1
|
Nejati A, Tabatabaei SM, Mahmoudi S, Zahraei SM, Tabatabaie H, Razaghi M, Khodakhah F, Yousefi M, Mollaei-Kandelousi Y, Keyvanlou M, Soheili P, Pouyandeh S, Samimi-Rad K, Shahmahmoodi S. Environmental Surveillance of Poliovirus and Non-polio Enteroviruses in Iran, 2017-2023: First Report of Imported Wild Poliovirus Type 1 Since 2000. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:391-397. [PMID: 38658427 DOI: 10.1007/s12560-024-09600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
In Iran, which is at high risk of the Wild Poliovirus (WPV) and Vaccine-Derived Poliovirus (VDPV) importation due to its neighborhood with two polio endemic countries, Pakistan and Afghanistan, Environmental Surveillance (ES) was established in November 2017. Sistan-Balouchestan province was chosen for the ES due to its vicinity with Pakistan and Afghanistan. Five sewage collection sites in 4 cities (Zahedan, Zabol, Chabahar and Konarak) were selected in the high-risk areas. Since the establishment of ES in November 2017 till the end of 2023, 364 sewage specimens were collected and analyzed. The ES detected polioviruses which have the highest significance for polio eradication program, that is, Wild Poliovirus type 1 (WPV1) and Poliovirus type 2 (PV2). In April and May 2019, three of 364 (0.8%) sewage specimens from Konarak were positive for imported WPV1. According to phylogenetic analysis, they were highly related to WPV1 circulating in Karachi (Sindh province) in Pakistan. PV2 was also detected in 5.7% (21/364) of the sewage specimens, most of which proved to be imported from the neighboring countries. Of 21 isolated PV2s, 7 were VDPV2, of which 5 proved to be imported from the neighboring countries as there was VDPV2 circulating in Pakistan at the time of sampling, and 2 were ambiguous VDPVs (aVDPV) with unknown source. According to the findings of this study, as long as WPV1 and VDPV2 outbreaks are detected in Iran's neighboring countries, there is a definite need for continuation and expansion of the environmental surveillance.
Collapse
Affiliation(s)
- Ahmad Nejati
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Tabatabaei
- Health Promotion Research Center, Zahedan University of Medical Sciences, Sistan Balouchestan Province, Zahedan, Iran
| | - Sussan Mahmoudi
- Vaccine Preventable Diseases Department, Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Mohsen Zahraei
- Vaccine Preventable Diseases Department, Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamideh Tabatabaie
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Razaghi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Khodakhah
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yousefi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Mollaei-Kandelousi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Keyvanlou
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Soheili
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Pouyandeh
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Samimi-Rad
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Gad B, Kłosiewicz P, Oleksiak K, Krzysztoszek A, Toczyłowski K, Sulik A, Wieczorek T, Wieczorek M. Intensified Circulation of Echovirus 11 after the COVID-19 Pandemic in Poland: Detection of a Highly Pathogenic Virus Variant. Viruses 2024; 16:1011. [PMID: 39066174 PMCID: PMC11281687 DOI: 10.3390/v16071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
After the first phase of the COVID-19 pandemic in Europe, a new highly pathogenic variant of echovirus 11 (E11) was detected. The aim of this study was to analyze the genetic diversity of Polish E11 environmental and clinical strains circulating between 2017 and 2023 as well as compare them with E11 strains isolated from severe neonatal sepsis cases reported in Europe between 2022 and 2023. Additionally, the study explores the effectiveness of environmental monitoring in tracking the spread of new variants. For this purpose, the complete sequences of the VP1 capsid protein gene were determined for 266 E11 strains isolated in Poland from 2017 to 2023, and phylogenetic analysis was performed. In the years 2017-2023, a significant increase in the detection of E11 strains was observed in both environmental and clinical samples in Poland. The Polish E11 strains represented three different genotypes, C3, D5 and E, and were characterized by a high diversity. In Poland, the intensive circulation of the new variant E11, responsible for severe neonatal infections with a high mortality in Europe, was detected in the years 2022-2023. This investigation demonstrates the important role of environmental surveillance in the tracking of enteroviruses circulation, especially in settings with limited clinical surveillance.
Collapse
Affiliation(s)
- Beata Gad
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Paulina Kłosiewicz
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Kinga Oleksiak
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| | - Kacper Toczyłowski
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (K.T.); (A.S.)
| | - Artur Sulik
- Department of Pediatric Infectious Diseases, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (K.T.); (A.S.)
| | - Tobiasz Wieczorek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (B.G.); (P.K.); (K.O.); (A.K.)
| |
Collapse
|
3
|
Giammanco GM, Filizzolo C, Pizzo M, Sanfilippo GL, Cacioppo F, Bonura F, Fontana S, Buttinelli G, Stefanelli P, De Grazia S. Detection of Echovirus 11 lineage 1 in wastewater samples in Sicily. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170519. [PMID: 38316300 DOI: 10.1016/j.scitotenv.2024.170519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
We report the presence of Echovirus 11 (E11) in wastewater in Sicily (Southern Italy), since August 2022. Overall, the 5.4 % of sewage samples (7/130) collected in 2022 were positives for E11 and then the percentage of E11-positive sewage samples reached the value of 27.27(18/66) in the first semester of 2023. Phylogenetic analysis of VP1 sequences showed for most E11-positive samples (16/25: 64 %) close genetic correlation (98.4-99.4 % nucleotide identity) to E11 lineage 1 strains involved in recently reported severe neonatal infections.
Collapse
Affiliation(s)
- Giovanni M Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Chiara Filizzolo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Mariangela Pizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppa L Sanfilippo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Federica Cacioppo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Floriana Bonura
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Stefano Fontana
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simona De Grazia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Pellegrinelli L, Galli C, Seiti A, Primache V, Hirvonen A, Schiarea S, Salmoiraghi G, Castiglioni S, Ammoni E, Cereda D, Binda S, Pariani E. Wastewater-based epidemiology revealed in advance the increase of enterovirus circulation during the Covid-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166539. [PMID: 37625729 DOI: 10.1016/j.scitotenv.2023.166539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Wastewater-based epidemiology (WBE) was conducted to track Enteroviruses (EVs) circulation in the Milan metropolitan area (Northern Italy) during Covid-19 pandemic (March 2020-December 2022). 202 composite 24-hour wastewater samples (WWSs) were collected weekly from March 24, 2020, to December 29, 2022 at the inlet of two wastewater treatment plants (WWTP) in Milan (1.5 million inhabitants). EV-RNA was quantified and molecular characterization of non-polio EVs (NPEV) was performed by Sanger sequence analysis. Data from WWS were matched with virological data collected in the framework of Influenza-Like Illness (ILI) surveillance in the same place and time. EV-RNA was identified in 88.2 % of WWSs. The peak in EVs circulation was observed in late August 2020 (upon conclusion of the first national lockdown), in late August 2021, and in mid-April 2022. EV-RNA concentration in WWS (normalized as copies/d/1000 people) at peak of circulation presented a yearly increase (2020: 2.47 × 1010; 2021: 6.81 × 1010; 2022: 2.14 × 1011). This trend overlapped with trend in EV-positivity rate in ILI cases, expanded from 21.7 % in 2021 to 55.6 % in 2022. EV trends in WWS preceded clinical sample detections in 2021 and 2022 by eight and five weeks, respectively, acting as an early warning of outbreak. Although sequencing of EV-positive WWSs revealed the presence of multiple EV strains, typing remained inconclusive. Molecular characterization of EVs in clinical samples revealed the co-circulation of several genotypes: EV-A accounted for 60 % of EVs, EV-B for 16.7 %, EV-D68 for 23.3 %. EVs were circulating in Milan metropolitan area between March 2020 and December 2022. The epidemiological trends unfolded the progressive accumulation of EV transmission in the population after removal of Covid-19 restrictions. The increased circulation of EVs in 2021-2022 was identified at least 35 days in advance compared to the analysis of clinical data. The inconclusive results of Sanger sequencing lookout for improvement and innovative molecular approaches to deepen track EVs.
