1
|
Consiglieri G, Tucci F, De Pellegrin M, Guerrini B, Cattoni A, Risca G, Scarparo S, Sarzana M, Pontesilli S, Mellone R, Gasperini S, Galimberti S, Silvani P, Filisetti C, Darin S, Forni G, Miglietta S, Santi L, Facchini M, Corti A, Fumagalli F, Cicalese MP, Calbi V, Migliavacca M, Barzaghi F, Ferrua F, Gallo V, Recupero S, Canarutto D, Doglio M, Tedesco L, Volpi N, Rovelli A, la Marca G, Valsecchi MG, Zancan S, Ciceri F, Naldini L, Baldoli C, Parini R, Gentner B, Aiuti A, Bernardo ME. Early skeletal outcomes after hematopoietic stem and progenitor cell gene therapy for Hurler syndrome. Sci Transl Med 2024; 16:eadi8214. [PMID: 38691622 DOI: 10.1126/scitranslmed.adi8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.
Collapse
Affiliation(s)
- Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | | | | | - Alessandro Cattoni
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Giulia Risca
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Stefano Scarparo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Marina Sarzana
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Silvia Pontesilli
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renata Mellone
- Radiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gasperini
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Units of Neurology and Neurophysiology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Silvani
- Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Filisetti
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Forni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Simona Miglietta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Marcella Facchini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Francesca Fumagalli
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Maddalena Migliavacca
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Vera Gallo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Salvatore Recupero
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Daniele Canarutto
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Matteo Doglio
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Lucia Tedesco
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Laboratory of Biochemistry and Glycobiology, 41125 Modena, Italy
| | - Attilio Rovelli
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Newborn Screening, Clinical Chemistry and Pharmacology Laboratory, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Stefano Zancan
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Fabio Ciceri
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
- Department of Haematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Cristina Baldoli
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossella Parini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1015 Lausanne, Switzerland
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
2
|
Montaño AM, Różdżyńska-Świątkowska A, Jurecka A, Ramirez AN, Zhang L, Marsden D, Wang RY, Harmatz P. Growth patterns in patients with mucopolysaccharidosis VII. Mol Genet Metab Rep 2023; 36:100987. [PMID: 37415957 PMCID: PMC10320588 DOI: 10.1016/j.ymgmr.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
Objective This study assessed growth patterns in patients with mucopolysaccharidosis (MPS) VII before enzyme replacement therapy. Methods Height, weight, and body mass index (BMI) measurements and Z-scores from patients from three clinical studies were compared with those from CDC healthy population growth charts. Relationships with age/sex and history of non-immune hydrops fetalis (NIHF) were assessed by linear regression and ANOVA, respectively. Results Among 20 enrolled patients with MPS VII, height Z-scores were near normal until 1 year of age but declined thereafter, particularly among males. There was no consistent pattern in weight Z-score. BMI Z-scores were above normal and increased slightly with age among males and were slightly below normal among females. Male patients with a history of NIHF had greater declines in height and weight Z-scores over time versus males without history of NIHF. There was no clear effect of NIHF history on height and weight Z-scores in female patients. Conclusions In patients with MPS VII, declines in height Z-score began early in life, particularly among males, while changes in BMI varied by sex. Patients with MPS VII and a history of NIHF had greater declines in height Z-score with age than did patients without a history of NIHF.Clinical trial registration: This retrospective analysis included patients enrolled in an open-label phase 2 study (UX003-CL203; ClinicalTrials.gov, NCT02418455), a randomized, placebo-controlled, blind-start phase 3 study (UX003-CL301; ClinicalTrials.gov, NCT02230566), or its open-label, long-term extension (UX003-CL202; ClinicalTrials.gov, NCT02432144). Requests for individual de-identified participant data and the clinical study report from this study are available to researchers providing a methodologically sound proposal that is in accordance with the Ultragenyx data sharing commitment. To gain access, data requestors will need to sign a data access and use agreement. Data will be shared via secured portal. The study protocol and statistical analysis plan for this study are available on the relevant clinical trial registry websites with the tabulated results.
Collapse
Affiliation(s)
- Adriana M. Montaño
- Department of Pediatrics, and Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | | | | | | | - Lin Zhang
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | | - Raymond Y. Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County, USA
- Division of Pediatrics, University of California-Irvine School of Medicine, Orange, CA, USA
| | - Paul Harmatz
- UCSF Benioff Children's Hospital, Oakland, CA, USA
| |
Collapse
|
3
|
Żuber Z, Kieć-Wilk B, Kałużny Ł, Wierzba J, Tylki-Szymańska A. Diagnosis and Management of Mucopolysaccharidosis Type II (Hunter Syndrome) in Poland. Biomedicines 2023; 11:1668. [PMID: 37371763 PMCID: PMC10296388 DOI: 10.3390/biomedicines11061668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Mucopolysaccharidosis type II (MPS II; also known as Hunter syndrome) is a rare, inherited lysosomal storage disease. The disease is caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase (I2S) due to mutations in the IDS gene, which leads to accumulation of glycosaminoglycans (GAGs). Deficiency of I2S enzyme activity in patients with MPS II leads to progressive lysosomal storage of GAGs in the liver, spleen, heart, bones, joints, and respiratory tract. This process disturbs cellular functioning and leads to multisystemic disease manifestations. Symptoms and their time of onset differ among patients. Diagnosis of MPS II involves assessment of clinical features, biochemical parameters, and molecular characteristics. Life-long enzyme replacement therapy with idursulfase (recombinant human I2S) is the current standard of care. However, an interdisciplinary team of specialists is required to monitor and assess the patient's condition to ensure optimal care. An increasing number of patients with this rare disease reach adulthood and old age. The transition from pediatric care to the adult healthcare system should be planned and carried out according to guidelines to ensure maximum benefit for the patient.
