1
|
Song YT, Sitthikitpanya N, Usmanbaha N, Reungsang A, Chu CY. Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335. Biodegradation 2025; 36:14. [PMID: 39832017 DOI: 10.1007/s10532-025-10110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer. Utilizing Response Surface Methodology-Central Composite Design, we explored optimal conditions, revealing peak PHA production at a substrate concentration of 33.51 g COD/L and a pH of 6.87. The predicted optimal PHA concentration was at 3.05 g/L within the established model, closely matching the experimentally validated value of 3.02 g/L, with the overall usage rate of reducing sugars approximately 50-60%. This study underscores the importance of optimizing PHA production conditions and paving the way toward large-scale PHA production.
Collapse
Affiliation(s)
- Yu-Ting Song
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan
| | - Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chen-Yeon Chu
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan.
- Institute of Green Products, Feng Chia University, Taichung, 407102, Taiwan.
| |
Collapse
|
2
|
Marco A, Kasparkova J, Bautista D, Kostrhunova H, Cutillas N, Markova L, Novohradsky V, Ruiz J, Brabec V. A Novel Substituted Benzo[ g]quinoxaline-Based Cyclometalated Ru(II) Complex as a Biocompatible Membrane-Targeted PDT Colon Cancer Stem Cell Agent. J Med Chem 2024; 67:21470-21485. [PMID: 39620973 DOI: 10.1021/acs.jmedchem.4c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we describe and investigate biological activity of three octahedral ruthenium(II) complexes of the type [Ru(C∧N)(phen)2]+, RuL1-RuL3, containing a π-expansive cyclometalating substituted benzo[g]quinoxaline ligand (C∧N ligand) (phen = 1,10-phenanthroline). Compounds RuL1-RuL3 in cervical, melanoma, and colon human cancer cells exhibit high phototoxicity after irradiation with light (particularly blue), with the phototoxicity index reaching 100 for the complex RuL2 in most sensitive HCT116 cells. RuL2 accumulates in the cellular membranes. If irradiated, it induces lipid peroxidation, likely connected with photoinduced ROS generation. Oxidative damage to the fatty acids leads to the attenuation of the membranes, the activation of caspase 3, and the triggering of the apoptotic pathway, thus implementing membrane-localized photodynamic therapy. RuL2 is the first photoactive ruthenium-based complex capable of killing the hardly treatable colon cancer stem cells, a highly resilient subpopulation within a heterogeneous tumor mass, responsible for tumor recurrence and the metastatic progression of cancer.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| | | | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Murcia BioHealth Research Institute (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61 200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
3
|
Lem O, Kekki R, Koivuniemi A, Efimov A, Laaksonen T, Durandin N. The role of lipid oxidation pathway in reactive oxygen species-mediated cargo release from liposomes. MATERIALS ADVANCES 2024; 5:8878-8888. [PMID: 39444431 PMCID: PMC11491990 DOI: 10.1039/d4ma00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Reactive oxygen species (ROS)-mediated photooxidation is an efficient method for triggering a drug release from liposomes. In addition to the release of small molecules, it also allows the release of large macromolecules, making it a versatile tool for controlled drug delivery. However, the exact release mechanism of large macromolecules from ROS-sensitive liposomes is still unclear. There are no studies on the effect of lipid oxidation on the release of cargo molecules of different sizes. By using HPLC-HRMS method we analyzed the oxidation products of ROS-sensitive DOTAP lipid in phthalocyanine-loaded DOTAP:Cholesterol:DSPE-PEG liposomes after 630 nm light irradiation of different durations. Shorter illumination time (1-2 minutes) led to the formation of hydroperoxides and vic-alcohols predominantly. Longer 9-minute irradiation resulted already in aldehydes generation. Interestingly, the presence of epoxides/mono-hydroperoxides and vic-alcohols in a lipid bilayer ensured a high 90% release of small hydrophilic cargo molecules i.e. calcein, but not large (≥10 KDa) macromolecules. Oxidation till aldehydes was mandatory to deliver e.g. dextrans of 10-70 kDa with ca. 30% efficiency. Molecular dynamics simulations revealed that the formation of aldehydes is required to form pores or even fully disrupt the lipid membrane, while e.g. presence of hydroperoxides is enough to make the bilayer more permeable just for water and small molecules. This is an important finding that shed a light on the release mechanism of different cargo molecules from ROS-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Olga Lem
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
| | - Roosa Kekki
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences Helsinki Finland
| | - Artturi Koivuniemi
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences Helsinki Finland
| | - Alexander Efimov
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
| | - Timo Laaksonen
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences Helsinki Finland
| | - Nikita Durandin
- Tampere University, Engineering and Natural Science, Materials Science and Environmental Engineering Tampere Finland
| |
Collapse
|
4
|
Shimolina LE, Khlynova AE, Elagin VV, Bureev PA, Sherin PS, Kuimova MK, Shirmanova MV. Unraveling Microviscosity Changes Induced in Cancer Cells by Photodynamic Therapy with Targeted Genetically Encoded Photosensitizer. Biomedicines 2024; 12:2550. [PMID: 39595116 PMCID: PMC11591579 DOI: 10.3390/biomedicines12112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. METHODS In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor. RESULTS Depending on the localization of the phototoxic protein, different effects on membrane microviscosity were observed. With nuclear localization of KillerRed, a gradual decrease in microviscosity was detected throughout the entire observation period, while for membrane localization of KillerRed, a dramatic increase in microviscosity was observed in the first minutes after PDT, and then a significant decrease at later stages of monitoring. The obtained data on cell monolayers are in good agreement with the data obtained for 3D tumor spheroids. CONCLUSIONS These results indicate the involvement of membrane microviscosity in the response of tumor cells to PDT, which strongly depends on the localization of reactive oxygen species attack via targeting of a genetically encoded photosensitizer.
Collapse
Affiliation(s)
- Liubov E. Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Aleksandra E. Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Vadim V. Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Pavel A. Bureev
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Petr S. Sherin
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK; (P.S.S.); (M.K.K.)
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK; (P.S.S.); (M.K.K.)
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| |
Collapse
|
5
|
Moustafa TE, Belote RL, Polanco ER, Judson-Torres RL, Zangle TA. Quadrant darkfield for label-free imaging of intracellular puncta. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:116501. [PMID: 39618547 PMCID: PMC11605245 DOI: 10.1117/1.jbo.29.11.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Significance Imaging changes in subcellular structure is critical to understanding cell behavior but labeling can be impractical for some specimens and may induce artifacts. Although darkfield microscopy can reveal internal cell structures, it often produces strong signals at cell edges that obscure intracellular details. By optically eliminating the edge signal from darkfield images, we can resolve and quantify changes to cell structure without labeling. Aim We introduce a computational darkfield imaging approach named quadrant darkfield (QDF) to separate smaller cellular features from large structures, enabling label-free imaging of cell organelles and structures in living cells. Approach Using a programmable LED array as the illumination source, we vary the direction of illumination to encode additional information about the feature size within cells. This is possible due to the varying levels of directional scattering produced by features based on their sizes relative to the wavelength of light used. Results QDF successfully resolved small cellular features without interference from larger structures. QDF signal is more consistent during cell shape changes than traditional darkfield. QDF signals correlate with flow cytometry side scatter measurements, effectively differentiating cells by organelle content. Conclusions QDF imaging enhances the study of subcellular structures in living cells, offering improved quantification of organelle content compared with darkfield without labels. This method can be simultaneously performed with other techniques such as quantitative phase imaging to generate a multidimensional picture of living cells in real-time.