Collapse
Affiliation(s)
- Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Arlinda Seiti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valeria Primache
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Aurora Hirvonen
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Silvia Schiarea
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Salmoiraghi
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sara Castiglioni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Emanuela Ammoni
- Directorate General for Health, Lombardy Region, Milan, Italy
| | - Danilo Cereda
- Directorate General for Health, Lombardy Region, Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Bubba L, Benschop KSM, Blomqvist S, Duizer E, Martin J, Shaw AG, Bailly JL, Rasmussen LD, Baicus A, Fischer TK, Harvala H. Wastewater Surveillance in Europe for Non-Polio Enteroviruses and Beyond. Microorganisms 2023; 11:2496. [PMID: 37894154 PMCID: PMC10608818 DOI: 10.3390/microorganisms11102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Wastewater surveillance (WWS) was developed in the early 1960s for the detection of poliovirus (PV) circulation in the population. It has been used to monitor several pathogens, including non-polio enteroviruses (NPEVs), which are increasingly recognised as causes of morbidity in children. However, when applying WWS to a new pathogen, it is important to consider the purpose of such a study as well as the suitability of the chosen methodology. With this purpose, the European Non-Polio Enterovirus Network (ENPEN) organised an expert webinar to discuss its history, methods, and applications; its evolution from a culture-based method to molecular detection; and future implementation of next generation sequencing (NGS). The first simulation experiments with PV calculated that a 400 mL sewage sample is sufficient for the detection of viral particles if 1:10,000 people excrete poliovirus in a population of 700,000 people. If the method is applied correctly, several NPEV types are detected. Despite culture-based methods remaining the gold standard for WWS, direct methods followed by molecular-based and sequence-based assays have been developed, not only for enterovirus but for several pathogens. Along with case-based sentinel and/or syndromic surveillance, WWS for NPEV and other pathogens represents an inexpensive, flexible, anonymised, reliable, population-based tool for monitoring outbreaks and the (re)emergence of these virus types/strains within the general population.
Collapse
Affiliation(s)
- Laura Bubba
- European Non-Polio Enterovirus Network (E.N.P.E.N.), 1207 Geneva, Switzerland
| | - Kimberley S. M. Benschop
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (K.S.M.B.); (E.D.)
| | - Soile Blomqvist
- Finnish Institute for Health and Welfare, P.O. Box 95, 70701 Kuopio, Finland;
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (K.S.M.B.); (E.D.)
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Potters Bar EN6 3QG, UK;
| | - Alexander G. Shaw
- MRC Centre for Global Infectious Disease Analysis, London SW7 2AZ, UK;
- Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London SW7 2BX, UK
| | - Jean-Luc Bailly
- Laboratoire Micro-Organismes Genome Environnement (LMGE), Université Clermont Auvergne CNRS, 63001 Clermont-Ferrand, France;
| | - Lasse D. Rasmussen
- Virus Surveillance and Research Section Department of Virus and Microbiological Special Diagnostics Statens Serum Institut, DK-2300 Copenhagen, Denmark;
| | - Anda Baicus
- Enteric Viral Infections Laboratory, Cantacuzino National Institute for Medical-Military Research and Development, 020123 Bucharest, Romania;
| | - Thea K. Fischer
- Department of Clinical Research, University Hospital of Nordsjaelland, 3400 Hilleroed, Denmark
- Department of Public Health, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Heli Harvala
- Microbiology Services National Health Service (NHS) Blood and Transplant, London NW9 5BG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Lombardi A, Voli A, Mancusi A, Girardi S, Proroga YTR, Pierri B, Olivares R, Cossentino L, Suffredini E, La Rosa G, Fusco G, Pizzolante A, Porta A, Campiglia P, Torre I, Pennino F, Tosco A. SARS-CoV-2 RNA in Wastewater and Bivalve Mollusk Samples of Campania, Southern Italy. Viruses 2023; 15:1777. [PMID: 37632119 PMCID: PMC10459311 DOI: 10.3390/v15081777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 can be detected in the feces of infected people, consequently in wastewater, and in bivalve mollusks, that are able to accumulate viruses due to their ability to filter large amounts of water. This study aimed to monitor SARS-CoV-2 RNA presence in 168 raw wastewater samples collected from six wastewater treatment plants (WWTPs) and 57 mollusk samples obtained from eight harvesting sites in Campania, Italy. The monitoring period spanned from October 2021 to April 2022, and the results were compared and correlated with the epidemiological situation. In sewage, the ORF1b region of SARS-CoV-2 was detected using RT-qPCR, while in mollusks, three targets-RdRp, ORF1b, and E-were identified via RT-dPCR. Results showed a 92.3% rate of positive wastewater samples with increased genomic copies (g.c.)/(day*inhabitant) in December-January and March-April 2022. In the entire observation period, 54.4% of mollusks tested positive for at least one SARS-CoV-2 target, and the rate of positive samples showed a trend similar to that of the wastewater samples. The lower SARS-CoV-2 positivity rate in bivalve mollusks compared to sewages is a direct consequence of the seawater dilution effect. Our data confirm that both sample types can be used as sentinels to detect SARS-CoV-2 in the environment and suggest their potential use in obtaining complementary information on SARS-CoV-2.
Collapse
Affiliation(s)
- Annalisa Lombardi
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Andrea Mancusi
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Santa Girardi
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Biancamaria Pierri
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Renato Olivares
- Campania Regional Environmental Protection Agency (ARPAC), Via Vicinale Santa Maria del Pianto, 80143 Naples, Italy; (R.O.); (L.C.)
| | - Luigi Cossentino
- Campania Regional Environmental Protection Agency (ARPAC), Via Vicinale Santa Maria del Pianto, 80143 Naples, Italy; (R.O.); (L.C.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Giovanna Fusco
- Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.F.); (A.P.)
| | - Antonio Pizzolante
- Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.F.); (A.P.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Ida Torre
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Francesca Pennino
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| |
Collapse
|
7
|
Larivé O, Torii S, Derlon N, Kohn T. Selective elimination of enterovirus genotypes by activated sludge and chlorination. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:1620-1633. [PMID: 37274621 PMCID: PMC10233425 DOI: 10.1039/d3ew00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023]
Abstract
Enteroviruses, which are commonly circulating viruses shed in the stool, are released into the sewage system and only partially removed or inactivated, resulting in the discharge of infectious enteroviruses into the environment. Activated sludge and chlorination remove or inactivate enterovirus genotypes to different extents, and thus have the potential to shape the population that will be discharged. The goal of this study was to evaluate how activated sludge and chlorination treatment shape an enterovirus population at the genotype level, using a population of eight genotypes commonly found in sewage: CVA9, CVB1, CVB2, CVB3, CVB4, CVB5, E25, E30. Our results show that the extent of inactivation varied among genotypes, but also across sludge samples. We find that the effluent of activated sludge systems will be depleted in CVA9, CVB1 and CVB2 while E25 together with CVB3, CVB4 and CVB5 will be prevalent. Furthermore, we found that microbial inactivation was the main mechanism of infectivity loss in the activated sludge, while adsorption to the sludge flocs was not significant. During effluent chlorination, we also observed that CVB5, CVB3 and to a lesser extent E25 were less susceptible to chlorination while E30 was readily inactivated, and activated sludge-derived EPS provided further protection against chlorination. This study contributes to a better understanding of the variability of sewage treatment efficacy against different enteroviruses.