Collapse
Affiliation(s)
- Zbigniew Żuber
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
| | - Beata Kieć-Wilk
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Łukasz Kałużny
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jolanta Wierzba
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| |
Collapse
|
4
|
Polgreen LE, Bay L, Clarke LA, Guffon N, Jones SA, Muenzer J, Flores AL, Wilson K, Viskochil D. Growth in individuals with attenuated mucopolysaccharidosis type I during untreated and treated periods: Data from the MPS I registry. Am J Med Genet A 2022; 188:2941-2951. [PMID: 35869927 PMCID: PMC9545955 DOI: 10.1002/ajmg.a.62910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Mucopolysaccharidosis Type I (MPS I) is caused by deficiency of α-L-iduronidase. Short stature and growth deceleration are common in individuals with the attenuated MPS I phenotype. Study objectives were to assess growth in individuals with attenuated MPS I enrolled in The MPS I Registry while untreated and after initiation of enzyme replacement therapy (ERT) with laronidase (recombinant human iduronidase). Individuals in the MPS I Registry with at least one observation for height and assigned attenuated MPS I phenotype as of September 2020 were included. The cohort included 142 males and 153 females 2-18 years of age. Age and sex adjusted standardized height-for-age z-scores during the natural history and ERT-treatment periods were assessed using linear mixed model repeated measures analyses. Growth curves were estimated during both periods and compared to standard growth charts from the Center for Disease Control (CDC). There was a significantly slower decline in height z-scores with age during the ERT-treated period compared to the natural history period. Estimated average height z-scores in the ERT-treatment versus the natural history period at age 10 were -2.4 versus -3.3 in females and -1.4 versus -2.9 in males (females first treated 3 year; males <4.1 year). While median height remained below CDC standards during both the natural history and ERT-treated periods for individuals with attenuated MPS I, laronidase ERT was associated with slower declines in height z-scores.
Collapse
Affiliation(s)
- Lynda E. Polgreen
- The Lundquist Institute at Harbor‐UCLA Medical CenterTorranceCaliforniaUSA
| | - Luisa Bay
- Hospital Nacional de Pediatría J. P. GarrahanCiudad Autónoma de Buenos AiresBuenos AiresArgentina
| | - Lorne A. Clarke
- Department of Medical Genetics and the British Columbia Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nathalie Guffon
- Centre de Référence des Maladies Héréditaires du MétabolismeHôpital Femme Mère EnfantLyonFrance
| | - Simon A. Jones
- St Mary's Hospital, Manchester University Foundation TrustUniversity of ManchesterManchesterUK
| | - Joseph Muenzer
- Department of PediatricsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | - David Viskochil
- Department of Pediatrics, Division of Medical GeneticsUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| |
Collapse
|
5
|
Comparison of growth dynamics in different types of MPS: an attempt to explain the causes. Orphanet J Rare Dis 2022; 17:339. [PMID: 36064607 PMCID: PMC9446781 DOI: 10.1186/s13023-022-02486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by deficient activity of enzymes responsible for the catabolism of glycosaminoglycans (GAGs), resulting in progressive damage to various tissues and organs. Affected individuals present with skeletal deformities, bone growth impairment, joint stiffness and frequently mental retardation. Results The objective of the study was to summarise over 30 years of observations of the growth dynamics in patients with different types of MPS, performed at the Children’s Memorial Health Institute (CMHI, Warsaw, Poland). A retrospective analysis of anthropometric data collected from 1989 to 2020 was performed for 195 patients with MPS I, MPS II, MPS III, MPS IVA and MPS VI. Mean values for birth body length were statistically significantly greater than in the general population. The mean z-scores for other MPS groups showed that until the 24th month of life, the growth pattern for all patients was similar, and the average z-scores for body height were greater than in reference charts. Afterwards, growth patterns began to differentiate for MPS groups.
Conclusions The long-term follow up showed that the growth pattern in patients with all types of mucopolysaccharidoses significantly deviates from the general population. Patients with MPS IVA had the most severe growth impairments compared to other patients in the study group. Neuropathic MPS I and II demonstrated severe growth impairments compared to other patients in this study. Patients with MPS III showed the mildest growth impairments compared to other MPS patients and reached the 3rd percentile last.
Collapse
|
6
|
Maier S, Zivicnjak M, Grigull L, Hennermann JB, Aries C, Maecker‐Kolhoff B, Sauer M, Das AM, Beier R. Predictors of growth patterns in children with mucopolysaccharidosis I after haematopoietic stem cell transplantation. JIMD Rep 2022; 63:371-378. [PMID: 35822096 PMCID: PMC9259397 DOI: 10.1002/jmd2.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal-recessive metabolic disorder caused by an enzyme deficiency of lysosomal alpha-l-iduronidase (IDUA). Haematopoietic stem cell transplantation (HSCT) is the therapeutic option of choice in MPS I patients younger than 2.5 years, which has a positive impact on neurocognitive development. However, impaired growth remains a problem. In this monocentric study, 14 patients with MPS I (mean age 1.72 years, range 0.81-3.08) were monitored according to a standardised follow-up program after successful allogeneic HSCT. A detailed anthropometric program was carried out to identify growth patterns and to determine predictors of growth in these children. All patients are alive and in outpatient care (mean follow-up 8.1 years, range 0.1-16.0). Progressively lower standard deviation scores (SDS) were observed for body length (mean SDS -1.61; -4.58 - 3.29), weight (-0.56; -3.19 - 2.95), sitting height (-3.28; -7.37 - 0.26), leg length (-1.64; -3.88 - 1.49) and head circumference (0.91; -2.52 - 6.09). Already at the age of 24 months, significant disproportions were detected being associated with increasing deterioration in growth for age. Younger age at HSCT, lower counts for haemoglobin and platelets, lower potassium, higher donor-derived chimerism, higher counts for leukocytes and recruitment of a matched unrelated donor (MUD) positively correlated with body length (p ≤ 0.05). In conclusion, this study characterised predictors and aspects of growth patterns in children with MPS I after HSCT, underlining that early HSCT of MUD is essential for slowing body disproportion.