Collapse
Affiliation(s)
- Tarek E. Moustafa
- University of Utah, Department of Chemical Engineering, Salt Lake City, Utah, United States
| | - Rachel L. Belote
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, United States
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, United States
| | - Edward R. Polanco
- University of Utah, Department of Chemical Engineering, Salt Lake City, Utah, United States
| | - Robert L. Judson-Torres
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, United States
- University of Utah, Department of Dermatology, Salt Lake City, Utah, United States
- University of Utah, Department of Oncological Sciences, Salt Lake City, Utah, United States
| | - Thomas A. Zangle
- University of Utah, Department of Chemical Engineering, Salt Lake City, Utah, United States
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, United States
| |
Collapse
|
6
|
Malik VK, Pak OS, Feng J. Curvature-Assisted Vesicle Explosion Under Light-Induced Asymmetric Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400504. [PMID: 39136143 PMCID: PMC11481189 DOI: 10.1002/advs.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/14/2024] [Indexed: 10/17/2024]
Abstract
Exposure of cell membranes to reactive oxygen species can cause oxidation of membrane lipids. Oxidized lipids undergo drastic conformational changes, compromising the mechanical integrity of the membrane and causing cell death. For giant unilamellar vesicles, a classic cell mimetic system, a range of mechanical responses under oxidative assault has been observed including formation of nanopores, transient micron-sized pores, and total sudden catastrophic collapse (i.e., explosion). However, the physical mechanism regarding how lipid oxidation causes vesicles to explode remains elusive. Here, with light-induced asymmetric oxidation experiments, the role of spontaneous curvature on vesicle instability and its link to the conformational changes of oxidized lipid products is systematically investigated. A comprehensive membrane model is proposed for pore-opening dynamics incorporating spontaneous curvature and membrane curling, which captures the experimental observations well. The kinetics of lipid oxidation are further characterized and how light-induced asymmetric oxidation generates spontaneous curvature in a non-monotonic temporal manner is rationalized. Using the framework, a phase diagram with an analytical criterion to predict transient pore formation or catastrophic vesicle collapse is provided. The work can shed light on understanding biomembrane stability under oxidative assault and strategizing release dynamics of vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Vinit Kumar Malik
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - On Shun Pak
- Department of Mechanical Engineering and Department of Applied MathematicsSanta Clara UniversitySanta ClaraCA95053USA
| | - Jie Feng
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
7
|
Yang L, Jiang Y, Sun A, Chen M, Li Q, Wang P, Zhang J. Mechanism of two styryl BODIPYs as fluorescent probes and protective agents in lipid bilayers against aqueous ClO . RSC Adv 2024; 14:28957-28964. [PMID: 39263435 PMCID: PMC11389514 DOI: 10.1039/d4ra03433c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Two styryl BODIPY derivatives, BOH and BOE, with different hydrophilic properties, were investigated for their reaction mechanisms in lipid bilayers against aqueous ClO-, by both experimental and theoretical methods. Density functional theory (DFT) calculations confirmed their identical conformations in solution. Fluorescence spectra and high-resolution mass spectra corroborated the central vinyl group as a common antioxidation moiety against ClO- oxidation. In giant unilamellar vesicles (GUVs), distinct reaction kinetics with ClO- suggested that BOE provided superior protective effects compared to BOH on lipids. Molecular dynamics simulations indicated that the lipophilic octyloxy group in BOE led to its deeper localization within the lipid phase, bringing it closer to the corresponding lipid target group. This study establishes the two styryl BODIPYs as promising fluorescent probes for detecting aqueous ClO- in lipid-water polyphasic systems.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China +86 10 62516604
| | - Yanglin Jiang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China +86 10 62516604
| | - Ailin Sun
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China +86 10 62516604
| | - Mingqing Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China +86 10 62516604
| | - Qiwei Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China +86 10 62516604
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China +86 10 62516604
| | - Jianping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China Beijing 100872 China +86 10 62516604
| |
Collapse
|
8
|
Torra J, Campelo F, Garcia-Parajo MF. Tensing Flipper: Photosensitized Manipulation of Membrane Tension, Lipid Phase Separation, and Raft Protein Sorting in Biological Membranes. J Am Chem Soc 2024; 146:24114-24124. [PMID: 39162019 PMCID: PMC11363133 DOI: 10.1021/jacs.4c08580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The lateral organization of proteins and lipids in the plasma membrane is fundamental to regulating a wide range of cellular processes. Compartmentalized ordered membrane domains enriched with specific lipids, often termed lipid rafts, have been shown to modulate the physicochemical and mechanical properties of membranes and to drive protein sorting. Novel methods and tools enabling the visualization, characterization, and/or manipulation of membrane compartmentalization are crucial to link the properties of the membrane with cell functions. Flipper, a commercially available fluorescent membrane tension probe, has become a reference tool for quantitative membrane tension studies in living cells. Here, we report on a so far unidentified property of Flipper, namely, its ability to photosensitize singlet oxygen (1O2) under blue light when embedded into lipid membranes. This in turn results in the production of lipid hydroperoxides that increase membrane tension and trigger phase separation. In biological membranes, the photoinduced segregated domains retain the sorting ability of intact phase-separated membranes, directing raft and nonraft proteins into ordered and disordered regions, respectively, in contrast to radical-based photo-oxidation reactions that disrupt raft protein partitioning. The dual tension reporting and photosensitizing abilities of Flipper enable simultaneous visualization and manipulation of the mechanical properties and lateral organization of membranes, providing a powerful tool to optically control lipid raft formation and to explore the interplay between membrane biophysics and cell function.
Collapse
Affiliation(s)
- Joaquim Torra
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona 08860, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
9
|
Moustafa TE, Belote RL, Polanco ER, Judson-Torres RL, Zangle TA. Quadrant darkfield (QDF) for label-free imaging of intracellular puncta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606686. [PMID: 39149239 PMCID: PMC11326191 DOI: 10.1101/2024.08.05.606686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Significance Measuring changes in cellular structure and organelles is crucial for understanding disease progression and cellular responses to treatments. A label-free imaging method can aid in advancing biomedical research and therapeutic strategies. Aim This study introduces a computational darkfield imaging approach named quadrant darkfield (QDF) to separate smaller cellular features from large structures, enabling label-free imaging of cell organelles and structures in living cells. Approach Using a programmable LED array as illumination source, we vary the direction of illumination to encode additional information about the feature size within cells. This is possible due to the varying level of directional scattering produced by features based on their sizes relative to the wavelength of light used. Results QDF successfully resolved small cellular features without interference from larger structures. QDF signal is more consistent during cell shape changes than traditional darkfield. QDF signals correlate with flow cytometry side scatter measurements, effectively differentiating cells by organelle content. Conclusions QDF imaging enhances the study of subcellular structures in living cells, offering improved quantification of organelle content compared to darkfield without labels. This method can be simultaneously performed with other techniques such as quantitative phase imaging to generate a multidimensional picture of living cells in real-time.
Collapse
Affiliation(s)
- Tarek E Moustafa
- University of Utah, Department of Chemical Engineering, Salt Lake City, Utah, United States
| | - Rachel L Belote
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, United States
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, United States
| | - Edward R Polanco
- University of Utah, Department of Chemical Engineering, Salt Lake City, Utah, United States
| | - Robert L Judson-Torres
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, United States
- University of Utah, Department of Dermatology, Salt Lake City, Utah, United States
- University of Utah, Department of Oncological Sciences, Salt Lake City, Utah, United States
| | - Thomas A Zangle
- University of Utah, Department of Chemical Engineering, Salt Lake City, Utah, United States
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, United States
| |
Collapse
|
10
|
Peluffo RD, del V. Alonso S, Itri R, Flecha FLG, Barbosa L. LAFeBS, alive, kicking, and growing: the story continues…. Biophys Rev 2024; 16:401-402. [PMID: 39309125 PMCID: PMC11415323 DOI: 10.1007/s12551-024-01208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
This Commentary describes a call for contributions to an upcoming Special Issue (SI) of Biophysical Reviews on the Latin American Federation of Biophysical Societies (LAFeBS). It details the reason for the SI, the SI Editors' contact information, and the relevant submission details for those wishing to contribute a review manuscript.