Collapse
Affiliation(s)
- Odile Larivé
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland +41 21 69 30891
| | - Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland +41 21 69 30891
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 CH-8600 Dübendorf Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland +41 21 69 30891
| |
Collapse
|
8
|
Adesola RO, Idris I, Opuni E. Public health concerns surrounding the cVDPV2 outbreak in Africa: Strategies for prevention and control with a special focus on Nigeria. Health Sci Rep 2023; 6:e1269. [PMID: 37187504 PMCID: PMC10176430 DOI: 10.1002/hsr2.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Background and Aim Poliovirus is a global health issue that affects children in different parts of the world. Despite the efforts of national, international, and nongovernmental organizations to eradicate the disease, it is re-emerging in Africa due to poor sanitation, vaccine hesitancy, new ways of transmission, and poor surveillance among others. Circulating vaccine-derived poliovirus type 2 (cVDPV2) is a major step in eradicating poliovirus and preventing outbreaks in developing countries. Strengthening African healthcare systems, increasing surveillance, hygiene and sanitation, and proper mass vaccination to achieve herd immunity are required in the fight against polio disease. This paper discusses the outbreak of cVDPV2, public health challenges, and recommendations in Africa with a special emphasis on Nigeria. Methods We searched for articles documenting the incidence of cVDPV2 in Nigeria and other African countries on Pubmed, Google Scholar, and Scopus. Results A total of 68 distinct cVDPV2 genetic emergences were found across 34 nations between April 2016 to December 2020, and in Nigeria, three cVDPV2 emergences were found. Also, 1596 instances of acute flaccid paralysis linked to cVDPV2 outbreaks were reported in four areas of the World Health Organization where Africa contributed 962 cases out of 1596 cases. Available data indicate that Africa has the most cVDPV2 cases and is associated with various challenges like the unidentified virus source, poor sanitation system, and inability to achieve herd immunity of the cVDPV2 vaccine. Conclusion Collaborative efforts of stakeholders are crucial in combating infectious diseases, especially those transmitted via environments such as water and air, like poliovirus. Therefore, a collaboration between environmental health workers, veterinarians, community health workers, laboratory scientists, policymakers, and other professionals is required.
Collapse
Affiliation(s)
- Ridwan O. Adesola
- Department of Veterinary Medicine, Faculty of Veterinary MedicineUniversity of IbadanIbadanNigeria
| | - Ibrahim Idris
- Department of Veterinary Medicine, Faculty of Veterinary MedicineUsmanu Danfodiyo UniversitySokotoNigeria
| | - Emmanuel Opuni
- Department of Health PolicyThe London School of Economics and Political ScienceLondonUK
| |
Collapse
|
9
|
Bero DM, da Silva EE, Júnior IPDS, Nhassengo SA, Machado RS, Bauhofer AFL, Chilaúle JJ, Munlela B, Guimarães E, Cossa-Moiane I, Sambo J, Anapakala E, Cassocera M, Coutinho-Manhique L, Chissaque A, Langa JS, Burlandy F, de Deus N. Enterovirus detection in stool samples from Mozambican children with acute gastroenteritis. Acta Trop 2023; 238:106755. [PMID: 36379257 DOI: 10.1016/j.actatropica.2022.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Enteroviruses (EV) are predominantly enteric viruses, present in all parts of the world causing disease in humans with a broad spectrum of clinical presentations. The purpose of this study was to identify non-polio enteroviruses (NPEV) in stool samples collected from children with acute gastroenteritis (AGE) symptoms of unknown etiology in four provinces (Maputo, Nampula, Sofala and Zambézia) of Mozambique. From June 2014 to March 2018, 327 stool samples were collected from children hospitalized with AGE in health care units. NPEVs were detected in 52 samples (52/327; 15.9%) and were more frequent in children under 5 years of age. The age group from 12 to 23 months was the most affected and showed more severity of disease. We also identified 26 different EV-types with the following detection pattern EV-B>EV-C>EV-A. The major EV-types were EV-A119 (9/52; 17.3%) and EV-C99 (8/52; 15.4%), accounting for 32.7% of the total. In addition to EV-A119, other uncommon EV-types were also identified, such as EV-B75, EV-B97 and EV-C113. The current study shows a high heterogeneity of EV types circulating in children with AGE in Mozambique as well as the identification of rarely described enteroviruses.
Collapse
Affiliation(s)
- Diocreciano Matias Bero
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique.
| | - Edson Elias da Silva
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ CEP 21040-360, Brazil
| | - Ivanildo Pedro de Sousa Júnior
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ CEP 21040-360, Brazil
| | - Sheila António Nhassengo
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique
| | - Raiana Scerni Machado
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ CEP 21040-360, Brazil
| | - Adilson Fernando Loforte Bauhofer
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jorfélia José Chilaúle
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique
| | - Benilde Munlela
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique
| | - Esperança Guimarães
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Idalécia Cossa-Moiane
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique; Institute of Tropical Medicine, Antwerp, Belgium
| | - Júlia Sambo
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Elda Anapakala
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique
| | - Marta Cassocera
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Lena Coutinho-Manhique
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique
| | - Assucênio Chissaque
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jerónimo S Langa
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique
| | - Fernanda Burlandy
- Enterovirus Laboratory, Oswaldo Cruz Institute, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ CEP 21040-360, Brazil
| | - Nilsa de Deus
- Instituto Nacional de Saúde, Vila de Marracuene, EN1, Parcela N° 3943, Província de Maputo, Moçambique
| |
Collapse
|
10
|
Gao Z, Li P, Lin H, Lin W, Ren Y. Biomarker selection strategies based on compound stability in wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5516-5529. [PMID: 36418835 PMCID: PMC9684832 DOI: 10.1007/s11356-022-24268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The specific compositions of human excreta in sewage can be used as biomarkers to indicate the disease prevalence, health status, and lifestyle of the population living in the investigated catchment. It is important for guiding and evaluating public health policies as well as promoting human health development. Among several parameters of wastewater-based epidemiology (WBE), the decay of biomarkers during transportation in sewer and storage plays a crucial role in the back-calculation of population consumption. In this paper, we summarized the stability data of common biomarkers in storage at different temperatures and in-sewer transportation. Among them, cardiovascular drugs and antidiabetic drugs are very stable which can be used as biomarkers; most of the illicit drugs are stable except for cocaine, heroin, and tetrahydrocannabinol which could be substituted by their metabolites as biomarkers. There are some losses for part of antibiotics and antidepressants even in frozen storage. Rapid detection of contagious viruses is a new challenge for infectious disease control. With the deeper and broader study of biomarkers, it is expected that the reliable application of the WBE will be a useful addition to epidemiological studies.
Collapse
Affiliation(s)
- Zhihan Gao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- Datansha Branch of Guangzhou Sewage Treatment Co., Ltd, Guangzhou, 510163, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Castilletti C, Capobianchi MR. Polio is back? The risk of poliomyelitis recurrence globally, and the legacy of the severe acute respiratory syndrome coronavirus 2 pandemic. Clin Microbiol Infect 2022; 29:414-416. [PMID: 36503117 PMCID: PMC9731642 DOI: 10.1016/j.cmi.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Maria Rosaria Capobianchi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy.
| |
Collapse
|
12
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 35908692 DOI: 10.1101/2021.06.17.21259122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
13
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157707. [PMID: 35908692 PMCID: PMC9334864 DOI: 10.1016/j.scitotenv.2022.157707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 05/22/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
14
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
15
|
Zheng Q, Zhu R, Yin Z, Xu L, Sun H, Yu H, Wu Y, Jiang Y, Huang Q, Huang Y, Zhang D, Liu L, Yang H, He M, Zhou Z, Jiang Y, Chen Z, Zhao H, Que Y, Kong Z, Zhou L, Li T, Zhang J, Luo W, Gu Y, Cheng T, Li S, Xia N. Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host Microbe 2022; 30:1279-1294.e6. [PMID: 36002016 DOI: 10.1016/j.chom.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Coxsackievirus B1 (CVB1) is an emerging pathogen associated with severe neonatal diseases including aseptic meningitis, myocarditis, and pancreatitis and also with the development of type 1 diabetes. We characterize the binding and therapeutic efficacies of three CVB1-specific neutralizing antibodies (nAbs) identified for their ability to inhibit host receptor engagement. High-resolution cryo-EM structures showed that these antibodies recognize different epitopes but with an overlapping region in the capsid VP2 protein and specifically the highly variable EF loop. Moreover, they perturb capsid-receptor interactions by binding various viral particle forms. Antibody combinations achieve synergetic neutralization via a stepwise capsid transition and virion disruption, indicating dynamic changes in the virion in response to multiple nAbs targeting the receptor-binding site. Furthermore, this three-antibody cocktail protects against lethal challenge in neonatal mice and limits pancreatitis and viral replication in a non-obese diabetic mouse model. These results illustrate the utility of nAbs for rational design of therapeutics against picornaviruses such as CVB.