Collapse
Affiliation(s)
- Stefanie Maier
- Department of Paediatric Haematology and OncologyHannover Medical SchoolHannoverGermany
| | - Miroslav Zivicnjak
- Department of Paediatric KidneyLiver and Metabolic Diseases at Hannover Medical SchoolHannoverGermany
| | - Lorenz Grigull
- Rare Disease Centre, Bonn University Medical CentreBonnGermany
| | - Julia B. Hennermann
- Villa Metabolica, Department of Paediatric and Adolescent MedicineUniversity Medical Centre MainzGermany
| | - Charlotte Aries
- Department of PaediatricsHamburg‐Eppendorf University Medical CentreHamburgGermany
| | | | - Martin Sauer
- Department of Paediatric Haematology and OncologyHannover Medical SchoolHannoverGermany
| | - Anibh M. Das
- Department of Paediatric KidneyLiver and Metabolic Diseases at Hannover Medical SchoolHannoverGermany
| | - Rita Beier
- Department of Paediatric Haematology and OncologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
7
|
Baronio F, Zucchini S, Zulian F, Salerno M, Parini R, Cattoni A, Deodato F, Gaeta A, Bizzarri C, Gasperini S, Pession A. Proposal of an Algorithm to Early Detect Attenuated Type I Mucopolysaccharidosis (MPS Ia) among Children with Growth Abnormalities. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010097. [PMID: 35056405 PMCID: PMC8780542 DOI: 10.3390/medicina58010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives: Diagnostic delay is common in attenuated Mucopolysaccharidosis Type I (MPS Ia) due to the rarity of the disease and the variability of clinical presentation. Short stature and impaired growth velocity are frequent findings in MPS Ia, but they rarely raise suspicion as paediatric endocrinologists are generally poorly trained to detect earlier and milder clinical signs of this condition. Materials and Methods: Following a consensus-based methodology, a multidisciplinary panel including paediatric endocrinologists, paediatricians with expertise in metabolic disorders, radiologists, and rheumatologists shared their experience on a possible clinical approach to the diagnosis of MPS Ia in children with short stature or stunted growth. Results: The result was the formation of an algorithm that illustrates how to raise the suspicion of MPS Ia in a patient older than 5 years with short stature and suggestive clinical signs. Conclusion: The proposed algorithm may represent a useful tool to improve the awareness of paediatric endocrinologists and reduce the diagnostic delay for patients with MPS Ia.
Collapse
Affiliation(s)
- Federico Baronio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (S.Z.); (A.P.)
- Correspondence: ; Tel.: +39-(0)-51-2144816
| | - Stefano Zucchini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (S.Z.); (A.P.)
| | - Francesco Zulian
- Rheumatology Unit, Department of Woman’s and Child’s Health, University of Padua, 35128 Padua, Italy;
| | - Mariacarolina Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Rossella Parini
- Department of Pediatrics, Milano-Bicocca University, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (R.P.); (A.C.); (S.G.)
| | - Alessandro Cattoni
- Department of Pediatrics, Milano-Bicocca University, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (R.P.); (A.C.); (S.G.)
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children’s Hospital IRCSS, 00165 Rome, Italy;
| | - Alberto Gaeta
- Radiology Unit, Pediatric Hospital Giovanni XXIII, 70123 Bari, Italy;
| | - Carla Bizzarri
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Serena Gasperini
- Department of Pediatrics, Milano-Bicocca University, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy; (R.P.); (A.C.); (S.G.)
| | - Andrea Pession
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (S.Z.); (A.P.)
| |
Collapse
|
8
|
Cattoni A, Chiaraluce S, Gasperini S, Molinari S, Biondi A, Rovelli A, Parini R. "Growth patterns in children with mucopolysaccharidosis type I-Hurler after hematopoietic stem cell transplantation: Comparison with untreated patients". Mol Genet Metab Rep 2021; 28:100787. [PMID: 34408967 PMCID: PMC8361197 DOI: 10.1016/j.ymgmr.2021.100787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/02/2022] Open
Abstract
The impact of hematopoietic stem cell transplantation (HSCT) on growth in patients diagnosed with mucopolysaccharidosis I Hurler (MPS-IH) has been historically regarded as unsatisfactory. Nevertheless, the growth patterns recorded in transplanted patients have always been compared to those of healthy children. The objective of this study was to verify the impact of HSCT on MPS-IH long term growth achievements. The auxological data of 15 patients were assessed longitudinally and compared both to the WHO growth centiles for healthy individuals and to recently published curves of untreated MPS-IH children. Despite a progressive decrease after HSCT when estimated with reference to the WHO growth charts, median height SDS showed a progressive and statistically significant increase when comparing the stature recorded at each timepoint in our population to the curves of untreated MPS-IH individuals (from ‐0.39 SDS at t0 to +1.35 SDS 5 years after HSCT, p value < 0.001 and to +3.67 SDS at the age of 9 years, p value < 0.0001). In conclusion, though not efficient enough to restore a normal growth pattern in MPS-IH patients, we hereby demonstrate that HSCT positively affects growth and provides transplanted patients with a remarkable height gain compared to untreated gender- and age- matched individuals.
Collapse
Affiliation(s)
- Alessandro Cattoni
- Department of Pediatrics, Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Azienda Ospedaliera San Gerardo, Monza, (MB), Italy
- Corresponding author at: Department of Paediatrics, Università degli Studi di Milano-Bicocca, Fondazione MBBM, San Gerardo Hospital, via Pergolesi 33, 20900 Monza, (MB), Italy.