Collapse
Affiliation(s)
- R. Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Salto, Uruguay
| | - Silvia del V. Alonso
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Laboratorio de Bio-Nanotecnología, Bernal, Buenos Aires Argentina
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires, Argentina
| | - Rosangela Itri
- Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP 05508-090 Brazil
| | - F. Luis González Flecha
- Laboratorio de Biofísica Molecular, Universidad de Buenos Aires - CONICET, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - Leandro Barbosa
- Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| |
Collapse
|
11
|
Taghavi S, Engelhardt D, Campbell A, Goldvarg-Abud I, Duchesne J, Shaheen F, Pociask D, Kolls J, Jackson-Weaver O. Dimethyl sulfoxide as a novel therapy in a murine model of acute lung injury. J Trauma Acute Care Surg 2024; 97:32-38. [PMID: 38444065 DOI: 10.1097/ta.0000000000004293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
INTRODUCTION The endothelial glycocalyx on the luminal surface of endothelial cells contributes to the permeability barrier of the pulmonary vasculature. Dimethyl sulfoxide (DMSO) has a disordering effect on plasma membranes, which prevents the formation of ordered membrane domains important in the shedding of the endothelial glycocalyx. We hypothesized that DMSO would protect against protein leak by preserving the endothelial glycocalyx in a murine model of acute respiratory distress syndrome (ARDS). METHODS C57BL/6 mice were given ARDS via intratracheally administered lipopolysaccharide (LPS). Dimethyl sulfoxide (220 mg/kg) was administered intravenously for 4 days. Animals were sacrificed postinjury day 4 after bronchoalveolar lavage (BAL). Bronchoalveolar lavage cell counts and protein content were quantified. Lung sections were stained with fluorescein isothiocyanate-labeled wheat germ agglutinin to quantify the endothelial glycocalyx. Human umbilical vein endothelial cells (HUVECs) were exposed to LPS. Endothelial glycocalyx was measured using fluorescein isothiocyanate-labeled wheat germ agglutinin, and co-immunoprecipitation was performed to measure interaction between sheddases and syndecan-1. RESULTS Dimethyl sulfoxide treatment resulted in greater endothelial glycocalyx staining intensity in the lung when compared with sham (9,641 vs. 36,659 arbitrary units, p < 0.001). Total BAL cell counts were less for animals receiving DMSO (6.93 × 10 6 vs. 2.49 × 10 6 cells, p = 0.04). The treated group had less BAL macrophages (189.2 vs. 76.9 cells, p = 0.02) and lymphocytes (527.7 vs. 200.0 cells, p = 0.02). Interleukin-6 levels were lower in DMSO treated. Animals that received DMSO had less protein leak in BAL (1.48 vs. 1.08 μg/μL, p = 0.02). Dimethyl sulfoxide prevented LPS-induced endothelial glycocalyx loss in HUVECs and reduced the interaction between matrix metalloproteinase 16 and syndecan-1. CONCLUSION Systemically administered DMSO protects the endothelial glycocalyx in the pulmonary vasculature, mitigating pulmonary capillary leak after acute lung injury. Dimethyl sulfoxide also results in decreased inflammatory response. Dimethyl sulfoxide reduced the interaction between matrix metalloproteinase 16 and syndecan-1 and prevented LPS-induced glycocalyx damage in HUVECs. Dimethyl sulfoxide may be a novel therapeutic for ARDS.
Collapse
Affiliation(s)
- Sharven Taghavi
- From the Department of Surgery (S.T., D.E., A.C., I.G.-A., J.D., F.S., O.J.-W.), Department of Medicine (D.P.), and Center for Translational Research in Infection and Inflammation (J.K.), Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y. The interplay of exercise and polyphenols in cancer treatment: A focus on oxidative stress and antioxidant mechanisms. Phytother Res 2024; 38:3459-3488. [PMID: 38690720 DOI: 10.1002/ptr.8215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Exercise has been demonstrated to induce an elevated production of free radicals, leading to the onset of oxidative stress. Numerous studies highlight the positive impacts of aerobic exercise, primarily attributed to the increase in overall antioxidant capacity. The evidence suggests that engaging in aerobic exercise contributes to a reduction in the likelihood of advanced cancer and mortality. Oxidative stress occurs when there is an imbalance between the generation of free radicals and the collective antioxidant defense system, encompassing both enzymatic and nonenzymatic antioxidants. Typically, oxidative stress triggers the formation of reactive oxygen or nitrogen species, instigating or advancing various issues in cancers and other diseases. The pro-oxidant-antioxidant balance serves as a direct measure of this imbalance in oxidative stress. Polyphenols contain a variety of bioactive compounds, including flavonoids, flavanols, and phenolic acids, conferring antioxidant properties. Previous research highlights the potential of polyphenols as antioxidants, with documented effects on reducing cancer risk by influencing processes such as proliferation, angiogenesis, and metastasis. This is primarily attributed to their recognized antioxidant capabilities. Considering the extensive array of signaling pathways associated with exercise and polyphenols, this overview will specifically focus on oxidative stress, the antioxidant efficacy of polyphenols and exercise, and their intricate interplay in cancer treatment.
Collapse
Affiliation(s)
- Yubing Wang
- College of Physical Education, Qilu Normal University, Jinan, Shandong, China
| |
Collapse
|
13
|
Ayala-Orozco C, Galvez-Aranda D, Corona A, Seminario JM, Rangel R, Myers JN, Tour JM. Molecular jackhammers eradicate cancer cells by vibronic-driven action. Nat Chem 2024; 16:456-465. [PMID: 38114816 DOI: 10.1038/s41557-023-01383-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/24/2023] [Indexed: 12/21/2023]
Abstract
Through the actuation of vibronic modes in cell-membrane-associated aminocyanines, using near-infrared light, a distinct type of molecular mechanical action can be exploited to rapidly kill cells by necrosis. Vibronic-driven action (VDA) is distinct from both photodynamic therapy and photothermal therapy as its mechanical effect on the cell membrane is not abrogated by inhibitors of reactive oxygen species and it does not induce thermal killing. Subpicosecond concerted whole-molecule vibrations of VDA-induced mechanical disruption can be achieved using very low concentrations (500 nM) of aminocyanines or low doses of light (12 J cm-2, 80 mW cm-2 for 2.5 min), resulting in complete eradication of human melanoma cells in vitro. Also, 50% tumour-free efficacy in mouse models for melanoma was achieved. The molecules that destroy cell membranes through VDA have been termed molecular jackhammers because they undergo concerted whole-molecule vibrations. Given that a cell is unlikely to develop resistance to such molecular mechanical forces, molecular jackhammers present an alternative modality for inducing cancer cell death.
Collapse
Affiliation(s)
| | - Diego Galvez-Aranda
- Department of Chemical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Arnoldo Corona
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge M Seminario
- Department of Chemical Engineering and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
| | - Roberto Rangel
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, NanoCarbon Center, Smalley-Curl Institute and The Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
15
|
Balakrishnan M, Kenworthy AK. Lipid Peroxidation Drives Liquid-Liquid Phase Separation and Disrupts Raft Protein Partitioning in Biological Membranes. J Am Chem Soc 2024; 146:1374-1387. [PMID: 38171000 PMCID: PMC10797634 DOI: 10.1021/jacs.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure and physicochemical properties of lipids, leading to bilayer thinning, altered fluidity, and increased permeability of membranes in model systems. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances the phase separation propensity of GPMVs into coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains and increases the relative abundance of the disordered phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both Lo and Ld domains, and translocation of multiple classes of raft proteins out of ordered domains. These findings indicate that the peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease and thus serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Muthuraj Balakrishnan
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Anne K. Kenworthy
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| |
Collapse
|
16
|
Sadžak A, Brkljača Z, Eraković M, Kriechbaum M, Maltar-Strmečki N, Přibyl J, Šegota S. Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids. J Lipid Res 2023; 64:100430. [PMID: 37611869 PMCID: PMC10518586 DOI: 10.1016/j.jlr.2023.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Products of lipid peroxidation induce detrimental structural changes in cell membranes, such as the formation of water pores, which occur in the presence of lipids with partially oxidized chains. However, the influence of another class of products, dicarboxylic acids, is still unclear. These products have greater mobility in the lipid bilayer, which enables their aggregation and the formation of favorable sites for the appearance of pores. Therefore, dodecanedioic acid (DDA) was selected as a model product. Additionally, the influence of several structurally different flavonoids on DDA aggregation via formation of hydrogen bonds with carboxyl groups was investigated. The molecular dynamics of DDA in DOPC lipid bilayer revealed the formation of aggregates extending over the hydrophobic region of the bilayer and increasing its polarity. Consequently, water penetration and the appearance of water wires was observed, representing a new step in the mechanism of pore formation. Furthermore, DDA molecules were found to interact with lipid polar groups, causing them to be buried in the bilayer. The addition of flavonoids to the system disrupted aggregate formation, resulting in the displacement of DDA molecules from the center of the bilayer. The placement of DDA and flavonoids in the lipid bilayer was confirmed by small-angle X-ray scattering. Atomic force microscopy and electron paramagnetic resonance were used to characterize the structural properties. The presence of DDA increased bilayer roughness and decreased the ordering of lipid chains, confirming its detrimental effects on the membrane surface, while flavonoids were found to reduce or reverse these changes.