Collapse
Affiliation(s)
- Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenhong Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China; Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, People's Republic of China.
| |
Collapse
|
16
|
Krzysztoszek A, Gad B, Diedrich S, Böttcher S, Wieczorek M. Investigation of airport sewage to detect importation of poliovirus, Poland, 2017 to 2020. Euro Surveill 2022; 27:2100674. [PMID: 35713024 PMCID: PMC9205162 DOI: 10.2807/1560-7917.es.2022.27.24.2100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
BackgroundPolioviruses are human pathogens which may easily be imported via travellers from endemic areas and countries where oral polio vaccine (OPV) is still routinely used to polio-free countries. Risk of reintroduction strictly depends on polio immunisation coverage. Sustaining a polio-free status requires strategies that allow rapid detection and control of potential poliovirus reintroductions.AimThe aim of this study was to apply environmental surveillance at an international airport in Poland to estimate the probability of poliovirus importation via air transport.MethodsBetween 2017 and 2020, we collected 142 sewage samples at Warsaw Airport. After sewage concentration, virus was isolated in susceptible cell cultures. Poliovirus isolates were characterised by intratypic differentiation and sequencing.ResultsSeven samples were positive for polioviruses. All isolates were characterised as Sabin-like polioviruses type 3 (SL-3). No wild or vaccine-derived polioviruses were found. The number of mutations accumulated in most isolates suggested a limited circulation in humans. Only one SL-3 isolate contained seven mutations, which is compatible with more than half a year of circulation.ConclusionSince OPV was withdrawn from the immunisation schedule in Poland in 2016, detection of SL-3 in airport sewage may indicate the events of importation from a region where OPV is still in use. Our study shows that environmental surveillance, including airport sewage investigation, has the capacity to detect emerging polioviruses and monitor potential exposure to poliovirus importation. Poliovirus detection in sewage samples indicates the need for sustaining a high level of polio immunisation coverage in the population.
Collapse
Affiliation(s)
- Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health NIH - National Institute of Research, Warsaw, Poland
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH - National Institute of Research, Warsaw, Poland
| | - Sabine Diedrich
- Regional Reference Laboratory for Poliomyelitis, Robert Koch Institute, Berlin, Germany
| | - Sindy Böttcher
- Regional Reference Laboratory for Poliomyelitis, Robert Koch Institute, Berlin, Germany
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH - National Institute of Research, Warsaw, Poland
| |
Collapse
|
17
|
Environmental Monitoring for Enteroviruses in Maputo, Mozambique—2018. Pathogens 2022; 11:pathogens11050527. [PMID: 35631048 PMCID: PMC9147478 DOI: 10.3390/pathogens11050527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Due to the possibility of wild poliovirus importation from endemic regions and the high circulation of vaccine-derived poliovirus type 2 in the African region, Mozambique implemented a surveillance program to monitor the circulation of enteroviruses in the environment. From January to November 2018, a period that immediately preceded the cVDPV outbreak in Africa, 63 wastewater samples were collected from different areas in Maputo city. A total of 25 samples (39.7%) were positive based on cell culture isolation. Non-polio enteroviruses were found in 24 samples (24/25; 96%), whereas 1 Sabin-related poliovirus was isolated. Neither wild nor vaccine-derived poliovirus was detected. High circulation of EVB species was detected. Environmental surveillance in the One Health approach, if effectively applied as support to acute flaccid paralysis, can be a powerful aid to the public health system to monitor poliovirus besides non-polio enteroviruses in polio-free areas.
Collapse
|
18
|
Lima FS, Scalize PS, Gabriel EFM, Gomes RP, Gama AR, Demoliner M, Spilki FR, Vieira JDG, Carneiro LC. Escherichia coli, Species C Human Adenovirus, and Enterovirus in Water Samples Consumed in Rural Areas of Goiás, Brazil. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:77-88. [PMID: 34792781 DOI: 10.1007/s12560-021-09504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Rural environments lack basic sanitation services. Facilities for obtaining water and disposing sewage are often under the initiative of each resident, who may not be able to build and maintain them properly. Thus, water for human consumption is subject to fecal contamination and, consequently, the presence of waterborne pathogens, such as enteric viruses. This study evaluated fecal contamination of water samples from individual sources used for domestic water supply on small farms in the state of Goiás, Brazil. Samples were collected from 78 houses whose water sources were tubular wells, dug wells, springs, and surface waters. Escherichia coli (EC) bacteria, analyzed by the defined chromogenic substrate method, was used as a traditional indicator of fecal contamination. The enteric viruses Human mastadenovirus (HAdV) and Enterovirus (EV), analyzed by qPCR, were tested as complementary indicators of fecal contamination. At least one of these markers was found in 89.7% of the samples. Detection rates were 79.5% for EC, 52.6% for HAdV, and 5.1% for EV. The average concentration for EC was 8.82 × 101 most probable number (MPN) per 100 mL, while for HAdV and EV the concentrations were 7.51 × 105 and 1.89 × 106 genomic copies (GC) per liter, respectively. EC was the most frequent marker in ground and surface water samples. HAdV was detected significantly more frequently in groundwater than in surface water and was more efficient in indicating contamination in tubular wells. There was no association of frequencies or correlation of concentrations between EC and HAdV. HAdV indicated human fecal contamination and performed well as a complementary indicator. The results reveal that a large part of the analyzed population is vulnerable to waterborne diseases caused by enteric pathogens.
Collapse
Affiliation(s)
- Fernando Santos Lima
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Paulo Sérgio Scalize
- Escola de Engenharia Civil e Ambiental, Universidade Federal de Goiás, Goiânia, GO, 74605-220, Brazil
| | | | - Raylane Pereira Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Aline Rodrigues Gama
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | | | - Lilian Carla Carneiro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
19
|
Castiglioni S, Schiarea S, Pellegrinelli L, Primache V, Galli C, Bubba L, Mancinelli F, Marinelli M, Cereda D, Ammoni E, Pariani E, Zuccato E, Binda S. SARS-CoV-2 RNA in urban wastewater samples to monitor the COVID-19 pandemic in Lombardy, Italy (March-June 2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150816. [PMID: 34627901 PMCID: PMC8497959 DOI: 10.1016/j.scitotenv.2021.150816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 04/15/2023]
Abstract
Wastewater-based viral surveillance was proposed as a promising approach to monitor the circulation of SARS-CoV-2 in the general population. The aim of this study was to develop an analytical method to detect SARS-CoV-2 RNA in urban wastewater, and apply it to follow the trends of epidemic in the framework of a surveillance network in the Lombardy region (Northern Italy). This area was the first hotspot of COVID-19 in Europe and was severely affected. Composite 24 h samples were collected weekly in eight cities from end-March to mid-June 2020 (first peak of the pandemic). The method developed and optimized, involved virus concentration using PEG centrifugation, and one-step real-time RT-PCR for analysis. SARS-CoV-2 RNA was identified in 65 (61%) out of 107 samples, and the viral concentrations (up to 2.1 E + 05 copies/L) were highest in March-April. By mid-June, wastewater samples tested negative in all the cities corresponding to the very low number of cases recorded in the same period. Viral loads were calculated considering the wastewater daily flow rate and the population served by each wastewater treatment plant, and were used for inter- city comparison. The highest viral loads were found in Brembate, Ranica and Lodi corresponding to the hotspots of the first peak of pandemic. The pattern of decrease of SARS-CoV-2 in wastewater was closely comparable to the decline of active COVID-19 cases in the population, reflecting the effect of lock-down. This study tested wastewater surveillance of SARS-CoV-2 to follow the pandemic trends in one of most affected areas worldwide, demonstrating that it can integrate ongoing virological surveillance of COVID-19, providing information from both symptomatic and asymptomatic individuals, and monitoring the effect of health interventions.