| | - Sofia Chiaraluce
- Department of Pediatrics, Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Azienda Ospedaliera San Gerardo, Monza, (MB), Italy
| | - Serena Gasperini
- Department of Pediatrics, Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Azienda Ospedaliera San Gerardo, Monza, (MB), Italy
| | - Silvia Molinari
- Department of Pediatrics, Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Azienda Ospedaliera San Gerardo, Monza, (MB), Italy
| | - Andrea Biondi
- Department of Pediatrics, Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Azienda Ospedaliera San Gerardo, Monza, (MB), Italy
| | - Attilio Rovelli
- Department of Pediatrics, Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Azienda Ospedaliera San Gerardo, Monza, (MB), Italy
| | - Rossella Parini
- Department of Pediatrics, Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Azienda Ospedaliera San Gerardo, Monza, (MB), Italy
- TIGET Institute, IRCCS San Raffaele Hospital, Segrate, (MI), Italy
| |
Collapse
|
9
|
Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 2020; 18:759-773. [PMID: 33064251 PMCID: PMC7736118 DOI: 10.1007/s11914-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Jiang Z, Derrick-Roberts ALK, Reichstein C, Byers S. Cell cycle progression is disrupted in murine MPS VII growth plate leading to reduced chondrocyte proliferation and transition to hypertrophy. Bone 2020; 132:115195. [PMID: 31863960 DOI: 10.1016/j.bone.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023]
Abstract
Endochondral bone growth is abnormal in 6 of the 11 types of mucopolysaccharidoses (MPS) disorders; resulting in short stature, reduced size of the thoracic cavity and compromised manual dexterity. Current therapies for MPS have had a limited effect on bone growth and to improve these therapies or develop adjunct approaches requires an understanding of the underlying basis of abnormal bone growth in MPS. The MPS VII mouse model replicates the reduction in long bone and vertebral length observed in human MPS. Using this model we have shown that the growth plate is elongated but contains fewer chondrocytes in the proliferative and hypertrophic zones. Endochondral bone growth is in part regulated by entry and exit from the cell cycle by growth plate chondrocytes. More MPS VII chondrocytes were positive for Ki67, a marker for active phases of the cell cycle, suggesting that more MPS VII chondrocytes were in the cell cycle. The number of cells positive for phosphorylated histone H3 was significantly reduced in MPS VII chondrocytes, suggesting fewer MPS VII chondrocytes progressed to mitotic division. While MPS VII HZ chondrocytes continued to express cyclin D1 and more cells were positive for E2F1 and phos pRb than normal, fewer MPS VII HZ chondrocytes were positive for p57kip2 a marker of terminal differentiation, suggesting fewer MPS VII chondrocytes were able to exit the cell cycle. In addition, multiple markers typical of PZ to HZ transition were not downregulated in MPS VII, in particular Sox9, Pthrpr and Wnt5a. These findings are consistent with MPS VII growth plates elongating at a slower rate than normal due to a delay in progression through the cell cycle, in particular the transition between G1 and S phases, leading to both reduced cell division and transition to the hypertrophic phenotype.
Collapse
Affiliation(s)
- Zhirui Jiang
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.
| | - Ainslie L K Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Clare Reichstein
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- School of Bioscience, The University of Adelaide, Adelaide, South Australia, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Viskochil D, Clarke LA, Bay L, Keenan H, Muenzer J, Guffon N. Growth patterns for untreated individuals with MPS I: Report from the international MPS I registry. Am J Med Genet A 2019; 179:2425-2432. [PMID: 31639289 PMCID: PMC6899772 DOI: 10.1002/ajmg.a.61378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidosis Type I (MPS I), caused by deficiency of α-L-iduronidase results in progressive, multisystemic disease with a broad phenotypic spectrum including patients with severe (Hurler syndrome) to attenuated (Hurler-Scheie and Scheie syndromes) disease. Disordered growth is common with either phenotype. The study objectives were to construct sex- and age-specific estimated length/height and head circumference growth curves for untreated individuals with severe and attenuated disease and compare them with clinical reference standards. Untreated individuals in the MPS I Registry with at least one observation for length/height and/or head circumference and assigned phenotype as of May 2017 were included. Median growth for 463 untreated individuals with severe disease deviated from reference growth curves by ~6 months of age and fell below the third percentile by 4 years of age. Median head circumference was above reference curves from 3 to 4 months through 3 years of age. Among 207 individuals with untreated attenuated disease, median height fell below the third percentile by 9 years of age with divergence from reference curves by 2 years of age. MPS I-specific growth curves will be useful in evaluation of long-term outcomes of therapeutics interventions and will provide a foundation for understanding the pathogenesis of skeletal disease in MPS I.
Collapse
Affiliation(s)
- David Viskochil
- Department of Pediatrics, Division of Medical GeneticsUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Lorne A. Clarke
- British Columbia Children's Hospital Research InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Luisa Bay
- Hospital Nacional de Pediatría J. P. GarrahanCiudad Autónoma de Buenos AiresArgentina
| | | | - Joseph Muenzer
- Department of PediatricsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Nathalie Guffon
- Centre de Référence des Maladies Héréditaires du MétabolismeHôpital Femme Mère EnfantLyonFrance
| |
Collapse
|
12
|
Enzyme replacement therapy for mucopolysaccharidoses; past, present, and future. J Hum Genet 2019; 64:1153-1171. [PMID: 31455839 DOI: 10.1038/s10038-019-0662-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders, which lack an enzyme corresponding to the specific type of MPS. Enzyme replacement therapy (ERT) has been the standard therapeutic option for some types of MPS because of the ability to start immediate treatment with feasibility and safety and to improve prognosis. There are several disadvantages for current ERT, such as limited impact to the brain and avascular cartilage, weekly or biweekly infusions lasting 4-5 h, the immune response against the infused enzyme, a short half-life, and the high cost. Clinical studies of ERT have shown limited efficacy in preventing or resolving progression in neurological, cardiovascular, and skeletal diseases. One focus is to penetrate the avascular cartilage area to at least stabilize, if not reverse, musculoskeletal diseases. Although early intervention in some types of MPS has shown improvements in the severity of skeletal dysplasia and stunted growth, this limits the desired effect of ameliorating musculoskeletal disease progression to young MPS patients. Novel ERT strategies are under development to reach the brain: (1) utilizing a fusion protein with monoclonal antibody to target a receptor on the BBB, (2) using a protein complex from plant lectin, glycan, or insulin-like growth factor 2, and (3) direct infusion across the BBB. As for MPS IVA and VI, bone-targeting ERT will be an alternative to improve therapeutic efficacy in bone and cartilage. This review summarizes the effect and limitations on current ERT for MPS and describes the new technology to overcome the obstacles of conventional ERT.
