Dev Dis 2016; 3:jcdd3030027. [PMID: 29367571 PMCID: PMC5715675 DOI: 10.3390/jcdd3030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Over the last two decades, important advances have been made in explaining some pathophysiological aspects of heart failure with preserved ejection fraction (HFpEF) with repercussions for the successful clinical management of the syndrome. Despite these gains, our knowledge for the natural history of clinical progression from the pre-clinical diastolic dysfunction (PDD) until the final clinical stages is significantly limited. The subclinical progression of PDD to the clinical phenotype of HFpEF and the further clinical progression to some more complex clinical models with multi-organ involvement, similar to heart failure with reduced ejection fraction (HFrEF), continue to be poorly understood. Prospective studies are needed to elucidate the natural history of clinical progression in patients with HFpEF and to identify the exact left ventricular remodeling mechanism that underlies this progression.
Collapse
Affiliation(s)
- George E Louridas
- Department of Cardiology, University General Hospital AHEPA, Aristotle University, Thessaloniki 54124, Greece.
| | - Katerina G Lourida
- Department of Cardiology, University General Hospital AHEPA, Aristotle University, Thessaloniki 54124, Greece.
| |
Collapse
|
44
|
van der Velden J, van der Wall EE, Paulus WJ. Heart failure with preserved ejection fraction: current status and challenges for the future. Neth Heart J 2016; 24:225-6. [PMID: 26940694 PMCID: PMC4796051 DOI: 10.1007/s12471-016-0808-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- J van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands. .,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands.
| | - E E van der Wall
- Netherlands Society of Cardiology/Holland Heart House, Utrecht, The Netherlands
| | - W J Paulus
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|