1
|
Ding J, Xu X, Deng Y, Zheng X, Zhang T. Comparison of RT-ddPCR and RT-qPCR platforms for SARS-CoV-2 detection: Implications for future outbreaks of infectious diseases. ENVIRONMENT INTERNATIONAL 2024; 183:108438. [PMID: 38232505 DOI: 10.1016/j.envint.2024.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The increased frequency of human infectious disease outbreaks caused by RNA viruses worldwide in recent years calls for enhanced public health surveillance for better future preparedness. Wastewater-based epidemiology (WBE) is emerging as a valuable epidemiological tool for providing timely population-wide surveillance for disease prevention and response complementary to the current clinical surveillance system. Here, we compared the analytical performance and practical applications between predominant molecular detection methods of RT-qPCR and RT-ddPCR on SARS-CoV-2 detection in wastewater surveillance. When pure viral RNA was tested, RT-ddPCR exhibited superior quantification accuracy at higher concentration levels and achieved more sensitive detection with reduced variation at low concentration levels. Furthermore, RT-ddPCR consistently demonstrated more robust and accurate measurement either in the background of the wastewater matrix or with the presence of mismatches in the target regions of the consensus assay. Additionally, by detecting mock variant RNA samples, we found that RT-ddPCR outperformed RT-qPCR in virus genotyping by targeting specific loci with signature mutations in allele-specific (AS) assays, especially at low levels of allele frequencies and concentrations, which increased the possibility for sensitive low-prevalence variant detection in the population. Our study provides insights for detection method selection in the WBE applications for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Ju DU, Park D, Kim IH, Kim S, Yoo HM. Development of Human Rhinovirus RNA Reference Material Using Digital PCR. Genes (Basel) 2023; 14:2210. [PMID: 38137032 PMCID: PMC10742479 DOI: 10.3390/genes14122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The human rhinovirus (RV) is a positive-stranded RNA virus that causes respiratory tract diseases affecting both the upper and lower halves of the respiratory system. RV enhances its replication by concentrating RNA synthesis within a modified host membrane in an intracellular compartment. RV infections often occur alongside infections caused by other respiratory viruses, and the RV virus may remain asymptomatic for extended periods. Alongside qualitative detection, it is essential to accurately quantify RV RNA from clinical samples to explore the relationships between RV viral load, infections caused by the virus, and the resulting symptoms observed in patients. A reference material (RM) is required for quality evaluation, the performance evaluation of molecular diagnostic products, and evaluation of antiviral agents in the laboratory. The preparation process for the RM involves creating an RV RNA mixture by combining RV viral RNA with RNA storage solution and matrix. The resulting RV RNA mixture is scaled up to a volume of 25 mL, then dispensed at 100 µL per vial and stored at -80 °C. The process of measuring the stability and homogeneity of RV RMs was conducted by employing reverse transcription droplet digital polymerase chain reaction (RT-ddPCR). Digital PCR is useful for the analysis of standards and can help to improve measurement compatibility: it represents the equivalence of a series of outcomes for reference materials and samples being analyzed when a few measurement procedures are employed, enabling objective comparisons between quantitative findings obtained through various experiments. The number of copies value represents a measured result of approximately 1.6 × 105 copies/μL. The RM has about an 11% bottle-to-bottle homogeneity and shows stable results for 1 week at temperatures of 4 °C and -20 °C and for 12 months at a temperature of -80 °C. The developed RM can enhance the dependability of RV molecular tests by providing a precise reference value for the absolute copy number of a viral target gene. Additionally, it can serve as a reference for diverse studies.
Collapse
Affiliation(s)
- Dong U Ju
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongju Park
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Il-Hwan Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Seil Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Nemes K, Persson S, Simonsson M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens-Transmission Routes and Methods for Detection in Food. Viruses 2023; 15:1725. [PMID: 37632066 PMCID: PMC10457876 DOI: 10.3390/v15081725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne viruses are an important threat to food safety and public health. Globally, there are approximately 5 million cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis E virus (HEV) every year. HAV is responsible for numerous food-related viral outbreaks worldwide, while HEV is an emerging pathogen with a global health burden. The reported HEV cases in Europe have increased tenfold in the last 20 years due to its zoonotic transmission through the consumption of infected meat or meat products. HEV is considered the most common cause of acute viral hepatitis worldwide currently. This review focuses on the latest findings on the foodborne transmission routes of HAV and HEV and the methods for their detection in different food matrices.