Collapse
|
13
|
Relationships among Height, Weight, Body Mass Index, and Age in Taiwanese Children with Different Types of Mucopolysaccharidoses. Diagnostics (Basel) 2019; 9:diagnostics9040148. [PMID: 31615002 PMCID: PMC6963299 DOI: 10.3390/diagnostics9040148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Children with mucopolysaccharidosis (MPS) generally appear unaffected at birth but may develop multiple clinical manifestations including profound growth impairment as they grow older. Each type of MPS has a variable age at onset and variable rate of progression, however, information regarding growth in Asian children is limited. Methods: This retrospective analysis included 129 Taiwanese patients with MPS (age range, 0.7 to 19.5 years, median age, 7.9 years) from eight medical centers in Taiwan from January 1996 through December 2018. Results: The mean z scores for the first recorded values of height, weight, and body mass index in the patients’ medical records were −4.25, −1.04, and 0.41 for MPS I (n = 9), −2.31, 0.19, and 0.84 for MPS II (n = 49), −0.42, 0.08, and −0.12 for MPS III (n = 27), −6.02, −2.04, and 0.12 for MPS IVA (n = 30), and −4.46, −1.52, and 0.19 for MPS VI (n = 14), respectively. MPS IVA had the lowest mean z scores for both height and weight among all types of MPS, followed by MPS VI, MPS I, MPS II, and MPS III, which showed the mildest growth retardation. Both z scores for height and weight were negatively correlated with increasing age for all types of MPS (p < 0.01). Of 32 patients younger than 5 years of age, 16 (50%), and 23 (72%) had positive z scores of height and weight, respectively. A substantial number of younger patients with MPS I, II, III, and IVA had a positive height z score. The median age at diagnosis was 3.9 years (n = 115). Conclusions: The patients with MPS IVA had the most significant growth retardation among all types of MPS, followed by MPS VI, MPS I, MPS II, and MPS III. The height and weight of the MPS patients younger than 2–5 years of age were higher than those of healthy individuals, however, their growth significantly decelerated in subsequent years. Understanding the growth curve and potential involved in each type of MPS may allow for early diagnosis and timely management of the disease, which may improve the quality of life.
Collapse
|
14
|
Cattoni A, Motta S, Masera N, Gasperini S, Rovelli A, Parini R. The use of recombinant human growth hormone in patients with Mucopolysaccharidoses and growth hormone deficiency: a case series. Ital J Pediatr 2019; 45:93. [PMID: 31370860 PMCID: PMC6676577 DOI: 10.1186/s13052-019-0691-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The treatment with recombinant human growth hormone in patients affected by Mucopolysaccharidoses (MPS) is considered whenever a concurrent diagnosis of growth hormone deficiency is demonstrated. The short- and long-term effects of recombinant human growth hormone in this selected cohort is still debated, given the natural progression of disease-related skeletal malformations and the paucity of treated patients reported in literature. The presented case series provides detailed information about the response to recombinant growth hormone in MPS patients diagnosed with growth hormone deficiency. CASES PRESENTATION The growth patterns of 4 MPS female patients (current age: 11.7-14.3 years) treated with recombinant human growth hormone due to growth hormone deficiency have been retrospectively analyzed. Two patients, diagnosed with MPS IH, had undergone haematopoietic stem cell transplantation at an early age; the remaining two patients were affected by MPS IV and VI and were treated with enzyme replacement therapy. 4/4 patients presented with a progressive growth deceleration before the diagnosis of growth hormone deficiency was confirmed. This trend was initially reverted by a remarkable increase in height velocity after the start of recombinant growth hormone. We recorded an average increase in height velocity z-score of + 4.23 ± 2.9 and + 4.55 ± 0.96 respectively after 6 and 12 months of treatment. After the first 12-24 months, growth showed a deceleration in all the patients. While in a girl with MPS IH recombinant human growth hormone was discontinued due to a lack in clinical efficacy, 3/4 patients grew at a stable pace, tracking the height centile achieved after the cited initial increase in height velocity. Furthermore, mineral bone density assessed via bone densitometry, showed a remarkable increase in the two patients who were tested before and after starting treatment. CONCLUSIONS Recombinant human growth hormone appears to have effectively reverted the growth deceleration experienced by MPS patients diagnosed with growth hormone deficiency, at least during the first 12-24 months of treatment.
Collapse
Affiliation(s)
- A Cattoni
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy.
| | - S Motta
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - N Masera
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - S Gasperini
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - A Rovelli
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - R Parini
- Paediatric Department, Azienda Ospedaliera San Gerardo - Fondazione Monza e Brianza per il Bambino e la sua Mamma, Via Pergolesi 33, 20900, Monza, MB, Italy.,TIGET Institute, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Segrate, MI, Italy
| |
Collapse
|
15
|
Muschol NM, Pape D, Kossow K, Ullrich K, Arash-Kaps L, Hennermann JB, Stücker R, Breyer SR. Growth charts for patients with Sanfilippo syndrome (Mucopolysaccharidosis type III). Orphanet J Rare Dis 2019; 14:93. [PMID: 31046785 PMCID: PMC6498678 DOI: 10.1186/s13023-019-1065-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Mucopolysaccharidosis (MPS) type III (Sanfilippo syndrome) comprises a group of rare, lysosomal storage diseases caused by the deficiency of one of four enzymes involved in the degradation of heparan sulfate. The clinical hallmark of the disease is severe neurological deterioration leading to dementia and death in the second decade of life. Adult MPS patients are generally of short stature. To date there is no clear description of the physical development of MPS III patients. The aim of this study was to document growth reference data for MPS III patients. We collected growth data of 182 German MPS III patients and were able to develop growth charts for this cohort. Growth curves for height, weight, head circumference, and body mass index were calculated and compared to German reference charts. Results Birth height, weight and head circumference were within the physiological ranges. Both genders were significantly taller than healthy children at 2 years of age, while only male patients were taller at the age of four. Growth velocity decelerated after the ages of 4.5 and 5 years for female and male patients, respectively. Both genders were significantly shorter than the reference group at the age of 17.5 years. Head circumference was larger compared to healthy matched controls within the first 2 years of life and remained enlarged until physical maturity. Conclusion MPS III is a not yet treatable severe neuro-degenerative disease, developing new therapeutic strategies might change the course of the disease significantly. The present charts contribute to the understanding of the natural history of MPS III. Specific growth charts represent an important tool for families and physicians as the expected height at physical maturity can be estimated and therapeutic effects can be monitored. Electronic supplementary material The online version of this article (10.1186/s13023-019-1065-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole M Muschol
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Daniel Pape
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kai Kossow
- Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistr.52, 20246, Hamburg, Germany
| | - Laila Arash-Kaps
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ralf Stücker
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sandra R Breyer
- Department of Pediatric Orthopedics, Altonaer Children's Hospital, Bleickenallee 38, 22763, Hamburg, Germany. .,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
16
|
Różdżyńska-Świątkowska A, Tylki-Szymańska A. The importance of anthropological methods in the diagnosis of rare diseases. J Pediatr Endocrinol Metab 2019; 32:311-320. [PMID: 30917104 DOI: 10.1515/jpem-2018-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022]
Abstract
Most of inborn errors of metabolism (IEMs) and rare endocrine-metabolic diseases (REMD) are rare diseases. According to the European Commission on Public Health, a rare disease is defined, based on its prevalence, as one affecting one in 2000 people. Many IEMs affect body stature, cause craniofacial abnormalities, and disturb the developmental process. Therefore, body proportion, dysmorphic characteristics, and morphological parameters must be assessed and closely monitored. This can be achieved only with the help of an anthropologist who has adequate tools. This is why the role of an anthropologist in collaboration with the physician in the diagnostic process is not to be underestimated. Clinical anthropologists contribute to assessing physical development and improve our understanding of the natural history of rare metabolic diseases. This paper presents anthropometric techniques and methods, such as analysis of demographic data, anthropometric parameters at birth, percentile charts, growth patterns, bioimpedance, somatometric profiles, craniofacial profiles, body proportion indices, and mathematical models of growth curves used in certain rare diseases. Contemporary anthropological methods play an important role in the diagnostic process of rare genetic diseases.