Collapse
Affiliation(s)
- Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mihael Eraković
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | | | - Jan Přibyl
- CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
17
|
Balakrishnan M, Kenworthy AK. Lipid peroxidation drives liquid-liquid phase separation and disrupts raft protein partitioning in biological membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557355. [PMID: 37745342 PMCID: PMC10515805 DOI: 10.1101/2023.09.12.557355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure, conformation and physicochemical properties of lipids, leading to major membrane alterations including bilayer thinning, altered fluidity, and increased permeability. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances phase separation propensity of GPMVs into co-existing liquid ordered (raft) and liquid disordered (non-raft) domains and increases the relative abundance of the disordered, non-raft phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both raft and non-raft domains, and translocation of multiple classes of proteins out of rafts. These findings indicate that peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease, and thus serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Muthuraj Balakrishnan
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
18
|
Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023; 13:1291. [PMID: 37759691 PMCID: PMC10526874 DOI: 10.3390/biom13091291] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid peroxidation (LP) is the most important type of oxidative-radical damage in biological systems, owing to its interplay with ferroptosis and to its role in secondary damage to other biomolecules, such as proteins. The chemistry of LP and its biological consequences are reviewed with focus on the kinetics of the various processes, which helps understand the mechanisms and efficacy of antioxidant strategies. The main types of antioxidants are discussed in terms of structure-activity rationalization, with focus on mechanism and kinetics, as well as on their potential role in modulating ferroptosis. Phenols, pyri(mi)dinols, antioxidants based on heavy chalcogens (Se and Te), diarylamines, ascorbate and others are addressed, along with the latest unconventional antioxidant strategies based on the double-sided role of the superoxide/hydroperoxyl radical system.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
19
|
Scanavachi G, Kinoshita K, Tsubone TM, Itri R. Dynamic photodamage of red blood cell induced by CisDiMPyP porphyrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112754. [PMID: 37451154 DOI: 10.1016/j.jphotobiol.2023.112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
It is well-known that oxidative damage in red blood cell (RBC) usually causes morphological changes and increased membrane rigidity. Although many studies have focused on investigating how RBC responds to a photodynamic stimulus, the intermediate steps between membrane damage and hemolysis are not reported. To give a comprehensive insight into changes of RBC membrane property under different oxidative damage levels, we employed the photoactivation of CisDiMPyP porphyrin that primarily generates singlet oxygen 1O2 as oxidant species. We found that there were distinguishable characteristic damages depending on the 1O2 flux over the membrane, in a way that each impact of photooxidative damage was categorized under three damage levels: mild (maintaining the membrane morphology and elasticity), moderate (membrane elongation and increased membrane elasticity) and severe (wrinkle-like deformation and hemolysis). When sodium azide (NaN3) was used as a singlet oxygen quencher, delayed cell membrane alterations and hemolysis were detected. The delay times showed that 1O2 indeed plays a key role that causes RBC photooxidation by CisDiMPyP. We suggest that the sequence of morphological changes (RBC discoid area expansion, wrinkle-like patterns, and hemolysis) under photooxidative damage occurs due to damage to the lipid membrane and cytoskeletal network proteins.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Department of Cell Biology, Harvard Medical School, Program in Cellular and Molecular Medicine (PCMM), Boston Children's Hospital, Boston, MA 02115, United States
| | - Koji Kinoshita
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Biological Chemistry and Molecular Pharmacology (BCMP), Harvard Medical School, Program in Cellular and Molecular Medicine (PCMM), Boston Children's Hospital, Boston, MA 02115, United States.
| | - Tayana M Tsubone
- Institute of Physics, University of São Paulo, São Paulo, Brazil; Institute of Chemistry, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Abdullah S, Ghio M, Cotton-Betteridge A, Vinjamuri A, Drury R, Packer J, Aras O, Friedman J, Karim M, Engelhardt D, Kosowski E, Duong K, Shaheen F, McGrew PR, Harris CT, Reily R, Sammarco M, Chandra PK, Pociask D, Kolls J, Katakam PV, Smith A, Taghavi S, Duchesne J, Jackson-Weaver O. Succinate metabolism and membrane reorganization drives the endotheliopathy and coagulopathy of traumatic hemorrhage. SCIENCE ADVANCES 2023; 9:eadf6600. [PMID: 37315138 PMCID: PMC10266735 DOI: 10.1126/sciadv.adf6600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Acute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however. Here, we show that succinate accumulation within endothelial cells drives glycocalyx degradation through a membrane reorganization-mediated mechanism. We investigated this mechanism in a cultured endothelial cell hypoxia-reoxygenation model, in a rat model of hemorrhage, and in trauma patient plasma samples. We found that succinate metabolism by succinate dehydrogenase mediates glycocalyx damage through lipid oxidation and phospholipase A2-mediated membrane reorganization, promoting the interaction of matrix metalloproteinase 24 (MMP24) and MMP25 with glycocalyx constituents. In a rat hemorrhage model, inhibiting succinate metabolism or membrane reorganization prevented glycocalyx damage and coagulopathy. In patients with trauma, succinate levels were associated with glycocalyx damage and the development of coagulopathy, and the interaction of MMP24 and syndecan-1 was elevated compared to healthy controls.
Collapse
Affiliation(s)
- Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael Ghio
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jacob Packer
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Oguz Aras
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessica Friedman
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mardeen Karim
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Kelby Duong
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Patrick R. McGrew
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Charles T. Harris
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Robert Reily
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Mimi Sammarco
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alison Smith
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
21
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
22
|
Manna I, Bandyopadhyay M. The impact of engineered nickel oxide nanoparticles on ascorbate glutathione cycle in Allium cepa L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:663-678. [PMID: 37363417 PMCID: PMC10284763 DOI: 10.1007/s12298-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
Engineered nickel oxide nanoparticle (NiO-NP) can inflict significant damages on exposed plants, even though very little is known about the modus operandi. The present study investigated effects of NiO-NP on the crucial stress alleviation mechanism Ascorbate-Glutathione Cycle (Asa-GSH cycle) in the model plant Allium cepa. Cellular contents of reduced glutathione (GSH) and oxidised glutathione (GSSG), was disturbed upon NiO-NP exposure. The ratio of GSH to GSSG changed from 20:1 in NC to 4:1 in roots exposed to 125 mg L-1 NiO-NP. Even the lowest treatments of NiO-NP (10 mg L-1) increased ascorbic acid (2.9-folds) and cysteine contents (1.6-folds). Enzymes like glutathione reductase, ascorbate peroxidase, glutathione peroxidase and glutathione-S-transferase also showed altered activities in the affected tissues. Further, intracellular methylglyoxal, a harbinger of ROS (Reactive oxygen species), increased significantly (~ 26 to 65-fold) across different concentrations NiO-NP. Intracellular H2O2 (hydrogen peroxide) and ROS levels increased with NiO-NP doses, as did electrolytic leakage from damaged cells. The present work indicated that multiple pathways were compromised in NiO-NP affected plants and this information can bolster our general understanding of the actual mechanism of its toxicity on living cells, and help formulate strategies to thwart ecological pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01314-8.
Collapse
Affiliation(s)
- Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| |
Collapse
|
23
|
Fei W, Yan J, Wu X, Yang S, Zhang X, Wang R, Chen Y, Xu J, Zheng C. Perturbing plasma membrane lipid: a new paradigm for tumor nanotherapeutics. Theranostics 2023; 13:2471-2491. [PMID: 37215569 PMCID: PMC10196822 DOI: 10.7150/thno.82189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is generally considered a result of genetic mutations that cause epigenetic changes, leading to anomalous cellular behavior. Since 1970s, an increasing understanding of the plasma membrane and specifically the lipid alterations in tumor cells have provided novel insights for cancer therapy. Moreover, the advances in nanotechnology offer a potential opportunity to target the tumor plasma membrane while minimizing side effects on normal cells. To further develop membrane lipid perturbing tumor therapy, the first section of this review demonstrates the association between plasma membrane physicochemical properties and tumor signaling, metastasis, and drug resistance. The second section highlights existing nanotherapeutic strategies for membrane disruption, including lipid peroxide accumulation, cholesterol regulation, membrane structure disruption, lipid raft immobilization, and energy-mediated plasma membrane perturbation. Finally, the third section evaluates the prospects and challenges of plasma membrane lipid perturbing therapy as a therapeutic strategy for cancers. The reviewed membrane lipid perturbing tumor therapy strategies are expected to bring about necessary changes in tumor therapy in the coming decades.