Collapse
Affiliation(s)
- Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156 Milan, Italy.
| | - Silvia Schiarea
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Laura Pellegrinelli
- Department of Biomedical Sciences of Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Valeria Primache
- Department of Biomedical Sciences of Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Cristina Galli
- Department of Biomedical Sciences of Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Laura Bubba
- Department of Biomedical Sciences of Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Federica Mancinelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | | | | | | | - Elena Pariani
- Department of Biomedical Sciences of Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences of Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| |
Collapse
|
20
|
Fontana S, Buttinelli G, Fiore S, Amato C, Pataracchia M, Kota M, Aćimović J, Blažević M, Mulaomerović M, Nikolaeva-Glomb L, Mentis A, Voulgari-Kokota A, Gashi L, Kaçaniku-Gunga P, Barbara C, Melillo J, Protic J, Filipović-Vignjevic S, O’Connor PM, D’Alberto A, Orioli R, Siddu A, Saxentoff E, Stefanelli P. Retrospective Analysis of Six Years of Acute Flaccid Paralysis Surveillance and Polio Vaccine Coverage Reported by Italy, Serbia, Bosnia and Herzegovina, Montenegro, Bulgaria, Kosovo, Albania, North Macedonia, Malta, and Greece. Vaccines (Basel) 2021; 10:44. [PMID: 35062705 PMCID: PMC8779529 DOI: 10.3390/vaccines10010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Here we analyzed six years of acute flaccid paralysis (AFP) surveillance, from 2015 to 2020, of 10 countries linked to the WHO Regional Reference Laboratory, at the Istituto Superiore di Sanità, Italy. The analysis also comprises the polio vaccine coverage available (2015-2019) and enterovirus (EV) identification and typing data. Centralized Information System for Infectious Diseases and Laboratory Data Management System databases were used to obtain data on AFP indicators and laboratory performance and countries' vaccine coverage from 2015 to 2019. EV isolation, identification, and typing were performed by each country according to WHO protocols. Overall, a general AFP underreporting was observed. Non-Polio Enterovirus (NPEV) typing showed a high heterogeneity: over the years, several genotypes of coxsackievirus and echovirus have been identified. The polio vaccine coverage, for the data available, differs among countries. This evaluation allows for the collection, for the first time, of data from the countries of the Balkan area regarding AFP surveillance and polio vaccine coverage. The need, for some countries, to enhance the surveillance systems and to promote the polio vaccine uptake, in order to maintain the polio-free status, is evident.
Collapse
Affiliation(s)
- Stefano Fontana
- Department of Infectious Disease, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (G.B.); (S.F.); (C.A.); (M.P.)
| | - Gabriele Buttinelli
- Department of Infectious Disease, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (G.B.); (S.F.); (C.A.); (M.P.)
| | - Stefano Fiore
- Department of Infectious Disease, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (G.B.); (S.F.); (C.A.); (M.P.)
| | - Concetta Amato
- Department of Infectious Disease, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (G.B.); (S.F.); (C.A.); (M.P.)
| | - Marco Pataracchia
- Department of Infectious Disease, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (G.B.); (S.F.); (C.A.); (M.P.)
| | - Majlinda Kota
- Laboratory of Virology, Department of Control of Infectious Diseases, Institute of Public Health, 1001 Tirana, Albania;
| | - Jela Aćimović
- Department of Epidemiology, Public Health Institute of the Republic of Srpska, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Mia Blažević
- Institute for Public Health of Federation Bosnia and Herzegovina, 71000 Sarajevo, Bosnia and Herzegovina; (M.B.); (M.M.)
| | - Mirsada Mulaomerović
- Institute for Public Health of Federation Bosnia and Herzegovina, 71000 Sarajevo, Bosnia and Herzegovina; (M.B.); (M.M.)
| | - Lubomira Nikolaeva-Glomb
- Department of Virology, National Centre of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria;
| | - Andreas Mentis
- National Poliovirus/Enterovirus Reference Laboratory, Diagnostic Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.M.); (A.V.-K.)
| | - Androniki Voulgari-Kokota
- National Poliovirus/Enterovirus Reference Laboratory, Diagnostic Department, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.M.); (A.V.-K.)
| | - Luljeta Gashi
- Department of Epidemiology, National Institute of Public Health, 10000 Pristina, Kosovo; (L.G.); (P.K.-G.)
| | - Pranvera Kaçaniku-Gunga
- Department of Epidemiology, National Institute of Public Health, 10000 Pristina, Kosovo; (L.G.); (P.K.-G.)
| | | | - Jackie Melillo
- Department for Health Regulation, Health Promotion and Disease Prevention, MSD2090 Msida, Malta;
| | - Jelena Protic
- National Reference Laboratory for ARBO Viruses and Hemorrhagic Fever, Institute of Virology, Vaccines and Sera “Torlak”, 11152 Belgrade, Serbia;
| | - Svetlana Filipović-Vignjevic
- Diagnostics and Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11152 Belgrade, Serbia;
| | - Patrick M. O’Connor
- Global Immunization Division US Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Alessandra D’Alberto
- Prevention of Communicable Diseases and International Prophylaxis, Directorate General of Health Prevention, Ministry of Health, 00144 Rome, Italy; (A.D.); (R.O.); (A.S.)
| | - Riccardo Orioli
- Prevention of Communicable Diseases and International Prophylaxis, Directorate General of Health Prevention, Ministry of Health, 00144 Rome, Italy; (A.D.); (R.O.); (A.S.)
| | - Andrea Siddu
- Prevention of Communicable Diseases and International Prophylaxis, Directorate General of Health Prevention, Ministry of Health, 00144 Rome, Italy; (A.D.); (R.O.); (A.S.)
| | - Eugene Saxentoff
- Division of Health Emergencies and Communicable Diseases (DEC), Regional Office for Europe World Health Organization, DK-2100 Copenhagen, Denmark;
| | - Paola Stefanelli
- Department of Infectious Disease, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (G.B.); (S.F.); (C.A.); (M.P.)
| |
Collapse
|
21
|
Keeren K, Böttcher S, Diedrich S. Enterovirus Surveillance (EVSurv) in Germany. Microorganisms 2021; 9:2005. [PMID: 34683328 PMCID: PMC8538599 DOI: 10.3390/microorganisms9102005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
The major aim of the enterovirus surveillance (EVSurv) in Germany is to prove the absence of poliovirus circulation in the framework of the Global Polio Eradication Program (GPEI). Therefore, a free-of-charge enterovirus diagnostic is offered to all hospitals for patients with symptoms compatible with a polio infection. Within the quality proven laboratory network for enterovirus diagnostic (LaNED), stool and cerebrospinal fluid (CSF) samples from patients with suspected aseptic meningitis/encephalitis or acute flaccid paralysis (AFP) are screened for enterovirus (EV), typing is performed in all EV positive sample to exclude poliovirus infections. Since 2006, ≈200 hospitals from all 16 German federal states have participated annually. On average, 2500 samples (70% stool, 28% CSF) were tested every year. Overall, the majority of the patients studied are children <15 years. During the 15-year period, 53 different EV serotypes were detected. While EV-A71 was most frequently detected in infants, E30 dominated in older children and adults. Polioviruses were not detected. The German enterovirus surveillance allows monitoring of the circulation of clinically relevant serotypes resulting in continuous data about non-polio enterovirus epidemiology.