Collapse
Affiliation(s)
| | - Anna Tylki-Szymańska
- Department of Pediatric, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
17
|
Luo E, Shi B, Chen QM, Zhou XD. [Dental-craniofacial manifestation and treatment of rare diseases in China]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:130-142. [PMID: 31168978 PMCID: PMC7030144 DOI: 10.7518/hxkq.2019.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Indexed: 02/05/2023]
Abstract
Rare diseases are genetic, chronic, and incurable disorders with relatively low prevalence. Thus, diagnosis and management strategies for such diseases are currently limited. This situation is exacerbated by insufficient medical sources for these diseases. The National Health and Health Committee of China recently first provided a clear definition of 121 rare diseases in the Chinese population. In this study, we summarize several dental-craniofacial manifestations associated with some rare diseases to provide a reference for dentists and oral maxillofacial surgeons aiming at fast-tracking diagnosis for the management of these rare diseases.
Collapse
Affiliation(s)
- En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Guffon N, Journeau P, Brassier A, Leger J, Chevallier B. Growth impairment and limited range of joint motion in children should raise suspicion of an attenuated form of mucopolysaccharidosis: expert opinion. Eur J Pediatr 2019; 178:593-603. [PMID: 30740618 PMCID: PMC6438949 DOI: 10.1007/s00431-019-03330-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/24/2022]
Abstract
Growth impairment together with bone and joint involvement is common to most patients with mucopolysaccharidosis (MPS) disorders. The genetic basis for these metabolic disorders involves various enzyme deficiencies responsible for the catabolism of glycosaminoglycans (GAGs). The incomplete degradation and subsequent accumulation of GAGs result in progressive tissue damage throughout the body. Bone ossification is particularly affected, with the consequent onset of dysostosis multiplex which is the underlying cause of short stature. Joint manifestations, whether joint contractures (MPS I, II, VI, VII) or hyperlaxity (MPS IV), affect fine motor skills and quality of life. Subtle decreases in growth velocity can begin as early as 2-4 years of age. Pediatricians are in the front line to recognize or suspect MPS. However, given the rarity of the disorders and variable ages of symptom onset depending on disease severity, recognition and diagnostic delays remain a challenge, especially for the attenuated forms. Prompt diagnosis and treatment can prevent irreversible disease outcomes.Conclusion: We present a diagnostic algorithm based on growth velocity decline and bone and joint involvement designed to help pediatricians recognize early manifestations of attenuated forms of MPS. We illustrate the paper with examples of abnormal growth curves and subtle radiographic nuances. What is Known: • As mucopolysaccharidoses (MPSs) are rare genetic disorders infrequently seen in clinical practice, there can be a lag between symptom onset and diagnosis, especially of attenuated forms of the disease. • This highlights the need for increased disease awareness to recognize early clinical signs and subsequently initiate early treatment to improve outcomes (normal height potential) and possibly prevent or delay the development of irreversible disease manifestations. What is New: • Growth impairment co-presenting with limited range of joint motion and radiographic anomalies in children should raise suspicions of possible attenuated MPS (AMPS). • Experts present a diagnostic algorithm with detailed focus on the decline in growth velocity, delayed puberty and limitation in joint mobility seen in children with AMPS, to shorten time-to-diagnosis and treatment and potentially improve patient outcome.
Collapse
Affiliation(s)
- Nathalie Guffon
- Reference center of Inherited Metabolic disorder, CERLYMM, Département de Pédiatrie, HCL Hopital Femme Mère Enfant, 59 Boulevard Pinel, 69677 Bron cedex, France
| | - Pierre Journeau
- Paediatric Orthopaedic Surgery Department, Lorraine University Hospital Centre, Children’s Hospital, Vandoeuvre lès Nancy, France
| | - Anaïs Brassier
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Juliane Leger
- Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Pediatric Endocrinology Diabetology Department, Reference Centre for Endocrine Growth and Development Diseases, Paris Diderot University, Sorbonne Paris Cité, F-75019 Paris, France
| | - Bertrand Chevallier
- Groupe de Pédiatrie Générale - Société Française de Pédiatrie, Boulogne-Billancourt, Department of Pediatrics and Pediatric Emergency, Ambroise-Paré Hospital, Boulogne-Billancourt, France
| |
Collapse
|
19
|
Luo E, Liu H, Zhao Q, Shi B, Chen Q. Dental-craniofacial manifestation and treatment of rare diseases. Int J Oral Sci 2019; 11:9. [PMID: 30783081 PMCID: PMC6381182 DOI: 10.1038/s41368-018-0041-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 02/05/2023] Open
Abstract
Rare diseases are usually genetic, chronic and incurable disorders with a relatively low incidence. Developments in the diagnosis and management of rare diseases have been relatively slow due to a lack of sufficient profit motivation and market to attract research by companies. However, due to the attention of government and society as well as economic development, rare diseases have been gradually become an increasing concern. As several dental-craniofacial manifestations are associated with rare diseases, we summarize them in this study to help dentists and oral maxillofacial surgeons provide an early diagnosis and subsequent management for patients with these rare diseases.