Collapse
Affiliation(s)
- Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingjing Yan
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shan Yang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Rong Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
24
|
Maheshwari N, Khan AA, Mahmood R. Oral administration of curcumin and gallic acid alleviates pentachlorophenol-induced oxidative damage in rat intestine. Food Chem Toxicol 2023; 176:113745. [PMID: 37028744 DOI: 10.1016/j.fct.2023.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Pentachlorophenol (PCP) is used as pesticide and wood preservative. We have previously shown that PCP causes oxidative damage in rat intestine. AIM This study aimed to delineate the possible therapeutic potential of curcumin (CUR) and gallic acid (GA) against PCP-induced damage in rat intestine. METHODS PCP alone group received 125 mg PCP/kg body weight/day orally for 4 days. Animals in combination groups received CUR or GA (100 mg/kg bw) for 18 days and PCP (125 mg/kg bw) for the last four days. Rats were sacrificed and intestinal preparations were analyzed for various parameters. RESULTS Administration of PCP alone altered the activities of metabolic, antioxidant and brush border membrane enzymes. It also increased DNA-protein crosslinking and DNA-strand scission. Animals in combinations groups showed significant amelioration against PCP-induced oxidative damage. Histological abrasions were seen in PCP alone group which were reduced in the intestines of combination groups. CUR was more effective protectant than GA. CONCLUSIONS CUR and GA protected rat intestine from PCP-mediated changes in the activities of metabolic, antioxidant and brush border membrane enzymes. They also prevented DNA damage and histological abrasions. The antioxidant character of CUR and GA may be responsible for the diminution of PCP-mediated oxidative damage.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| | - Aijaz Ahmed Khan
- Department of Anatomy, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
25
|
Yu JW, Lee JH, Song MH, Keum YS. Metabolomic Responses of Lettuce ( Lactuca sativa) to Allelopathic Benzoquinones from Iris sanguinea Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5143-5153. [PMID: 36961423 DOI: 10.1021/acs.jafc.2c09069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Weed management is important in modern crop protection. Chemical weed control using synthetic herbicides, however, suffers from resistance and ecotoxicity. Metabolomic investigation of allelopathy (or allelochemicals) may provide novel alternatives to synthetic herbicides. This study aimed to investigate the detailed metabolomic responses of plants to allelochemicals in Iris seed extracts. The seed extracts of Iris sanguinea showed the strongest growth inhibitory activity against alfalfa, barnyard grass, lettuce, and mustard. 3-Hydroxyirisquinone (3-[10(Z)-heptadecenyl]-2-hydroxy-5-methoxy-1,4-benzoquinone) was isolated as a major allelochemical from I. sanguinea seeds through bioassay-guided fractionation. The compound inhibited the growth of shoots and roots by browning root tips. Discriminant analysis identified 33 differentially regulated lettuce metabolites after treatment with 3-hydroxyirisquinone (3HIQ). Metabolic pathway analysis revealed that several metabolic pathways, including aromatic amino acid biosynthesis and respiratory pathways, were affected by the compounds. Differential responses of membrane lipids (accumulation of unsaturated fatty acids) and extensive formation of reactive oxygen species were observed in root tissues following treatment with 3HIQ. Overall, alkylbenzoquinone from I. sanguinea induced extensive metabolic modulation, oxidative stress, and growth inhibition. The metabolomic responses to allelochemicals may provide fundamental information for the development of allelochemical-based herbicides.
Collapse
Affiliation(s)
- Ji-Woo Yu
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
26
|
de Melo Gomes LC, de Oliveira Cunha AB, Peixoto LFF, Zanon RG, Botelho FV, Silva MJB, Pinto-Fochi ME, Góes RM, de Paoli F, Ribeiro DL. Photodynamic therapy reduces cell viability, migration and triggers necroptosis in prostate tumor cells. Photochem Photobiol Sci 2023:10.1007/s43630-023-00382-9. [PMID: 36867369 PMCID: PMC9983546 DOI: 10.1007/s43630-023-00382-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
Prostate cancer is the most common cancer in American men, aside from skin cancer. As an alternative cancer treatment, photodynamic laser therapy (PDT) can be used to induce cell death. We evaluated the PDT effect, using methylene blue as a photosensitizer, in human prostate tumor cells (PC3). PC3 were subjected to four different conditions: DMEM (control); laser treatment (L-660 nm, 100 mW, 100 J.cm-2); methylene blue treatment (MB-25 μM, 30 min), and MB treatment followed by low-level red laser irradiation (MB-PDT). Groups were evaluated after 24 h. MB-PDT treatment reduced cell viability and migration. However, because MB-PDT did not significantly increase the levels of active caspase-3 and BCL-2, apoptosis was not the primary mode of cell death. MB-PDT, on the other hand, increased the acid compartment by 100% and the LC3 immunofluorescence (an autophagy marker) by 254%. Active MLKL level, a necroptosis marker, was higher in PC3 cells after MB-PDT treatment. Furthermore, MB-PDT resulted in oxidative stress due to a decrease in total antioxidant potential, catalase levels, and increased lipid peroxidation. According to these findings, MB-PDT therapy is effective at inducing oxidative stress and reducing PC3 cell viability. In such therapy, necroptosis is also an important mechanism of cell death triggered by autophagy.
Collapse
Affiliation(s)
- Laura Calazans de Melo Gomes
- Department of Cell Biology, Histology and Embryology. Institute of Biomedical Sciences-ICBIM, Federal University of Uberlândia-UFU, Uberlândia, Minas Gerais Brazil
| | - Amanda Branquinho de Oliveira Cunha
- Department of Cell Biology, Histology and Embryology. Institute of Biomedical Sciences-ICBIM, Federal University of Uberlândia-UFU, Uberlândia, Minas Gerais Brazil
| | - Luiz Felipe Fernandes Peixoto
- Department of Cell Biology, Histology and Embryology. Institute of Biomedical Sciences-ICBIM, Federal University of Uberlândia-UFU, Uberlândia, Minas Gerais Brazil
| | - Renata Graciele Zanon
- Department of Anatomy. Institute of Biomedical Sciences-ICBIM, Federal University of Uberlândia-UFU, Uberlândia, Minas Gerais Brazil
| | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences-ICBIM, Federal University of Uberlândia-UFU, Uberlândia, Minas Gerais Brazil
| | - Maria Etelvina Pinto-Fochi
- Faculdade de Medicina, União das Faculdades Dos Grandes Lagos, São José Do Rio Preto-São Paulo, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University-UNESP, São José Do Rio Preto-São Paulo, Brazil
| | - Flávia de Paoli
- Department of Morphology, Institute of Biological Sciences, Federal University of Juiz de Fora-UFJF, Juiz de Fora, Minas Gerais Brazil
| | - Daniele Lisboa Ribeiro
- Department of Cell Biology, Histology and Embryology. Institute of Biomedical Sciences-ICBIM, Federal University of Uberlândia-UFU, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Toluidine blue O directly and photodynamically impairs the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Photochem Photobiol Sci 2023; 22:279-302. [PMID: 36152272 DOI: 10.1007/s43630-022-00312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 μM. Additionally, TBO (40 μM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.
Collapse
|
28
|
Directly imaging emergence of phase separation in peroxidized lipid membranes. Commun Chem 2023; 6:15. [PMID: 36697756 PMCID: PMC9845225 DOI: 10.1038/s42004-022-00809-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Lipid peroxidation is a process which is key in cell signaling and disease, it is exploited in cancer therapy in the form of photodynamic therapy. The appearance of hydrophilic moieties within the bilayer's hydrocarbon core will dramatically alter the structure and mechanical behavior of membranes. Here, we combine viscosity sensitive fluorophores, advanced microscopy, and X-ray diffraction and molecular simulations to directly and quantitatively measure the bilayer's structural and viscoelastic properties, and correlate these with atomistic molecular modelling. Our results indicate an increase in microviscosity and a decrease in the bending rigidity upon peroxidation of the membranes, contrary to the trend observed with non-oxidized lipids. Fluorescence lifetime imaging microscopy and MD simulations give evidence for the presence of membrane regions of different local order in the oxidized membranes. We hypothesize that oxidation promotes stronger lipid-lipid interactions, which lead to an increase in the lateral heterogeneity within the bilayer and the creation of lipid clusters of higher order.
Collapse
|
29
|
Zolfaghari S, Ayen E, Khaki A. The effect of different concentrations of taxifolin on the quality of frozen and thawed semen of Simmental cattle. IRANIAN JOURNAL OF VETERINARY RESEARCH 2023; 24:235-241. [PMID: 38269011 PMCID: PMC10804431 DOI: 10.22099/ijvr.2023.47455.6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 01/26/2024]
Abstract
Background Artificial insemination (AI) is one of the most important reproductive technologies used to modify animals genetically. Using this method, the genetic composition of the herd can be improved and selected by choosing bulls with excellent genetic characteristics. Taxifolin (TXF), a plant flavonoid, has shown an antioxidative effect. Aims The current study aimed to evaluate the impact of TXF on the quality of frozen-thawed semen in Fleckvieh (Simmental) dual-purpose bulls. Methods Freezable semen specimens were obtained by an artificial vagina. Ejaculates were equally divided into six parts for six experimental groups, including without adding TXF to diluent (C), adding 25 (T25), 50 (T50), 100 (T100), 200 (T200), and 400 (T400) μM TXF. Sperms were frozen in a one-step dilution method. Semen factors, including motility, viability, sperm membrane integrity, DNA damage, and oxidant and antioxidant enzyme activities, were examined after thawing. Results Our findings revealed that all semen quality parameters, antioxidant enzyme activities, and free radical levels were superior in TXF-treated groups compared to the control group, and the differences were noticeably higher in the T100 group than the other groups. Conclusion Adding 100 μM TXF to diluent could improve the quality of bull frozen semen.