Collapse
Affiliation(s)
- Katalin Nemes
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 75237 Uppsala, Sweden; (S.P.); (M.S.)
| | | | | |
Collapse
|
4
|
Fallucca A, Restivo V, Sgariglia MC, Roveta M, Trucchi C. Hepatitis a Vaccine as Opportunity of Primary Prevention for Food Handlers: A Narrative Review. Vaccines (Basel) 2023; 11:1271. [PMID: 37515087 PMCID: PMC10383099 DOI: 10.3390/vaccines11071271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis A virus (HAV) is still a leading cause of viral hepatitis worldwide. After a long incubation period, the clinical manifestations range from asymptomatic infection to acute liver failure. The severity of the disease increases with age and pre-existing liver disease. The transmission is mainly via person-to-person contact or ingestion of contaminated food or water. Food contamination can occur at any step of the food chain, especially when infected people handle not-heated or otherwise-treated food. HAV is endemic in low-income countries because of poor sanitary and sociodemographic conditions. The populations of developed countries are highly susceptible, and large outbreaks occur when HAV is introduced from endemic countries due to globalization, travel, and movement of foodstuffs. HAV prevention includes hygiene practices, immunoglobulins, and vaccination. Safe and effective inactivated and live attenuated vaccines are available and provide long-term protection. The vaccine targets are children and subjects at increased risk of HAV exposure or serious clinical outcomes. This review discusses the critical role of food handlers in the spread of HAV and the opportunity for food industry employers to consider food handler immunization a tool to manage both food safety in compliance with HACCP principles and food operators' biologic risk.
Collapse
Affiliation(s)
- Alessandra Fallucca
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Vincenzo Restivo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | | | - Marco Roveta
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit 3, 16142 Genoa, Italy
| | - Cecilia Trucchi
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit 3, 16142 Genoa, Italy
| |
Collapse
|
5
|
Wu F, Oghuan J, Gitter A, Mena KD, Brown EL. Wide mismatches in the sequences of primers and probes for monkeypox virus diagnostic assays. J Med Virol 2023; 95:e28395. [PMID: 36504122 DOI: 10.1002/jmv.28395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Rapid and accurate diagnosis of infections is fundamental to containment of disease. Several monkeypox virus (MPV) real-time diagnostic assays have been recommended by the CDC; however, the specificity of the primers and probes in these assays for the ongoing MPV outbreak has not been investigated. We analyzed the primer and probe sequences present in the CDC recommended MPV generic real-time PCR assay by aligning those sequences against 1730 MPV complete genomes reported in 2022 worldwide. Sequence mismatches were found in 99.08% and 97.46% of genomes for the MPV generic forward and reverse primers, respectively. Mismatch-corrected primers were synthetized and compared to the generic assay for MPV detection. Results showed that the two primer-template mismatches resulted in a ~11-fold underestimation of initial template DNA in the reaction and 4-fold increase in the 95% LOD. We further evaluated the specificity of seven other real-time PCR assays used for MPV and orthopoxvirus (OPV) detection and identified two assays with the highest matching score (>99.6%) to the global MPV genome database in 2022. Genetic variations in the primer-probe regions across MPV genomes could indicate the temporal and spatial emergence pattern of monkeypox disease. Our results show that the current MPV real-time generic assay may not be optimal to accurately detect MPV, and the mismatch-corrected assay with full complementarity between primers and current MPV genomes could provide a more sensitive and accurate detection of MPV.
Collapse
Affiliation(s)
- Fuqing Wu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeremiah Oghuan
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anna Gitter
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kristina D Mena
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eric L Brown
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Chen W, Wang W, Wang X, Li Z, Wu K, Li X, Li Y, Yi L, Zhao M, Ding H, Fan S, Chen J. Advances in the differential molecular diagnosis of vesicular disease pathogens in swine. Front Microbiol 2022; 13:1019876. [PMID: 36386633 PMCID: PMC9641196 DOI: 10.3389/fmicb.2022.1019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), Senecavirus A (SVA) and swine vesicular disease virus (SVDV) are members of the family Picornaviridae, which can cause similar symptoms - vesicular lesions in the tissues of the mouth, nose, feet, skin and mucous membrane of animals. Rapid and accurate diagnosis of these viruses allows for control measures to prevent the spread of these diseases. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR are traditional and reliable methods for pathogen detection, while their amplification reaction requires a thermocycler. Isothermal amplification methods including loop-mediated isothermal amplification and recombinase polymerase amplification developed in recent years are simple, rapid and do not require specialized equipment, allowing for point of care diagnostics. Luminex technology allows for simultaneous detection of multiple pathogens. CRISPR-Cas diagnostic systems also emerging nucleic acid detection technologies which are very sensitivity and specificity. In this paper, various nucleic acid detection methods aimed at vesicular disease pathogens in swine (including FMDV, SVA and SVDV) are summarized.