Collapse
Affiliation(s)
- En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiucheng Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Martins AM, Lindstrom K, Kyosen SO, Munoz-Rojas MV, Thibault N, Polgreen LE. Short stature as a presenting symptom of attenuated Mucopolysaccharidosis type I: case report and clinical insights. BMC Endocr Disord 2018; 18:83. [PMID: 30419879 PMCID: PMC6233567 DOI: 10.1186/s12902-018-0311-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type I (MPS I) results in significant disease burden and early treatment is important for optimal outcomes. Recognition of short stature and growth failure as symptoms of MPS I among pediatric endocrinologists may lead to earlier diagnosis and treatment. CASE PRESENTATION A male patient first began experiencing hip pain at 5 years of age and was referred to an endocrinologist for short stature at age 7. Clinical history included recurrent respiratory infections, sleep apnea, moderate joint contractures, mild facial dysmorphic features, scoliosis, and umbilical hernia. Height was more than - 2 SD below the median at all time points. Growth velocity was below the 3rd percentile. Treatment for short stature included leuprolide acetate and recombinant human growth hormone. The patient was diagnosed with MPS I and began enzyme replacement therapy with laronidase at age 18. CONCLUSIONS The case study patient had many symptoms of MPS I yet remained undiagnosed for 11 years after presenting with short stature. The appropriate path to MPS I diagnosis when patients present with short stature and/or growth failure plus one or more of the common signs of attenuated disease is described. Improved awareness regarding association of short stature and growth failure with attenuated MPS I is needed since early identification and treatment significantly decreases disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | - Lynda E. Polgreen
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Liu Research Building, Torrance, CA 90502 USA
| |
Collapse
|
21
|
Stapleton M, Arunkumar N, Kubaski F, Mason RW, Tadao O, Tomatsu S. Clinical presentation and diagnosis of mucopolysaccharidoses. Mol Genet Metab 2018; 125:4-17. [PMID: 30057281 DOI: 10.1016/j.ymgme.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/09/2023]
Abstract
Mucopolysaccharidoses (MPS) are estimated to affect1 in 25,000 live births although specific rates vary between the ethnic origin and country. MPS are a group of lysosomal storage disorders, which cause the buildup of GAG(s) due to insufficient or absent GAG-degrading enzymes. With seven types of MPS disorders and eleven subtypes, the MPS family presents unique challenges for early clinical diagnosis due to the molecular and clinical heterogeneity between groups and patients. Novel methods of early identification, particularly newborn screening through mass spectrometry, can change the flow of diagnosis, allowing enzyme and GAG quantification before the presentation of clinical symptoms improving outcomes. Genetic testing of patients and their families can also be conducted preemptively. This testing enables families to make informed decisions about family planning, leading to prenatal diagnosis. In this review, we discuss the clinical symptoms of each MPS type as they initially appear in patients, biochemical and molecular diagnostic methods, and the future of newborn screening for this group of disorders.
Collapse
Affiliation(s)
- Molly Stapleton
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Nivethitha Arunkumar
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Francyne Kubaski
- Department of Molecular Biology and Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Orii Tadao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pediatrics, Shimane University, Shimane, Japan.
| |
Collapse
|
22
|
Tylki-Szymańska A, De Meirleir L, Di Rocco M, Fathalla WM, Guffon N, Lampe C, Lund AM, Parini R, Wijburg FA, Zeman J, Scarpa M. Easy-to-use algorithm would provide faster diagnoses for mucopolysaccharidosis type I and enable patients to receive earlier treatment. Acta Paediatr 2018; 107:1402-1408. [PMID: 29797470 PMCID: PMC6055821 DOI: 10.1111/apa.14417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/30/2018] [Accepted: 05/21/2018] [Indexed: 11/29/2022]
Abstract
Aim The aim of this study was to develop an algorithm to prompt early clinical suspicion of mucopolysaccharidosis type I (MPS I). Methods An international working group was established in 2016 that comprised 11 experts in paediatrics, rare diseases and inherited metabolic diseases. They reviewed real‐world clinical cases, selected key signs or symptoms based on their prevalence and specificity and reached consensus about the algorithm. The algorithm was retrospectively tested. Results An algorithm was developed. In patients under two years of age, kyphosis or gibbus deformity were the key symptoms that raised clinical suspicion of MPS I and in those over two years they were kyphosis or gibbus deformity, or joint stiffness or contractures without inflammation. The algorithm was tested on 35 cases, comprising 16 Hurler, 10 Hurler–Scheie, and nine Scheie patients. Of these 35 cases, 32 (91%) – 16 Hurler, nine Hurler–Scheie and seven Scheie patients – would have been referred earlier if the algorithm had been used. Conclusion The expert panel developed and tested an algorithm that helps raise clinical suspicion of MPS I and would lead to a more prompt final diagnosis and allow earlier treatment.