Collapse
Affiliation(s)
- S. Zolfaghari
- Ph.D. Student in Theriogenology, Department of Theriogenology and Poultry Disease, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - E. Ayen
- Department of Theriogenology and Poultry Disease, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - A. Khaki
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
30
|
Kumar N, Thorat ST, Gite A, Patole PB. Selenium nanoparticles and omega-3 fatty acid enhanced thermal tolerance in fish against arsenic and high temperature. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109447. [PMID: 36030006 DOI: 10.1016/j.cbpc.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
Abstract
The aquatic ecosystem is prone to global climate change and pollution affecting aquatic animals, including fish. In light of the above, we experimented with delineate the role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with selenium nanoparticles (Se-NPs) to enhance the thermal tolerance in Pangasianodon hypophthalmus reared under control or concurrent exposure to high temperature and arsenic (As + T) for 112 days. Se-NPs were synthesized using the green approach. Four experimental diets viz. EPA + DHA at 0.2, 0.4 and 0.6 % along with Se-NPs at 0.2 mg kg-1 diet were formulated and prepared. End of the experiment (112 days), the thermal tolerance viz. CTmin (critical thermal minima) CTmax (critical thermal maxima), LTmin (lethal thermal minima) and LTmax (lethal thermal maxima) were determined. Supplementation of EPA + DHA along with Se-NPs noticeably improved the thermal tolerance of the fish reared under stress (As + T) and control condition. Superoxide dismutase, glutathione-s-transferase, catalase, glutathione peroxides and LPO were enhanced by As + T, whereas EPA + DHA at 0.4 % and Se-NPs reduced the oxidative stress. Further, acetylcholine esterase was inhibited by arsenic alone and concurrent with temperature but dietary supplementation significantly enhanced the brain AChE activity. Exposure to arsenic and concurrent with a temperature significantly reduced the ATPase. Whereas supplementation of EPA + DHA at 0.4 % and Se-NPs enhanced the ATPase in liver and gill tissues. Arsenic bioaccumulation was also reduced with EPA + DHA at 0.4 % and Se-NPs. The present investigation concluded that EPA + DHA at 0.4 % and Se-NPs at 0.2 mg kg-1 diet protects the P. hypophthalmus against arsenic pollution and thermal stress.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra 413115, India
| |
Collapse
|
31
|
Peluffo RD, del V. Alonso S, Itri R, Flecha FLG, Barbosa LRS. Biophysical Reviews special issue call: LAFeBS-highlighting biophysics in Latin America. Biophys Rev 2022; 14:1083-1084. [PMID: 36345275 PMCID: PMC9636340 DOI: 10.1007/s12551-022-00996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 10/14/2022] Open
Abstract
This Commentary describes a call for contributions to an upcoming Special Issue (SI) of Biophysical Reviews on the Latin American Federation of Biophysical Societies (LAFeBS). It details the reason for the SI, the SI Editors contact information and the relevant submission details for those wishing to contribute.
Collapse
Affiliation(s)
- R. Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Silvia del V. Alonso
- Departamento de Ciencia y Tecnología, Laboratorio de Bio-Nanotecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires Argentina
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), Buenos Aires, Argentina
| | - Rosangela Itri
- Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP 05508-090 Brazil
| | - F. Luis González Flecha
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Leandro R. S. Barbosa
- Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP 05508-090 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| |
Collapse
|
32
|
Singh A, Yadagiri G, Javaid A, Sharma KK, Verma A, Singh OP, Sundar S, Mudavath SL. Hijacking the intrinsic vitamin B 12 pathway for the oral delivery of nanoparticles, resulting in enhanced in vivo anti-leishmanial activity. Biomater Sci 2022; 10:5669-5688. [PMID: 36017751 DOI: 10.1039/d2bm00979j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-functionalized vitamin B12 (VB12) biocompatible nanoparticles exploit the well-characterized uptake pathway of VB12, shielding it from enzymatic degradation and inadequate absorption. In this perspective, subsequent to escalated mucus interaction and diffusion analysis, the nanoparticles were investigated by immunostaining with the anti-CD320 antibody, and their internalization mechanisms were examined by selectively blocking specific uptake processes. It was observed that their internalization occurred via an energy-dependent clathrin-mediated mechanism, simultaneously highlighting their remarkable ability to bypass the P-glycoprotein efflux. In particular, the synthesized nanoparticles were evaluated for their cytocompatibility by analyzing cellular proliferation, membrane viscoelasticity, and fluidity by fluorescence recovery after photobleaching and oxidative-stress detection, making them well-suited for successful translation to a clinical setup. Our previous in vitro antileishmanial results were paramount for their further in vivo and toxicity analysis, demonstrating their targeted therapeutic efficiency. The augmented surface hydrophilicity, which is attributed to VB12, and monomerization of amphotericin B in the lipid core strengthened the oral bioavailability and stability of the nanoparticles, as evidenced by the fluorescence resonance energy transfer analysis.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Aaqib Javaid
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| | - Krishna Kumar Sharma
- Department of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Anurag Verma
- Department of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
33
|
Use of giant unilamellar lipid vesicles as antioxidant carriers in in vitro culture medium of bovine embryos. Sci Rep 2022; 12:11228. [PMID: 35787650 PMCID: PMC9253010 DOI: 10.1038/s41598-022-14688-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 01/20/2023] Open
Abstract
Giant unilamellar vesicles (GUVs) are composed of lipophilic layers and are sensitive to the action of reactive oxygen species (ROS). The use of GUVs as microcarriers of biological macromolecules is particularly interesting since ROS produced by gametes or embryos during in vitro culture can induce the opening of pores in the membrane of these vesicles and cause the release of their content. This study investigated the behavior of GUVs [composed of 2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)] in co-culture with in vitro produced bovine embryos, as well as their embryotoxicity and effectiveness as cysteine carriers in culture medium. Embryonic developmental rates were unaffected, demonstrating the absence of toxicity of GUVs co-cultured with the embryos. No increase of intracellular ROS levels was observed in the embryos co-cultured with GUVs, indicating that the higher lipid content of the culture environment resulting from the lipid composition of the GUV membrane itself did not increase oxidative stress. Variations in the diameter and number of GUVs demonstrated their sensitivity to ROS produced by embryos cultured under conditions that generate oxidative stress. Encapsulation of cysteine in GUVs was found to be more effective in controlling the production of ROS in embryonic cells than direct dilution of this antioxidant in the medium. In conclusion, the use of GUVs in in vitro culture was found to be safe since these vesicles did not promote toxic effects nor did they increase intracellular ROS concentrations in the embryos. GUVs were sensitive to oxidative stress, which resulted in structural changes in response to the action of ROS. The possible slow release of cysteine into the culture medium by GUV rupture would therefore favor the gradual supply of cysteine, prolonging its presence in the medium. Thus, the main implication of the use of GUVs as cysteine microcarriers is the greater effectiveness in preventing the intracytoplasmic increase of ROS in in vitro produced bovine embryos.
Collapse
|
34
|
Fan KK, Zhou YM, Wei Y, Han RM, Wang P, Skibsted LH, Zhang JP. Peroxyl radical induced membrane instability of giant unilamellar vesicles and anti-lipooxidation protection. Biophys Chem 2022; 285:106807. [DOI: 10.1016/j.bpc.2022.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 11/02/2022]
|
35
|
Jiao Y, Gao Y, Wang J, An H, Xiang Li Y, Zhang X. Intelligent porphyrin nano-delivery system for photostimulated and targeted inhibition of angiogenesis. Int J Pharm 2022; 621:121805. [DOI: 10.1016/j.ijpharm.2022.121805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 12/17/2022]
|
36
|
Wang Z, Lv J, Yu P, Qu Y, Zhou Y, Zhou L, Zhu Q, Li S, Song J, Deng W, Gao R, Liu Y, Liu J, Tong WM, Qin C, Huang B. SARS-CoV-2 treatment effects induced by ACE2-expressing microparticles are explained by the oxidized cholesterol-increased endosomal pH of alveolar macrophages. Cell Mol Immunol 2022; 19:210-221. [PMID: 34983944 PMCID: PMC8724656 DOI: 10.1038/s41423-021-00813-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Exploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Pin Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Qiangqiang Zhu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Shunshun Li
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, CAMS and Peking Union Medical College, Beijing, China
| | - Wei Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, CAMS and Peking Union Medical College, Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
37
|
Zhang X, Wu L, Zhen W, Li S, Jiang X. Generation of singlet oxygen via iron-dependent lipid peroxidation and its role in Ferroptosis. FUNDAMENTAL RESEARCH 2022; 2:66-73. [PMID: 38933913 PMCID: PMC11197759 DOI: 10.1016/j.fmre.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a cell death pathway mediated by iron-dependent accumulation of lipid peroxide. However, the specific downstream molecular events of iron-dependent lipid peroxidation are yet to be elucidated. In this study, based on various spectral analyses, we have found evidence that singlet oxygen is produced through the Russell mechanism during the self-reaction of lipid peroxyl radicals generated via iron-dependent lipid peroxidation regardless of the presence of cholesterol. Significantly reduced generation of singlet oxygen was observed in the absence of iron. The generated singlet oxygen accelerated the oxidative damage of lipid membranes by propagating lipid peroxidation and facilitated ferroptotic cancer cell death initiated by erastin. In this work, singlet oxygen has been revealed to be a new reactive species that participates in ferroptosis, thus improving the understanding on iron-dependent lipid peroxidation and the mechanism of ferroptosis.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
- Changchun University, Changchun, Jilin 130022, China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| | - Shanshan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
38
|
Jayaraj P, Sarkar P, Routh S, Sarathe C, Rajagopal D, Thirumurugan K. A promising discovery of anti-aging chemical conjugate derived from lipoic acid and sesamol established in Drosophila melanogaster. NEW J CHEM 2022. [DOI: 10.1039/d2nj00720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytonutrients, lipoic acid and sesamol, were chemically combined to yield medically important lipoic acid-sesamol conjugate (LSC). NMR and LC-MS/MS techniques were used to determine the chemical structure of LSC. The...