Collapse
Affiliation(s)
- Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shuangqi Fan, ; Jinding Chen,
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Shuangqi Fan, ; Jinding Chen,
| |
Collapse
|
7
|
Velebit B, Milojević L, Baltić T, Grković N, Gummalla S, Velebit M, Škoko I, Mojsova S, Putnik P. Efficacy of cold atmospheric plasma for inactivation of viruses on raspberries. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Pavoni E, Bertasi B, Galuppini E, Mangeri L, Meletti F, Tilola M, Carta V, Todeschi S, Losio MN. Detection of Hepatitis A Virus and Norovirus in Different Food Categories: A 6-Year Survey in Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:69-76. [PMID: 34698989 DOI: 10.1007/s12560-021-09503-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
To observe the prevalence of contamination by hepatitis A virus (HAV) and norovirus (NoV) in different food types, 9242 samples were analyzed over a 6-year period (January 2014-December 2019). Samples were from routine official activities by Competent Authorities (CAs) and Food Business Operators, according to Hazard Analysis and Critical Control Points plans. Analyses were performed in accordance with European and Italian regulations. Food types were obtained from different production areas of Italy, and ranged from mollusks, ready-to-eat (RTE) and packaged vegetables, frozen berries, tap water, fruit and RTE fruit salads, and processed and preserved foods. No risk management plans were set by the authors' laboratory, because they were still adopted by conferring customers. Analyses were conducted according to ISO/TS 15216-2:2013 (ISO in Part 2: Method for Qualitative Detection. International Organization for Standardization, Geneva, 2013). The data showed that 2.25% (95% CI: 2.0-2.6) of samples were contaminated by at least one virus type, and that the most detected pathogen was NoV GII (89.50% of all positives). Mollusks (filter-feeding animals) were the most contaminated category (92.31% of all positives) not only by NoV or HAV individually, but also by multiple HAV/NoV contaminations consisting of 22.59% of all positives. For NoV, there was a significant correlation between shellfish positivity and season, with the autumn-winter period being the most associated with risk. Conversely, berries, drinking water and RTE vegetables, previously linked to several outbreaks, showed a low rate of contamination. These results from data collection have implications for the improvement of sampling plans for HAV and NoV by Italian CAs, and by food-producing and distribution operators. Moreover, these findings obtained by a standardized qualitative method contribute the collection of data aimed at establishing new microbiological criteria not yet foreseen (but advocated) by current European rules.
Collapse
Affiliation(s)
- Enrico Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy.
- Food Control Division, Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini" (IZSLER), Via Bianchi 7/9, 25124, Brescia, Italy.
| | - Barbara Bertasi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| | - Elisa Galuppini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| | - Lucia Mangeri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| | - Francesca Meletti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| | - Michela Tilola
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| | - Valentina Carta
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| | - Silvia Todeschi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| | - Marina-Nadia Losio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
- National Reference Centre for Emerging Risks in Food Safety, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "B. Ubertini", via Bianchi 7/9, 25124, Brescia, Italy
| |
Collapse
|
9
|
Bustin S, Kirvell S, Huggett JF, Nolan T. RT-qPCR Diagnostics: The "Drosten" SARS-CoV-2 Assay Paradigm. Int J Mol Sci 2021; 22:ijms22168702. [PMID: 34445406 PMCID: PMC8395416 DOI: 10.3390/ijms22168702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
The reverse transcription quantitative polymerase chain reaction (RT-qPCR) is an established tool for the diagnosis of RNA pathogens. Its potential for automation has caused it to be used as a presence/absence diagnostic tool even when RNA quantification is not required. This technology has been pushed to the forefront of public awareness by the COVID-19 pandemic, as its global application has enabled rapid and analytically sensitive mass testing, with the first assays targeting three viral genes published within days of the publication of the SARS-CoV-2 genomic sequence. One of those, targeting the RNA-dependent RNA polymerase gene, has been heavily criticised for supposed scientific flaws at the molecular and methodological level, and this criticism has been extrapolated to doubts about the validity of RT-qPCR for COVID-19 testing in general. We have analysed this assay in detail, and our findings reveal some limitations but also highlight the robustness of the RT-qPCR methodology for SARS-CoV-2 detection. Nevertheless, whilst our data show that some errors can be tolerated, it is always prudent to confirm that the primer and probe sequences complement their intended target, since, when errors do occur, they may result in a reduction in the analytical sensitivity. However, in this case, it is unlikely that a mismatch will result in poor specificity or a significant number of false-positive SARS-CoV-2 diagnoses, especially as this is routinely checked by diagnostic laboratories as part of their quality assurance.
Collapse
Affiliation(s)
- Stephen Bustin
- Medical Technology Research Centre, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University Chelmsford, Chelmsford CM1 1SQ, UK; (S.K.); (T.N.)