Collapse
Affiliation(s)
- Kathrin Keeren
- Secretary of the National Commission for Polio Eradication in Germany, Robert Koch Institute, 13353 Berlin, Germany;
| | - Sindy Böttcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | | | - Sabine Diedrich
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| |
Collapse
|
22
|
Larivé O, Brandani J, Dubey M, Kohn T. An integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method to simultaneously quantify the infectious concentrations of eight environmentally relevant enterovirus serotypes. J Virol Methods 2021; 296:114225. [PMID: 34216645 DOI: 10.1016/j.jviromet.2021.114225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Enterovirus (EV) infectivity is typically measured as a bulk parameter, yet EV serotypes vary in their susceptibility to natural and engineered stressors. Here we developed an integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method to simultaneously and specifically quantify the infectious concentrations of eight EV serotypes commonly encountered in sewage (coxsackieviruses A9, B1, B2, B3, B4 and B5, and echoviruses 25 and 30). The method uses two cell lines for virus replication and serotype-specific qPCR primers for quantification. Primers were designed to target multiple environmental strains of a given serotype and displayed high specificity. The ICC-RTqPCR method exhibited a linear calibration range between 50 and 1000 (echoviruses) or 5000 (coxsackieviruses) infectious units per mL. Over this range, measurements were not influenced by the presence of non-target serotypes, and calibration slopes were reproducible for different virus batches and cell ages. The ICC-RTqPCR method was able to accurately quantify the infectious concentration of a virus after inactivation by heat, and the concentration of a virus within a wastewater matrix. This method will be valuable to assess the differing fates of EV serotypes in natural or engineered systems, and to portray the associated changes in EV population composition.
Collapse
Affiliation(s)
- Odile Larivé
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jade Brandani
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manupriyam Dubey
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
23
|
Xu L, Zheng Q, Zhu R, Yin Z, Yu H, Lin Y, Wu Y, He M, Huang Y, Jiang Y, Sun H, Zha Z, Yang H, Huang Q, Zhang D, Chen Z, Ye X, Han J, Yang L, Liu C, Que Y, Fang M, Gu Y, Zhang J, Luo W, Zhou ZH, Li S, Cheng T, Xia N. Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating. Cell Host Microbe 2021; 29:448-462.e5. [PMID: 33539764 DOI: 10.1016/j.chom.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Enterovirus uncoating receptors bind at the surface depression ("canyon") that encircles each capsid vertex causing the release of a host-derived lipid called "pocket factor" that is buried in a hydrophobic pocket formed by the major viral capsid protein, VP1. Coxsackievirus and adenovirus receptor (CAR) is a universal uncoating receptor of group B coxsackieviruses (CVB). Here, we present five high-resolution cryoEM structures of CVB representing different stages of virus infection. Structural comparisons show that the CAR penetrates deeper into the canyon than other uncoating receptors, leading to a cascade of events: collapse of the VP1 hydrophobic pocket, high-efficiency release of the pocket factor and viral uncoating and genome release under neutral pH, as compared with low pH. Furthermore, we identified a potent therapeutic antibody that can neutralize viral infection by interfering with virion-CAR interactions, destabilizing the capsid and inducing virion disruption. Together, these results define the structural basis of CVB cell entry and antibody neutralization.
Collapse
Affiliation(s)
- Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiangzhong Ye
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Jinle Han
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Lisheng Yang
- Beijing Wantai Enterprise Community Partners, Beijing 102206, China
| | - Che Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, China.
| |
Collapse
|
24
|
Brown DM, Zhang Y, Scheuermann RH. Epidemiology and Sequence-Based Evolutionary Analysis of Circulating Non-Polio Enteroviruses. Microorganisms 2020; 8:microorganisms8121856. [PMID: 33255654 PMCID: PMC7759938 DOI: 10.3390/microorganisms8121856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) are positive-sense RNA viruses, with over 50,000 nucleotide sequences publicly available. While most human infections are typically associated with mild respiratory symptoms, several different EV types have also been associated with severe human disease, especially acute flaccid paralysis (AFP), particularly with endemic members of the EV-B species and two pandemic types—EV-A71 and EV-D68—that appear to be responsible for recent widespread outbreaks. Here we review the recent literature on the prevalence, characteristics, and circulation dynamics of different enterovirus types and combine this with an analysis of the sequence coverage of different EV types in public databases (e.g., the Virus Pathogen Resource). This evaluation reveals temporal and geographic differences in EV circulation and sequence distribution, highlighting recent EV outbreaks and revealing gaps in sequence coverage. Phylogenetic analysis of the EV genus shows the relatedness of different EV types. Recombination analysis of the EV-A species provides evidence for recombination as a mechanism of genomic diversification. The absence of broadly protective vaccines and effective antivirals makes human enteroviruses important pathogens of public health concern.
Collapse
Affiliation(s)
- David M Brown
- Department of Synthetic Biology, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA 92065, USA
| |
Collapse
|
25
|
Tao Z, Chen P, Cui N, Lin X, Ji F, Liu Y, Xiong P, Zhang L, Xu Q, Song Y, Xu A. Detection of enteroviruses in urban sewage by next generation sequencing and its application in environmental surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138818. [PMID: 32570328 DOI: 10.1016/j.scitotenv.2020.138818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Environmental surveillance has been used successfully in monitoring enterovirus (EV) circulation; however cell culture method may introduce a selective bias in those EV strains that are recovered from the environment. In this study, urban sewage samples were collected monthly in Jinan, China in 2018 and concentrated via membrane adsorption/elution method. A P1 seminested RT-PCR (RT-snPCR) and NGS method was developed, by which amplicons of 4000 nucleotide in length covering the entire P1 region of EVs were obtained from sewage concentrates and were further analyzed by next generation sequencing (NGS). In addition, for each sewage concentrate, two other assays - cell culture and NGS based partial VP1 amplicon sequencing - were conducted in parallel and compared. The results showed that the P1 RT-snPCR and NGS method generated the most data, with 32 serotypes identified belonging to species EV-A (n = 11), EV-B (n = 14), and EV-C (n = 7). These serotypes covered all those detected from the methods of cell culture (n = 10) and partial VP1 amplicon sequencing (n = 16). EV serotypes from acute flaccid paralysis surveillance correlated with those from sewage. Phylogenetic analysis on coxsackievirus B5, a common pathogen of meningitis, revealed close genetic relationship between environmental and clinical sequences. These results demonstrate sewage contains different EVs related to a variety of diseases. Traditional cell culture method underestimates the existence of some serotypes. NGS based environmental surveillance provides data which are consistent with those from clinical diseases, greatly improves our understanding on the actual circulation in the population, and should be encouraged for public health surveillance.
Collapse
Affiliation(s)
- Zexin Tao
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Peng Chen
- School and Hospital of Stomatology, Shandong University, 44-1 Wenhuaxi Road, Jinan 250012, China
| | - Ning Cui
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Xiaojuan Lin
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Feng Ji
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Yao Liu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Ping Xiong
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Li Zhang
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Qing Xu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Yanyan Song
- School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China.
| | - Aiqiang Xu
- Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China; School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China.
| |
Collapse
|
26
|
Molecular characterization of enteroviruses among hospitalized patients in Greece, 2013-2015. J Clin Virol 2020; 127:104349. [PMID: 32339946 DOI: 10.1016/j.jcv.2020.104349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND There are only sporadic data for the circulation of Enteroviruses (EVs) in Greece with previous studies reporting mainly the presence of Echoviruses (E) and Coxsackie viruses (CV) B. OBJECTIVES We carried out a surveillance study for the molecular characterization of EVs detected in hospitalized patients throughout Greece as well as a phylogenetic analysis of the most frequently encountered serotypes. STUDY DESIGN Stools, cerebrospinal fluids, throat swabs and blood samples were collected from hospitalized patients with suspicion of EV infection. All samples were tested for EVs by rRT-PCR targeting the 5' untranslated region of EV genome. For positive samples, PCR amplification and sequencing targeting a part of VP1 region was performed. RESULTS We examined 831 samples and 209 were positive for EVs with Enterovirus B species being the most frequently amplified. E30, CVB5 and E9 were the most frequent serotypes of Enterovirus B species, whereas CVA6 and EV-A71 the most frequent serotypes of Enterovirus A species. Evs were significantly detected more frequently in stool samples compared to other types of specimens. Phylogenetic analysis revealed that most EV-A71 strains clustered in the subgenogroups C2 whereas all the CVA6 strains belonged to sub-genotype D3. Additionally, two different lineages of E30 and three different clusters of E9 viruses circulated simultaneously in Greece. Our data indicated that most EV strains from Greece were similar to strains circulating throughout Europe during the same period. CONCLUSIONS We provide a comprehensive picture of EVs circulating in Greece which can be helpful to interpret trends in EV diseases by associating them with circulating serotypes.