Collapse
|
39
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
40
|
Chen X, Yang C, Jiang G. Research progress on skin photoaging and oxidative stress. Postepy Dermatol Alergol 2021; 38:931-936. [PMID: 35125996 PMCID: PMC8802961 DOI: 10.5114/ada.2021.112275] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
Skin photoaging, which is a kind of exogenous aging, refers to skin elasticity degradation, skin roughening, and wrinkle formation processes because of cascading reactions of a series of kinases after growth factor receptors and cytokine receptors are activated on a cell surface under the UV effect. An extensively recognized skin photoaging mechanism is free radical-oxidative stress concept, proposed by Sohal who represents the authority of the US aging studies. Over the past decade, many new developments in the oxidative stress mechanism have been achieved in terms of the occurrence, development, prevention, and treatment of photodamage.
Collapse
Affiliation(s)
- Xi Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, the Affiliated Huai’an Hospital of Xuzhou Medical University, the Second People’s Hospital of Huai’an, Huai’an, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
41
|
Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev 2021; 63:44-57. [PMID: 34836751 PMCID: PMC8591899 DOI: 10.1016/j.cytogfr.2021.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Daniel M Czajkowsky
- Bio-ID Centre, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Abstract
Objectives: The beneficial role of ROS was probably in promoting intercellular communication by modifying membrane constituents [Liang D. A salutary role of reactive oxygen species in intercellular tunnel-mediated communication. Front Cell Dev Biol. 2018;6:2]. We investigated how the membrane lipids were responding to ROS and ROS inhibitors. Methods: To examine how ROS affected the lipid profiles, we used thin-layer chromatography to characterize lipid profiles in Arabidopsis plants. Then, the confocal microscopy imaging was used to confirm the change of membrane lipid in a plasma membrane marker line exposed to ROS and ROS inhibitors. Results: We found the relative contents of most lipids in H2O2-treated Arabidopsis plants were increased in roots, rather than in shoots. The increased fluorescent signal of membrane marker induced by H2O2 was mainly enriched in the conductive parts of roots. Several ROS inhibitors also strongly affected the lipid profiles. Among them, diethyldithiocarbamate (DDC) can progressively change the lipid profiles with treatment going on. Membrane marker signal was mainly accumulated in the root tips and epidermal cells after treatment by DDC. Discussion: H2O2 may enhance intercellular communication by inducing different lipid species in the conductive parts of roots. The lipid profiles were widely responding to various ROS reagents and might play a role in intercellular signaling.
Collapse
Affiliation(s)
- Tianlin Jin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Jingzhou, People's Republic of China.,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, People's Republic of China.,School of Agriculture, Yangtze University, Jingzhou, People's Republic of China
| | - Xue Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Jingzhou, People's Republic of China.,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, People's Republic of China.,School of Agriculture, Yangtze University, Jingzhou, People's Republic of China
| | - Zhuying Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Jingzhou, People's Republic of China.,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, People's Republic of China.,School of Agriculture, Yangtze University, Jingzhou, People's Republic of China
| | - Xiaofang Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Jingzhou, People's Republic of China.,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, People's Republic of China.,School of Agriculture, Yangtze University, Jingzhou, People's Republic of China
| | - Dacheng Liang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Key Laboratory of Waterlogging Disaster and Wetland Agriculture, Jingzhou, People's Republic of China.,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, People's Republic of China.,School of Agriculture, Yangtze University, Jingzhou, People's Republic of China
| |
Collapse
|
43
|
Donato M, Soto C, Lanio ME, Itri R, Álvarez C. The pore-forming activity of sticholysin I is enhanced by the presence of a phospholipid hydroperoxide in membrane. Toxicon 2021; 204:44-55. [PMID: 34736955 DOI: 10.1016/j.toxicon.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022]
Abstract
Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane. 1-palmitoyl-2-oleoylphosphatidylcholine hydroperoxide (POPC-OOH) is an oxidized phospholipid (OxPL) containing an -OOH moiety in the unsaturated hydrocarbon chain which orientates towards the bilayer interface. This orientation causes an increase in the lipid molecular area, lateral expansion and decrease in bilayer thickness, elastic and bending modulus, as well as modification of lipid packing. Taking advantage of membrane structural changes promoted by POPC-OOH, we investigated its influence on the permeabilizing ability of StI. Here we report the action of StI on Giant Unilamellar Vesicles (GUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and SM containing increasing amount of POPC-OOH to assess vesicle permeability changes when compared to OxPL-lacking membranes. Inclusion of POPC-OOH in membranes did not promote spontaneous vesicle leaking but resulted in increased membrane permeability due to StI action. StI activity did not modify the fluid-gel phase coexistence boundaries neither in POPC:SM or POPC-OOH:SM membranes. However, the StI insertion mechanism in membrane seems to differ between POPC:SM and POPC-OOH:SM mixtures as suggested by changes in the time course of monolayer surface tension measurements, even though a preferable binding of the toxin to OxPL-containing systems could not be here demonstrated. In summary, modifications in the membrane imposed by lipid hydroperoxidation favor StI permeabilizing activity.
Collapse
Affiliation(s)
- Maressa Donato
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Center for Laser and Applications, Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - Rosangela Itri
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | - Carlos Álvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba.
| |
Collapse
|
44
|
Sherin PS, Vyšniauskas A, López-Duarte I, Ogilby PR, Kuimova MK. Visualising UV-A light-induced damage to plasma membranes of eye lens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112346. [PMID: 34736070 DOI: 10.1016/j.jphotobiol.2021.112346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
An eye lens is constantly exposed to the solar UV radiation, which is considered the most important external source of age-related changes to eye lens constituents. The accumulation of modifications of proteins and lipids with age can eventually lead to the development of progressive lens opacifications, such as cataracts. Though the impact of solar UV radiation on the structure and function of proteins is actively studied, little is known about the effect of photodamage on plasma membranes of lens cells. In this work we exploit Fluorescence Lifetime Imaging Microscopy (FLIM), together with viscosity-sensitive fluorophores termed molecular rotors, to study the changes in viscosity of plasma membranes of porcine eye lens resulting from two different types of photodamage: Type I (electron transfer) and Type II (singlet oxygen) reactions. We demonstrate that these two types of photodamage result in clearly distinct changes in viscosity - a decrease in the case of Type I damage and an increase in the case of Type II processes. Finally, to simulate age-related changes that occur in vivo, we expose an intact eye lens to UV-A light under anaerobic conditions. The observed decrease in viscosity within plasma membranes is consistent with the ability of eye lens constituents to sensitize Type I photodamage under natural irradiation conditions. These changes are likely to alter the transport of metabolites and predispose the whole tissue to the development of pathological processes such as cataracts.