- Correspondence:
| | - Sara Kirvell
- Medical Technology Research Centre, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University Chelmsford, Chelmsford CM1 1SQ, UK; (S.K.); (T.N.)
| | - Jim F. Huggett
- National Measurement Laboratory, LGC, Queens Rd, Teddington, London TW11 0LY, UK;
| | - Tania Nolan
- Medical Technology Research Centre, Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University Chelmsford, Chelmsford CM1 1SQ, UK; (S.K.); (T.N.)
| |
Collapse
|
10
|
Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, Nodooshan MM. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 2021; 93:4182-4197. [PMID: 33538349 PMCID: PMC8013307 DOI: 10.1002/jmv.26846] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
High-throughput droplet-based digital PCR (ddPCR) is a refinement of the conventional polymerase chain reaction (PCR) methods. In ddPCR, DNA/RNA is encapsulated stochastically inside the microdroplets as reaction chambers. A small percentage of the reaction chamber contains one or fewer copies of the DNA or RNA. After PCR amplification, concentrations are determined based on the proportion of nonfluorescent partitions through the Poisson distribution. Some of the main features of ddPCR include high sensitivity and specificity, absolute quantification without a standard curve, high reproducibility, good tolerance to PCR inhibitor, and high efficacy compared to conventional molecular methods. These advantages make ddPCR a valuable addition to the virologist's toolbox. The following review outlines the recent technological advances in ddPCR methods and their applications in viral identification.
Collapse
Affiliation(s)
- Amir Asri Kojabad
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Masoumeh Bolandian
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
11
|
Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol 2021; 184:750-759. [PMID: 34171259 DOI: 10.1016/j.ijbiomac.2021.06.132] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
Pathogens pose a severe threat to food safety and human health. The traditional methods for pathogen detection can't meet the growing diagnosis and control need. Digital PCR (dPCR) attracts a considerable attention for its ability to absolutely quantify pathogens with features of high selectivity, simplicity, accuracy and rapidity. The dPCR technique that achieves absolute quantification based on end-point measurement without standard curve offers a guideline for further genetic analysis and molecular diagnosis. It could contribute to the quantification of low level of nucleic acid, early detection and timely prevention of pathogenic diseases. In this review, 1442 publications about dPCR were selected and the detections of various pathogens by dPCR were reviewed comprehensively, including viruses, bacteria, parasites and fungi. A number of examples are cited to illustrate that dPCR is a new powerful tool with desired accuracy, sensitivity, and reproducibility for quantification of different types of pathogens. Moreover, the benefits, challenges and future prospects of the dPCR were also highlighted in this review.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Salipante SJ, Jerome KR. Digital PCR—An Emerging Technology with Broad Applications in Microbiology. Clin Chem 2019; 66:117-123. [DOI: 10.1373/clinchem.2019.304048] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/18/2019] [Indexed: 01/10/2023]
Abstract
Abstract
BACKGROUND
The PCR and its variant, quantitative PCR (qPCR), have revolutionized the practice of clinical microbiology. Continued advancements in PCR have led to a new derivative, digital PCR (dPCR), which promises to address certain limitations inherent to qPCR.
CONTENT
Here we highlight the important technical differences between qPCR and dPCR, and the potential advantages and disadvantages of each. We then review specific situations in which dPCR has been implemented in clinical microbiology and the results of such applications. Finally, we attempt to place dPCR in the context of other emerging technologies relevant to the clinical laboratory, including next-generation sequencing.
SUMMARY
dPCR offers certain clear advantages over traditional qPCR, but these are to some degree offset by limitations of the technology, at least as currently practiced. Laboratories considering implementation of dPCR should carefully weigh the potential advantages and disadvantages of this powerful technique for each specific application planned.
Collapse
Affiliation(s)
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
13
|
New Subgenotyping and Consensus Real-Time Reverse Transcription-PCR Assays for Hepatitis A Outbreak Surveillance. J Clin Microbiol 2019; 57:JCM.00500-19. [PMID: 31217273 DOI: 10.1128/jcm.00500-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
Laboratory surveillance plays an important role in the detection and control of hepatitis A outbreaks and requires the application of rapid and accurate molecular diagnostic tools for hepatitis A virus (HAV) RNA detection, subgenotype identification, and sequence-based genotyping. We describe the development and validation of a triplex real-time, reverse transcription-PCR (triplex rRT-PCR) assay for the identification and discrimination of HAV subgenotypes IA, IB, and IIIA and a singleplex rRT-PCR assay designed to detect all HAV genotypes infecting humans. Overall, the accuracy, sensitivity, and specificity of the new assays were >97% for serum and plasma specimens collected during unrelated outbreaks of HAV in California and Michigan compared to a nested RT-PCR genotyping assay and the ISO 15216-1 rRT-PCR method for HAV detection. The new assays will permit the rapid detection of HAV RNA and discrimination among subgenotypes IA, IB, and IIIA in serum and plasma specimens, which will strengthen public health surveillance efforts for HAV outbreak detection and response.
Collapse
|