Collapse
|
27
|
Palandri L, Morgado M, Colucci ME, Affanni P, Zoni R, Mezzetta S, Bizzarro A, Veronesi L. Reorganization of Active Surveillance of Acute Flaccid Paralysis (AFP) in Emilia-Romagna, Italy: a two-step Public Health intervention. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:85-91. [PMID: 32275272 PMCID: PMC7975913 DOI: 10.23750/abm.v91i3-s.9436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM OF THE WORK The International Health Regulations Emergency Committee declared in 2014 that poliovirus circulation is a public health emergency of international concern. In 2017 and 2018 Italy was classified at intermediate risk of poliovirus reintroduction based on suboptimal poliovirus surveillance. Acute flaccid paralysis active surveillance is the gold standard in the polio eradication process. The aims of this study were to investigate the causes of reduced acute flaccid paralysis case reporting in Emilia-Romagna in the last few years (step 1) and to study a public health intervention to restore an adequate level of acute flaccid paralysis surveillance in that region (step 2). METHODS In the first step a context analysis was performed by analysing the 2015-2017 Hospital Discharge Registers in Emilia-Romagna with the ICD-9-CM differential diagnosis codes for acute flaccid paralysis. Data from context analysis was then used to plan a new regional collaborative network of acute flaccid paralysis active surveillance. RESULTS The active surveillance network was, at the end of the study, composed by 49 doctors from both hospital administrations and clinical wards from 4 University Hospitals and 7 Local Health Authorities throughout the Region. In 15 months, 7 acute flaccid paralysis cases have been reported; 85,7% received a full clinical and virological investigation and 83,3% completed the 60 day's follow-up. The mean response to each e-mail was 48,5% (SD 7,5%). CONCLUSIONS In 2019, the Emilia-Romagna's active surveillance system reached the sensitivity, completeness of case investigation and follow-up required to achieve the minimum levels for certification standard surveillance.
Collapse
Affiliation(s)
- Lucia Palandri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Mariana Morgado
- Department of Medicine and Surgery, University of Parma, Italy.
| | - Maria Eugenia Colucci
- Department of Medicine and Surgery, University of Parma, Italy. Reference Centre for Polio and AFP surveillance in Emilia-Romagna.
| | - Paola Affanni
- Department of Medicine and Surgery, University of Parma, Italy. Reference Centre for Polio and AFP surveillance in Emilia-Romagna.
| | - Roberta Zoni
- Department of Medicine and Surgery, University of Parma, Italy. Reference Centre for Polio and AFP surveillance in Emilia-Romagna.
| | - Sandra Mezzetta
- Department of Medicine and Surgery, University of Parma, Italy. Reference Centre for Polio and AFP surveillance in Emilia-Romagna.
| | | | | |
Collapse
|
28
|
Bisseux M, Debroas D, Mirand A, Archimbaud C, Peigue-Lafeuille H, Bailly JL, Henquell C. Monitoring of enterovirus diversity in wastewater by ultra-deep sequencing: An effective complementary tool for clinical enterovirus surveillance. WATER RESEARCH 2020; 169:115246. [PMID: 31710918 DOI: 10.1016/j.watres.2019.115246] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 10/26/2019] [Indexed: 05/28/2023]
Abstract
In a one-year (October 2014-October 2015) pilot study, we assessed wastewater monitoring with sustained sampling for analysis of global enterovirus (EV) infections in an urban community. Wastewater was analysed by ultra-deep sequencing (UDS) after PCR amplification of the partial VP1 capsid protein gene. The nucleotide sequence analysis showed an unprecedented diversity of 48 EV types within the community, which were assigned to the taxonomic species A (n = 13), B (n = 23), and C (n = 12). During the same period, 26 EV types, of which 22 were detected in wastewater, were identified in patients referred to the teaching hospital serving the same urban population. Wastewater surveillance detected a silent circulation of 26 EV types including viruses reported in clinically rare respiratory diseases. Wastewater monitoring as a supplementary procedure can complement clinical surveillance of severe diseases related to non-polio EVs and contribute to the final stages of poliomyelitis eradication.
Collapse
Affiliation(s)
- Maxime Bisseux
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France.
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France
| | - Audrey Mirand
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Christine Archimbaud
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Hélène Peigue-Lafeuille
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Cécile Henquell
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| |
Collapse
|
29
|
Fontana S, Fiore S, Buttinelli G, Amato C, Veronesi L, Zoni R, Triassi M, Pennino F, Giammanco GM, De Grazia S, Cicala A, Siragusa A, Gamper S, Spertini S, Castiglia P, Cossu A, Germinario C, Larocca AMV, Stefanelli P. Molecular Characterization of Coxsackievirus B5 Isolates from Sewage, Italy 2016-2017. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:440-445. [PMID: 31346976 PMCID: PMC6848032 DOI: 10.1007/s12560-019-09395-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Hereby, the partial Viral Protein 1 sequences of Coxsackievirus B5 (CV-B5) from sewage samples, collected in Italy from 2016 to 2017, were compared with those available in GenBank from clinical samples. Phylogenetic analysis highlighted: (I) the predominant circulation of CV-B5 genogroup B in Italy, and (II) the presence of two new sub-genogroups.
Collapse
Affiliation(s)
- Stefano Fontana
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fiore
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Concetta Amato
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Licia Veronesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Zoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesca Pennino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giovanni Maurizio Giammanco
- Department of Health Promotion, Mother and Child Care and Internal Medicine 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Simona De Grazia
- Department of Health Promotion, Mother and Child Care and Internal Medicine 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | | | | | - Sabine Gamper
- Comprensorio Sanitario di Bolzano, Servizio Igiene e Sanità Pubblica, Bolzano, Italy
| | - Silvia Spertini
- Comprensorio Sanitario di Bolzano, Servizio Igiene e Sanità Pubblica, Bolzano, Italy
| | - Paolo Castiglia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Andrea Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Cinzia Germinario
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | | - Paola Stefanelli
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
30
|
Pellegrinelli L, Galli C, Binda S, Primache V, Tagliacarne C, Pizza F, Mazzini R, Pariani E, Romanò L. Molecular Characterization and Phylogenetic Analysis of Enteroviruses and Hepatitis A Viruses in Sewage Samples, Northern Italy, 2016. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:393-399. [PMID: 31420848 DOI: 10.1007/s12560-019-09401-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Enteroviruses (EVs) and Hepatitis A Viruses (HAVs) are human pathogens with a wide spectrum of clinical manifestations. The monitoring of sewage samples enables to monitor the EVs and HAVs in circulation among the general population and recognize possible outbreaks. This study focused on the molecular characterization and phylogenetic analysis of the EVs and HAVs identified in 33 sewage samples collected every 15 days at the influent of a wastewater treatment plant located in Northern Italy from March to October 2016. According to the results of the molecular characterization, the most frequently identified viruses were Echovirus 6 (E-6), E-11 and HAV-IA. The phylogenetic analyses indicated the rapid genetic evolution of E-6 and E-1; noteworthy, most E-11 strains clustered with a strain isolated from a clinical sample collected in the same geographical area over the same period by our laboratory. Most of the HAV strains detected clustered with epidemic HAV-IA strains identified during the European hepatitis A outbreak that occurred in 2016-2017 affecting men who have sex with men (MSM). The detection of environmental HAV strains before and at the beginning of its spread amongst humans demonstrated that this outbreak could have been predicted by monitoring sewage samples. Moreover, conducting a genetic comparison between the HAV and EV strains identified in sewage and clinical samples may improve knowledge of viral epidemiology. EV and HAV molecular environmental surveillance may prove useful for identifying viral circulation and for issuing early warning alerts on possible outbreaks among the human population.