Collapse
Affiliation(s)
- Peter S Sherin
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK; International Tomography Center SB RAS, Institutskaya street 3A, Novosibirsk 630090, Russia.
| | - Aurimas Vyšniauskas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania; Chemistry Department, Vilnius University, Naugarduko st. 24, Vilnius LT-03225, Lithuania
| | - Ismael López-Duarte
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus DK-8000, Denmark
| | - Marina K Kuimova
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
45
|
Kaya C, Polat T, Ashraf M, Kaushik P, Alyemeni MN, Ahmad P. Endogenous nitric oxide and its potential sources regulate glutathione-induced cadmium stress tolerance in maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:723-737. [PMID: 34500197 DOI: 10.1016/j.plaphy.2021.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
It was aimed to assess that up to what extent endogenous nitric oxide (NO) and its sources are involved in glutathione (GSH)-mediated tolerance of maize plants to cadmium (Cd) stress. The Cd-stressed maize plants were sprayed with or without GSH (1.0 mM) once every week for two weeks. Before initiating the stress treatment, the Cd-stressed plants sprayed with GSH were supplied with or without 0.1 mM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a NO scavenger) for two weeks or with 0.1 mM sodium tungstate (ST; a nitrate reductase inhibitor), or 0.1 mM NG-nitro-L-arginine methyl ester hydrochloride (L-NAME). Cadmium stress suppressed the activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glyoxalase II, while increased leaf NO, Cadmium content, proline, oxidative stress, the activities of glutathione reductase, ascorbate peroxidase, the key enzymes of oxidative defense system, glyoxalase I, NR and NOS. GSH reduced oxidative stress and tissue Cd2+ content, but it improved growth, altered water relations, and additionally increased proline levels, activities of the AsA-GSH cycle, key enzymatic antioxidants, glyoxalase I and II, NR and NOS as well as NO content. The cPTIO and ST supplementation abolished the beneficial effects of GSH by reducing the activities of NO and NR. However, L-NAME did not retreat the favorable effects of GSH, although it reduced the NOS activity without eliminating NO content, suggesting that NR might be a prospective source of NO generated by GSH in Cd-stressed plants, which in turn accelerated the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Tahir Polat
- Field Crops Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Prashant Kaushik
- Kikugawa Research Station, Yokohama Ueki, 2265, Kamo, Kikugawa City, Shizuoka, 439-0031, Japan
| | | | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
46
|
Patel A, Tiwari S, Prasad SM. Arsenate and arsenite-induced inhibition and recovery in two diazotrophic cyanobacteria Nostoc muscorum and Anabaena sp.: study on time-dependent toxicity regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51088-51104. [PMID: 33974205 DOI: 10.1007/s11356-021-13800-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Exposure time, metal bio-accumulation, and upregulation of ascorbate-glutathione (AsA-GSH) cycle are the key factor that provide tolerance against heavy metal stress. Thus, the current study is an endeavor to prove our hypothesis that regulation of arsenate (AsV: 50, 100, and 150 mM) and arsenite (AsIII: 50, 100, and 150 μM) toxicity is time dependent (48-96 h) due to modulation in bio-accumulation pattern, AsA-GSH cycle, and non-enzymatic antioxidants in two paddy field cyanobacteria Nostoc muscorum ATCC27893 and Anabaena sp. PCC7120. After 48 h, reduction in growth associated with increased sensitivity index, As bio-accumulation, and oxidative stress was observed which further intensified after 96 h but the degree of damage was lesser than 48 h. It denotes a significant recovery in growth after 96 h which is correlated with decreased As bio-accumulation and oxidative stress due to increased efficiency of AsA-GSH cycle and non-enzymatic antioxidants. Both the species of As caused significant rise in oxidative biomarkers as evident by in -vitro analysis of O2·-, H2O2, and MDA equivalent contents despite appreciable rise in the activity antioxidative enzymes APX, DHAR, and GR. The study concludes that among both forms of arsenic, AsIII induced more toxic effect on growth by over-accumulating the ROS as evident by weak induction of AsA-GSH cycle to overcome the stress as compared to AsV. Further, with increasing the time exposure, apparent recovery was noticed with the lower doses of AsV, i.e., 50 and 100 mM and AsIII, i.e., 50 and 100 μM; however, the toxicity further aggravated with higher dose of both AsV and AsIII. Study proposes the deleterious impact of AsV and AsIII on cyanobacteria N. muscorum and Anabaena sp. but the toxicity was overcome by time-dependent recovery.
Collapse
Affiliation(s)
- Anuradha Patel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Sanjesh Tiwari
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
47
|
Zhou YM, Zhang Y, Gao RY, Liu W, Wei Y, Han RM, Wang P, Zhang JP, Skibsted LH. Primary reaction intermediates of Type-I photosensitized lipid oxidation as revealed by time-resolved optical spectroscopies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Jin R, Baumgart T. Asymmetric desorption of lipid oxidation products induces membrane bending. SOFT MATTER 2021; 17:7506-7515. [PMID: 34338699 PMCID: PMC8425771 DOI: 10.1039/d1sm00652e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation, detected in metabolic processes, is induced in excess when the cellular membrane suffers extra oxidative stress. Lipid oxidation can compromise biomembrane function in part through perturbations of lipid packing, membrane permeability, and morphology. Two major types of oxidation products, one with a partially truncated lipid tail with a hydrophilic group at the tail-end, and secondly, a lysolipid (with one of the chains completely truncated) can disturb the membrane bilayer packing significantly. However, they also have an increased tendency to desorb from the membrane. In this study we investigated desorption kinetics of two characteristic lipid oxidation products (PAzePC and 18 : 1 LysoPC) from a model membrane system, and we evaluated the consequences of this process on membrane shape transitions. Using a microfluidic chamber coupled with micropipette aspiration, we observed the incorporation of the two lipids into the membrane of a giant unilamellar vesicle (GUV) and further determined their desorption rates, association rates and flip-flop rates. For both lipids, the desorption is on the time scale of seconds, one to two orders of magnitude faster than their flipping rates. Dilution of the outer solution of the GUVs allowed asymmetric desorption of these two lipids from the GUVs. This process induced lipid number asymmetry and charge asymmetry, specifically for PAzePC containing GUVs, and caused membrane tubulation. Our results indicate that the desorption of lipid oxidation products can alter the local structure of biomembranes and result in morphological changes that may relate to membrane function.
Collapse
Affiliation(s)
- Rui Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
49
|
Scanavachi G, Coutinho A, Fedorov AA, Prieto M, Melo AM, Itri R. Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9952-9963. [PMID: 34374545 DOI: 10.1021/acs.langmuir.1c00830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid hydroperoxides are key mediators of diseases and cell death. In this work, the structural and dynamic perturbations induced by the hydroperoxidized POPC lipid (POPC-OOH) in fluid POPC membranes, at both 23 and 37 °C, were addressed using advanced small-angle X-ray scattering (SAXS) and fluorescence methodologies. Notably, SAXS reveals that the hydroperoxide group decreases the lipid bilayer bending rigidity. This alteration disfavors the bilayer stacking and increases the swelling in-between stacked bilayers. We further investigated the changes in the apolar/polar interface of hydroperoxide-containing membranes through time-resolved fluorescence/anisotropy experiments of the probe TMA-DPH and time-dependent fluorescence shifts of Laurdan. A shorter mean fluorescence lifetime for TMA-DPH was obtained in enriched POPC-OOH membranes, revealing a higher degree of hydration near the membrane interface. Moreover, a higher microviscosity near TMA-DPH and lower order are predicted for these oxidized membranes, at variance with the usual trend of variation of these two parameters. Finally, the complex relaxation process of Laurdan in pure POPC-OOH membranes also indicates a higher membrane hydration and viscosity in the close vicinity of the -OOH moiety. Altogether, our combined approach reveals that the hydroperoxide group promotes alterations in the membrane structure organization, namely, at the level of membrane order, viscosity, and bending rigidity.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Ana Coutinho
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Alexander Andreevich Fedorov
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Manuel Prieto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ana M Melo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
50
|
Vera C, Tulli F, Borsarelli CD. Photosensitization With Supramolecular Arrays for Enhanced Antimicrobial Photodynamic Treatments. Front Bioeng Biotechnol 2021; 9:655370. [PMID: 34307317 PMCID: PMC8293899 DOI: 10.3389/fbioe.2021.655370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial infections represent a silent threat to health that has worsened in recent decades due to microbial resistance to multiple drugs, preventing the fight against infectious diseases. Therefore, the current postantibiotic era forces the search for new microbial control strategies. In this regard, antimicrobial photodynamic therapy (aPDT) using supramolecular arrays with photosensitizing capabilities showed successful emerging applications. This exciting field makes it possible to combine applied aspects of molecular photochemistry and supramolecular chemistry, together with the development of nano- and biomaterials for the design of multifunctional or "smart" supramolecular photosensitizers (SPS). This minireview aims to collect the concepts of the photosensitization process and supramolecular chemistry applied to the development of efficient applications of aPDT, with a brief discussion of the most recent literature in the field.
Collapse
Affiliation(s)
| | | | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET – Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| |
Collapse
|