Collapse
Affiliation(s)
- Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases; The Children's Memorial Health Institute; Warsaw Poland
| | - Linda De Meirleir
- Department of Paediatric Neurology and Metabolic Diseases; Brussels Belgium
| | - Maja Di Rocco
- Unit of Rare Diseases; Department of Paediatrics; IRCCS Giannina Gaslini; Genova Italy
| | - Waseem M. Fathalla
- Division of Child Neurology; Department of Pediatrics; Mafraq Hospital; Bani Yas Abu Dhabi United Arab Emirates
| | - Nathalie Guffon
- Reference Centre of Metabolic Diseases; Hôpital Femme Mère Enfant (HFME); Bron France
| | - Christina Lampe
- Center for Rare Diseases; Clinic for Paediatric and Adolescent Medicine; HELIOS Dr. Horst Schmidt Kliniken Wiesbaden; Wiesbaden Germany
| | - Allan M. Lund
- Centre for Inherited Metabolic Diseases; Departments of Paediatrics and Clinical Genetics; Copenhagen University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Rossella Parini
- Rare Metabolic Diseases Unit; Paediatric Clinic; Fondazione MBBM; San Gerardo University Hospital; Monza Italy
| | - Frits A. Wijburg
- Department of Paediatrics; Academic Medical Center; Amsterdam The Netherlands
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine; Charles University and General University Hospital; Prague Czech Republic
| | - Maurizio Scarpa
- Center for Rare Diseases; Clinic for Paediatric and Adolescent Medicine; HELIOS Dr. Horst Schmidt Kliniken Wiesbaden; Wiesbaden Germany
- Department of Pediatrics; University of Padova; Padova Italy
| |
Collapse
|
23
|
Jiang Z, Derrick-Roberts ALK, Jackson MR, Rossouw C, Pyragius CE, Xian C, Fletcher J, Byers S. Delayed development of ossification centers in the tibia of prenatal and early postnatal MPS VII mice. Mol Genet Metab 2018; 124:135-142. [PMID: 29747998 DOI: 10.1016/j.ymgme.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Short stature is a characteristic feature of most of the mucopolysaccharidoses, a group of inherited lysosomal storage disorders caused by a single enzyme deficiency. MPS patients present with progressive skeletal defects from an early age, including short stature due to impaired cartilage-to-bone conversion (endochondral ossification). The aim of this study was to determine which murine MPS model best reproduces the bone length reduction phenotype of human MPS and use this model to determine the earliest developmental stage when disrupted endochondral ossification first appears. Gusmps/mps mice representing severe MPS VII displayed the greatest reduction in bone elongation and were chosen for histopathological analysis. Tibial development was assessed from E12.5 to 6 months of age. Chondrocytes in the region of the future primary ossification center became hypertrophic at a similar age to normal in the MPS VII mouse fetus, but a delay in bone deposition was observed with an approximate 1 day delay in the formation of the primary ossification centre. Likewise, chondrocytes in the region of the future secondary ossification center also became hypertrophic at the same age as normal in the MPS VII early postnatal mouse. Bone deposition in the secondary ossification centre was delayed by two days in the MPS VII proximal tibia (observed at postnatal day 14 (P14) compared to P12 in normal). The thickness of the tibial growth plate was larger in MPS VII mice from P9 onwards. Abnormal endochondral ossification starts in utero in MPS VII and worsens with age. It is characterized by a normal timeframe for chondrocyte hypertrophy but a delay in the subsequent deposition of bone in both the primary and secondary ossification centres, accompanied by an increase in growth plate thickness. This suggests that the signals for vascular invasion and bone deposition, some of which are derived from hypertrophic chondrocytes, are altered in MPS VII.
Collapse
Affiliation(s)
- Zhirui Jiang
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Ainslie L K Derrick-Roberts
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Matilda R Jackson
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Charné Rossouw
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Carmen E Pyragius
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Cory Xian
- Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janice Fletcher
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Sharon Byers
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
24
|
Melbouci M, Mason RW, Suzuki Y, Fukao T, Orii T, Tomatsu S. Growth impairment in mucopolysaccharidoses. Mol Genet Metab 2018; 124:1-10. [PMID: 29627275 PMCID: PMC5966322 DOI: 10.1016/j.ymgme.2018.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/20/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders that affect regulation of glycosaminoglycan (GAG) processing. In MPS, the lysosomes cannot efficiently break down GAGs, and the specific GAGs accumulated depend on the type of MPS. The level of impairment of breakdown varies between patients, making this one of the many factors that lead to a range of clinical presentations even in the same type of MPS. These clinical presentations usually involve skeletal dysplasia, in which the most common feature is bone growth impairment and successive short stature. Growth impairment occurs due to the deposition and retention of GAGs in bone and cartilage. The accumulation of GAGs in these tissues leads to progressive damage in cartilage that in turn reduces bone growth by destruction of the growth plate, incomplete ossification, and imbalance of growth. Imbalance of growth leads to various skeletal abnormalities including disproportionate dwarfism with short neck and trunk, prominent forehead, rigidity of joints, tracheal obstruction, kyphoscoliosis, pectus carinatum, platyspondyly, round-shaped vertebral bodies or beaking sign, underdeveloped acetabula, wide flared iliac, coxa valgus, flattered capital femoral epiphyses, and genu valgum. If left untreated, skeletal abnormalities including growth impairment result in a significant impact on these patients' quality of life and activity of daily living, leading to high morbidity and severe handicap. This review focuses on growth impairment in untreated patients with MPS. We comprehensively describe the growth abnormalities through height, weight, growth velocity, and BMI in each type of MPS and compare the status of growth with healthy age-matched controls. The timing, the degree, and the difference in growth impairment of each MPS are highlighted to understand the natural course of growth and to evaluate future therapeutic efficacy.
Collapse
Affiliation(s)
- Melodie Melbouci
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Birth weight in patients with mucopolysaccharidosis type II: Data from the Hunter Outcome Survey (HOS). Mol Genet Metab Rep 2017; 11:62-64. [PMID: 28516041 PMCID: PMC5426030 DOI: 10.1016/j.ymgmr.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/12/2017] [Accepted: 02/12/2017] [Indexed: 12/02/2022] Open
Abstract
There is a need to identify early disease markers to facilitate diagnosis of mucopolysaccharidosis type II (MPS II; Hunter syndrome). Mean birth weight and its association with disease severity was investigated in 609 patients enrolled in the Hunter Outcome Survey (HOS). This analysis indicated that birth weight is not an early marker of MPS II and is not associated with disease severity. It remains important to investigate the utility of other factors for early/pre-symptomatic diagnosis.
Collapse
|
26
|
Can Macrosomia or Large for Gestational Age Be Predictive of Mucopolysaccharidosis Type I, II and VI? Pediatr Neonatol 2016; 57:181-7. [PMID: 26522251 DOI: 10.1016/j.pedneo.2015.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The objective of the study was to compare mean values for birth body length and weight between patients with mucopolysaccharidosis (MPS) and the general population. METHODS A retrospective analysis of birth anthropometric data was performed for patients (n = 103) with MPS I, II, and VI. Two-tailed t tests were used to compare mean values for body length and weight at birth between patients with MPS and the general population. RESULTS Mean values for birth body length and weight for all studied groups were greater than in the general population. For body length the differences were statistically significant. When considered individually, 53% of patients were large for gestational age (LGA) and 30% were macrosomic. The highest percentage of LGA was observed in MPS II males and MPS VI females (55% and 56%, respectively), while the highest percentage of macrosomia was observed in MPS VI males (36%). CONCLUSION At the time of birth, MPS patients were larger than those in the general population. High birth weight and/or LGA can be suggestive of MPS disease and should raise suspicion aiding early disease recognition.
Collapse
|