Collapse
Affiliation(s)
- Laura Pellegrinelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy.
| | - Cristina Galli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Sandro Binda
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Valeria Primache
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Catia Tagliacarne
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Francesca Pizza
- MilanoDepur S.p.A, Depuratore di Milano Nosedo, Milan, Italy
| | - Roberto Mazzini
- MilanoDepur S.p.A, Depuratore di Milano Nosedo, Milan, Italy
| | - Elena Pariani
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Luisa Romanò
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Carlo Pascal, 36, 20133, Milan, Italy
| |
Collapse
|
31
|
Veronesi L, Colucci ME, Capobianco E, Bracchi MT, Zoni R, Palandri L, Affanni P. Immunity status against poliomyelitis in young migrants: a seroprevalence study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:28-34. [PMID: 31517887 PMCID: PMC7233651 DOI: 10.23750/abm.v90i9-s.8700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/13/2023]
Abstract
Background and aim of the work: Recent seroprevalence studies in different population groups have shown low antibody titers against poliomyelitis, especially in young adults. This, together with the reduction of vaccination rates, could favor the reintroduction of poliovirus in long-time polio-free countries. Within the Surveillance system of acute flaccid paralysis, a prevalence study was conducted to estimate the immunological status associated with poliomyelitis in young migrants. Methods: Local Health Authority collected serum samples in young migrants, without vaccination documentation. Antibodies levels were assessed with a long incubation neutralization assay. Subjects were stratified by age and by WHO region. Seroprotection was defined by a titer equal or above 1:8 and titers > 1:2 were log-transformed and evaluated as geometric mean titers (GMTs). Results: From January 2004 to August 2017, 1138 blood samples were collected. Mean age was 13.3 years with no differences between WHO regions. The percentage of antibody titers below 1:8 was 6.0% versus poliovirus 1 (PV1), 7.7% versus poliovirus 2 (PV2) and 15% versus poliovirus 3 (PV3). The GMTs were 45.5, 29.5 and 20 towards PV1, PV2 and PV3 respectively. In each WHO region, the GMTs towards PV3 were consistently the lowest, and the Europeans showed the lowest GMTs both towards PV2 and PV3 (27.5 and 15.3 respectively). GMTs decreased with age. Conclusion: The low GMTs and the clear tendency to decrease with increasing age of the subjects, especially against to PV1, confirm the framework of attention that polio is receiving at national and international level. (www.actabiomedica.it)
Collapse
|
32
|
Zoni R, Mezzetta S, Affanni P, Colucci ME, Fiore S, Fontana S, Bracchi M, Capobianco E, Veronesi L. Poliovirus and non-polio-enterovirus environmental surveillance in Parma within the "Global Polio Eradication Program" (GPEI). ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:95-97. [PMID: 31517896 PMCID: PMC7233654 DOI: 10.23750/abm.v90i9-s.8702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/04/2022]
Abstract
Poliovirus and non-polio-enterovirus environmental surveillance in Parma within the “Global Polio Eradication Program” (GPEI) Background: Environmental surveillance of poliovirus plays an essential role in GPEI both for the detection of WTP and VDPV circulation in endemic areas and for monitoring their absence in polio-free countries. Methods: Since 2005 to 2018, in Parma, 642 wastewater samples were collected from the two wastewater treatment plants and analyzed according to the WHO Guidelines. All isolates supposed being poliovirus were sent to ISS reference laboratory for molecular characterization while NPEV only refer to samples up to 2016. Results: Positivity was obtained in 68% of samples without significant difference between the two treatment plants. Six polioviruses (1.4%) were detected, all characterized as Sabin-like: 4 of them (66.7%) were type 3 and 2 (33.3%) type 1. Coxsackieviruses B mainly recurred among NPEV (85%) while residual 15% was Echoviruses. B4 was the most frequent Coxsackie serotype isolated (31%) while, among Echovirus, Echo 7 and Echo 11 prevail (both 23%). Conclusion: As OPV isn’t used in Italy since 2002, recovery of Sabin-like polioviruses indicates the possibility of poliovirus reintroduction, considering also the important exposure to migratory flows. Finally, monitoring the environmental circulation of NPEV, could compensate for the lack of a surveillance system of the infections they cause. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Roberta Zoni
- Department of Medicine and Surgery - University of Parma.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Masciopinto C, De Giglio O, Scrascia M, Fortunato F, La Rosa G, Suffredini E, Pazzani C, Prato R, Montagna MT. Human health risk assessment for the occurrence of enteric viruses in drinking water from wells: Role of flood runoff injections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:559-571. [PMID: 30807946 DOI: 10.1016/j.scitotenv.2019.02.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
We demonstrated that floods can induce severe microbiological contamination of drinking water from wells and suggest strategies to better address water safety plans for groundwater drinking supplies. Since 2002, the Italian Water Research Institute (IRSA) has detected hepatitis A virus, adenovirus, rotavirus, norovirus, and enterovirus in water samples from wells in the Salento peninsula, southern Italy. Perturbations in the ionic strength in water flow can initiate strong virus detachments from terra rossa sediments in karst fractures. This study therefore explored the potential health impacts of prolonged runoff injections in Salento groundwater caused by severe flooding during October 2018. A mathematical model for virus fate and transport in fractures was applied to determine the impact of floodwater injection on groundwater quality by incorporating mechanisms that affect virus attachment/detachment and survival in flowing water at microscale. This model predicted target concentrations of enteric viruses that can occur unexpectedly in wells at considerable distances (5-8 km) from the runoff injection site (sinkhole). Subsequently, the health impact of viruses in drinking water supplied from contaminated wells was estimated during the summer on the Salento coast. Specific unpublished dose-response model coefficients were proposed to determine the infection probabilities for Echo-11 and Polio 1 enteroviruses through ingestion. The median (50%) risk of infection was estimated at 6.3 · 10-3 with an uncertainty of 23%. The predicted burden of diseases was 4.89 disability adjusted life years per year, i.e., twice the maximum tolerable disease burden. The results highlight the requirement for additional water disinfection treatments in Salento prior to the distribution of drinking water. Moreover, monthly controls of enteric virus occurrence in water from wells should be imposed by a new water framework directive in semiarid regions because of the vulnerability of karst carbonate aquifers to prolonged floodwater injections and enteric virus contamination.
Collapse
Affiliation(s)
- Costantino Masciopinto
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (IRSA), Reparto di Chimica e Tecnologia delle Acque, Bari, Italy.
| | - Osvalda De Giglio
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi Aldo Moro, Bari, Italy
| | - Maria Scrascia
- Dipartimento di Biologia, Università degli Studi Aldo Moro, Bari, Italy
| | | | - Giuseppina La Rosa
- Dipartimento Ambiente e Salute, Istituto Superiore di Sanità, Roma, Italy
| | - Elisabetta Suffredini
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Roma, Italy
| | - Carlo Pazzani
- Dipartimento di Biologia, Università degli Studi Aldo Moro, Bari, Italy
| | - Rosa Prato
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Foggia, Italy
| | - Maria Teresa Montagna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi Aldo Moro, Bari, Italy
| |
Collapse
|